逻辑推理分析范文
时间:2023-12-06 17:40:01
导语:如何才能写好一篇逻辑推理分析,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
一是建立整改落实方案集体审阅把关制度。以村领导班子分析检查报告为基础,认真制定整改落实方案,特别是把保持经济平稳较快发展、改善民计民生、维护社会和谐稳定以及党员党性党风党纪方面存在的突出问题,作为整改的主要任务,纳入整改的重点内容。为使整改落实方案符合村组实际并具有较强的可行性,村党支部多次召开专题会议进行研究和反复修改,严把审查关和质量关,并将初稿印发到村组干部、党员群众手中征求意见,进行全面分析和归类梳理,按程序将整改落实方案报送镇党委、学习实践活动指导检查组进行审阅后,才形成定稿。使整改落实方案既有长远规划,又有阶段性要求,既有明确目标,又有解决问题的具体措施和办法,保证了整改落实方案的质量。
二是建立整改落实责任包干制度。对查摆出来的突出问题和需要完善的体制机制,按照问题的轻重缓急和难易程度,分解量化,逐项研究分析,做到时间、责任、措施“三落实”。对群众反映强烈的突出问题,限定时间,立即解决;对于受客观条件限制一时解决不了的问题,向群众说明情况,做出承诺,制定具体整改计划;对情况复杂、涉及面大,一时难以解决的问题,写出书面建议书,汇报镇党委共同研究协调解决。村支部书记作为整改落实的第一责任人,亲自部署,带头抓落实,村“两委”班子成员作为直接责任人,着力抓好分管工作方面问题的解决。对于班子成员在主观上整改落实不力、拖延软弱懒散、敷衍应付、走了过场的,责成责任人在支部大会上说明原因并延期整改。
三是建立整改落实销号制度。按照时间服从任务、进度服从质量的要求,坚持量力而行、尽力而为、统筹推进、分步解决的原则,对于影响科学发展和群众反映强烈的突出问题,建立台帐,列出清单,明确责任主体、方法步骤和完成时限,在门前设立公示栏,广泛接受群众监督,逐个“挂号”整改、“销号”落实,办成一件,只有取得了实效,得到了群众的认可,才可以在台账上予以“销号”,确保件件有着落,事事有回音,严格实行“不改不销、改了再销”。截至目前,全村列入“销号整改”的10个问题中,已整改“销号”6个,4个问题正在抓紧解决中。
篇2
关键词:初中 数学教学 逻辑推理
推理是人类所特有的一种高级心理活动,是大脑反映客观事物的一般特性及其相互关系的一种过程。概括地说,推理就是人们对客观事物间接的概括的认识过程。所谓逻辑推理,是一种确定的、前后一贯的、有条理的、有根有据的思维,是人类正确认识事物必不可少的手段。《九年义务教育全日制初级中学数学教学大纲》明确提出展逻辑思维能力和逻辑推理能力,并能够运用所学知识解决简单的实际问题”。逻辑推理能力是与数学密切相关的特殊能力,培养这种特殊能力的最终的着眼点,是要使学生能够运用所学知识解决简单的实际问题。培养学生逻辑推理能力的首要关键是教师必须熟练地掌握各种不同的推理方法.而其根本途径是通过发掘教材内部的逻辑推理因素,考虑教材特点以及学生年龄特征结合数学来进行,既要做到有意融,叉必须潜移默化。任何离开教材另搞一套的做法都是不必要的。晚离学生实际,片面追求逻辑上的完整、严谨,提出过高过急的要求也是难以收到良好效果的.培养和发展学生的逻辑推理能力,是中学数学的重要教学目的之一。当然教师首先本身应该研究逻辑学,掌握一定的逻辑知识,在课堂教学中,应当充分体现出教材本身逻辑系统的要求,充分揭示教材的矛盾和学生认识过程的矛盾。通过设计一系列逐步深化的问题引导学生由浅人深地进行思考。
一、在加深对基本概念的透彻理解的过程中发展学生的逻辑推理能力
培养和发展学生的逻辑思维能力,是中学数学教学的目的之一,中学数学教材从始至终都包含着丰富的逻辑因素,体现了逻辑规律和逻辑形式.在教学中,要不断地揭示出教材的内在逻辑性,以培养学生的逻辑思维能力。常常碰到有的学生在解答数学习题的时候,只重视公式定理的记忆,热衷于难题的求解,却不重视对数学概念的透彻理解,因而常有偷换概念等错误出现。
例如,在求解汽船往返甲、乙两码头之间顺水速度为60千米/小时,逆水速度为30千米/小时,往返一次的平均速度时,学生错解为平均速度是(30+60)×1/2=45(千米/小时)。这里对“平均速度”概念的理解是错误的,把它和两个数的算术平均数混淆起来了。违反了思维的基本规律,因而得出的结论是错误的。
正确的解法是:设两码头相距s公里,则往返一次的距离为2S,顺水用的时间为未小时,逆水时间为S/60小时,故平均速度为V=2S/(S/60+S/30)(千米/小时)。从这个例子可以看到如能运用逻辑推理方法去理解平均速度,也就可以加深平均速度这概念的理解。在教学中如果教师掌握了这一规律也就能强调对这概念的具体理解和使用,培养学生的逻辑推理能力。
二、从特殊到一般,再从一般到特殊,在掌握知识和运用知识的过程中,培养学生的逻辑推理能力
初中数学中的概念、命题(公理、定理、公式)、推理、论证等都属于思维形式的范畴,这些思维形式都要遵循一定的思维规律。例如,在设计同底数幂的乘法法则推导时,先引导学生以特殊的例子103×l02=(10×10×10) ×(10×10)(乘方的意义)=10×10×10×10×l0(乘法的结合律)=105(乘方的意义)。
得出:103×l02=103+2。
然后用同理可得23×24=23+4;(1/2)2×(1/2)4=(1/2)2+4;说明不同的底数有相同的规律再举出a3·a2得a3·a2=a3+2,从而提出问题引导学生思考am·an=?,由学生分析并归纳出am·an=am+n从而得到一般地如果m、n都是正整数,那么am·an=am+n,这就是一个由特殊到一般的思维过程。这样训练,既使学生搞清公式、法则的来龙去脉,又加强了学生逻辑推理能力的培养。
三、在更正学生练习或作业的错误中,培养学生的逻辑推理能力
例如,含盐12%的盐水4千克,需加人多少克盐,才能达到含盐20%的盐水
解:设需加入戈克盐,根据题意,可得方程:
4×12/100+x=202(4+x)×20/100解得:x=0.4克
这个根在检验时,可能不难发现不合题意。如能遵循逻辑思维基本规律,在同一运算过程中,保持同一运算单位,就不会错在单位不统一上,而造成列错方程了。
正确方程应为: 4000×12/100+ x =(4000+ x) ×20/100
从上面解题中可以看出:在列方程解应用题时,最容易忽略单位的统一而列错了方程。如果你能运用逻辑思维基本规律检查一下你所列出的方程,就可能会发现问题,从而得到一个正确的方程。因此,在更正学生的练习或作业时,要加强对知识的理解和掌握,根据逻辑推理迅速、准确的解答问题,论证自己的论断,以及严谨而前后一贯地叙述自己的思想,从而培养学生的逻辑推理能力。
总之,逻辑推理能力,是正确、合理地进行思考的能力,它在能力培养中起到核心的作用。初中数学教学中,发展学生的逻辑推理能力,主要是逐步培养学生会观察、比较、分析、综合、抽象和概括,会用归纳、演绎和类比进行推理,会准确地阐述自己的思想和观点,形成良好的思维品质。只有培养学生的逻辑思维能力,并在发展的过程中,不断地修正错误,认识真理,使他们获得越来越丰富的科学知识,这尤其是在初中起点年级更为重要。
参考文献:
篇3
关键词: 化学实验 逻辑推理 案例
逻辑方法是人们在逻辑思维过程中,根据现实材料按逻辑思维的规律、规则形成概念、作出判断和进行推理的方法。推理是从一个或者一些已知的命题得出新命题的思维过程或思维形式。推理或论证的作用就是预测、解释、说服和决定。预测是根据某些一般性原理推出某个未来事件将会以何种方式发生;解释是根据某些一般原理去说明某个个别事件为何会如此这般发生;说服是用论证把一些理由组织起来,以使对方和公众接受自己的观点;决定是根据某些一般原理和当下的特殊情况作出行为上的决断:做什么和不做什么。通常我们进行推理时,前提和结论之间总是存在着某种共同的意义内容,使得我们可以由前提想到、推出结论,正是这种共同的意义内容潜在地引导、控制着从前提到结论的思想流程。
逻辑推理方法是基本的科学方法,适用于科学的各个领域。逻辑推理也适用于化学实验。中学化学实验中的逻辑方法就是依据中学化学的已有知识,借助逻辑推理方法进行探究性设计和实验。进行合乎逻辑的探究性实验设计有利于化学新知识的产生、新概念建立和理解、科学方法的学习、科学能力的提高。
下面就案例进行说明。
1.实验室制取氧气中二氧化锰的催化作用
初中化学用双氧水或加热氯酸钾制取氧气时,加入二氧化锰催化,通过简单实验说明二氧化锰在这两个反应中是催化剂,起催化作用。在新老教材中,引出催化剂、催化作用两个概念都显得突然和欠缺逻辑性,缺少说服力,学生心存疑虑,学生心理始终处于愤悱状态而得不到满足。
进行探究性实验的方法有两种:(1)定性定量分析实验推理方法。把反应后的反应物进行分离提纯,称量MnO质量,鉴定并称量KCl、HO,进行推理说明,然后引出催化作用、催化剂两个概念。这是很多教学参考资料介绍的常用的探究性实验方法,我在这里权且称之为定性定量分析实验推理方法。这种方法优点是以实验为依据,加之逻辑推理,有很强的说服力,科学合理,在教学中能达到很好的教育教学效果。但这种方法也有时间长、操作复杂、课堂教学受到限制等缺点,这种方法可作为学生课外科学探究的方法之一进行。(2)实验逻辑推理方法。以二氧化锰催化分解双氧水为例说明。取A试管加入适量二氧化锰再加入适量双氧水,剧烈反应,收集检验生成的气体,证明是氧气。反应完毕后少静置一会儿,用吸管吸出上层清液放入B试管内,再往A试管里加入双氧水,则出现跟原来一样的反应现象,收集检验生成的气体仍然是氧气。说明A试管里加入的二氧化锰性质没有变化;再往B试管内加入二氧化锰,则没有发生变化,即无氧气放出,说明B试管内的清液已不是双氧水了,即原来A试管加入的双氧水发生变化生成了氧气,生成的清液按组成推理应该是水。整个实验的结果经过逻辑推理,显然是双氧水分解生成水和氧气,二氧化锰在此反应中性质和质量都没有变化,起催化双氧水分解的作用,为催化剂。同样的逻辑推理方法可以运用到二氧化锰催化分解氯酸钾制取氧气的反应中。此方法简单,操作方便,现象明显,逻辑推理有力,结果合乎道理。能达到很好地课堂教学效果。
2.加热分解氯化铵实验逻辑推理方法
现用高中化学第二册第一章氮和氮的化合物里,有以氯化铵为例说明铵盐受热分解的演示实验。实验的内容是:在试管中加入少量NHCl晶体,加热,观察发生的现象。可以看到,加热后不久,在试管上端的试管内壁上有白色固体附着。教材接着说是由于受热时,NHCl分解,生成NH和HCl;冷却时,NH和HCl又重新结合,生成NHCl。
反应式:NHCl=NH+HCl
NH+HCl=NHCl
这是一个简单的实验,现象很鲜明,结论也是一定的,但没有严密充分的说服力。这时的高二学生都知道升华概念。依据上述的实验现象,学生很自然地有三种假设:(1)是教材上所述;(2)NHCl受热升华,在试管上端的试管内壁上有白色NHCl固体附着;(3)NHCl受热分解,生成一种新的白色固体附着在试管上端的内壁上。
要对该实验进行逻辑推理设计,首先要检验生成物,假设生产物是NHCl,则取出该生产物少许配成溶液,分成两份,其中一份加入AgNO溶液和少许稀硝酸,有白色AgCl沉淀,则证明有Cl-存在;在另一份溶液中加入适量NaOH并加热,在试管口用湿润的红色石蕊试纸检验,试纸变蓝色,说明该反应有NH放出,说明配成的溶液中有NH存在。结论是NHCl受热后在试管上端的试管内壁上的白色固体仍是NH4Cl。这样的结论可以排除上述假设的第三种:NHCl受热分解,生成一种新的白色固体附着在试管上端的内壁上。
那么,试管底部的NHCl晶体受热转移到试管的上部,要么是第一种假设正确,要么是第二种假设正确。若是第一种假设正确,则可以在试管内检验到NH。因此在试管中加入少量NHCl晶体,加热时,在试管口放入湿润的红色石蕊试纸检验,结果是红色石蕊试纸变蓝色,说明有NH存在(NHCl分解,生成NH和HCl,由于NH扩散能力比HCl大,因此可以在试管口检验到NH),推理说明第一种假设成立。
该实验的逻辑性设计与实验不但可以解决教师课堂的灌输式教学的弊端,而且可以很好地培养学生的探索求异发散思维能力,培养学生的科学方法和分析问题解决问题的科学探究能力。
3.二氧化碳与水的反应及碳酸分解反应实验
初中化学有二氧化碳与水的反应及碳酸分解反应的简单演示实验,是一个验证性实验,教师可以改为具有逻辑性的探究性实验,也可以在教师的指导下学生进行随堂探究性实验。
用醋酸溶液及稀盐酸溶液点滴干燥蓝色石蕊试纸,试纸变红,说明酸能使蓝色石蕊试纸变红的性质。用干燥的蓝色石蕊试纸检验干燥的二氧化碳气体,试纸不变色,说明二氧化碳不是酸。把二氧化碳气体通入试管的水中,用蓝色石蕊试纸检验二氧化碳水溶液,试纸变红。说明二氧化碳气体的水溶液,具有酸的性质,该酸是二氧化碳气体溶于水形成的,即应该是二氧化碳与水反应生成的酸,该酸按组成推理应该是碳酸。
篇4
根据我们对多届学生的分析,我们发现学生在进入高一时,物理学习是比较困难的,究其原因是因为此时的物理学习与初中时相比,无论是在知识上,还是在思维方法上均有较大的区别,因此学生需要一个适应的过程.而此后学生一般会有三种发展可能:一是物理彻底差下去,原因是物理学习始终不得其道;二是不温不火,原因是复杂的物理知识与一般的学习能力之间形成了一种平衡;三是物理成绩好了起来,原因是物理思维能力契合了物理知识的学习.对于第三种可能而言,逻辑思维能力的作用功不可没.掘作即以“动能定理”为例,谈谈逻辑思维能力的培养.
1动能定理知识中的逻辑关系梳理
动能定理上承动能概念以及动力学的相关知识,其中动力学知识(以牛顿第二运动定律为主)构成了逻辑推理的重要基础;而动能及能量概念在初中已有涉猎,但不涉核心,在高中阶段建立的动能概念尤其是能量概念,其已经与“功是能量转化的量度”衔接在了一起,使得在知识体系上第一次明确地将功与能联系在了一起.动能定理则是建立在这一联系之上,将学生对功与能的关系拓展到一个新的高度,使得物体所受的合外力所做的功,与物体的动能变化联系在了一起.同时我们也应当发现,在此前研究得出的功与速度变化的关系,也为动能定理的得出打下了坚实的基础,而推理动能定理所需要的数学知识在学生的数学学习中已经成型,因此可以充当逻辑思维的重要工具.
但同时我们应当注意到,这些关系又不是显性的,换句话说不是学生一眼所能看出来的,而推理动能定理所需要的逻辑推理能力也不是自然出现的,因此在动能定理出现的过程中还需要教师的指导与指引,而指引的重要方式就是问题的设计与适时提出.
2动能定理教学中的逻辑能力培养
在动能定理的形成过程中,我们有这样两个关系需要明确培养.
一是情境创设中的逻辑关系.无论具体的情境如何,其总离不开让学生思考动能与影响因素的关系,比如说有老师设计扔出篮球与铅球让学生去接,通过让学生比较接球的感受来判断影响动能大小的因素.在这一过程中,逻辑关系存在于接球感受(实质上是动能的大小)与影响因素之间,ΔEk与W之间是什么关系成为下一步探究的主题.
二是探究中的逻辑关系.这是逻辑思维能力培养的核心,其中包括两个主要需要探究的问题:第一个问题是动能及其变化如何定量描述?第二个问题是动能的变化与物体受到的力的做功之间是什么定量关系?对于这两个问题的解决,我们可以引导学生进行如下的推理:其一,对于一个质量一定的物体,其动能的变化决定于哪个物理量的变化(答案:速度)?其二,速度的变化用哪个物理量来衡量(答案:加速度)?其三,对于一个质量一定的物体,其加速度决定于什么(答案:合外力)?当顺利解决了这三个问题之后,我们就可以乘热打铁:合外力正是与功相关的一个物理量!――如果注意分析,我们发现这是一个严密的逻辑推理过程!
如果说刚才进行的是从定性角度进行的逻辑推理的话,那更为精确的从定量角度进行的逻辑推进可以顺势进行:
根据牛顿第二运动定律F合=ma,又因为对于匀加速直线运动,有v2t-v20=2as,变形后可得a=v2t-v202s,代入牛顿第二运动定律表达式,即可得F合=m(v2t-v202s),将右边分母上的s移至左边即可得F合s=m(v2t-v202),此时继续引导学生去研究等号左边的F合s,即可发现其即为“功”,那是什么力做的功呢?由下标可知为合外力做的功!
此时遇到的问题在于学生对等号右边认识,首先要将其变形成12mv2t-12mv20,这样有助于学生认识到这是相同形式但不同状态的两个物理量的差!那这是什么物理量呢?一般情况下学生并不能直接反应出来,即使说出动能概念的,也往往说不清理由.这个时候仍然需要教师引导学生进行推理:等号的左边是功,那右边就应当是功或者能(因为功是能量转化的量度),从形式上来看显然不是功,那只可能是能!又可以发现其中每一个因式都与质量和速度有关,因此此能应当是动能!也因此,合外力做功与动能变化的关系就浮出出来!
3教学反思
篇5
关键词: 物理教学 逻辑推理 能力培养
案例一:凸透镜成像的规律是初中物理教学的重点。学生通过实验总结出当u>2f,2f>u>f,u
学生通过实验总结出当u>2f时凸透镜成倒立、缩小的实像,当2f>u>f时凸透镜成倒立、放大的实像,此时让学生分析凸透镜可成倒立、等大的实像吗?引导学生推理分析,当蜡烛逐渐向凸透镜靠拢的过程中,像逐渐变大,由缩小到放大,肯定在某一位置凸透镜成倒立、等大的实像。再进一步追问:当u满足什么条件可成倒立、等大的实像呢?不难得出“当u=2f可成倒立、等大的实像”。当u=f时,可提示学生蜡烛就放在凸透镜的焦点上,根据凸透镜对光的作用和光路可逆原理,可得出经凸透镜折射后的光线是平行光,光线不能会聚,其反向延长线也不能相交,所以此时凸透镜不成像。在此之后可以引导学生继续用推理的方法分析,在U>f时光线经凸透镜折射后会会聚,所以成实像,U
案例二:在探究影响斜面机械效率的实验中,学生通过实验总结出斜面的倾斜程度越大,机械效率越高;斜面越光滑,机械效率越高。学生很难理解斜面的倾斜程度对机械效率的影响,在教学中可尝试用极限的思维帮助学生进行推理,帮助学生理解。
学生通过实验方法总结出了“斜面的倾斜程度越大,机械效率越高”的结论。这时可以引导学生用推理的方法分析:若木板水平放置,即斜面的倾角为零,此时的有用功为零,所以机械效率为零;若木板竖直放置,即斜面的倾角为90度,此时的有用功等于总功,所以机械效率为1。然后引导学生分析得出斜面的倾斜程度越大,机械效率越高。
案例三:在完成探究阻力对物体运动的影响实验后,如何降低台阶,引导学生进行推理,真正暴露物体不受力的本性,是本节课的难点。实验收集数据如下:
引导学生分析下表可得出结论:平面越光滑,小车运动的距离越远,这说明小车受到的阻力越小,速度减小得越慢。然后引导学生推理,具体推理过程如下:
师:若木板表面绝对光滑,小车所受阻力为零,小车的速度将会怎样变化?小车将会怎样运动?
生:小车的速度不会减慢,将以恒定不变的速度永远运动下去。
师:请画出此时小车的受力示意图(让学生明白此时小车还受到重力和支持力)。
师:木板不可能无限长,当小车运动到木板末端时,若重力和支持力同时消失,小车会掉下来吗?此时小车受力吗?小车将怎样运动?
生:不会掉下来,此时小车不受力,将会做匀速直线运动。
师:那么我们可总结出当运动的物体不受力时,将会怎样运动?
生:将会做匀速直线运动。
通过上述推理,绝大多数同学能理解“运动的物体不受力时,将会做匀速直线运动”,达到较好的效果。
总之,初中物理教师要善于深挖教材,在日常教学中有意识地培养学生的逻辑推理能力,将对他们终生受益。
参考文献:
[1]阮英歌.在初中物理教学中培养学生归纳推理能力的实验研究[J].首都师范大学,2008.
篇6
[关键词]科学史;理性思维;核心素养;生物教学
[中图分类号]G633.91[文献标识码]A[文章编号]16746058(2017)17009302
理性思维是生物学核心素养的重要组成部分,生物教学中可通过多种途径培养学生的理性思维,其中利用科学史就是有效途径之一。生物学是一门以实验为基础的学科,高中生物教材中有较多的科学史,记录了科学家通过实验解决生物学问题、探寻生命本质的历程。编者旨在通过这些科学史引导学生领悟科学家的理性思维方式、研究问题的方法及科学探究精神等,从而提高学生的生物学核心素养。那么,在生物课堂教学中如何利用科学史培养学生的理性思维呢?
一、利用科学史培养学生的分析能力
理性思维是人类思维的高级形式,它包括对事物或问题进行观察、分析、比较、综合、抽象、概括等过程。通过这些思维活动,学生可有效把握事物的本质和规律。作为高中生物教师,应有效利用科学史培养学生的分析能力,从而进一步培养学生的理性思维。
以苏教版《分子与细胞》中“回眸历史――解开光合作用之谜”为例,这部分科学史介绍了多个经典实验,能很好地展现科学家的研究思路、研究方法等,但有些教师由于课时有限,对
这些经典实验
只作简单介绍,未能发挥出它们应有的提升能力之效。兼顾到课时有限和培养学生能力的重要性两方面因素,笔者对这些经典实验做了如下处理。
对于海尔蒙特、普里斯特莱、扬・英根豪斯的实验,着重介绍实验发生的背景及实验操作过程,请学生根据实验现象自己分析得出实验结论。
对于恩吉尔曼的实验也采用上述的方法,但在学生分析出实验结论“光合作用的场所是叶绿体”后,追问:
“该实验只能得出这个结论吗?”学生再分析,得出“光合作用需要光”。再问:“恩吉尔曼在实验中选用了水绵和好氧细菌这两种生物材料有何妙处?”再引导学生分析。这样不仅训练了学生的分析能力,而且使学生理解了实验材料的选择对实验成功实施的重要性。
在谈到光合作用产生O2时,笔者没有直接介绍鲁宾和卡门的实验,而是提出问题:“光合作用的原料有H2O和CO2,O2中的O是来自H2O还是CO2?抑或是二者都有呢?可否设计一个实验方案来研究这个问题?”由于在学习生物膜系统时学生已经了解了同位素标记法,因此很快就有学生提出了实验思路,如:将H2O和CO2分别用
18O作标记,让两组植物分别处于H218O+CO2(A组)和H2O+C18O2(B组)的环境中生长(其他条件相同且适宜),再检测生成的O2是否含有18O。这时可再问:“预期实验会出现哪几种结果?可得出什么结论?”引导学生分析,最后得出三种预期结果:(1)只有A组产生含18O的O2;(2)只有B组产生含18O的O2;(3)A、B两组都产生了含18O的O2。对应得出三种结论:(1)O2中的O只来自于H2O;(2)O2中的O只来自于CO2;(3)O2中的O既可来自于H2O,也可来自于CO2。在引导学生分析完毕后,再展示鲁宾和卡门的实验过程、结果和结论,此时可借机表扬学生,让学生有成就感。
这样对经典实验进行处理,可让学生透过相关科学史体会科学家的理性思维方式及其所具备的严谨、执着等优秀品质,同时也很好地培养了学生的分析能力。
二、利用科学史培养学生的逻辑推理能力
理性思维是一种有明确思维方向、建立在证据和逻辑推理基础上的思维方式。逻辑推理能力是学生在解决真实情景中的生物学问题时需要具备的关键能力之一,科学史为训练学生的逻辑推理能力提供了有效的素材。
以苏教版《遗传与进化》中“探索遗传物质的过程”为例,P者发现很多教师在介绍格里菲思的肺炎双球菌的实验过程时,对其四组实验的分析一带而过,并快速得出了结论。实际上,如果引导学生仔细分析推理这四组实验,可让学生从中领悟科学家的理性思维过程,并提升学生的逻辑推理能力。对此,笔者在教学时介绍了格里菲思的肺炎
双球菌的体内转化实验(如下图所示)过程后,引导学生对格里菲思所做的四组实验进行如下分析推理:这四组实验谁和谁是对照组?说明什么问题?格里菲思根据什么证据说S型菌中含有能使R型菌转
化成S型菌的转化因子?学生轻松分析:①和②是一
组对照组,说明导致小鼠死亡的是S型活菌;②和③是一组对照组,说明只有S型活菌才会导致小鼠死亡;③和④对照,说明S型菌中含有能使R型菌转化成S型菌的转化因子。此时笔者提问:“仅有③和④对照只能说明导致小鼠死亡的不是S型死菌,它无法解释为什么会从死亡的小鼠体内分离出S型活菌且其后代仍是S型活菌,也不能说明S型死菌中存在有促使R型细菌转化的转化因子。有学生提出“会不会是S型死菌或者是R型活
菌变成了S型活菌”。借此,教师引导学生分析推理:应该是①②③共同与④进行对照,通过对照说明R型活菌和S型死菌都不会导致小鼠患败血症死亡,只有S型活菌才会导致小鼠死亡,可是第④组实验中只注射了R型活菌和S型死菌,那么小鼠体内的S型活菌是怎么变来的?是单独的
篇7
关键词:几何;推理;书写;教育
中图分类号:G632 文献标识码:B 文章编号:1002-7661(2015)11-008-01
一、教师要培养学生的几何推理能力
在几何知识学习中,证明题是一个常见题型,就是需要学生作出一判断,这个判断不是仅靠观察和猜想,或反通过实验和测量感性的判断,而必须是经过一系列的严密的逻辑推理和论证作出的理性判断。推理论证的过程要符合客观实际,论证要有充分的根据,不能凭主观想象。证明中的每一点推理论证的根据就是命题中给出的题设和已证事项,定义、公理和定理。换言之,几何命题的证明,就是要把给出的结论,用充分的根据,严密的逻辑推理加以证明。
每一个命题都是由题设和结论两部分组成的,要求学生从命题的结构特征进行划分,掌握重要的相关联词句。例:“如果……,那么……。”“若……,则……”等等。用“如果”或“若”开始的部分就是题设。用“那么”或“则”开始的部分就是结论。有的命题的题设和结论是比较明显的。例:如果一个三角形有两个角相等(题设),那么这两个角所对的边相等(结论)。但有的命题,它的题设和结论不十分明显,对于这样的命题,可要求学生将它改写成“如果……,那么……”的形式。例如:“对顶角相等”可改写成:“如果两个角是对顶角(题设),那么这两个角相等(结论)”。在解题的过程中需要学生掌握基本的规律定律,也要拥有严密的逻辑思维,以便能够使推理变得有理有据。
二、教师要加强对于学生的几何书写规范
在教学的过程中我们发现,不少学生在书写的时候往往不注意格式,推理、求证的思路不能直接体现出来,这就给学生的有效解题带来了难度。教学中教师要注重对于学生书写格式的规范化教育。最好能够引导学生根据命题的题意结合相应的几何图形,把命题中每一个确切的数学概念用它的定义,数学符合或数学式子表示出来。命题中的题设部分即被判断的“对象”写在“已知”一项中,结论部分即判断出来的“结果”写在“求证”一项中。使对于题目的求证变得更加有序、整洁。
例1:求证:邻补角的平分线互相垂直。已知:如图∠AOC+∠BOC=180°,OE、OF分别是∠AOC、∠BOC的平分线,求证:OEOF。
证明:
OE平分∠AOC
∠AOE=∠COE=∠AOC/2
OF平分∠BOC
∠BOF=∠COF=∠BOC/2
∠EOF=∠COE+∠COF=∠AOC/2+∠BOC/2=(∠AOC+∠BOC)/2=∠AOB/2=90°
OEOF
三、教师要做好学生逻辑推理能力与书写能力的全面发展
由于命题的类型各异,要培养学生分析与综合的逻辑推理能力,特别要重视问题的分析,执果索因、进而证明,这里培养逻辑思维能力的好途径,也是教学的重点和关键。在证明的过程中要培养学生:在证明开始时,首先对命题竹:分析、推理,并在草稿纸上把分析的过程写出来,以便之后在证明的时候能够更加明确解题步骤,做到卷面整洁。初中几何证题常用的分析方法有:
1、顺推法:即由条件至目标的定向思考方法。在探究解题途径时,我们从已知条件出发进行推理。顺次逐步推向目标,直到达到目标的思考过程。
如:试证:平行四边形的对角线互相平分。已知:ABCD,O是对角线AC和BD的交点。求证:OA=OC、OB=OD。
证明:
四边形ABCD是
ABCD AB=DC
∠1=∠4 ∠2=∠3
在ABO和CDO中
ABO≌CDO(ASA)
OA=OC OB=OD
2、倒推法:即由目标至条件的定向思考方法。在探究证题途径时,我们不是从已知条件着手,而是从求证的目标着手进行分析推理,并推究由什么条件可获得这样的结果,然后再把这些条件作结果,继续推究由什么条件,可以获得这样的结果,直至推究的条件与已知条件相合为止。
如图,已知在ABC中,EFAB,CDAB,G在AC边上,∠AGD=∠ACB.求证:∠1=∠2.
推理:想要证明∠1=∠2,就要证明∠1=∠3,想要证明∠1=∠3,就要证明DG∥BC,还要证明∠2=∠3。根据这一倒推方法就可以进行有效的证明:
证明:
EFAB,CDAB,
EF∥CD,
∠2=∠3;
∠AGD=∠ACB,
DG∥BC,
∠1=∠3;
∠1=∠2.
篇8
关键词:小学数学教学;培养学生;推理能力
一、明确知识结构和逻辑推理之间的关系
小学数学教学关于建立学生知识结构非常重要,它是发展学生逻辑推理的重要方法。老师在教学过程中要注意培养学生的思维能力,培养他们推理的能力。数学注重活学活用,要达到根据一个概念或理论就能举一反三的效果。
例如,三角形的面积=(底×高)÷2,而平行四边形的面积=底×高。
看上述公式可以发现一个规律——三角形和平行四边形之间的关系是:两个三角形可以组成一个平行四边形,或者说一个平行四边形可以分为两个三角形。教师要经常培养小学生这种类似的推理思想,要促使他们在学习数学的过程中善于思考,如果思维在学生脑海中形成惯性,那么,学生的分析推理能力就能得到提升。
二、在教学中灵活应用逻辑推理
1.对一些数学知识要善于发现其规律,并注重对学生进行这方面的培养
比如1,3,5,7…从这一系列数字中,学生会发现什么规律?很多学生可能很快就会回答:“都是奇数。”答案是对的,这是一串奇数列。如果接着再问:“它们相互之间有什么关系?”可能很多学生就不知道了,它的另一规律就是:分别由后一位的数字减去前一位的数字,得到的差值是一样的,7-5,5-3,3-1结果都是2。在学习过程中,教师应充分开发小学生的想象力,寻找事物的规律,这对学生的分析推理能力有很大的帮助。
2.采取可行的教学方法,培养小学生的分析推理能力,特别是在学习新知识时,一定要加强对学生的思维拓展训练
例如,在学习能被4整除的数字的时候,学生可能都知道只要末位数有两个0的整数都能被4整除,在这个基础上,就可以对学生进行拓展训练了。可以问学生:“哪些数能被8整除?”这时,学生可能就会思考一下了,思考的过程中,可以先从4的规律上出发,末位两个0就可以被4整除,自己举一个例子,如100可以被4整除,类似能被8整除的不就是1000吗,由此可以联想到,末位数有三个0的整数就可以被8整除,找到答案并不难。
在小学数学教学过程中,教师在对学生进行书本知识讲解的时候,要注意对学生分析推理能力的锻炼,因为数学不是生搬硬套的学问,它不需要学生死记硬背,更多的是要学生能理解,能推理,能有很好的逻辑思维能力。
参考文献:
[1]孙浩慧.小学数学中培养学生推理能力的教学策略[J].神州:上旬刊,2011(8):60.
篇9
【关键词】线性代数;概念;教学;学习方法
《线性代数》是普通高校的一门基础理论课程,通过本课程的学习使学生掌握线性代数的基本概念和基本定理.线性代数有着重要应用,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分.线性代数具有高度的抽象性和严密逻辑性,但是缺乏直观的数学模型.线性代数课时短、内容多、理论多,例题少,它经常开设在大一.这些令学生普遍感到学习线性代数困难.除了上述的原因外,它也与教师的教学经验、教学方式、教学策略、对教材的处理方法等因素有密切关系.为了解决这个问题,笔者认为,可以从以下几方面入手.
一、加强基本概念的教学
在线性代数学习中,定义、定理及其推论等基本概念是我们做题的基础,只有深刻地理解定义、定理隐藏的知识,才能更好地把握定理及其推论的应用.我们在教学中,不能要求学生死记硬背公式,要想办法让学生理解这些概念、公式.怎么做呢? 就是尽量将概念具体化,如何具体化呢?尽量给予事例说明.如矩阵、线性变换、特征值与特征向量,让学生记住具体事例,使之认识深入化.在引导学生学习某些有具体几何背景(向量的模)的概念时,让学生多加联想,指导学生按图索骥.
为了让学生吃透概念,授课时应该提醒学生注意两方面的问题:1.对概念、定理的陈述如果是严谨的,那么就要一字一句的抠,一个字都不能动,改动个别字就会导致题意发生根本变化(线性相关、线性无关的概念);2.对于有些概念、定理,自己能够简明扼要用自己地语言来描述它们.另外,在教学中还可适当的构造反例,使学生加深对概念的理解,例如数的乘法运算满换律和消去律,但矩阵的乘法运算不满换律和消去律,这样的反例,直观性强,浅显易懂,能给学生留下深刻的印象,使学生掌握概念的本质.既提高了学生分析问题和解决问题的能力,又加深了学生对基本基本知识点的理解,为学生后续课程的学习打下了坚实的基础.
二、强化逻辑推理能力训练
逻辑推理是数学的一个基本功能,它也是人们学习和生活中经常使用的思维方式.逻辑推理能力是学好线性代数必须具备的能力,只有具备了良好的推理能力,才能做到既合理猜想又大胆猜想,敢于突破常规思维定式,但是逻辑推理能力的形成和提高是一个缓慢的过程,短时间内很难见效果,我们要创设概念、定理、方法等问题的活动情境,将抽象的理论想办法具体化,让学生自己探究知识、形成结论.这样我们既锻炼了他们的推理能力又培养了他们的学习兴趣,不再觉得学习线性代数是乏味、无趣.推理能力的培养,要考虑学生的自身特点、层次性,思维方式也存在着一定的差异,我们要因人施教,因材施教,这样使学生的逻辑推理能力不断跃上新台阶.线性代数的知识点较多,很多重要概念之间的内在联系并没在课本中充分反映出来.学生只有具备良好的合情推理和演绎推理能力,才能掌握知识点的核心.例如,向量的线性组合与线性方程组的解、向量的线性相关与齐次线性方程组的非零解均关系密切,但教材中把它们放在不同的章节,很少有学生考虑这些概念之间的联系,在这些教学内容完成后,我让学生自己推理出这些概念之间的关系,结果许多学生自己找到了正确的答案.
另外,还要让学生注意新旧知识的联系,最后把同类知识归纳、总结、列表,把容易混淆的概念进行对比,以加强学生的想象力、理解力、记忆力.对于有些习题,还要注意一提多解及同类题的共性,培养举一反三和推理能力.
三、注意学习方法的总结
线性代数的概念很多,重要的有:逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,特征值与特征向量.运算法则也很多,重要的有:矩阵乘法,求矩阵的秩,求非齐次线性方程组的通解,基本运算与基本方法要过关.这些知识点从内容上看环环相扣,相互交错.要使知识点衔接、成网,归纳总结是不可缺少的步骤.我们对问题的表述要富有逻辑性,解题方法灵活多样性.在复习时常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识才能融会贯通,解题思路自然就开阔了.
篇10
关键词:数学 教学 推理能力
初中数学教学十分强调推理的严谨性,过分渲染逻辑推理的重要性而忽视了生动活泼的合情推理,使人们误认为数学就是一门纯粹的演绎科学。事实上,数学发展史中的每一个重要的发现,除演绎推理外,合情推理也起重要作用。因此,课堂教学中,教师应该根据教材内容对学生进行合情推理能力的培养。它不仅能够提高课堂教学质量,更重要的是有助于学生创新意识的培养和创新能力的提高。
一、在“数与代数”中培养合情推理能力
在“数与代数”的教学中,计算要依据一定的“规则”――公式、法则、推理律等。因而计算中有推理,现实世界中的数量关系往往有其自身的规律。对于代数运算不仅要求会运算,而且要求明白算理,能说出运算中每一步依据所涉及的概念运算律和法则,代数不能只重视会熟练地正确地运算和解题,而应充分挖掘其推理的素材,以促进思维的发展和提高。
如:有理数加法法则是以学生有实际经验的向东向西问题用不完全归纳推理得到的,教学时不能只重视法则记忆和运用,而对产生法则的思维一带而过。
又如,对于加乘法各运算律也都是采用不完全归纳推理形式提出的,重视这样的推理过程(尽管不充分)既能解释算律的合理性,又能加强对算律的感性认识和理解。
再如,初中教材是用温度计经过形象类比和推理引入数学数轴知识的。如:求绝对值|-5|=?|+5|=?|-2|=?|+2|=?|-3/2|=?|+3/2|=? 从上面的运算中,你发现相反数的绝对值有什么关系?并做出简捷的叙述。通过这个例子,教学可以培养学生的合情推理能力,再结合数轴,可以让学生初步接触数形结合的解题方法,并且让学生了解绝对值的几何意义。
在教学中,教材的每一个知识点在提出之前都进行该知识的合理性或产生必然性的思维准备,要充分展现推理和推理过程,逐步培养学生合情推理能力。
二、 在“空间与图形”中培养合情推理能力
在“空间与图形”的教学中,既要重视演绎推理,又要重视合情推理。初中数学新课程标准关于《空间与图形》的教学中指出:“降低空间与图形的知识内在要求,力求遵循学生的心理发展和学习规律,着眼于直观感知与操作确认,多从学生熟悉的实际出发,让学生动手做一做,试一试,想一想,认别图形的主要特征与图形变换的基本性质,学会识别不同图形;同时又辅以适当的教学说明,培养学生一定的合情的推理能力。”并为学生“利用直观进行思考”提供了较多的机会。学生在实际的操作过程中。要不断地观察、比较、分析、推理,才能得到正确的答案。
如:在圆的教学中,结合圆的轴对称性,发现垂径定理及其推论;利用圆的旋转对称性,发现圆中弧、弦、圆心角之间的关系;通过观察、度量,发现圆心角与圆周角之间的数量关系;利用直观操作,发现点与圆、直线与圆、圆与圆之间的位置关系;等等。在学生通过观察、操作、变换探究出图形的性质后,还要求学生对发现的性质进行证明,使直观操作和逻辑推理有机地整合在一起,使推理论证成为学生观察、实验、探究得出结论的自然延续,这个过程中就发展了学生的合情推理能力,注意突出图形性质的探索过程,重视直观操作和逻辑推理的有机结合,通过多种手段,如观察度量、实验操作、图形变换、逻辑推理等来探索图形的性质。同时也有助于学生空间观念的形成,合情推理的方法为学生的探索提供努力的方向。
三、在“统计与概率”中培养合情推理能力
统计中的推理是合情推理,是一种可能性的推理,与其它推理不同的是,由统计推理得到的结论无法用逻辑推理的方法去检验,只有靠实践来证实。因此,“统计与概率”的教学要重视学生经历收集数据、整理数据、分析数据、做出推断和决策的全过程。
如:为筹备新年联欢晚会,准备什么样的水果才能最受欢迎?首先应由学生对全班同学喜欢什么样的水果进行调查,然后把调查所得到的结果整理成数据,并进行比较,再根据处理后的数据做出决策,确定应该准备什么水果。这个过程是合情推理,其结果只能使绝大多数同学满意。
概率是研究随机现象规律的学科,在教学中学生将结合具体实例,通过掷硬币、转动转盘、摸球、计算器(机)模拟等大量的实验学习概率的某些基本性质和简单的概率模型,加深对其合理性的理解。
四、在学生熟悉的生活环境中培养合情推理能力
- 上一篇:农业农村服务中心工作职责
- 下一篇:电工实训记录