辐射防护方案范文

时间:2023-12-05 18:06:51

导语:如何才能写好一篇辐射防护方案,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

辐射防护方案

篇1

关键词:核设施维修 辐射防护 最优化方法

辐射防护最优化是科学的辐射防护决策的辅助手段。它的任务是确定最优化的辐射防护水平并选择达到最优化防护水平的最佳途径。最优化的防护水平不是一成不变的,它将随着防护技术的提高、防护成本的降低、生产工艺的改进、生产效率的提高和防护投资的改变等因素的改变而改变。这就要求不断改进辐射防护工作,提高辐射防护工作水平。

本文采用秦山三+万千瓦核电站堆内吊篮下部构件修复过程, 修复大体分四步进行。修复中降低照射剂量的主要措施包括换料水池水质净化、水下吸尘器除渣、换料水池提升水位增加水的屏蔽层、在吊篮和其翻转架七预先加装屏蔽板、使用长柄工具和水下电视监测系统、加强辐射剂量率分布监测、划定“低剂量等特区”等。通过这些措施的综合及合理利用,大大降低了作业区的辐射水平,降低了作业人员的受照剂量。其中涉及5个防护方案,总的防护措施是大体相同,但每个防护方案侧重点不同。

方案1主要措施修复中降低照射剂量的主要措施换料水池水质净化、水下吸尘器除渣、换料水池提升水位;方案2主要措施是增加水的屏蔽层、水下吸尘器除渣、在吊篮和其翻转架七预先加装屏蔽板;方案3主要措施是使用长柄工具和水下电视监测系统、换料水池水质净化和在吊篮和其翻转架七预先加装屏加强辐射剂量率分布监测;方案4主要措施是水下吸尘器除渣、划定低剂量等待区和变更葫芦作业位置进开高反散射;方案5主要措施是换料水池水质净化,提升水池水位和加装钥板屏蔽,变更葫芦作业位置进开高反散射。

由于5个方案中根据所给数据,给出因素较多,较复杂,为了使得决策过程更科学,决策结果更合理,更正确进行决策,采取多属性分析法进行决策分析。

根据过程,建立属性树,认为主要有6个因素影响,分别为可避免最大剂量、可避免集体剂量、代价费用、物质条件影响、工作人员心理正面影响、工作人员心理负面影响。

首先根据属性效用函数 计算不同方案的属性效用。效用函数曲线的确定取决于表达式中的3个待定参数:A, r, 0。可以通过函数的特征点,即效用最大点(u=1),效用最小点(u=0)以及中位值点(u=0. 5),联立这3个方程,就可以求出唯一的效用函数。

即当x=0时,U=0。当x=1时,U=1。U=0.5时,X可根据具体情况得到不同值,其值有决策人所根据数据影响曲线所决定。最后根据维修中所给数据不同方案的影响值,得到效用值。具体效用函数如下表:

通过程序计算,方案5为最佳,即采取这三种主要防护措施:换料水池水质净化,提升水池水位和加装钥板屏蔽,变更葫芦作业位置进开高反散射,效果最好。

根据权重可以得出因素排序依次为物质条件影响,依次为可避免集体剂量,可避免最大个人剂量、工作人员心理正面影响、工作人员心理负面影响及代价费用。由于物质条件影响固定,所以提搞方案总效用值,主要由可避免集体剂量、可避免最大个人剂量两个因素所决定。根据数据,措施换料水池水质净化,提升水池水位和加装钥板屏蔽,变更葫芦作业位置进开高反散射其减少集体剂量和个人最大剂量最有效。所以方案5为最优方案,与程序计算结果吻合。

参考文献

[1]中华人民共和国国家标准GB 6249-86.核电厂环境辐射防护规定[S].1986.

[2]罗上庚.放射性废物的最优化辐射防护[J].2000, (05).

篇2

关键词:复杂环境;深基坑;基坑支护;地下连续墙;内支撑

中图分类号:TU473.2文献标识码:A文章编号:1672-7428(2015)12-0034-05

作者简介:董建忠,男,汉族,1980年生,高级工程师,从事岩土工程施工管理工作,主要研究深基坑工程及地下空间开发

0前言

随着我国国民经济飞速发展,国家土地资源的日益紧张,许多高层建筑物深基坑在密集的建筑群中施工,基坑周边存在已建建筑物、交通道路及地下管线,对于这样周边环境条件复杂的基坑,既要创造条件便于土方的开挖,又要保护建筑物密集地区的环境。因此,如何安全、合理地选择支护结构并根据基坑工程的特点进行科学的设计是深基坑工程需要解决的主要内容。对浙江建设科技研发中心项目深基坑支护方案进行了研究,通过对其支护体系的计算分析,验证该深基坑支护方案的可行性,为类似深基坑的设计提供参考。

1工程概况

1.1工程简介

浙江建设科技研发中心项目位于杭州市中心地带,文二路北侧,莫干山路西侧。场地大致呈一长方形,东西长约140m,南北宽约87m,用地面积为10894m2,新建建筑面积约51525m2,其中地上建筑面积约33837m2。上部工程为一幢4~16层联体建筑,地下建筑面积约17688m2(地下3层)。基坑总面积为5990m2,基坑周长为355m。基坑开挖深度为14.45m,局部电梯井深度约为16.9m。

1.2周边环境

工程地处杭州市中心,周边环境极其复杂。基坑南侧距离用地红线最近1.74m(为距离地下室外墙边线),红线外为文二路,道路上布有通讯、雨水、燃气、监控、污水等市政管线。基坑东侧距离用地红线最近仅1.8m(该侧角部地下室建筑已超出用地红线,位于代征城市绿化带控制线内),红线外为莫干山路,道路下有通讯、雨水、电力、污水等市政管线。文二路及莫干山路均为交通主干道,交通繁忙,道路下市政管线众多,保护等级高。基坑西侧包括内部保留办公室(砖混6~7层,377mm沉管灌注桩桩基础)及一幢砖混7层住宅楼(条形基础,埋深1.5m,距离基坑约12.8m,建造年代较久)。东北侧为24层的瑞琪大厦,地下1层(钻孔灌注桩基础,持力层为强风化凝灰岩或中风化泥质粉砂岩);西北侧还有一幢砖混4~6层建筑(钻孔灌注桩基础),距离基坑最近约13m;西北侧石灰桥新村住宅楼(砖混4层,条形基础)离基坑约20.8m。

2工程地质及水文地质情况

2.1工程地质

根据土层的沉积年代,沉积环境,岩性特征及物理力学性质,同时结合野外钻探,将勘察深度范围内的地基土划分为7个层次及分属于各层次的亚层,其中涉及到本基坑的土层主要有以下几层:①0杂填土、①粉质粘土、②1淤泥质粉质粘土、②2粘质粉土、③淤泥质粉质粘土、⑤1淤泥质粘土、⑤2粘土、⑥1粉质粘土、⑥2粉砂。基坑底部位于③淤泥质粉质粘土层中。

2.2水文地质

场地浅部地下水属孔隙潜水,水位埋藏较浅,勘察期间测得稳定地下水位埋深在0.60~1.90m,相当于国家高程2.70~4.04m。接受大气降水补给,水位动态变化受大气降水控制,一般年变化幅度在1.00~1.50m。地面蒸发、侧向径流是其主要排泄方式。②2粘质粉土层渗透系数相对较好,厚度不一,为便于挖土,坑内可适当降水。

3基坑支护方案设计

3.1基坑支护设计原则

(1)保证支护结构及土体在施工期间的整体稳定性。

(2)确保周围环境安全可靠。

(3)经济合理、施工方便、缩短工期。

3.2基坑工程特点

综合分析基坑现状、面积、开挖深度、地质条件及周围环境,本工程特点如下。

(1)基坑影响范围内的地基土主要为填土、粘质粉土、淤泥质土和粘土等,填土组成复杂,粘质粉土强度高、压缩性低,但渗透性能好,淤泥质粘土(淤泥质粉质粘土)强度低,压缩性高,厚度较大,对基坑变形、整体稳定影响大。应对基坑的变形控制、防渗止水、抗管涌、浅层障碍物及不良地质等对支护体施工的影响充分考虑。

(2)本工程地下3层,开挖深度接近15m,局部电梯井处更深,属超深基坑,基坑开挖的影响范围较大。因此,应对支护体系的整体平衡、基坑开挖对周边环境的影响予以充分考虑。

(3)基坑周边距离用地红线或市政道路均比较近,周边路下埋设有大量的市政、电力、雨污水等管线,基坑西侧及西北侧布有浅基础住宅楼,距离基坑近,变形控制要求高。

(4)本工程属于一级基坑工程,重要性系数取1.1。

3.3支护方案的比较

本工程地下3层,开挖深度深,周边环境复杂,带撑式桩墙支护形式适用于本基坑。

3.3.1地下连续墙(“二墙合一”即支护结构兼做地下室外墙)结合临时内支撑方案该方案具有以下几个优点。

(1)工艺成熟,适宜于各种土质,施工速度快,采用地连墙在挡土和止水方面均有保证,刚度大,可靠度高,是目前最为可靠的支护形式。

(2)临时支撑在平面及竖向可以灵活布置,优化布置可使地连墙在各个施工工况下的内力变形尽可能合理,减少地连墙的用钢量;与逆作法或半逆作法相比,挖土施工非常方便,基坑暴露时间较短。

(3)占地空间小,充分利用场地。

(4)施工技术可借鉴的成熟经验多。但地下连续墙造价相对较高,施工相对复杂。

3.3.2大直径灌注桩结合内支撑方案

钻孔灌注桩结合三轴水泥搅拌桩止水帷幕,工艺非常成熟,应用广泛,但对本工程而言,因开挖深度深,采用该方案存在如下一些问题。

(1)支护体内力大,大直径灌注桩受力性能差,钢筋利用率低,技术经济指标相对低。

(2)支护体占用较多的用地空间,支护结构将紧贴用地红线(文二路局部超出用地红线,无法施工),甚至影响市政管线。

3.3.3方案对比及确定

因本工程开挖深度深,地下3层,周边环境复杂,场地紧张,变形要求高。地下连续墙适宜作为本工程的支护结构,同时兼作地下室的外墙。经综合分析,拟采用800mm厚地下连续墙作为基坑挡土结构兼防渗帷幕,同时作为地下室外墙,即“二墙合一”,沿竖向设置3道钢筋混凝土内支撑。因混凝土支撑可根据基坑的形状灵活布置,刚度大,在杭州地区应用广泛,积累的经验多,故采用混凝土支撑。地下连续墙的墙段采用十字钢板接头,施工质量容易保证,止水效果好。地连墙与主体结构的底板(边梁)、楼板、楼层梁、柱、混凝土内墙等构件相连,保证地连墙与主体结构连接的整体性。地连墙与地下室基础底板、各楼层梁等采用接驳器连接,与地下结构楼板、围檩等采用预埋甩筋方式连接。为确保地下室的干燥和美观,在地连墙内侧做内衬墙。内衬墙与地连墙之间保持一定的距离,其空间做排水集水沟使用。地连墙底端进入性质相对较好的土层(打穿性质较差的淤泥质粘土层),为防止地连墙在施工阶段沉降过大,以致影响到预埋件的精度,考虑在地连墙的钢筋笼重预埋注浆管,待地连墙施工结束后,对地连墙底部进行高压注浆。一方面可以减少墙底沉渣的影响,另一方面可同时提高墙底土体的承载力,提高墙底端以上一段范围的侧摩阻力,减少地连墙施工阶段的沉降,同时也提高承载力。

3.4其他关键问题

3.4.1监测

由于基坑周边环境复杂,基坑施工过程应委托专业单位对基坑及周边环境(包括四周建筑物、道路、地下管线等)进行监测,基坑开挖期间及时提交监测资料,以便信息化施工。

3.4.2土方开挖

本工程土方开挖深度深,场地紧张,土方开挖难度较大,出土效率直接影响本工程的工期。本工程主要需要重点考虑以下几点。

(1)第一道支撑可考虑作为施工栈桥。

(2)坑内土方应分层分块进行,特别是立柱周边的土方开挖应均衡对称进行,防止产生坑内土体滑坡,严禁两侧高差过大致使立柱侧向偏位,从而影响到支撑体系的安全。挖土施工机械严禁碰撞立柱。

(3)土方开挖与支撑施工、基础施工应紧密衔接。尽量减少基坑的无撑暴露时间,减少坑底土体的无垫层暴露时间。

4支护结构计算

4.1取值说明

计算分析采用FRWS深基坑支护结构设计软件进行。按照地面超载20kPa,开挖深度14.45~15.7m,在开挖深度范围内,土层土工计算参数根据地质报告采用,土压力采用朗肯土压力理论进行计算,水土合算,同时考虑了土的成层性。

4.2支护结构部分计算图

验算后,基坑抗倾覆稳定安全系数为1.31<1.2;整体稳定性安全系数为1.38<1.35;土体抗隆起安全系数为1.92<1.8。满足规范要求。

5基坑施工保证措施

5.1坑内被动区加固措施

由于基坑坑底位于③淤泥质粉质粘土中,为防止土方开挖过程中对基底的过分扰动,影响基坑及周边环境,坑内被动区采取三轴搅拌桩进行地基加固处理。

5.2基坑降水措施

地连墙可以有效地将基坑外的水流截断,考虑到浅层分布有粘质粉土层,为便于挖土,根据基坑规模,在坑内设置自流深井疏干。为防止地面水进入基坑,在基坑外侧四周设置地面排水沟,将地面水引进邻近下水道。

6基坑监测

为保证施工的安全和开挖的顺利进行,减少基坑开挖过程中对周边环境的影响,在整个施工过程中应进行全过程的监测,实行动态管理和信息化施工。本基坑监测内容主要涉及到地连墙外侧的深层土移、地下水位位移、支撑轴力、周边建(构)筑物、周边管线及道路等监测项目。

7结语

本基坑是在城市复杂条件下进行的施工,是一项复杂而带风险的综合性地下工程。通过采取有效措施,取得了较好的施工效果。

7.1合理选择支护方式和施工方法

本工程周边环境复杂,对基坑变形控制要求高,采用地下连续墙+3道钢筋混凝土内支撑支护方案,能有效的控制基坑变形,确保周边建筑物、周围道路及地下管线的安全,取得较好的效果。

7.2选择合理的基坑加固方式

本基坑的基底土主要由含强度低、压缩性高的软弱粘性土组成,由于软土的压缩模量普遍很低,很多情况下单靠支护墙并不能够控制变形,尤其对于刚度较大的支护墙,其入土段与土之间的模量差别很大,支护墙与土不能够产生共同作用,墙体的自稳定性不够,因此需要对支护墙内侧的软土进行加固。坑内被动区加固可以减少支护结构的水平位移,保护基坑周边建筑物及地下管线,减少坑底隆起,增加被动侧土压力,防止坑底渗流破坏。

7.3信息化施工

根据基坑工程的特点,对围护结构的受力,变形以及周边环境的变化进行跟踪监测,了解施工的动态信息,从而对支护结构和基坑的稳定性进行评价,同时对基坑周边地下水位、地下管线及周边建筑物的沉降、位移等进行监控,了解和控制基坑施工对周边环境的影响情况,通过获得的监测数据,对设计和施工方案的合理性进行评价,为优化和合理组织施工提供可靠信息,并指导后续施工。通过现场的实际施工和监测分析,实践证明采用该支护方案是安全可靠的,能有效地控制基坑的变形。

参考文献:

[1]龚晓南.深基坑设计施工手册[M].北京:中国建筑工业出版社,2012.

[2]袁聚云,楼晓明,等.基础工程设计原理(第2版)[M].上海:同济大学出版社,2007.

[3]郑刚,刘瑞光.软土地区基坑工程支护设计实例[M].北京.中国建筑工业出版社,2011.

[4]宋青君,王卫东,翁其平.“两墙合一”深基坑工程设计中的若干技术问题与对策[J].岩土工程学报,2006,(S1).

[5]虞利军,王茸,陈敏军.排桩内支撑基坑典型失稳原因及处理对策分析[J].探矿工程(岩土钻掘工程),2014,41(6):77-79.

[6]戚庆学,彭波,董宜辉.内支撑基坑支护体系施工过程的监测及分析[J].探矿工程(岩土钻掘工程),2013,40(10):68-73.

[7]刘念武,龚晓南,楼春晖.软土地基中地下连续墙用作基坑围护的变形特性分析[J].岩石力学与工程学报,2014,(S1).

[8]刘国彬,王卫东,等.基坑工程手册(第二版)[M].北京.中国建筑工业出版社,2009.

[9]冯晓腊,熊宗海,等.复杂条件下基坑开挖对周边环境变形影响的数值模拟分析[J].岩土工程学报,2014,(S2).

[10]刘永杰,左新明,王建华.地下连续墙技术在深基坑围护中的应用[J].探矿工程(岩土钻掘工程),2010,37(7):44-49.

篇3

关键词:长输管道; 大型河流; 安全防护; 施工方法

Long distance pipeline in large rivers within the safety protection construction method

Zhang Ping

( Jiangsu Petroleum Exploration Bureau oilfield construction department, Jiangsu Jiangdu 225261 )

Abstract: with the development of economy, the construction of a long distance pipeline and local planning and building more and more, long distance pipeline route by the terrain and the local planning, local pipeline laid in only in the river, this paper introduces the large river by masonry box culvert in the way of protection for pipeline safety, channel construction and pipeline installation construction the difficulties, construction method, safety, quality and other aspects, to provide reference for similar engineering.

Key words: Long—distance pipeline; large rivers; safety protection; construction method

前言

由江苏油建承建的贵阳—遵义—重庆成品油管道工程途经贵州省遵义市松坎镇,该镇境内线路由于地形限制及地方规划等原因,管线只能在松坎河河道内进行敷设。松坎河属于季节性河流,干旱季节河流水面宽30米~60米、一般流速3~4米每秒、水深40~60厘米,夏季为雨季,河流冲刷量较大,冲刷深度一般为2.5米。管线整体在河流中敷设约6km,为保护管道免受河水冲刷导致破坏,根据设计要求,采用在河道内砌筑箱涵的方式对管道给予安全保护。

1.施工准备

1.1技术准备

1.1.1熟悉设计文件,查阅有关施工技术资料,施工现场地质资料,做好图纸会审,及时进行技术交底,做到“三按”施工,即按图纸施工,按规范施工,按施工方案施工。

1.1.2编制施工工程预算,提供各阶段工程量和材料用量计划,按计划落实好各种材料设备来源,做好各种材料的检验、复试工作,按设计要求做好混凝土、砂浆的配比试验工作。

1.2 施工组织

1.2.1成立松坎河管道施工组织机构,明确各部门负责人职责。

1.2.2配备充足的施工力量,对施工作业队所有参建人员进行技术、安全知识培训。考试合格后方能上岗。按施工作业需求调遣施工机具进场,并检查所有的施工设备,确保其工作性能和安全性能。

1.3现场部署

1.3.1沿河道作业带选取距公路最近的几处场地作为临时卸料点,对卸料点进行场地平整,并修筑卸料点到入河口的临时道路。

1.3.2材料进入卸料点,及时运输至施工现场,提高临时征地的使用率。在施工现场空旷无水地段囤积材料,主要是雨水不容易侵蚀的材料。

1.3.3 施工现场做到水通、电通、路通,同时为了保证工程的各种情况能够及时上报,各种指令能迅速下达,施工现场配备无线网络、电话、对讲机等设备将各部门紧密地联系在一起。

2.施工工序及技术措施

2.1总体施工简述

本工程在大型河道内砌筑箱涵进行管道安装施工,箱涵基槽开挖主要以机械为主,人工修整为辅,采用围堰导流,水泵排水等措施进行土建施工,将沟底及边坡挡墙砌筑完成后,管道进行沟下组焊后细土回填并加盖现浇混凝土盖板。

2.2总体施工流程

2.3构筑物测量定位

选用GPS作为测量定位仪器。按照设计图纸放出中心位置点并埋设控制桩。

2.4施工临时道路修筑及材料倒运

2.4.1机具及材料倒运

本工程河道内施工管线长达6km,能够组织材料进场的进料口只有四处,施工材料运输至这四个材料集中堆放点,材料用装载机运送到施工现场。现场拌制的浆料翻斗车运送,部分地点不能使用机具倒运材料的必须进行人工倒运或用驴驮倒运。

2.4.2修筑施工便道

分别在四处材料集中堆放点修筑一条宽6米的施工便道至作业带,保证设备安全驶入和材料顺利运入并放置。用挖掘机清除表面大石块和不稳定层,筛选级配良好的河卵石进行分层回填,用挖掘机反复辗压,对于比较深的不稳定层清理以后,要做抛大石块处理,然后再做河卵石进行分层回填,并用挖掘机反复辗压。横穿河道的便道下埋设直径1米的钢筋混凝土高压涵管2根以上。

2.5围堰及导流渠施工

河床覆盖层主要由砂砾石组成,厚度较深,因此覆盖层透水性较强。

篇4

1.1针对电缆外径大的问题分析

在电缆敷设中,大截面电缆需要的安装空间大,同时还要考虑电缆三相间距。间距大则电缆沟道大,土建成本高;间距小则相间感应电压高[1]。在工程中,应根据电缆外径以及敷设方式选择合适的相间距,进而才能选择合适的电缆沟道尺寸。

1.2针对电缆截面大和抗扰刚度大的问题分析

对于大截面的电力电缆,采用蛇形敷设已成为共识。蛇形敷设可有效限制电缆热膨胀力,保护电缆及其终端设备免受长期应力的破坏[2]。蛇形敷设的各项参数可通过电缆热膨胀力计算进行量化。蛇形敷设示意图见图1-1示意。

热膨胀力可按照下述数学模型进行计算[3]:

1.3针对电缆载流量高电动力大的问题分析

为了储存电缆裕量,电缆弧形敷设于电缆小室中。根据电动力原理,弧形电缆会产生相互作用力,电动力沿电流流出侧传导。弧形电缆电动力示意图见图1-2。

电动力可按照下述数学模型进行计算:

2、铝包聚氯乙烯护套电力电缆敷设方案探讨

2.1针对电缆外径大的敷设方案探讨

对于单回路的电缆,可选择单条电缆沟,三相水平敷设,相间距取300~400mm,感应电压合理,电缆沟的宽度可控制在1.2米以内,深度在0.8米以内,经济性较好。对于多回路的电缆,宜采用电缆隧道,可多条电缆线路敷设于同一隧道内,大幅节约空间。

2.2针对电缆热膨胀力的敷设方案探讨

根据电缆热膨胀力计算模型,选择合适的蛇形参数。电缆支撑点间距,即半蛇形幅度取L=1500mm~2500mm,蛇行宽度取=170mm~250mm。对于多数的110kV和220kV电缆,在此范围内的热膨胀力可以控制在15kN左右。再结合电缆止推钳的应用,保证电缆及其连接设备的安全性能。

2.3针对电缆电动力的敷设方案探讨

根据前一小节的分析,可知电动力沿电缆传导至电缆终端。正常运行工况下的电动力较小,不会产生危害。短路故障工况下的电动力巨大,但短路持续时间很短。为了降低短路工况时电动力的破坏性,可对电缆进行柔性固定,则电动力的很大一部分会被电缆的形变消散。再配合使用电缆止推钳,将传导至电缆终端的电动力限制在设备可以承受的范围之内。

3、结论

篇5

1资料与方法

1.1一般资料 选取2014年3月~2015年3月在我院进行胸腹主动脉替换手术患者5例进行回顾性分析,其中,男性3例,女性2例,年龄24~58岁,平均年龄(37.2±11.5)岁。2例主动脉夹层,3例胸腹主动脉动脉瘤。所选研究对象均经心脏彩超检查确诊。

1.2方法

1.2.1手术方法 在全麻深低温体外循环下对5例患者进行全胸腹主动脉替换手术,借助深低温、分段停循环技术进行手术,于左后外侧沿腹直肌旁至耻骨联合胸腹联合切口,选择第五肋间进胸、断肋弓、腹膜外入路,全胸腹主动脉替换选择四分支人造血管进行。

1.2.2护理方法

1.2.2.1术后健康宣教 全胸腹主动脉替换术手术创伤大,时间长,术后患者不适感强烈,因此必须对患者进行健康宣教,根据不同患者的具体情况,成立健康宣教小组,及时将具体护理过程、护理意义的重要性告诉患者,让患者在治疗过程中谨遵医嘱,培养患者自我护理意识,积极进行自我调节。

1.2.2.2维持血流动力学稳定 维持血流动力学稳定包括监测心率、心律与维持血压稳定两个方面。由于全胸腹主动脉替换需要长时间阻断体外循环与主动脉,易诱发心脏缺氧、血容量不足、电解质与酸碱不平衡情况,导致发生急性心肌缺血、心功能不全等症状[2]。因此术后心率、心律监测对预防并发症具有重要意义。全胸腹主动脉替换术创伤大,术后常出现渗血、心力失常等,这易使血容量不足,导致血流动力学丧失稳定性,从而出现低血压。因此,重视患者术后血压监测,有利于及时查出病因,预防术后低血压。补液是维持患者血流动力学稳定的主要措施,术后补液应注重缓慢平稳。

1.2.2.3术后出血的护理 全胸腹主动脉替换术手术创伤大,血管吻合口多,容易出现渗血,易消耗大量凝血因子加重凝血机制障碍,患者术后极易出血,如止血不彻底、创面渗血等,因此观察患者术后引流状况尤为重要。在术后护理中,护理人员应定期对患者引流状况进行检查,重点查看引流液的量、颜色、引流通畅情况等[3]。

1.2.2.4维持电解质与酸碱平衡 全胸腹主动脉替换术会稀释患者血液,致使患者心排血量较低,呼吸困难。血液稀释也易使患者体内酸碱平衡失调与电解质紊乱。代谢性酸中毒与钾浓度异常是常见的酸碱平衡与电解质紊乱表现,可采取碳酸氢钠等碱性药物纠正患者体内酸碱度[4]。

1.2.2.5术后神经系统护理 全胸腹主动脉替换术会致使脊髓长时间缺血,如果疏于治疗则可能引起神经系统并发症,导致患者截瘫或下肢轻瘫。一般治疗脊髓缺血并发症常用糖皮质激素、甘露醇等,脑脊液引流也是一种有效方法。预防脊髓并发症必须重视脑脊液压力监测,根据监测数据做出准确判断。同时密切注意患者肢体活动、足背动脉搏动情况。

1.2.2.6早期肠内营养支持 全胸腹主动脉替换术需留置胃管,采用一次性胃肠负压吸引器进行胃肠减压,以便对患者消化系统血液循环与胃肠道功能进行观察。患者胃液的颜色、性质是胃液观察的重点,在进行观察时还要询问患者腹部有无胀痛感,从而全面了解患者胃肠道功能恢复情况。患者肠鸣音正常,应遵照医嘱及时对患者进行早期肠内营养支持,选择胃肠营养泵匀速滴入肠内营养混悬液,速度以20~40毫升/小时为宜。

1.2.2.7手术切口护理 术后麻醉药物作用消失后,患者会有显著痛感,此时应根据患者具体疼痛反应采取针对性措施。重视与患者沟通,向患者解释术后疼痛是正常反应,如痛感过强,患者难以忍受,可以给予患者针对性的镇静止痛药物,同时使用胸带腹带缓解痛感。患者后背有切口,需铺垫楔形海绵垫,避免压迫伤口,加快伤口愈合进程。

2结果

经过精心护理,5例患者均恢复良好,无严重并发症发生。

篇6

【关键词】C型臂X线机 电离辐射 受术者 安全 防护措施

在现代医学领域中,C型臂X线机(简称C臂机)在手术室的使用越来越广泛,可直接用于骨科手术的定位、诊断、检查复位固定效果及微创手术的开展,其在治疗中发挥了独特的作用,可明显提高手术质量,缩短手术时间,减少创伤出血,有利于骨折的愈合。但是,C臂机在使用过程中,会对医务人员及受术者带来一定的危害。目前,医务人员的辐射问题已得到了重视并采取了相应的防护措施,然而受术者的防护,却少有人顾及。如何最大限度地减少电离辐射对受术者的危害,也是非常必要的。笔者对此提出自己的一些观点。

1.电离辐射对人体的不良影响

电离辐射对人体的损害,主要是X射线的电离辐射激发所引起的生物效应,它可直接破坏机体内大分子结构及对物质代谢有重要意义的酶。低剂量电离辐射影响重要的细胞应答导致基本表达的改变,诱发癌变[1],还可以导致脱发、皮肤烧伤、放射性白内障、白血病等。X射线对生殖细胞的损伤则会影响到后代,产生遗传效应,孕妇接触射线易造成流产、死胎、致畸等。放射性损伤的发生受照射剂量、照射面积和部位、个体与组织细胞的放射敏感度以及射线的能量等多种复杂因素的影响[2]。而骨科手术一般需要多次照射,有些脊柱手术需要照射几十次,如不注意对受术者的正确防护,可增加放射损伤的概率。

2.受术者的防护措施

2.1 重视受术者的防护,提高防护他人意识手术室护士应本着“以人为本,以患者为中心”的服务理念,为患者提供人性化护理,加强电离辐射对受术者危害性的认识及防护意识,主动正确对病人实施安全防护措施。其实,国家卫生部早在2002年颁发的《放射工作卫生防护管理办法》中就明确规定:医务人员应对受检者进行必要的防护。笔者认为:在不影响手术操作的前提下,此规定也同样适合受术者。国外这点上就做得比我们好,他们如果不对受检者进行必要防护,就有可能被吊销行医执照。

2.2 防护原则

X射线的防护原则应遵循正当化与最优化。术前手术医生应当仔细研读病人影像资料,熟悉骨性结构影像,合理应用并尽可能保持低水平的照射,避免一切不必要的照射,将曝光次数限制在所需的最低限度。

2.3 提前入室,早做准备

巡回与器械护士均应提前入手术室,了解骨折部位及手术方式,以便调整手术床及决定手术,并认真做好受术者的心理护理,告知C臂机使用的必要性及我们将采取的防护措施,以减轻受术者的焦虑及恐惧心理,同时还要认真做好物品准备及检查C臂机,如有故障,早汇报,严禁在设备异常情况下照射。

2.4 认真做好受术者防护措施

2.4.1 做好手术部位的防护,尤其是甲状腺、胸腺、性腺及眼睛的防护,可根据情况使用铅围脖、铅围裙、铅眼镜、铅帽等;

2.4.2 儿童、孕妇尽量不使用臂机;

2.4.3 尽量减少曝光次数与缩短曝光时间,因为人体所受辐射与受照时间成正比;

2.4.4 C臂机脚控开关妥善放置,防止误踩,导致意外曝光。

2.5 正确熟练使用C臂机

C臂机操作者应进行辐射防护知识、技能等培训,熟练掌握操作流程,提高一次照射成功率,避免操作不当造成的放射性污染。

2.6 加强受术者营养

术后鼓励病人进食高蛋白、高维生素饮食,增强其体质,有利于受损组织修复。

2.7 建议对受术者采取辐射剂量监测手段,以便为今后病人的健康状况调查提供依据。

3. 结论

C臂机的使用,给手术治疗提供了方便,但其产生的电离辐射危害是不可忽视的。我们应重视受术者的防护,提高防护他人意识,正确、合理地操作,认真落实防护措施,使受术者的损害降至最低,这样既防护了病人,也保护了自己。

参 考 文 献

篇7

关键词:核电厂 大修 集体剂量

中图分类号:R144 文献标识码:A 文章编号:1674-098X(2016)12(a)-0014-03

核电厂大修期间是辐射防护工作最集中、辐射风险高、管理难度最大的阶段,从国内同行电厂的大修集体剂量统计情况来看,此期间集体剂量通常占机组全年总集体剂量的85%~90%。WANO(Word Association of Nuclear Operators)将集体辐射照射剂量作为一项重要的衡量核电厂安全业绩的性能指标。福清核电厂1号机组首次大修,人员、经验都存在欠缺,通过对大修集体剂量的统计跟踪,分析现场管理和剂量控制方面存在的问题,及时提出改进措施,以确保电厂辐射防护业绩指标不断得到改善,工作人员的受照剂量合理可行。

1 101大修集体剂量情况和分布

福清核电1号机组于2015年10月1日开始进行首次大修,12月28日并网结束,共完成检修约8 890余项,最终集体剂量为765.821 man・mSv。

1.1 大修集体剂量按检修阶段分布

101大修从解列到并网设置了一系列重要的里程碑节点(如解列、卸料、低低水位、临界、并网等)。大修集体剂量按相关的节点分阶段统计后发现,低低水位阶段和压力容器在役检查阶段集体剂量分别为306.356 man・mSv,134.965 man・mSv,占大修集体剂量比重较高,分别达到了40%和17.6%。大量的主回路开口作业、阀门检修作业、主回路重大设备近距离的检查维修在此期间开展,这也是高辐射风险、高污染作业较为集中的两个阶段。

1.2 大修集体剂量按专项、专业分布

为对重要专项、专业作业的集体剂量有所了解,核电厂也采取分专项、专业的剂量统计方式。从统计数据来看,压力容器、阀门检修、在役检查、蒸汽发生器、核清洁、保温作业的集体剂量占大修集体剂量的比重较大。

同时我们通常认为各类现场检修工作是集体剂量贡献的主要因素,但实际上保温拆装、脚手架搭拆、核清洁作业这类现场配合的工种所占的集体剂量比重不亚于那些主要的检修项目。这些作业过程简单,技术含量不高,但工作量大,是大部分检修工作的前提。在现场辐射水平无法降低的情况,提高工作人员熟练程度,减少保温拆装、脚手架搭拆、核清洁作业的作业时间,是有效降低这些工作人员剂量的一个重要方面。

2 集体剂量与同行电厂的对比

在只考虑工期、辐射控制区人员进出数量影响的条件下,福清1号机组的集体剂量比同行电厂(同类型机组的首次大修)要高。福清1号机组大修集体剂量为765.821 man・mSv,方家山1号机组大修集体剂量为630.537 man・mSv,红沿河1号机组大修集体剂量为723.2 man・mSv,这也反映出福清核电厂在辐射防护集体剂量控制方面还存在改善空间。

3 影集体剂量的主要因素

根据实践经验,在核电厂,影响大修集体剂量的主要因素见图1。

4 101大修集体剂量偏高原因分析

根据101大修实际过程情况,对大修集体剂量偏高的原因分析如下。

4.1 源项控制及机组、系统整体辐射水平

大修期间,源项的控制措施不足,机组、系统的辐射水平是影响现场工作人员受照剂量的主要原因。

以福清核电与方家山核电101大修期间一回路放化参数对比为例,氧化运行期间产生了较多腐蚀产物,其中Co-58总活度和γ总活度均高于方家山电厂。

机组总体辐射水平偏高一方面可能是由于存在燃料元件破损;另一方面,在机组下行时的运行控制方面与电厂大修运行规程规定存在偏差:一回路冷却剂从170 ℃降到80 ℃用时过长,同类型机组参考电站通常用时4~5 h,在运行规程中明确说明:“当一回路冷却剂温度

此外,根据实际测量,发现福清核电101大修RCV系统指数明显高于同类型机组首次大修辐射指数(使用便携式辐射仪表测量采集主要放射性系统具有代表性的点位辐射水平,并取算术平均值,反映的是系统整体的辐射水平。

福清1号机组RCV系统辐射指数较高的原因主要如下:在氧化运行后的净化环节,由于腐蚀产物不断剥落,频繁堵塞RCV001FI,需要更换过滤器,在此期间,旁路了1RCV001DE,使得净化无法顺利实施;另外,在氧化运行后期为了加大净化流量,加快净化时间,将过滤器的尺寸由0.45 μm更换至5 μm,使得部分粒径在0.45~5 μm的腐蚀产物无法被有效过滤并在燃料组件、相关管道进行了沉积。

4.2 检修和技改项目的影响

高辐射风险检修项目是影响大修集体剂量的直接原因之一。101大修检修项目较多,期间开展了重要的技改工作,与方家山电厂首次大修相比主要增加的技改项目包括除盐床改造、核一级手动截止阀物项改造、主泵相关工作、高强螺栓更换等。以核一级手动截止阀物项改造(共28台)为例,大部分位置在主泵间测温旁路侧,环境剂量率水平大约在200~400 μSv/h,福清101大修期间,总共进行了28台核一级手动截止阀的改造工作(其工序包括切割、打磨、焊接、探伤),单此项工作集体剂量贡献约为46 man・mSv。

4.3 设计不合理导致检修工作集体剂量增加及区域辐射水平升高

电厂系统、设备的设计不合理,给现场检修、运行控制带来的不利影响也往往是造成集体剂量增加的一个因素,比如:101大修卸料后反应堆水池排水期间池底残水排水较慢,主要原因是PTR601VB和PTR602VB结构设计不合理导致排水不畅;为加快排水,使用了1PTR005PO排除残水,导致池底残水进入W213房间PTR管道和阀门,W213房间最大热点管道剂量率达到19.1 mSv/h,W213是人员经常通行的走道,造成过往人员受到额外照射。

由于PTR601VB和PTR602VB结构设计不合理,池底残水排水后PTR602VB沉积热粒子,最大接触剂量率为282 mSv/h,拆除PTR602VB集体剂量3.583 man・mSv。

4.4 工序安排不合理,重复工作导致剂量增加

现场检修工作量的增多有时候也会因为工序安排不合理或事先没有计划协商好造成。福清核电101大修核清洁专业集体110.858 man・mSv,重要的一方面原因是由于与其他部门的工序安排事先没有做好规划,铅屏蔽搭设未考虑保温的拆装或者役检的需求,不得不多次拆装。

4.5 高放射性废物存放与高放射性废物转运应对不足

此外,大修期间会产生大量的高剂量废物,其转运、现场的临时贮存是集体剂量贡献的重要因素。举例如下。

101大修期间,原计划在R20m设置400 L带屏蔽容器金属桶,用于存放高放射性废物,由于担心屏蔽容器重量过重对R20m地面造成承重影响,改为2个200 L金属桶,表面用铅皮包裹,废物转运只能采用人工转运,无法采用吊装方式。101大修产生的大量高剂量废物(多来自堆芯水池去污产生)转运工作同时缺乏专用转运容器,增加了核清洁人员集体剂量。

101大修实施28台核一级手动截止阀物项改造,切割下的阀门最大接触剂量率达4 mSv/h,且阀门较重不便于运输,由于转运、存储方案不完善,导致运输人员受到较高剂量照射。

4.6 大修期间检修工作质量的控制

良好的工作质量的保证和控制,高效地完成检修工作,是减少工作时间,降低人员受照剂量的重要因素。101大修期间,由于质量控制不到位,检修人员不按规程开展工作,造成部分工作重复开展或进行返工复查,使得工作人员现场工时增加。比如在大修期间,发现核一级阀门物项改造过程中,存在水溶纸在焊接过程中碳化,未及时清除,进而在系统运行过程中形成异物堵塞管道的情况,为此进行了大量的返工排查工作,对整个大修的集体剂量贡献也不容忽视。

4.7 工作人员个人辐射防护意识不足

对于工作人员本身来说,其防护技能和意识也是影响其受照剂量的因素。在101大修期间,部分工作人员还存在个人防护意识不足、不遵守辐射防护要求规定的情况,如工作人员进入辐射区域不进行辐射水平测量,对现场辐射防护措施不按要求执行;不注意高剂量区域快速通过指示牌,不按要求快速通过;工作人员不执行低剂量待命要求,在高辐射区域讨论工作;工作产生的高剂量部件不按要求进行转运,遗留在工作现场,给其他靠近现场的工作人员造成额外剂量等。这些细小的行为偏差,短期或单项工作来看可能给个人贡献的剂量不大,但考虑到整个大修时间跨度长(101大修88.3天)、辐射控制区工作进出人次频繁(101大修高峰期约每日1 500人次)来看,最终给大修总的集体剂量的贡献也不容小视。

5 集体剂量控制改进措施建议

从福清核电101大修的过程和结果来看,从以下方面制订相应的措施,对今后降低机组大修集体剂量指标有重要意义。

5.1 优化放射性控制,降低机组整体辐射水平

大修期间对机组下行期间提前制订好放化指标控制优化方案,包括运行操作严格按照操作规定进行操作,尽量缩短机组降温的时间。氧化运行开始前关注RCV001FI压差和KRT010MA剂量数据,评估是否在氧化运行开始前更换RCV001FI;提前做好RCV001FI更换准备,减少更换次数和时间;尽量使用0.45 μm滤芯,合理评估是否使用5 μm滤芯替代0.45 μm滤芯来加快净化时间以实现主线工期。

5.2 设计改进和相关现场控制

对于设计上存在的缺陷可能导致剂量增加的情况,应通过设计变更或采取其他技术手段、加强现场管理来补救,比如:为解决换料水池池底残水排水不畅问题,对PTR601VB和PTR602VB施技改,变更阀门结构。

5.3 合理选择技改时机

对于新建电核电厂来说,从外部经验反馈或调试实践中发现的一些有必要开展的系统设备部件的技术改造工作应尽量选择在机组尚未带核运行期间开展,此时现场尚未有辐射水平,从剂量控制角度来说,是最理想的变更时机。

5.4 优化工序安排

大修期间各项工作安排次序的先后优化有利于降低检修人员受照剂量。结合101大修实践,可优化并合理安排保温、役检、屏蔽搭设的时间窗口,确认热停堆期间首先实施保温拆卸,然后由役检人员对需要检查的设备进行标记,核清洁人员确认不遮挡标记区域的前提下实施铅屏蔽,避免重复实施铅屏蔽。

5.5 提前制订好高放废物临时贮存、转运方案,定制专用屏蔽容器

对大修期间放射性废物存放点进行优化,避免在人流比较集中的区域设置存放点,对过往的人员造成额外的剂量,同时提前设置铅屏蔽,减少存放点设置人员的剂量;另外采购和定制一些专用高剂量废物存放容器;根据实际情况,提前制订好高剂量废物转运方案(包括运输包装容器、路线等)严格把控高剂量废物运输工作。

5.6 提高工作人员技能以及安全防护意识

工作的质量和人员技能是现场工作时效的主要因素,因此,必须一方面通过技能培训提高人员技能,另一方面要通过质量控制管理保证工作质量。

在大修期间,可将同行电厂大修辐射防护案例增加到辐射防护基本授权课程中,同时针对运行巡检、隔离等作业开展专项辐射防护培训,提高运行人员识别辐射风险的能力和个人防护的意识。另外可编制一些辐射防护违章违规示例手册,发给大修人员学习。在大修现场,可张贴一些违规违章安全示例,创造良好的安全氛围。

5.7 完善辐射防护控制及监督措施

作为核电厂大修集体剂量控制管理的直接部门,辐射防护管理部门还可以采取以下管理措施。

在大修期间编制剂量日报并分析其变化趋势,及时发现个人剂量异常并进行调查和改进。

优化EPD累积剂量报警值和环境剂量率报警值,根据工种和机组状态的不同重新调整设置了不同的日累积剂量报警值和环境剂量率报警值,使得人员单日剂量控制更合理。

根据现场实际情况增设低剂量待命点并在厂房图纸中标记张贴至现场,便于工作人员寻找就近的低剂量待命区域待命,降低待命人员的受照剂量风险。

考虑有一定数量的“新人”首次参与大修,对辐射风险的认识和个人防护能力存在欠缺,要求“新人”选择贴有特定标识的安全帽,便于辐射防护人员对“新人”进行重点关注,对其不恰当的辐射防护行为进行现场监督指导。

电厂辐射防护监督部门制订大修期间巡视和观察指导制度,对检修现场工作进行监督和观察,及时发现有可能导致剂量增加的人员行为偏差,对相关偏差采取通报、整改跟踪,形成闭环管理。

6 结语

集体剂量的控制须关注每一个人在每一项工作当中承担的辐射风险,应严格把控工作过程中的每一个环节;集体剂量的控制涉及运行、化学、检修、计划、辐射防护等各个部门、专业,需要电厂各个部门共同努力,不断总结实践,完善管理措施,优化技术方法。

参考文献

[1] 杨茂春,陈德淦.大亚湾核电站大修中职业照射控制的实践与经验[J].辐射防护,2004,24(3):144-154.

篇8

省疾控中心开展职业性放射性疾病监测项目工作现场指导

2020年9月1日,省疾控中心职业性放射性疾病监测项目工作指导组一行3人,在职业与辐射卫生所李红科长带领下,对我市的职业性放射性疾病监测、医疗卫生机构医用辐射防护监测等工作开展情况进行了现场指导。

指导组专家通过听取工作汇报、座谈交流、查阅相关资料,现场抽查了市疾控中心、叙州区喜捷镇中心卫生院(放射监测哨点医院)和宜宾市第二人民医院(放射监测哨点医院)三家单位,详细了解了全市职业性放射性疾病监测项目、医疗卫生机构医用辐射防护监测项目工作的组织保障、实施方案、技术培训、项目实施进度、工作成效、资料收集等方面的情况。

指导组在认真查看了相关资料后,对中心当前职业性放射性疾病监测工作的整体推进情况感到满意,对市疾控中心为便于县(区)疾控快速高效收集数据所采取的创新举措给予了充分肯定。同时指导组对喜捷镇中心卫生院存在的警示标语不规范等问题提出了改进意见;对宜宾市第二人民医院放射工作人员个人剂量监测、职业健康体检的管理进行了指导。

针对指导组提出的意见与建议,市疾控中心职业卫生科科长左真表示我们将对此次指导工作中发现的问题及时进行整改,将严格按照监测方案要求认真组织,积极推进项目工作进度,确保全市监测项目工作如期完成。本次指导,为我市今后项目工作的深入开展及质量的提高,将起到积极的促进作用。

篇9

由于生产需要,我公司使用了两台x射线,型号为smex-v8065b、cmex-78065,分别放于客运南站和客运西站,用于检查危险品、违禁品,两台射线装置都属ⅲ类射线装置。

我公司射线装置其安全和防护状况严格按照《放射性同位素与射线装置安全许可管理办法》的相关规定执行,具体体现在以下几个方面:

一、在辐射安全、防护设施的运行及维护方面,我公司射线装置其性能由××市环境保护局负责定期检验和监测,检验频次一般为每年一次,检验结果由公司安机处负责存档;我公司的操作人员负责日常保养并做好交接记录,对使用射线装置的安全装置进行维护、保养。至于射线装置的维护,常规电器线路一般由公司电工负责维修,机身内故障送指定单位维修。射线装置在2009年的使用过程中运行状况正常,无设备损坏造成事故。

二、在辐射安全、防护制度和落实方面,我公司成立了以法人代表为组长的“辐射防护管理”领导小组,同时制定了严格的辐射安全管理制度,并将该项安全管理列入公司重网要议事日程,使辐射防护管理一直处于受控状态。公司规定所有从事辐射工作的人员需严格按照《操作规程》进行工作,要求佩带个人剂量仪进行操作,做好个人防护,以确保安全生产。直至2009年度未发生超级量照射和照射事故。

篇10

医学物理学是把物理学的原理与方法应用于人类疾病预防、诊断、治疗和保健的交叉学科。该学科以医学影像、放射治疗、核医学以及其他非电离辐射如超声、微波、射频、激光等在医学中的应用,及其应用过程中的质量保证(QA)、质量控制(QC),和辐射防护与安全等为其主要内容[1]。发展至今,医学物理学在医疗服务中应用广泛,特别是在医学影像科、核医学科与放疗科。医学物理师(MedicalPhysicist)与医生、技师相配合,从事临床诊断和治疗,甚至进行教学与科研工作,进而开发新的诊疗设备与技术等方面起着重要的作用。

1我国医学物理人才现状

在发达国家,医学物理师早已成为医疗机构的重要岗位。医学物理学科毕业的学生同时是精通物理和熟悉医学的复合型人才。半个世纪以来,医学物理学在英美等发达国家发展迅速,很多大学设有医学物理学专业。以2007年数据为例,每百万人口中医学物理师的人数已经达到13人,而我国每百万人口中的医学物理工作者不到0.8人。而放疗科中,放射肿瘤学医师与医学物理人员之比,我国31个省平均比分别为:1986年是10∶1,2001年是8∶1,2006年才达到4∶1[2],明显低于国外水平,可见我国医学物理师需求巨大,对医学物理师的培养也日益迫切。

2医学物理师的作用与职责

2.1作用

在肿瘤治疗中物理师起着非常重要的作用,特别是随着近年来肿瘤放射治疗设备和技术的飞速发展,物理师在保证辐射安全,提高治疗技术水平,为患者提供高质量服务等方面所起的作用也越来越重要[3]。在肿瘤放射治疗中,放射肿瘤学医师对整个放射治疗过程负责,而物理师则处理物理学的数据与保证实施过程的准确性。

2.2职责

2.2.1掌握原理熟练操作熟悉各种放射治疗设备的原理与结构,并能能独立操作与指导他人正确操作和熟练使用。

2.2.2设备维护定期校检各种放疗设备的基本指标,并能指导维修工程师正确调试与维护保养,保证各种放疗设备的正常使用。

2.2.3优化治疗方案掌握并能熟练操作TPS治疗计划系统,充分发挥其全部功能,在掌握治疗计划设计原则的基础上能独立或配合医生制定临床治疗计划,并能优化治疗方案。

2.2.4提高技术水平积极开展放射治疗新技术的研究工作,能够设计实验、进行实验、分析与处理实验数据与实验室管理,进而分析实验误差。

2.2.5辐射防护监与应急掌握与宣传国家有关剂量防护法规和剂量防护知识,完成工作人员的剂量防护监测并登记备案,懂得应急放射性事故处理工作。

2.2.6宣传专业知识定期进行物理学知识的培训,提高科室工作人员的综合素质。医学物理师的培养应该能够胜任以上工作,更好的满足临床需求。一名合格的医学物理师不仅仅需要物理学知识,并且需要足够的医学知识来补充,特别包括影像解剖学与病理学的知识;同时要掌握一定的外语水平,能够阅读外文文献;掌握一定的计算机知识与技能。只有满足以上要求,才能够确保放射治疗过程中计划实施的正确性。