热力与动力工程范文

时间:2023-12-05 17:56:46

导语:如何才能写好一篇热力与动力工程,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

热力与动力工程

篇1

【关键词】:热电厂;热能;动力工程

其与一般的发电厂热电分产形式相比, 热电厂很多是通过相关动力设备的使用,将热能产生的热量改变成动能样式的程序,最后将改变得到的动能通过发电设备将一些能量改变为电能的样式,以此不断满足用户生产与生活中所需要的热量需求。发电厂在发电过程中,降低能源的损耗十分有利,可以通过降低发电体系的能源消耗来提升能源的使用成效,实现节省资源的宗旨。但是,我国现阶段的热能与动力工程在热电厂中的运用依然存在诸多不足。其严重制约了热电厂能量的充分利用。按照相关原理能够清楚,火力发电的整体程序的节省资源耗用以及热能和动力项目关系很大,对于热电厂中动力以及热能项目中存在情况的探索有着非常重要的实际影响,具有较高的应用成效,而且这项技术具有时代前沿性与创新性,能够对建筑能源节省型以及环境和谐型社会创造有意义的价值。

1、热电厂的发电运行情况概述

热电厂在我国工业生产中发挥了重要的作用,能量转换是火力发电的运行中尤为关键的一环,其实际运行工作的原理为:首先是热能与动能的转化即让锅炉产生蒸汽,然后把蒸汽送到汽轮机当中,其次是动能与电能的转化:即由汽轮机的转动来带动发电机使其发电,这两个转化构成了主要的发电过程。从我国发电厂利用蒸汽不断进行循环发电过程中,煤炭则是最重要的能源,煤炭经过处理后变为煤灰,借助皮带传输技术后,煤灰即被传送入锅炉内,历经充分燃烧的煤灰则会放出超大的热量,这些热量进而会形成水蒸气,这种经过物理转化的水资源会通过凝结水泵进入到输水泵中,然后返回到锅炉内部,锅炉经过一次加热之后,形成的水蒸气会进入高压缸内部。因此,为了不断提高锅炉的加热效率,可以对其进行循环加热处理。在此原理的循环运行的过程中,会产生巨大的电能,这一运行过程同事也充分实现了环保节能的预期效果。

2、热电厂的选址问题分析

在进行热电厂热能与动力的相关工程研究时,热电厂的选址问题应当引起关注。热电厂在实际运行中的装机容量受热负荷的性质以及大小等因素的影响,导致了目前热电厂的机组规模比火电厂的主力机组小很多。同时又因热电厂既要发电又要完成供热服务,因此锅就要求炉的容量要与同规模的火电厂锅炉的容量需要得更大一些。再者因为功能以及原料的局限作用,靠近热负荷中心成为热电厂的必然需求,具体而言即为,热电厂必须建立在人口密集比较大的城镇中心,与同容量的火电厂相比,它在环保要求、拆迁、用水量、征地等方面的问题更加高,同时热力管网也是热电厂所必须建立的,这将更有利于供热系统的高效运行。

3 、机组变工在热能与动力工程运行中的情况分析

在运行中的汽轮机设备,电无法进行大量地储存,其功率也跟外部需求而不断变动,而在此过程中,处于汽轮机中的蒸气运行参数在伴随锅炉中燃料的不稳定损耗情况而逐渐产生变化。通过对热能与动力工程运行的研究发现,凝气设界运行工况所产生的变化以及发生变化的电网的实际运行频率,甚至是汽油机内部的通流部产生的污垢等,都将会形成热电厂中热能与动力工程中的变工情况[2]。

(1)首先是对并网运行的发电机组进行第一次调频,电网频率会随着外部运行负荷变化而产生改变,每一个发电机组在热电厂运行中都会结合自身特性,借助系统调速的运行装置而自动增减汽轮机的运行负荷,而进一步带来热电厂的电网系统运行的更加科学。

(2)调节级处理在热电厂的电力系统中的进行,处于正常运行工况中的热电厂的全部设备,实际电流在系统中则会不断攀升。与此同时,瞬时电压再系统中也会同步增大,此时调节级的比焓降会逐渐减小。当系统部分设备正值正常运行工况中,调节级的比焓降就会上升到中间级的最大值。处于此过程中的热电厂的设备运行工况亦同步产生明显的变化。但是,位于中间级的压力比却不会随之变动。故比焓降在调节级中的变化不太明显。相反,在最末级,系统运行流量不断增大的同时压力比却是相应减小,而调节级的比焓降却会不断上升[3]。

4、热电厂中的热能与动力工程运行情况分析

在热电厂中的热能与动力工程运行进程中,节流调节与喷管调节和系统设备的调节调压需及时进行。故只有掌握其各自的调节特点以及调节适用场合,才能进而提高热能与动力工程机组的实际运行效率。经过实际研究可知,在不同的调节阀中机组运行负荷所产生的最大流量并不相等,并且当其实际的运行负荷在1以下且系统有调节级时,随着时间变化机组调节阀开启的实际数目也会变化。在此进程中,调节级汽室温度会有较为明显变化当机组的实际运行工况发生变化时,并且会导致机组设备适应性变差[4]。但当对机组中的喷管进行调节时,就能够保证机组设备在运行过程当中快速达到预定参数值,并科学调配系统中的运行负荷,确保了热电厂热能与动力工程相关设备能良好运行。

结束语

综上所述,能源动力工程是涉及多个领域高新技术的集成产业,作为我国国民经济与国防建设的基础和支柱,它更是发挥着举足轻重的作用。热能与动力工程在热电厂中的充分高效的运用,带来了我国电力行业的总体发展水平的不断提升。文章通过上述分析研究,发现热电厂中的热能与动力工程的开展立足于正确判啻理在工作中遇到的各种异常情况,且并对于掌握变工况时的各种情况有非常重要的作用,在协同配合工作之下,从而实现很大程度上促进了我国热电厂的经济利润和能源运用效率的同步提升。

【参考文献】

[1]孙祚琦,王君 .热能与动力工程在热电厂中的应用[J].科技创新与应用,2016,6:125.

[2]孙斌.热电厂中热能与动力工程的有效运用[J].科技传播,2016,7:133-134.

篇2

 

1热能动力工程在锅炉领域的应用情况

 

众所周知,锅炉是一种非常常见的热能设备,在我国的工业生产中十分常见,应用极为广泛,锅炉的原理是借助于炉内燃料的燃烧来产生热能,从而提供持续的动力来满足工业企业的生产需求。目前,国内使用的锅炉中以工业炉最为多见,工业炉又可以分为多种,最广为熟知的是燃料锅炉。工业锅炉最重要的功能就是工业加热,提供热能。工业炉使用数量巨大,应用领域广泛,正因为工业炉具有的无可比拟的优势,据相关调查数据显示,我国超过十种以上的行业都在使用工业炉,但其缺点也是非常明显的,工业炉的能耗非常大,其消耗量几乎占到了总体能源消耗量的四分之一,而工业炉中以燃料炉的消耗为最大,占比约为九成左右。

 

当前,热能与动力工程在锅炉领域的应用中一个重要的问题就是污染的问题,这也是制约锅炉技术发展的一个难点。人们在降低锅炉污染物排放方面投入了大力的精力来对技术和设备进行研发,经过不断的努力,也形成了一定的研究成果。锅炉设备在生产运行中的核心环节是内燃技术和传感技术,在借助于双交叉限幅控制的情况下,现在可以对空燃比例进行连续的控制,从而能保证锅炉中电机运行状态的良好,也为锅炉的运转提供足量的气体,促进锅炉内燃料的充分燃烧,也实现了能源节约与环保。

 

2热能与动力工程技术在能源领域的应用情况

 

能源的短缺与匮乏一直是制约能源利用的一个瓶颈,热能与动力工程的发展,能源利用效率的提高,从一定程度上可以缓解我国能源不足的现状。缓解能源危机一方面要节约能源,另一方面则要加大新能源的开发力度,将新能源与热能动力工程很好的结合起来。

 

众所周知,风机是一种装有多个叶片的通过轴旋转推动气流的机械。叶片将施加于轴上旋转的机械能,转变为推动气体流动的压力,从而实现气体的流动。风机在工业中的应用也极为广泛,在电厂、锅炉、工业炉窑、矿井隧道、冷却塔、车辆船舶以及建筑的通风除尘方面都离不开风机。尤其是在电站中,由于电站机组的容量效率、转速以及自动化水平都在不断提高,这也对所用风机的可靠性提出了更为严苛的要求。风机是电站耗电最大的环节,电站的送风机、引风机等设备作为锅炉运行的重要辅机,耗电量极为巨大,如何降低其运行中的电耗是当前电厂工业节能中必须重点关注的问题。此外,锅炉风机在运行中也经常会有烧坏电机、窜轴的现象,也有叶轮飞车、轴承等故障发生,这些都会对电厂运行的生命财产安全造成负面影响。在风机的发展应用中,必须加强对与热能动力工程有关的发电设备以及工业炉窑进行研究和创新,加强在通风和引风等方面的技术研发力度,推动新能源和再生能源的发展。同时,在电站和工业锅炉应用上也要加强热能动力工程的创新力度,结合新能源的发展,改变传统能源的供给模式,努力改善我国能源短缺的现状,为我国工业发展和经济发展提供高效的能源支撑。

 

3热能与动力工程的发展趋势

 

第一,在热能动力和控制工程方面。二者是相辅相成、互相促进、互相发展的。融合中要特别注重综合锅炉和汽轮机的优势,在动力机械设计上可以借助这些理论和专业技术来推动热力发电的发展和污染治理的良好控制。第二,在水利水电方面的应用。水利水电和热能动力工程具有很强的渊源,也是密不可分的。在水利水电工程中,要对水利水电动力工程等相关领域进行深入的研究分析,推动理论和技术的互融性发展,并要注重信息技术在水利水电工程中的应用。第三,在热力发电及和汽车工程方面。应大力发展热力发电机的深层次研究,推动其在现代汽车工业和新能源汽车工业中的深入应用,促进绿色汽车工业的快速发展。

 

热能和动力工程是现代动力工程发展的前提和基础,针对当前我国现阶段热能动力工程的发展和应用现状来看,随着工业产业的不断进步,其热能动力工程也得到了较大程度的提升,但人才队伍的建设还较为乏力,当前,我国高职院校的热能与动力工程专业人才要基于将学生培养成具备一定的实践能力、操作能力的应用型人才的目标,大力推动职业院校应用型人才的建设力度。

篇3

关键词:热能与动力工程;锅炉;应用

中图分类号:TK229文献标识码: A

引言

目前全球都面临着严重的能源危机,这是一个不争的事实,如何积极开发新能源,提高现有能源的利用效率,减少能源资源浪费成为了世界各国关注的焦点。热能动力工程作为一种研究热能源与动力工程的学科,其专业领域中的很多研究都与能源资源利用有关,通过热能功利工程的相关技术来提高能源利用效率,并且其在很多工程领域中也都发挥了一定的功能作用。锅炉作为工业生产中的一项重要生产设备,在热能动力提供上发挥了关键作用。如何提高锅炉的运行效率,增大锅炉炉内燃烧率,减少锅炉排放的环境污染问题,是当前锅炉应用中亟待解决的问题。

一、热能与动力工程以及锅炉构成的概述

热能与动力工程研究的领域主要包括热能工程、热力发动机、流体机械、流体工程、能源工程、制冷技术、工程热物理、冷藏冷冻工程等方面,总的来说即是研究热能与动力的相互转化。[1]其中锅炉方面主要应用的技术是热能工程、热力发动机、动力机械、工程热物理、能源工程等技术。热能与动力工程作为利用能源的工程,首先要解决的即是能源方面和环保方面的技术问题。如今,虽然我国的煤炭资源较为丰富,但在一些企业毫无节制的开采之下,储存量也日益减少,而且由于我国的人口基数大,所以人均占有量较低,为世界人均水平的 60%左右。此外,煤炭资源也会产生二氧化碳、二氧化硫、一氧化碳、一氧化氮等对动植物生存、土壤环境产生威胁的有害气体。所以如何努力研发出脱硫等技术以减少有害气体的产生和对环境的污染,将煤炭资源较为高效地转化和利用,成为一项十分艰巨的任务。首先要做好阶段性目标和总体目标的规划,这样才能在充分了解热能与动力工程的基础上规避风险;其次要充分了解用户的需求提出可行性的设计方案,有的放矢地进行建设;最后要提升热能与动力工程的运营标准,严格把关,这样才能有效避免资源和时间的浪费。

在我国目前生产应用的锅炉主要有工业锅炉和电站锅炉两种,按不同的分类方式可以分为多种,例如按锅炉本体的不同结构,可分为火罐锅炉、水管锅炉和水火管锅壳式锅炉;按外形的不同则可分为卧式和立式;按用途的不同可分为热水锅炉和蒸汽锅炉等。锅炉主要由外壳部分和燃气锅炉的电气控制部分两者组成,其中外壳部分分为面壳和底壳,面壳主要用来防止风沙和尘土的损害和侵蚀,而底壳则用于固定锅炉的燃烧器,同时要在底壳上安装轮回水泵、燃气阀、膨胀水箱、三通阀、主热交换器等配件,这些配件通过底壳的连接成为一个整体。[3]此外,对于锅炉来说,最主要的硬件即是燃气锅炉电器的控制部分,它的主要作用在于控制风机、风压开关、燃气阀、轮回水泵、燃料燃烧、地暖温度探测等装置的运行。而时至今日,随着科技水平的不断进步,大多数公司企业都开始采用电脑控制的方法进行运转,这样可以更加精确的控制温度,维持其均衡。

二、热能与动力工程在锅炉中出现的相关问题

1、锅炉方面存在的问题

锅炉的主要问题还是因为锅炉内部的风机的问题,风机在锅炉是热能和动能相互转换的一个器件,是锅炉不可缺少的部分。风机的转动会提升锅炉内部的压强从而把压缩后的气体运送到安装制定好的机械中,而当气压回归正常时压缩气体又开始膨胀从而产生机械运动的动力。风机是被安置在锅炉内部但是有时候需要很强的动力会让锅炉造成超过负荷的运动,这样才经常出现电机被烧坏的现象,在生产上造成了所遇额外的经济损失,而这种现象也会对操作人员的人身安全产生威胁。所以现在非常需要提高锅炉的安全性,避免出现伤及生命财产的现象。

2、热能与动力工程在锅炉风机方面出现的相关问题

我们知道锅炉中的风机的主要作用就是将机械能转化为人们所需要的动能。然而,随着人们对能源的需求量的不断增加,风机在运行的过程中极易损坏电机,在某些较为严重的情况下,还会给工作人员带来生命危险,使企业的经济效益大大下降,给企业带来了巨大损失。所以我们很有必要针对锅炉中风机出现的这些问题来改善和提高风机的装备,促进热能与动力工程的发展。

三、热能动力工程在能源与锅炉方面的应用

1、热能动力工程在能源方面的应用

能源动力工业的发展直接影响着一个国家的经济发展和国防的建设,所以它所涉及到的领域也是比较广泛的,进而集成了众多的新型技术产业,对经济的发展具有积极的作用。热能动力工程对于能源的应用,主要体现在风、电两个方面,例如发电站的应用、风机的应用。对于风机的应用,它可以包括发电厂、工业炉窑以及供热锅炉等,以此领域的通风与引风为主,另外,还可以用在工业厂房、矿井、泠却塔、隧道等处的通风、冷却和排尘。随着科学技术的不断进步,电站和工业锅炉的发展越来越追求机组的大容量、高效率、高转速以及操作的自动化,所以对系统的安全性与可靠性提出了越来越高的要求。

2、热能动力工程在锅炉中的应用

目前的工业锅炉是利用燃料的燃烧或者是电能转化的热量,对物料或者工件进行加热。另外,在锅炉队热能动力工程的应用中主要以软件仿真锅炉风机的翼型叶片与炉内燃烧控制技术为主,当前的炉内燃烧控制技术不再是手动控制已经变成了自动控制,其控制的方式可以是双交叉限幅控制系统或是空燃比例连续控制系统两种中的任何一种。锅炉当中的风机,将气体进行输送或是压缩,将机械能转换成相应的动能,所以风机对锅炉来说具有非常重要的作用。近几年以来,人类对能源的需求不断增加,造成众多企业加大了锅炉的工作量,导致部分锅炉负荷工作引发了很多的问题,与此同时也造成了很多的损失,比如风机的长时间工作会产生大量的热量将其烧坏,因而直接影响了锅炉的正常运行。

四、热能与动力工程未来的发展方向

目前,随着各行各业的不断发展,热能与动力工程的发展方向是比较可观的,它可以在多个领域发展。比如说可以发展热能动力及控制工程、热力发电机及汽车工程等多个方向。但是,需要注意的是,在发展不同的工程时,要掌握不同的热能与动力工程的技术和原理知识,做到具体问题具体分析,更好地促进各工程的较好较快发展。此外,正是由于热能与动力工程拥有较好的发展前景,因此我们更加需要不断提高与该工程有关的技术水平,增强工作人员的专业素质,为该工程的质量提供良好的保证。热能动力工程在动力能源方面的应用与发展在我国的工业发展中,能源动力是不可缺少的重要生产力,并且在很多工业领域中,都离不开热动能这一生产资源。

如何提高能源动力的应用效率,减少热动能的无功损耗,成为了当前工业发展中最需要解决的问题。只有实现热能的高效利用,才能起到节能环保效果,才能促进工业的可持续发展。而在热能动力工程技术中,其所应用在最主要方面就是风机。风机是一种应用非常广泛的机械设备,在多个工程领域都是不可或缺的重要生产设备。如发电厂、车辆、船舶等。风机的主要运行原理是利用多个叶片进行旋转来产生机械能,并应用在工程机械的动力能源中,从而推动工程机械运作。随着工程机械的性能要求越来越高,对风机的运行效率也提出了更高的要求。提高风机性能同时还对于节省动力工程能源也有着重要意义,这是热能动力工程的研究方向之一。目前将锅炉的燃烧控制系统主要分为了以下两种:

第一,目前企业比较常用的就是空燃比连续控制系统。该系统主要由可编程的逻辑控制器、比例阀、燃烧控制器等部分组成。目前,空燃比连续控制系统主要是利用锅炉内部相关燃烧数据的分析传入可编程的逻辑控制器,通过逻辑控制器对于向比例阀传输电子信号,对其开放程度进行调控,由此来控制锅炉内部的温度。

第二,目前应用比较普遍的双交叉先付系统。双交叉先付系统对于锅炉的控制主要依靠温度传感系统来实现。通过对于温度的准备测量,将温度信号传递到逻辑控制器,然后通过逻辑控制器对空气流量阀的打开程度进行调解。同时,对于燃料的进出口进行调解,精确的控制温度。

结束语

总之,热能动力工程是一门对工业动力能源应用非常有利的现代工程学科,其能够促进工业锅炉性能的提升,实现能源利用效率最大化。因此需要我们充分认识到热能与动力工程技术在锅炉领域里的不足,勇于创新并解决它,并且不断实践与学习,来挖掘热能与动力工程技术在其领域中更多的潜力,就能更加高效有序地保证锅炉的运转,提高燃料的利用率。

参考文献

[1]周正生.切向燃烧锅炉炉膛结渣问题的研究[J].中国电机工程学报,2011(24):182-184.

篇4

关键词:热能与动力工程;锅炉;问题;应用;发展方向

中图分类号:TK223 文献标识码:A

随着社会经济、科学技术的迅猛发展,我国各行各业取得了显著的成绩。其中,热能与动力工程愈来愈受到社会各界的高度重视,换句话说,热能与动力工程在我国获得了广泛的应用。本文根据笔者实际从业经验,从热能与动力工程、锅炉构成的内涵、热能与动力工程在锅炉中的发展及存在的问题、热能动力工程炉内燃烧控制技术的应用、热能与动力工程的发展方向4个方面对热能与动力工程在锅炉中的应用进行了深入研究,旨在为各位同仁提供参考。

一、对热能与动力工程、锅炉的构成

(一)热能与动力工程

就热能与动力工程表层意义而言,其主要涉及热能、动力两个方面的内容,也就是说,热能与动能之间的循环转换(热能转化为功能或动能转化为热能)。当然,某些时候,在这起技术的作用下,动能可以转化为电能,以满足电力行业的需求,从而促进其高效发展。经调查、研究发现,能量转换过程中所应用的技术与其他工程存有很大的区别。与此同时,其涉及多个学科的内容。此外,热能与动力工程具有广阔的发展前景,主要包括工程物理工程、电厂热能工程等。实践证明,热能与动力工程的存在、发展在缓解我国能源压力方面发挥着不可替代的作用。由此可知,热能与动力工程必然会受到社会各界的高度重视,以满足我国经济、生活对能源的需求。

(二)锅炉的构成

对于锅炉的构成,主要包括燃气锅炉电气控制、外壳等,如图1所示。其中,锅炉的外壳由面壳、底壳构成,其在锅炉作业过程中发挥着各自的价值。就底壳而言,其主要用于固定锅炉的燃烧器,从而确保锅炉使用的安全性。此外,锅炉底壳上配置了其他部件,以构成一个整体,从而更好地发挥其自身的作用。防风防尘是面壳的主要功能,能够有效保护锅炉,以保证锅炉平稳、有序运行。现今,科学技术、社会经济的迅猛发展,很多企业大都倾向于采用计算机控制方法。根据调查结果显示,计算机控制具有高度的科学性、精确性。

二、热能与动力工程在锅炉中的发展及存在的问题

(一)热能与动力工程在锅炉中的发展

自19世纪70年代第一台锅炉诞生,人们开始迈入蒸汽时代。18世纪90年代,分离冷凝器面世,这标志着具备完整运作体系的锅炉初步确立。经调查、研究发现,锅炉与工业炉在原理方面存有一定的共性。严格意义上来讲,锅炉属于工业炉范畴。所谓的工业炉指的是一种工业设备,其存在有利于实现热量的转换。在我国,工业炉起源于商代,主要用于加热提炼铜器。随着时代的发展,铸铁技术应运而生,其充分反映出工业炉在控制温度方面的进步、发展。近年来,社会经济、科学技术迅猛发展,对于锅炉系统的控制不再是人工,而是计算机。通常吸纳连续加热炉主要包括两种类型:步进式炉、推钢式炉,其存在着一定的差异性:运输燃料的方式。

(二)热能与动力工程在锅炉中存在的问题

众所周知,锅炉中的风机具备转换能量(机械能转变为动能)的作用。但是,当前国民经济、生活对能量的需求量不断增大,处于作业状态的风机极易损坏电机,甚至会影响到使用者的人身安全。此外,其对企业经济效益具有负面影响,严重妨碍了企业的长远发展。因此,企业改善、提高风机装备对解决锅炉中存在的问题颇有益处、推动热能与动力工程发展进程等颇有益处。

三、热能动力工程炉内燃烧控制技术的应用

众所周知,调整能量转换幅度的核心技术是整个锅炉的燃烧控制。在目前的社会发展过程中,锅炉的燃料填充方式不断发展变化,逐渐由传统的人力向锅炉内填充燃料,转变为步进式的自动控制型的填充燃料方式。另外,更加先进的锅炉甚至会采用全自动的燃烧控制系统。根据锅炉运用的热能动力,以及自动控制技术的不同,一般的锅炉燃烧控制会分为几种类型:一是燃烧的控制系统是以烧嘴、燃烧控制器、热电偶、电动蝶阀、比例阀、气体分析装置以及PLC等相应的部件组成。这种燃烧的控制系统一般会由热电偶检测出相应的数据,并以最快的速度传送到PLC,并与其本身所设定的数值进行对比,偏差值也会通过使用一定的比例积分,或微分运算输出信号,同时分别对比例阀门,以及电动蝶阀的开放程度进行适当的调节,使其达到控制空气与燃料的比例,最终能够调节锅炉内的温度。然而,采用这种方式对锅炉的温度进行控制,不是完全的精确,一般需要极其仔细的确认额定的数值。二是双交叉先付控制系统,该系统主要是烧嘴、流量阀、流量计、燃控制器、热电偶等几个部分组成。其主要的工作原理是通过温度传感器,热电偶会将需要进行准确测量的温度转化成具体的电信号。这样的电信号刻意用来代表测量点的实际温度。该测量点的具体温度一般会由预先贮存在上位机中的工艺曲线自动限定的。通常情况下,根据两者数据之间的偏差值的大小,会使用PLC自动调节燃料与空气流量阀门的开合程度,使其具有一定的准确性。通过电动的方式运行机构的定位,以及空气和燃料的控制比例,在测量空气的流量时可以借助孔板和差压变送器。另外,可以通过专用的质量控制装置来测量燃料的控制,这也是精确控制温度的一个重要数值。值得注意的是,这种燃烧控制的最大优点在于能更好地节省一些部件,也能保证锅炉温度的控制是精确无误的。

四、热能与动力工程的发展方向

目前,随着社会经济、科学技术的高速发展,热能与动力工程的发展前景更为广阔,其对多个领域的发展具有重要的意义,例如:汽车工程、热力发电机、热能动力及控制工程等。然而,值得注意的是,将热能与动力工程应用于工程发展中时,须理解、掌握其所涉及的原理知识,并针对不同问题进行不同分析,从而确保各项工程平稳、有序地进行。与此同时,鉴于热能与动力工程良好的发展前景,相关人员应通过不断学习,加强自身技能、综合素质,为更好地促进其的发展奠定坚实的基础,进而最大程度地满足我国经济、社会等对能源日益增长的需求。

结语

综上所述,笔者对热能与动力工程的应用及解决其存在的问题的措施等进行了全面的分析。实践证明,这些方法对促进锅炉运转、提高锅炉工作的有效性等具有重要的意义,以提高企业自身的核心竞争力,进而提高其经济效益。此外,能源动力在我国市场经济中占据着举足轻重的位置,是开发利用能源、实现动力应用的基础。由此可见,对于热能与动力工程的发展,相关人员须注重理论、实际的有机结合,遵循“实事求是”的原则,且葆有积极乐观的工作态度等,以突破、创新方法技术,从而提高企业的运营效率。笔者坚信,唯有如此,我国能源短缺的问题才能得到有效解决,有利于推动我国经济发展进程及提高我国的综合实力。

参考文献

[1]田青.热能与动力工程在锅炉领域的应用探究[J].科技创新与应用,2014(19):21.

[2]徐德.关于热能与动力工程在锅炉中应用问题的探讨[J].经营管理者,2014(13):313.

篇5

[关键词]热电厂 热能 动力;能源 利用;节能 减排;研究

中图分类号:U416.1 文献标识码:A 文章编号:1009-914X(2014)33-0032-01

能源是一个国家和民族发展的基石,同时,也是人类赖以生存的关键。电力的工作是把热能变换成动能,进而结合设备将一些变成电,而剩下的会经过设备转换,在该体系里,产生蒸汽的热损耗及焓降,而且其还会帮助电厂降低损耗,最主要的是提升活动能力。就新能源的利用以及开发的内容展开论述,详细地分析了热能与动力工程的具体利用,并且针对其装置设备、能源对于环境的影响、发展的前景等多个方面进行研究,同时,针对其节能减排的要点,进行了深入地探讨,力求加强实际当中的应用和操作,更好地为新能源的使用和开发做出积极的贡献。

一、热能的特点

现阶段当中,人类所使用的热能,主要是通过一次能源的转换而得来的,所以,分析热能的特点,需要从以下三个方面来入手进行:a) 太阳能及其能量的转换。太阳能,通过对植物的照射,进而使植物的内部存有的叶绿素,发生一系列的能源转换以及光合作用,进而将太阳能转换成为生物的质能,而太阳能的光,则是经过热量的转换以及点的转换,进而成为我们所使用的能源物质;b) 燃料化学能及其转换过程。燃料化学能的转换,主要是通过燃烧的方式,将存在于其中的化学能,转换成为热能,进而再通过相关的技术手段,将其转换成为人类生活和生产所需要的机械能,例如常见的汽轮机等,其工作的方式,就是首先将化学能源,转换成为蒸汽的热能,进而再通过相关的设备以及技术,将汽轮机之内的热能转换成为机械发动所需的机械能;c) 热能的转换,其中主要包括两种能量的形式,即电能以及机械能,电能包括热电发电机,而机械能,则主要有汽轮机以及内燃机。

二、热能的利用

热能在我国许多行业当中都有着广泛的运用,并且,在国民经济当中,也占据了核心的地位。总的来讲,热能的相关利用,在以下几个行业当中最为广泛:a)电力工业,热能动力工程在其中有着非常重要的应用,在核发电、火力发电等装置设备的使用之中,热能动力工程及相关的技术,是其工作的基础;b)钢铁工业,尤其在高炉炼铁、炼钢以及轧钢等工艺当中,应用极为广泛;c)相关的有色金属工业,其中包括有铝、铜等有色金属,其冶炼,均使用的是热能;d)化学工业,在化学工业的相关应用之中,合成氮、酸碱等的相关生产工艺程序,主要使用到的是热能动力工程之中的技术手段,以其基本的原理来作为理论依据;e) 石油工业,其中包括石油的采集、冶炼、运输等等多个环节,都运用到了热能动力工程当中的相关技术理论;f) 机械工业以及相关的建筑工业,包括材料的生产、材料的制造、相关工艺锻造、焊接技术以及铸造等,都有热能的利用;g) 交通运输领域当中,包括汽车、轮船、飞机等的使用;h)农业生产以及水产养殖等方面,也有着广泛的运用,包括蔬菜的温室培养、鱼池的加温加热、电力方面的农业灌溉等方面,均有着广泛的使用。同时,在人们的日常生活之中,热能也有着广泛的使用,例如冬天之时的供暖设备等。根据上述的分析,可以看出,热能及其相关的动力工程,在人们的生活以及生产当中,发挥着非常重要的作用,是一项极为重要的能源,下文将针对热能的特点,进行深入细致的探究,帮助在日常的使用过程当中,发挥出更大的效应。

三、热能动力工程的应用

热能与动力工程的应用中要特别注意调节阀的数量,根据不同的负荷来确定相应的调节阀,同时还要实现汽轮机的调节和应用,这样有效地将两者的优势结合在一起才能更好地提高能源的利用效率。在调节数值的时候还要区分单机调节和多机调节,单机调节要特别注意将数值控制在一定的范围,保证单机工作的质量和效率。热能与动力工程的使用还要重视节流调节,节流调节可以提高机组的整体工作效率,保证大机组在工作时能够合理地分配负荷重量。当机组的负荷重量在一定的范围内,可以适当地进行调压调节,实现热能与动力工程的经济性。但是在实际的应用中,会因为一些具体的情况导致能源的损失,给电力企业的发展带来一定的影响。热能与动力工程不仅在热电厂中有广泛的应用,在锅炉中也有相应的应用。随着科学技术的不断进步和发展,传统的人工操作已经不再适应社会的发展,现在的锅炉已经实现了自动化的智能操作,有效地提高锅炉燃烧的均衡性,实现锅炉工作的科学化。锅炉的风机设备会将机械能转换为其他的能量,提高能源的使用率,但是在利用率提高的同时还存在一定的安全隐患,风机长期工作会容易烧坏,不仅给企业带来了经济损害,还给工作人员的人身安全带来很大的威胁。

四、热能与动力工程在热电厂中的科技创新

热电厂的创新主要表现重热现象、调频和减少湿气损失三个部分,在这三个部分充分体现了热能与动力工程在热电厂中的科技创新。热电厂在生产的过程中可以有效地利用重热现象,但是在利用重热现象时,要考虑重热的重热系数,要将重热系数控制在一定的范围内才能够实现重热现象的作用。错误的重热系数会造成一定的经济损失,直接影响到热电厂的经济效益。当生产的过程中出现重热现象不能盲目的使用,首先要对重热现象的具体情况有详细的了解,正式使用重热现象时要将重热系数控制在规定的范围,将热能与动力工程的工作指导与实际的生产需要相结合,制定相应的方案来实行重热现象的应用。

调频手段在热电厂的生产中也有很广泛的应用。调频一般分为一次调频和二次调频,一次调频主要是指当电网的外力作用发生变化时,会给相关的数值带来很大的波动,影响整个生产的稳定性,这个时候设备自动的会进行调频,以此来保证设备的正常工作。这种调节方式比较被动,只能根据当时的情况进行调节,不能对外界环境的变化实现灵活的调节。二次调节是在一次调节基础上的再次调节,它相比较一次调节来说更加精准和科学。它可以将电网的工作频率控制在一定的范围内,利用智能技术设置相应的数值,提前对外界的变化做出反应,能够很大程度上减少经济损失,还能很好地管理控制数据,为下阶段的生产工作创造有利的工作条件。

降低湿气损失是热能与动力工程科技创新的一个重点,因为湿气造成的经济损失严重的影响到电力企业的健康发展。在生产的过程中经常会产生大量的水蒸气,产生水蒸气的同时还会生成多余的水滴,多余的水滴会影响到水蒸气的正常流速,造成能源的不必要浪费,降低了能源的使用效率。针对这种情况可以对相关的生产设备进行创新,增加去湿装置和热循环装置,将多余的水分蒸发,提高热能与动力工程的使用效率。

五、锅炉燃烧控制技术

篇6

摘要:总结多年的工作实践,分析变工况的各种情况,讨论热电厂中的热能与动力工程的常见问题。

关键词:热电厂;热能与动力工程;变工况;分析__

在热电厂中,由热能转变成为动能,通过汽轮发电机后,一部分转变为电能,另一部分通过汽轮机转送出去,在这过程中,会发生蒸汽的热损失及焓降,分析原因,会对热电厂的能耗降低有所帮助,并能提高操作技能。重热现象:前级损失被下级利用,使下级理想焓降在相同压差下比前级无损失时理想焓降略有增大,这种现象就叫做多级汽轮机的重热现象。引起机组变工况的因素:电不能大量储存,外界所需的功率时刻在变化;锅炉燃烧不稳定,使进入汽轮机的蒸汽参数发生变化;凝汽设界工况变化,使凝汽器压力变化;其它因素影响,如电网频率变化,汽轮机通流部分结垢等。一次调频:对并网运行的机组,当外界负荷变化引起电网频率变动时,各机组的调速系统将根据各自的静态特性,自动增减负荷,以维持电网的周波,这一过程称为一次调频。汽轮机变工况时各级焓降的变化(调节级中间级最末级):调节级,在第一阀全开以上的工况,流量增加时压比增大,调节级比焓降减小,反之,流量减小时比焓降增大,而在第一阀全开,第二阀未开时,调节级比焓降达到最大中间级,在工况变动时,各中间级的压力比不变,各中间级的比焓降亦不变。最未级,流量增加,压比减小,未级比焓降增加,反之喷管调节的特点及适用场合:(1) 各调节阀所通过的最大流量不一定相等;(2)有调节级,e

调压调节的特点:(1)增加了机组运行的可靠性和对负荷的适应性;(2)提高了机组在部分负荷下的经济性;(3) 高负荷区滑压调节不经济;(4)适用于单元大机组蒸汽在动叶栅中做功后,以余速动能离开动叶栅,它是未能在动叶栅中转换为机械功的一部分动能,称它为这一级的余速损失,工作喷管所占的弧段长度与整个圆周长派的比值表示部分进汽的程度。在部分进汽的级中,喷管分组布置,可分为工作弧段和非工作弧段,鼓风损失发生在非工作弧段。旋转的动叶片每一瞬间都会处于喷管工作弧段或非工作弧段,在非工作弧段,动静轴向间隙中充满了停滞的蒸汽,当动叶片转到非工作弧段时,会像鼓风机一样,将这些停滞的蒸汽从叶轮的一侧鼓到另一侧,这要消耗部分有用功,这部分能量损失为鼓风损失。与鼓风损失相反,斥汽损失发生在喷管工作弧段,刚从非工作弧段转到工作弧段的动叶栅内充满了停滞的蒸汽,喷管中流出的蒸汽须首先排斥并加速这些停滞蒸汽,要消耗部分动能,为斥汽损失。产生湿汽损失的原因:(1) 湿蒸汽在膨胀时,一部分蒸汽凝结成水滴使做功的蒸汽量减少;(2)一些水珠其流速低于蒸汽流速,高速汽流被低速水珠牵制,消耗部分动能造成损失;(3)水珠撞击喷管背弧扰乱主流造成损失,撞击动叶背弧阻碍动叶旋转消耗叶轮的有用功;(4)湿蒸汽的过冷现象也是造成湿汽损失的原因之一。

危害:损伤动叶进汽的边缘,特别叶顶背弧处冲蚀最严重。

减少湿汽损失的方法:(1)采用中间再热循环;(2)采用去湿装置;(3)采用具有吸水缝的空心喷管;(4)提高抗冲蚀能力。汽轮机运行时,要克服支持轴承和推力轴承的摩擦阻力,还要带动主油泵、调速器,这都将消耗一部分有用功而造成损失,为机械损失。在轴流式汽轮机中,通常是高压蒸汽由一端进入,低压蒸汽由另一端流出,从整体来看,蒸汽对汽轮机转子施加了一个由高压端指向低压的轴向力,使汽轮机转子存在一个向低压端移动的趋势,这个力就叫子的轴向推力。级组的变工况特性:(1)当变工况前后级组未达临界状态时,级组的流量与级组前后压力平方差的平方根成正比;(2)变工况前后级组均为临界状态,通过级组的流量与级前压力成正比,与级后参数无关。轴向推力的变化规律:(1) 新蒸汽温度降低;(2)汽轮机发生水冲击时;(3)负荷突增时;(4)甩负荷时;(5)叶片结垢时,轴向推力都增大。

篇7

[关键词]热电厂 热能和动力 工程的应用

中图分类号:G302 文献标识码:A 文章编号:1009-914X(2015)25-0267-01

前言

在热电厂中,由热能转变成为动能,通过汽轮发电机后,一部分转变为电能,另一部分通过汽轮机转送出去,在这过程中,会发生蒸汽的热损失及焓降,分析原因,会对热电厂的能耗降低有所帮助,并能提高操作技能。重热现象:前级损失被下级利用,使下级理想焓降在相同压差下比前级无损失时理想焓降略有增大,这种现象就叫做多级汽轮机的重热现象。引起机组变工况的因素:电不能大量储存,外界所需的功率时刻在变化;锅炉燃烧不稳定,使进入汽轮机的蒸汽参数发生变化;凝汽设界工况变化,使凝汽器压力变化;其它因素影响,如电网频率变化,汽轮机通流部分结垢等。一次调频:对并网运行的机组,当外界负荷变化引起电网频率变动时,各机组的调速系统将根据各自的静态特性,自动增减负荷,以维持电网的周波,这一过程称为一次调频。

一、热能和动力

1.热能转换原理

在热电厂中,发电就是热能向功能的转化。在汽轮发电机作用影响下,一部分会转化成电能,剩下的由于受到汽轮机的作用,被转送出去。在转化的过程中,蒸汽会有热损失与焓降现象发生。在对其转化进行优化时,会大大减少生产中的能耗,还能强化操作技能。将前级中产生的损失在下级转换过程中进行运用,使在同压差下使下级焓降理想值比前级要大,这一现象指的就是多级汽轮机中的重热现象。

2.变工况的相关因素

众所周知,电是无法进行大量存储的,由于外界的需要,功率处于不断变化之中。由于锅炉内的相关燃料燃烧是不稳定的,在汽轮机之中的蒸汽参数还在不断改变,凝气设界工况发生改变,使得凝汽器中的具体压力也不断改变。变工况产生的主要原因是电网频率变化以及汽轮机内产生的污垢。

2.1 对于并网运行的相关发电机组,若是外界负荷改变,电网频率随之发生变化,那么每一个发电机组会结合自己的静态特性,自动增减调速系统的负荷,这样使得电网不能对周波进行维持,这就是一次调频。

2.2 关于调节级。第一阀打开全部工况之后,电流量增加,瞬时电压比增加,调节级比焓降便会逐渐减小。如果流量减小,其比焓降就减小。如果第一阀全开且第二阀没开,调节级比焓降就会在中间级达到最大值,若是工况改变,那么压力比位于中间级的具体压力就不会改变,比焓降同样不变。在最末级,若是流量增加,那么其压比就会减小,比焓降会逐渐增加。

二、热电厂中热能与动力工程的应用

1.节流调节的特点及适用场合包括:1,无调节级,第一级全周进汽;2,变工况时各级温度变化较小,负荷适应性较好;3,变工况存在节流损失,经济性较差;4,适用于小容量的机组和带基本负荷的大机组,级组的临界压力是指当级组中任一级处于临界状态时级组的最高背压级组包含的级数越多,其数值越小,也即临界压力比的数值越小,弗留格尔公式的应用条件:级组级数应不小于3~4级;同一工况下,通过级组各级的流量相同;在不同工况下,级组中各级的通流面积应该保持不变。弗留格尔公式的实际应用:可用来推算出同流量下各级级前压力求得各级的压差、比焓降,从而确定相应的功率效率及零部件的受力情况;监视汽轮机通流部分是否正常,即在已知流量的条件下,根据运行时各级组前压力是否符合弗留格尔公式,从而判断通流部分面积是否转变。

2.合理利用重热现象的优势

重热现象最大的优势就是上一级损失的能源能够在下决断的工作中利用到,合理地利用重热现象的这个优势可以减少资源的浪费,提高能源的利用率。但是利用重热现象之前要了解重热系数,只有在一定的范围内才能够发挥重热现象的作用。一般的会在级效率比较低的情况下使用,但是在实际的应用中还是要根据发电机自身的工作状态以及实际生产的需要来确定重热系数,这样的确定方式更能保证重热系数的准确性,真正发挥重热现象的作用,让整个发电机组能够更好地工作。

3.选择适当的调频次数

当电网自身的工作状态发生变化时,系统会自动的调节频率来降低负载,保证发电机组的正常工作,这样自动的调频方式成为第一调频,也是保证电网工作的主要手段。一次调频最大的特点就是频率速度较快,根据不同的情况,一次调频的频率也有所不同,这给相关的工作带来了一定的难度。当电力系统的负荷过大,一次调频无法保证电网的正常工作时,要积极地采取二次调频,二次调频一般分为人工调频和自动调频的方式,在不同的情况会采用不同的调频方式。发电机组在工作时会遇到很多的突发状况,所以相关的工作人员在调频前,要对实际的情况有详细的了解,这样才能正确的选择调频次数和方式。如果工作人员没有根据实际情况选择调频方式,会给发电机组的工作带来很大的麻烦,直接影响到发电机组和电网的正常工作,损害了热电厂的利益。

4.关于调压调节

调压调节不仅增加了机组对自身运行的可靠性,同时还增加了机组对负荷的适应性,实现了机组在部分负荷之下经济性的提高,是热能与动力工程在热电厂中运用的基础条件。但与此同时,调节调压本身也存在一些问题,比如在高负荷压力之下实行滑压调节违背了经济性要求,在动叶栅内的大机组蒸汽做功之后,就会转化机械能,会导致斥气损失、鼓风损失与余速损失等。在调节调压过程中产生的这些损失,也即热能与动力工程在热电厂中的运用损失,需要我们加以关注,采取措施尽量降低。分析后可以发现,这部分损失并不是简单的由人为失误或者系统故障产生的,在很大程度上是由于机组的运行机理而造成的。基于此,若想降低调压调节的损失,就必须引进较为先进的工艺技术,依靠技术上的突破来尽量降低这部分损失。

5.湿气损失

导致这种现象发生的原因主要的有如下的四种。第一,当湿蒸不断变大的时候,其中的一些会变成水滴的形式,这时候的反映是导致一部分蒸汽变低。第二,部分水珠的速度草果了蒸汽的速率,此时较快的气流就会受到水珠的影响,这时必然会出现过多的能耗现象。第三,水珠应为撞击喷管背弧而扰乱主流造成的损失,撞击动叶背弧阻碍动叶旋转而消耗叶轮有用功;第四,除了上面讲到的三种之外,湿蒸汽不断的降低温度同样也是导致问题出现的一个关键的要素。它带来的不利现象是,导致动叶受到影响,尤其是背弧地方受到的影响最厉害。而降低不利现象的措施主要的有如下的四种:第一,利用再热循环的方式。第二,通过除湿设备来完成。第三,运用本身带旅游吸水缝的装置。第四,切实提升其抵御冲蚀的水平。当设备运作的时候,必须要认真地应对两种轴承监督摩擦力现象,这必然会导致有功受到影响。在轴流式汽轮机中,通常是高压蒸汽从一侧流进,然后低压的从别的地方出去,从整齐观察,蒸汽对汽轮机转子施加了一个由高压端指向低压的轴向力,使汽轮机转子存在一个向低压端移动的趋势,这个力便叫转子的轴向推力。 为了降低湿气的损失,减少它对机组运行的影响,可以采用祛湿装置,但安装这种装置要定期检修和更换,会带来较大的经济成本的支出,因此中间增加热循环过程是一种经济有效的措施。

结束语

研究热电厂热能与动力工程的有效运用,随时了解电厂热能及动力工程中的问题,进而分析这些问题的发生机理,这样做的意义是可以帮助我们合理的应对这些问题。以提高工作效率,减少能耗为前提,提高能量的最大利用限度,合理利用在不同场合中的调节方式。

参考文献

篇8

【关键词】热能;动力工程;应用;

中图分类号:TV 文献标识码: A

随着近些年社会的发展,资源紧张问题已经成为当前社会发展的矛盾,热能动力工程的应用,可以缓解我国的能源短缺问题,是一项非常重要的工程。在对热能与动力工程研究的过程中,需要以实际的应用为基础, 通过不断的观察总结来掌握热能与动力工程之间转换的过程, 从而提高在实践中的处理方法, 保证日后工作的规范。在研究创新过程中, 要保证以提高工作效率和减少能源的消耗为前提, 使能源能够最大限度的合理利用。同时根据实践总结来不断提高热能与动力工程在实践中的应用,从而使能源的利用效率提高到一个新的高度。

1热能动力工程的研究方向

热能与动力工程是以工程热物理学科为主要理论基础,以内燃机和正在发展中的其它新型动力机械及系统为研究对象运用工程力学、机械工程学、自动控制、计算机、环境科学、微电子技术等学科的知识和内容研究如何把燃料的化学能和液体的动能安全、高效、低(或无)污染地转换成动力的基本规律和过程研究转换过程中的系统和设备的自动控制技术。

2 热能与动力工程的应用

2.1 热电厂中的应用

2.1.1 喷管调节

调节阀可以通过的最大流量是不尽相同的,随着调节阀数目的不同而变化,喷管调节就是在满足负荷适应性的基础之上,为了能够提高汽轮机的工作效率,达到平衡各种不同汽轮机的调节以及变化。单机运行与多级运行在控制各类调节的数值过程中是存在差异的单机运行能够负载控制在有限值之内,并且能够把增加的机组转速达到一个合理的范围内曰多级运行过程中首先要确保电网频率不会被影响到的情况下,对负载进行重组与分配是新一轮的调频过程,而与单机运行情况时不同的。

2.1.2 节流调节

在热电厂运行过程中,应注意合理调节节流。在节流调节时,由于不存在调节级的分类,因此应采取其他手段来保证节流调节的有效性。当汽轮机第一级能够全周进汽时,如果工况发生变化,各级的温度应呈现出减小的趋势,如果汽轮机组运行良好,则可以采用小容量机组和基本负荷的大机组,这时如果经济性较差,则应该针对节流损失问题采取相应的措施。在热电厂运行中,能够通过弗留格尔公式来充分保证热能与动力工程有效利用,弗留格尔公式表明,在相同流量条件下可以对汽轮机各级的压差、焓降的计算,对汽轮机运行的功率效率及零部件的受力情况进行确定,从而实现对汽轮机的运行状态的密切关注。在这个过程中,通过流量等已知条件,结合运行机组的各级压力公式,分析流动面积变化情况。从这个层面上说,弗留格尔公式在火电厂运行中的应用,能够保证机组节流调节中的有效性,也为热能与动力工程的有效运行创造了良好的条件。

2.2.3调压调节

调压调节的经济性仅仅用于机组在某些负载荷度的情况下,随着负荷程度的提高, 调压调节不再具有经济性的特征。在工作时,对于机械能的转换可能存在一部分的机械能损失,因为在这部分中机械能不具备转换成动能的条件,会带来一定的机组剩余速度上的损失。

2.2 锅炉中的应用

热能与动力工程得益于科学技术的不断进步以及信息技术的应用使得其能够被应用在锅炉中,锅炉主要就是由外壳以及锅炉使用过程中的电器控制系统。锅炉在使用过程中主要就是燃烧的过程,鉴于燃烧使得锅炉产生极大的热能,在炉底安装控制器就是为了能够随时监控锅炉的运行情况,这也是保护锅炉安全的重要手段之一。在锅炉实际运行过程中,其自身就会形成一个自我保护系统,它会将一定的机械热能转化为其他能量以达到保护自身的目的,但是,往往因为这部分转化的能量而烧坏锅炉,随着科学技术的快速发展,在进行热能控制中已经逐渐向电脑全自动控制转换,用电脑来对锅炉进行智能控制,可以提高锅炉的运行精密度,保持燃烧的均衡。

3热能与动力工程的发展科技创新

3.1 在热电厂方面的发展

3.1.1 合理利用重热现象

重热现象在热电厂运行过程中是不可避免的袁其数值在一定范围内是可以减少一部分能量的损失袁但是也并不是越大越好袁所以袁就必须对热电厂中的重热现象运用合理以及充分袁根据热电厂的实际运行过程来确定重热系数也就是重热数值遥

3.1.2 一次调频和二次调频

一次调频是根据调节发动机的转速而进行的一种被动调频措施袁而且这种调节措施只能够对外界数值的变化进行一定的控制而不能够进行比较精确的调节曰但是袁在电网频率保持一定数值的基础上袁能够利用智能调节对二次调频预先设定调频方程式袁从而可以对机组重新进行分配以及重新组合袁 二次调频相比于一次调频更加精确可靠袁能够有效的对数据进行控制遥

3.1.3 降低湿气损失

在热电厂运行中湿气损失是重要的能耗损失。因此减少湿气损失不仅能提高汽轮机的运行效率对热能与动力工程的应用也有很大的好处。湿气损失主要是由于在汽轮机运行中湿蒸汽会出现膨胀现象由于空气温度存在差异蒸汽会出现部分凝结的情况从而导致蒸汽量不断减少。同时由于蒸汽的流速比水珠的流速要高得多在水珠牵制作用下动能被大量消耗掉了。再者湿蒸汽过冷也会加大蒸汽的损失。在汽轮机运行中不仅应克服支持轴承及推力轴承的摩擦力以外还应该迅速启动主油泵和调速器在这些动作中需要消耗一部分机械损失。这时河以采用轴流式的汽轮机在一端引入高压蒸汽而另一端则排除一部分低压蒸汽这样就能够保证高压往低压方向偏移,降低了能量的消耗池能够太大提高热能与动力工程的运用效率。

3.2 在锅炉方面的发展

3.2.1 锅炉燃烧控制技术

在锅炉燃烧控制中, 如何调节能量转换才是关键, 随着时代的发展, 锅炉的类型也在发展着变化着,由从前的人力填充燃料到现在变成智能填充燃料, 还可以对锅炉的燃烧度进行有效的控制。在燃烧系统中一般有两类,一类对锅炉温度的调节是通过控制空气与燃料的燃烧调节,是与锅炉本身的设定值进行比较的, 这种方式虽然运算复杂但没有达到精确的目的, 对于锅炉的设定值也要进行反复的确认才能保证技术的准确。

3.2.2 仿真锅炉风机翼型叶片

目前为止,对于锅炉叶轮的制造以及运作还没有一个科学完整的体系,主要是因为锅炉内部风机结构复杂,运行精密等原因。但是我们可以利用模拟实验对锅炉内部的气体流动做出评估以便能够获得比较准确的数值,进而利用电脑对模拟数值进行预先设定,模拟的主要目的就是对不同速度造成的矢量图进行研究分析,从而可以为锅炉风机翼型边界层分离与攻交的关系提供一定的参数依据。

4 结束语

社会发展过程中, 资源问题一直是人们密切关注的问题。社会的发展带动了科学的进步, 而社会发展与资源问题已经形成了一种矛盾。当前,热能动力工程的发展更好的解决了这一问题,随着科技的进步,热能与动力工程技术也有了提高。对热能和动力工程进行研究,能够更好的提高工作效率,同时减少能源的损失,这样能够使能源得到最大程度的利用,在不同的场合也是能够进行调节,提高利用效率,为我国电力事业发展提供强而有力的支撑。

参考文献:

【1】陈佑乾.浅析热能与动力工程在热电厂中的巧妙运用J[]城市建设理论研究,2012(1).

篇9

【关键词】热能动力工程;热电厂运用及探讨

1.降低热能损耗的措施及手段

对于在热电转换过程时出现的某些现象、技术或方法、为什么会热能损耗及降耗的技巧等概括如下。

重热现象:也就是说重复利用热能,在汽轮机中前一次损耗的热能,能够被下一次运行所应用,这就是所谓的重热。在每次运行中所产生的焓降累加后超过总体运行是所产生的焓降再除以整体运行所产生的焓降所得到的结果称之为重热系数。虽然各级热能的利用效率都高于单次的利用效率,然而这是以节能降耗为基础的,这能说部分热量得到了利用,并不追求高重热系数。通常在4%至8%之间。正因为如此,重复利用热能可提高每次运行的能量利用率真,降低能量的损耗。合理的利用热能,控制好恰当的系数,既有利于能量利用率,也能增强操作人员对机组的熟悉程度。

2.导致变工况的因素及特点

当机器启动后,产生变工况的原因也有很多,但主要有以下各种因素:

第一、电能的不方便存储,况且由于其他方面所引起的电功率不稳定;第二、锅炉运行的情况也非一直不变的,从而导致汽轮机的运行情况产生无规律变化;第三、凝汽装置的工况也不稳定,使得其中的气压时时改变。第四、另外还有诸多原因:如用电的频率、通气设备的老化等。当机器运行情况有很大变化时,就要考虑以上各个因素了,具体情况具体分析,最终维护机器的稳定运行。

进一步学习机器频率控制的相关知识,这有助于实践中各种具体操作。有两组电网同时作业的机组,尽管外界条件不断改变导致电频波动,但机器的速度控制装置能依据自身状况,进行快速调整,维护整个装置的运行,这一系列操作叫做单次调频。这个过程的主要特征在于响应快,但响应尺度各个机组不尽相同,产生的影响较小,人工操作较强。

两次调频:对于电网运行时,其系统中负载产生大的波动,单次调频难以满足平息波动的需要,而再次进行频率控制。其方式有两种:手动操作与自动操作。

手动调频:电能产生的过程中,技术维护工依据装置的改变来调整机器的状态,维持其频率稳定,但其据点显得易见,响应迟缓,面对大的调频情况时,通常难以实现。再者,24小时超长时间维护对维护人员来说操作时间长,强度高。

自动调频:利用自动控制技术来实现自动调频是当前的主流技术,它是依靠在发电设备与控制系统中加装自动调节设备,从而解决整个运行中产生的频率波动,能将其变化幅度控制在很低水平。这种自动控制系统是其整个自动化系统的重要控制装置,它负责整个系统的调频、维持功率稳定及整体调节等功能。

汽轮机运行状况的改变,每次运行中焓降也随之改变,调节过程中不关闭阀门的工作情况,其随着流量变大,压力比变大,而焓降变小。与些相反的情况。流量变少,焓降则变大。中间级状态时,当阀门处于一开一闭的情况,焓降增到最大,此时,即使工作状态发生改变,其压力也保持稳定,此时,焓降也保持稳定。最后一级,流量变大,压力变小,但此时焓降变大。清楚各级各个参数的变化对维护系统运行有很大的作用。

喷管的作用特征与应用场所:第一,每个阀门的流量峰值并非完全一样;第二,在调节级时,e小于1,但t根据阀门运行的个数产生改变;第三,负载只加载一部分时,有些装置运行效率较好;第四,运行情况发生改变时,室内环境改变时,其负载难以适应;第五,每种型号的发电装置都能应用于这种系统叫做同步器。其发挥的功能包括:单一启动时,能保持整个装置稳定运行,且达到额定功率。当有负载时,可以让整个系统在满负载情况得到较好的运行。两台机组同时启动时,可用这种装置调控整个机组的功率,实际各部分的负载均衡,但维持整个装置的频率稳定,实现两次调频。

节流控制的作用特征与应用场所:第一,没有调节控制环节,气体全部进入;第二,工作运行状况发生改变时,温度也维持较稳,负载能良好的运行;第三,工作运行状况发生改变时,流量消耗,效益不好;第四,其可应用于容量较小或带正常负载的巨型装置。所谓的临界压力表示的是当机组处于临界运行情景时,产生的压力时,且与级数呈负相关关系。从某个角度上说,其数值通常相对较小。其相关的公式应用的前提条件包括:装置中就有三级以上的级数,相同工况,其每级流量值一样,不同工作情况时,就保持其流通截面相同。这个公司的运用可能于各级的装置的压力值,从而可以获得他们之间的差值、比焓降,再根据这种参数来分析整个系统的运行情况。可通过这些来获得汽轮机是否运行正常,在告知流量值时,各级测得的压力值符合相关公司否?再依此确定流量的变化。

压力控制的特征:第一,提高了整个系统的可靠程度,增强其负载适应能力;第二,使整个系统在一定负载时有较好的效益;第三,满负载时,压力调节效益较差;第四,能应用于单个机组运行时,蒸汽推动叶片运动后,还具有一定的速度,且会损失剩下的未能转化的机械能,这种现象称之为余速损耗,用喷管的弯型弧长除以整个管的周长的结果来表征其调节气体的大小。

3.容易出现的问题

损耗湿汽的因素:第一,湿润的气体发生膨胀,其中有些因气温降低而变成了水,从而不能做功;第二,这些液态水的流速小于气流速度,从而会降低气体的速度,也会产生一定的动能损耗;第三,液态水都粘在管壁上了,既产生水的损耗又产做了无用功,使叶轮做功减少;第四,遇冷的水蒸汽使得汽量减少,而且还会损害叶轮的边沿,尤其是会造成其背面弯处产生腐蚀。

防止湿汽损耗的要点:第一,实现过程中热能再利用;第二,加装减湿互环节;第三,使用带收集液态水功能的喷管;第四,增强其抗腐蚀作用。整体装置运行过程中,要实现好各部件间的效果,还可以使泵装置、速度控制装置的运行,因为这些过程可能产生无用功,造成机械能损耗。

气体沿轴流动的装置中,一般是蒸汽从气压强的入口端进入、而从气压弱的出口端流出,这等同于对整个装置的转轴产生一个沿轴方向的力,其方向由气压强处指向气压弱处。从而使转轴发生偏转,通常称这个力为沿轴推力。

级间工况变化的特点:第一,当临界点未出现时,其流量同各级间的压力呈一定非简单正比的关系;第二,当临界点出现时,其流量同各级间的压力呈正比关系,而且同其它参数没有关联。

沿轴方向的推力特点:第一,蒸汽凝结成水时,推力变大;第二,液态水与叶轮发生撞击时,推力也变大;第三,负载增大,推力变大;第四,负载被甩时,推力变大。第五、叶片老化,推力变大。

4.结论

以上所述的内容,均为本人多年研究的成果的总结,且经过大量的实际验证,归纳出热能及动力间的关联或他们之间的变化。熟悉变工况时的情景,弄清楚其真正原因,有助于实际工作时产生各类问题时的维护,有助于提高维护水平。也可以利降焓来减少热量消耗及再利用的相关知识,提高能量的利用率,节能降耗。

【参考文献】

[1]王晓瑜.供热系统控制分析[J].自动化技术与应用,2009(7).

[2]杨婷.应用监测监控技术-提高供热系统的自动化管理水平[J].区域供热,2009(2).

篇10

关键词:热能动力工程;特点;利用;发展

引 言:经济社会的快速发展对能源的需求量也在逐渐增大,因此,能源问题成为了人们不得不关注的问题之一,只有保证了能源的充分供应才能对经济社会发展进行保障,保证人们的工作生活不受到影响。我国经济社会在不断发展过程中,节能减排已经成为了发展中必须要关注的问题,节能减排的实施就是为了对能源进行优化配置,因此,文章对热能与动力工程的相关问题进行了分析,希望找到更好的解决措施,促进经济社会发展,更好的提高热能与动力工程的经济效益。

1 热能与动力工程的相关研究

人们在日常工业生产中对热能与动力工程之间的关系进行分析就是热能与动力工程的研究,同时,也是一种热能研发的创新和发展,在对热能与动力工程进行研究时,不仅仅要对日常工作状况进行分析,同时,对热能与动力工程的装置概念和热能特点都要进行分析。

1.1 热能动力装置的概念

热能动力装置主要分为两个类型:(1)利用燃烧过程中产生的燃气进入到发动机中,然后进行能量之间的转换,进而加以利用,在这种类型中内燃机是比较典型的代表。(2)使燃料进行燃烧,在这个过程中将产生的热能利用技术手段传递到相关的液体中,使液体液化,然后将气化之后产生的蒸汽再导入到发动机中,这样实现了热能的传递和转化,在这种类型中蒸汽机是典型代表。热能动力装置无论是何种类型,在工业生产中都得到了很好的发展,对经济社会发展意义重大。

1.2 热能的特点研究

1.2.1 太阳能及其能量的转换

太阳能是非常常见的一种能源,也是一种可再生能源,但是太阳能的转化通常情况下比较复杂,而且,太阳能的利用并不是十分的广泛,在生物科学中主要是对太阳能的光合作用进行了利用,并没有将太阳能直接的分离出来。在热能研究方面,太阳能发电的成本比较高,最重要的问题是能量的转换率比较低,因此,也成为了热能与动力工程研究方面非常重要的内容。

1.2.2 燃料化学能及其转换过程

燃料化学能的转换主要是利用燃烧的方式将燃料中的化学能转化为热能,这其中对化学反应过程进行了利用,因此,热能生产者要想实现燃料化学能的转换要对相关的科学知识进行更好的掌握,这样在实际中才能更好的实现工业生产。

1.2.3 热能的转换

热能的转换还有很多其他的办法,在生产中可以对各种动能和势能的转换来获取热能。动能和势能的转换主要有两种形式,分别是电能和机械能。电能主要的来源是发电机,机械能的来源则是汽轮机和内燃机,在对能源进行转换时可以根据能量守恒定律,实现电能和动能之间的相互转换,更好的满足社会生产的需求。

2 热能的利用

2.1 电力工业

热能动力工程在其中有着非常重要的应用,在核发电、火力发电等装置设备的使用之中,热能动力工程及相关的技术,是其工作的基础。

2.2 钢铁工业

尤其在高炉炼铁、炼钢以及轧钢等工艺当中,应用极为广泛。

2.3 相关的有色金属工业

其中包括有铝、铜等有色金属,其冶炼,均使用的是热能。

2.4 化学工业

在化学工业的相关应用之中,合成氮、酸碱等的相关生产工艺程序,主要使用到的是热能动力工程之中的技术手段,以其基本的原理来作为理论依据。

2.5 石油工业

其中包括有石油的采集、冶炼、运输等多个环节,都运用到了热能动力工程当中的相关技术理论。

3 热能动力工程对于环境的影响

热能动力工程的发展对环境产生了很大的影响,主要有热污染、空气污染、噪声污染以及放射性危害等。热污染带来的主要危害就是温室效应,例如水利发电站在运行过程中,在很大程度上会导致水源或者是空气质量变化受到影响;空气污染是指发电厂、工业设备等排放出来的废气,这样也会导致温室效应的出现。热能动力工程的发展对环境产生的影响可以在相关的方面进行改进,这样能够为环境可持续发展做出贡献。

4 热能与动力工程问题的解决措施

4.1 加快相关产业结构的调整

热能与动力工程的发展需要对相关产业结构进行相应的调整和改进,并且在能源的使用效率方面也要进行提升,针对生产更好的发展,对人们的需求进行满足,并且,在生产质量方面也要进行改善,以此来提升生产质量方面的核心内容。对热能与动力工程的相关产业结构进行调整,可以实现产业的合理发展和分配,也是未来产业发展中将要面临的一个重大问题。

4.2 强化技术创新

对热能动力工程和相关产业中,需要不断对相关的技术手段进行更新,技术方面实现创新是企业在发展过程中能够很好的应对外界竞争的最有效方法。因此,要想获得更好的发展对相关的技术要进行不断的提高,只有这样生产才能获得更好的发展。竞争力得到提高也能在技术方面得到更好的应用,热能与动力工程的研究也才能获得更大的成就。

4.3 从根本、基础性的建设做起,逐步的控制增量

在对热能与动力工程进行研究时,不能只是对一些理论进行高谈阔论,而是要针对一些出现的问题找到具体的解决方案,将理论应用在实际中,这样能够对出现的不足进行解决,同时,对产业结构调整以及结构优化都非常有利。在热能与动力工程发展过程中对出现的污染问题要采取防治措施,实施重点工程建设,对热能的需求量也要进行控制,这样能够在资源承受范围内有合理的解决方案,同时也是对社会资源的一种保护方法。

4.4 发展创新型模式,加快经济循环

发展创新型模式过程中并不是要对原有的发展模式进行全面的否定,而是要寻找新的解决方法,热能与动力工程的研究是专业而且具有高技术的产业,因为其是现代社会工业发展的重要支持,因此,在发展过程中并不能一味的对经济增长进行追求,这样才能找到新的现代化技术手段和发展模式。热能与动力工程在相关问题解决方面,要保证资源得到利用和开采,并且,创造良好的工业生产环境。

5 结束语

科学技术水平的提高对经济社会发展有很大的促进作用,在经济社会发展中,能源的需求量越来越大,尤其是工业生产中,为此,越来越多的人对热能与动力工程的研究产生了很大的兴趣,因为只有更好的发展热能与动力工程,才能更好的促进工业产业发展。在热能与动力工程研究中存在着很多的问题,这些问题的出现一定要找到解决的方法,这样才能更好的实现能源建设。热能与动力工程的发展最终要实现能源转换的环保性以及高效性,并且,使能源利用能够实现最大化,这样才能促进热能与动力工程研究取得更好的成绩。

参考文献:

[1]程清.浅议工业的节能减排[J].机械工业,2011.