农药在土壤中的降解途径范文
时间:2023-12-05 17:56:19
导语:如何才能写好一篇农药在土壤中的降解途径,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词 农药;光生物;降解;生物修复
中图分类号 X132;X592 文献标识码 A 文章编号 1007-5739(2012)19-0218-03
1 农药污染状况
随着农业病虫害的增多,农药的使用量也与日剧增。我国20世纪末农药的投放量如表1所示[1]。与化肥相比,农药具有毒性大、不易降解的特性,对水环境和生态系统影响更为恶劣,客观上造成我国水域环境及生态环境污染的日趋严峻。
2 光生物降解农药
2.1 光降解土壤中农药
2.1.1 有机氯类农药。太阳光曝晒可增强土壤中有机氯类农药的降解:DDT可转化为DDE。γ-BHC的光解符合一级动力学方程,其降解常数随土壤有机质含量增加而降低;当有机碳含量不变时,光解常数随铁含量增加而提高,低有机碳含量土壤中,Fe2O3对γ-BHC有明显的催化作用。
2.1.2 有机磷类农药。研究表明,土壤黏粒含量和土壤湿度是影响有机磷类农药光解的主要因素。光解速率随黏粒含量减少而增大;土壤湿度对光解速率影响随农药品种和土壤类型不同差异较大,湿土壤明显有利于氟乐灵的光解。土壤的有机质含量对光解速率影响不明显。
2.1.3 有机氮类农药。阿特拉津除草剂在粒度较小的土壤中光解速率较大,光解深度也较大;阿特拉津的光解速率在湿土壤中大于在干土壤中;土壤的pH值对其光解速率也有影响,即酸性和碱性土壤均可促进阿特拉津的光解,在中性左右的土壤中,它的光解速率会有一个最小值。另外,土壤中腐殖酸和表面活性剂的存在均会增加阿特拉津的光解速率。
2.1.4 菊酯类农药。光分解对拟除虫菊酯类农药在表土中的消解起了重要作用。在田间条件下它们能被阳光迅速降解,因此它们几乎不存在从土壤迁移转化。氯氰菊酯等3种农药在0.5~1.0 mm粒径范围的土壤中光解速率最大,在0.10~0.25 mm粒径范围内光解速率最小,说明其合适的通气孔隙有利于农药在土壤中光解。
2.2 微生物降解土壤中农药
现代农业应用的农药是根治病、虫害的最有效的方法之一,但农药能长时间地残留在环境中,并随食物链移动,产生生态毒害作用。土壤是农药在环境中的贮藏库和集散地。农药进入土壤后,可以被淋溶、蒸发、吸附和降解。土壤中农药的生物降解是农药转化和解毒的主要途径。
农药的生物降解受土壤温度、含水量、pH值、有机质等多种因素的影响。有的农药既可在厌氧条件下降解,又可在好氧条件下降解;有些农药则仅能在其中之一条件下进行降解。
现已明确参与农药降解与代谢的微生物有:一是细菌类。如极毛杆菌、黄杆菌、农杆菌、棒状杆菌、芽孢杆菌、芽孢梭菌。二是真菌类。如交链孢、曲霉、芽枝霉、镰刀霉、小从壳属、青霉属。三是放线菌类。如小单孢属、诺卡氏菌和链霉属。
土壤中的农药微生物代谢不同于矿化作用,也不同于动物代谢。微生物对农药的代谢除使农药被氧化或还原而降解外,它们还将农药作为营养或获得能源的物质。如在厌氧条件下很容易分解γ-BHC和α-BHC的契形梭菌,能将BHC的这2种异构体分解为γ-4氯环乙烯和α-4氯环乙烯而获得本身生长所需能源。但不论是细菌、真菌还是放线菌,其主要代谢反应或途径都是大致相同的,即为β-氧化作用、乙醚裂解作用、环氧化作用和脱卤素作用等。此外,只有微生物才能裂解芳香环类农药。
2.2.1 有机氯农药。有机氯农药在土壤中较难降解,但还是可以缓慢降解的。这类农药虽然在厌氧和好氧条件下均能进行微生物降解,但在厌氧条件下降解速度更快。例如:DDT在厌氧条件下,微生物能使之脱氯变为DDD,或是脱氢脱氯变为DDE。DDD和DDE都可以进一步氧化为DDA。DDD、DDE的毒性虽比DDT低得多,但仍有慢性毒性。DDT在好氧条件下分解很慢。
与DDT相比,BHC(丙体666)比较容易降解。如前述,厌氧条件下,微生物很容易分解γ-BHC和α-BHC,使之成为本身的能源。胡荣桂[2]研究表明,稻田在淹水条件下,84 d后土壤中微生物对γ-BHC可降解98.4%,不淹水的稻田中微生物对γ-BHC只能降解34.5%。因此,有人提出,以加水的方法来促进微生物对旱地BHC的降解。
其他的有机氯农药,如艾氏剂、异艾氏剂、狄氏剂、异狄氏剂、氯丹等是环境中最稳定的农药,因此其降解的速度非常缓慢。
2.2.2 有机磷农药。有机磷农药在土壤中很易降解,既能直接水解和氧化,也能被微生物分解,其降解速度随土壤温度、湿度和酸碱度增高而加快。如马拉硫磷可以水解,也可在绿色木霉和极毛杆菌属作用下分解,反应产物可彻底降解为磷酸盐、硫酸盐和碳酸盐等。
其他的有机磷农药,如对硫磷、甲基对硫磷和乙基对硫磷,能被枯草杆菌降解,所含的硝基被还原为氨基。有些微生物能使对硫磷水解为P-硝基酚,将其中的毒害成分降解为无毒物质。
2.2.3 菊酯类农药。拟除虫菊酯类杀虫剂是一类结构类似天然除虫菊的人工合成农药。这类农药急性、慢性的毒性都低,降解慢,除了氰戊菊酯等个别品种外,对人畜和环境较安全。
菊酯类农药在土壤表层,能被阳光迅速降解,在土层1 cm以下主要为生物降解。表2列出了3种菊酯类农药在不同土壤中降解的半衰期[3]。
2.3 光生物降解植物中农药
水系中在阳光辐射下藻类可引发产生H2O2、′O2、O2-等活性氧物质,经过光化学反应又可生成氢氧自由基OH和RO2、R等有机自由基。这些活性物质,对农药具有强烈地氧化、分解作用,最终可将有机污染物分解为二氧化碳和水。
处于这种水系的待降解农作物,通过吸附作用、生物富集作用、自身的呼吸作用等,将上述活性自由基物质吸收于植物体内,这些活性物质则可将植物体中的农药残留逐渐氧化、分解。例如,对BHC农药,则可使其产生脱氯反应,而逐渐降解,其降解产物在植物舒张收缩中随细胞放水排出体外。
在阳光下,藻类产生一种过氧化氢酶,这种氧化酶对苯胺类化学物质氧化速度很快;在阳光下,藻类释放出一些光敏剂,它可以敏化水系中各种反应,加速对有毒污染物的降解。
在藻类存在的水系中,藻引起的光强度减弱作用很小,不会对光化学降解产生明显影响。
光生物降解技术,可以移植到人工光生化反应器中进行,其工作原理如图1所示。此时的光源将采用人造光源,人造光源的光强在局部范围内可以比辐射于此的太阳光大许多。
3 生物修复
3.1 农田土壤的生物修复
农田污染是我国农业发展所面临的严峻问题,据不完全统计,全国受污染的耕地占其总面积的1/10以上,不仅污染面积大,而且每年由于土壤污染造成的粮食减产损失巨大,达250万t[4]。
土壤污染一方面是由于自然现象如洪涝、火山爆发和矿化作用等因素造成;另一方面是由一系列的人类活动造成的,如工业活动、石油开发、化肥农药的过度施用等,导致土壤结构被破坏,大量有害物质积累和残留。土壤的污染,使得有毒及致癌物质在动植物体内富集,通过食物链危害各类生物以至于人类。
3.1.1 农田生物修复机理。生物修复技术是利用微生物及其他生物将存在于土壤中的有毒、有害有机污染物降解成二氧化碳和水或其他无害物质的技术和方法。与物理、化学修复技术相比,生物修复技术具有安全、破坏性小、效果好、操作简单及无二次污染等优点。根据微生物的来源,可将微生物修复分为自然衰减法、生物刺激修复技术和生物强化修复技术,其中生物强化修复技术具有菌浓度高、降解能力强、降解迅速等特点,在污染土壤修复中应用日益广泛。
3.1.2 生物强化修复土壤程序。生物强化修复农田土壤,工作程序如图2所示。
(1)考察菌群。考察生物修复过程中污染物以及外源微生物对土壤微生态的影响:一方面,有助于获得更加有效、对环境适应能力更强的污染物降解菌;另一方面,是提高生物强化修复技术实际成功率的基础。
(2)菌群筛选。将具有污染物降解能力的微生物分离出来是生物强化修复技术成功的基础。例如,从微生物的微生态效应出发,利用真菌和细菌的生长条件及降解石油方面的互补性,构建了由细菌和真菌组成的混合菌剂,接种这类混合菌对石油烃的降解率高于细菌和真菌分别降解率之和。
(3)菌群固定化。利用微生物固定化技术,可以将微生物接种入土壤中,是一种保证外源微生物在陌生环境中生长并不断积累生物活性的有效途径。一方面载体(土壤)可以为微生物的生长提供附着的表面,其载体的内部孔道可为各种微生物提供良好的保护性环境;另一方面载体内包埋的营养物质可有效促进微生物的生长。微生物固定化技术已经成功地应用于石油烃、苯酚、氯代苯酚等有机污染物的生物降解。
(4)引入共底物。一些难降解的有机污染物在自然条件下不能被微生物所利用(降解),而在可供微生物所利用的优质碳源存在时,微生物可通过共代谢过程降解污染物。例如,在邻苯二甲酸、二甲酯的生物降解过程中加入无机碳源,不仅能促进微生物的生长,而且对污染物的微生物降解也有明显的促进作用,不失为提高生物强化修复效率的一条有效途径。
(5)修复技术的联用。对某地区的土壤进行某一种单一的生物修复时,有时会难以达到预期效果,因此应当考虑合理地使用多种修复技术的联用。例如,石油污染的土壤往往伴随着严重的盐污染。高浓度盐离子的存在会抑制微生物对石油污染的生物降解。如果将秸秆填埋发酵技术与生物强化修复技术结合起来会达到土壤修复目的。此时,利用秸秆及其转化产物促进土壤中微生物的生长,强化了石油烃的生物降解。
另外,将土壤生物修复过程与适宜的作物种植相结合,不仅可以提高生物修复的效率,还可以获得一定的经济效益。
3.1.3 土壤生物修复实例。土壤污染生物修复的实际应用,许多发达国家均有成功案例。据Susan报道,具有代表性的案例[5]如表3所示。
3.2 湖泊的生物修复
湖泊污染修复的关键是解决湖泊的富营养化问题。湖泊水体的富营养化实质是活性氮、磷元素不断从污染源进入水体而造成的污染。污染源主要是农业生产过程中(化肥、农药等)富含氮、磷的农田排水及人类生活污水和工业废水。此外,还有湖底淤泥中沉积的有害物质,其氮、磷的不断释放。
如何治理湖泊富营养化、恢复湖泊水体的功能是整个世界需要解决的难题。在过去几十年中,世界各国科学家已经探索尝试了包括物理、化学、生物三大类几十种方法,或工程费用昂贵,或二次污染严重,或治理速度太慢,其效果都不尽人意。目前,可供选择地生物修复湖泊技术有以下几种。
3.2.1 李召虎的“源、流、库”学说及其一体化治理技术。李召虎根据其在美国参与美国公司湖泊富营养化治理的技术与经验,导入植物生理学,提出了“源、流、库”学说,开发了适合我国特点的《湖泊富营养化(源—流—库)一体化治理技术》[6]。该技术采用生物学手段,对源—湖泊上游源头排放的污染物、流—源头至湖泊水流中的污染物、库—进入湖泊水体的污染物,进行一体化治理。通过发挥嗜养微生物对污染物的转化(惰性化)和清除养分的功能,健全湖泊生态系统食物链,彻底根除湖泊富营养化,修复湖泊生态系统,恢复水体自净功能。
李召虎利用微生物组合与其他天然生物产品对富营养水体中的有机物进行分解,在分解的基础上将活性氮、磷物质转化为惰性物质。应用该项一体化治理技术,已成功治理了富营养化湖泊水体1亿m3,治理的湖泊面积从0.3 km2到数十平方千米。
3.2.2 EM法投放有效微生物。李雪梅等在华南植物园往重度富营养化的人工湖投加多糖EM菌剂进行试验[7]。在1 000 m2的湖中投放60个固定了高浓度EM的泥球,75 d后湖水的变化如表4所示。
湖水透明度的提高,原因在于EM抑制了水体藻类的生长,从水体叶绿素看,投菌30 d,表面就从3 780 mg/m3降到130 mg/m3,下降了96.6%。从此案例看,EM治理湖泊富营养化是有效的。
3.2.3 Clear-FLO系列菌剂。该菌剂是由美国一家公司研究开发的系列产品[7],专门用于湖泊和池塘的生物清淤、养殖水体净化、河流修复及污泥去除等[8-9]。采用此菌种修复湖泊、河流亦有不少成功案例(表5)。
4 参考文献
[1] 王建华,范瑜.遥感技术在宏观生态环境监测中的应用[J].江苏环境科技,2002,15(1):22-24.
[2] 胡荣桂.农药污染与土壤微生物[J].环境污染与防治,1993,15(3):24-27.
[3] 朱忠林,单正军.溴氟菊酯的光解,水解与土壤降解[J].农村生态环境,1996,12(4):5-7,36.
[4] 刘铮,张坤,花秀夫,等.石油污染土壤的生物修复技术[J].生物产业技术,2008(4):32-35.
[5] 戴树桂,董亮.表面活性剂对受污染环境修复作用研究进展[J].上海环境科学,1999,18(9):420-424.
[6] 毛喜英.浅谈农药对环境的污染及生物整治措施[J].现代农业科学,2009(6):132-133.
[7] 顾宗濂.中国富营养化湖泊的生物修复[J].农村生态环境,2002,18(1):42-45.
篇2
关键词土壤环境因子;有机污染物;迁移转化;影响
土壤农药污染是一全球性问题。随着环境问题在全球范围的不断变化,土壤环境污染化学已成为环境化学不可缺少的重要组成部分[1]。在北美、西欧和澳洲等国家,随着各种点源污染得到有效控制,人们关注的焦点逐渐转移到多介质非点源污染,另外土壤环境污染的研究也受到人们日益关注。在我国,受农药使用历史、施药技术以及产品结构等因素影响,土壤农药污染较为严重,制约食品安全与农业可持续发展。随着土壤有机污染物的类型不断增多,大量难降解的有机污染物进入土壤,造成环境的严重污染,影响了农业的可持续发展。土壤中的各种环境因子对有机污染物降解转化有一定的影响,因此,研究这些因子的相互作用,可促进有机污染物在土壤中的消除。
1土壤污染的现状
相对于大气环境和水环境而言,土壤环境的污染源更为复杂,作为有机农药、化肥的直接作用对象,并随着社会发展需求,使得土壤污染物的种类极为繁多。目前,全球生产和使用的农药已达1 300多种,其中被广泛使用的达250多种。我国也已经迈入了世界农药生产和使用大国,现在,我国每年施用逾80万~100万t的化学农药,其中有机磷杀虫剂占40%,高毒农药达到37.4%,且有的化学性质稳定、在土壤中存留时间长[2-4]。大量的农药流失到土壤中,造成土壤环境受到严重污染,影响了农业的可持续发展。造成我国土壤农药污染的农药主要是有机氯与有机磷2类。尽管1985年起,我国就已禁用有机氯农药,但因早期大量使用及其难降解性,土壤中仍有残留,造成作物污染。目前,土壤污染物可以分为传统污染物及新型污染物。
1.1传统污染物
一是传统化学污染物。其又可分为无机污染物和有机污染物两大类,其中传统无机污染物包括汞、镉、 铅、砷、铬等,过量的氮和磷等植物营养元素以及氧化物和硫化物等,传统有机污染物包括DDT、六六六、狄氏剂、艾氏剂和氯丹等含氯化学农药以及DDT的代谢产物DDE和DDD,石油烃及其裂解产物,以及其他各类有机合成产物等。二是物理性污染物。指来自工厂、矿山的各种固体废弃物。三是生物性污染物。指带有各种病菌的城市垃圾和由卫生设施(包括医院、疗养院)排出的废水和废物以及农业废弃物、厩肥等。四是放射性污染物。主要存在于核原料开采、大气层核爆炸地区和核电站的运转,以锶和铯等在土壤环境中半衰期长的放射性元素为主。在这些众多的污染物种类中,以土壤的化学污染物最为普遍、严重和复杂[5]。
1.2新型污染物
近年来,土壤新型污染物受到关注,这类污染物的特点是在土壤环境中的浓度一般较低,但对生态系统的危害和对人体健康的影响较大。这些新型土壤污染物目前主要有四大类[6-7]:一是各种兽药和抗生素对土壤环境的污染。随着动物饲养业和畜牧业的发展,畜禽养殖污染中一个重要的问题就是这些兽药通过动物的排泄以及其他方式导致土壤环境的污染。与兽药污染相对应的是各种抗生素的土壤污染。随着医学事业的发展,各种抗生素将得到日益广泛的应用,由此导致的土壤污染可能会更加复杂。二是大部分溴化阻燃剂在土壤环境中有很高的持久性,能够通过食物链和其他途径累积在人体内,长期接触会妨碍人体大脑和骨骼的发育,并且可能致癌,因此引起人们关注。随着电子工业的不断发展以及各种电子产品的逐渐报废,各种阻燃剂将以各种方式进入土壤环境中,从而造成对土壤的污染。三是“特富龙”不粘锅中使用的化学物质“全氟辛酸铵”以及芳香族磺酸类污染物对土壤的污染。其中,全氟辛烷磺酸(PFOS)是纺织品和皮革制品等防污处理剂的主要活性成分,在民用和工业化产品生产领域用途非常广泛。尽管目前尚没有土壤环境中存在含量的数据,但由于PFOS本身的难分解性、生物高蓄积性和污染的广泛性,有关其土壤环境的污染问题势必将被暴露出来,并成为土壤环境污染化学面临的新课题。四是含有过敏源的植物及花粉对土壤的污染。在法国,近年来发现1种或许起源于北美的豚草属植物(Ambrosiaartem isiifolia)及其花粉,特别是这种花粉由于含有多种潜在的过敏源,能在夏天导致严重的干草热以及哮喘疾病,成为引起人们关注的一种新型土壤污染物。
2土壤环境因子对有机污染的影响
土壤中的微生物、温度、水分、气候、土壤机械组成、含水率、植物根际环境、pH 值、二氧化碳浓度等因素对土壤中有机物的分解与转化有很大的影响。除了有机污染物本身的难降解性以及生物迁移性会对有机物降解速率和效果产生影响外,土壤环境因子也会对有机污染物的迁移转化造成一定的影响。
2.1土壤微生物
有机污染物在土壤中的降解分为非生物降解与生物降解两大类,在生物酶作用下,农药在动植物体内或是微生物体内外的降解即生物降解。微生物降解是指利用微生物降解有机污染物的生物降解过程,降解微生物有细菌、真菌和藻类。虽然在厌氧和需氧条件下多氯化合物都可以降解,但是在厌氧条件下降解速率更快。尽管在好气条件下土壤也有很多分解菌存在,但是在好气的旱田条件下,由于有机氯污染物被土壤吸附,生物活性降低,可以长期残留[8]。微生物降解是消除有机氯农药的最佳途径,通常药剂在土壤中的分解要比在蒸馏水中的分解快得多,将土壤灭菌处理后,药剂在大部分土壤中对有机污染物的分解速率明显受到抑制。
迄今为止,已从土壤、污泥、污水、天然水体、垃圾场和厩肥中分离得到可降解不同农药的活性微生物。活性微生物主要以转化和矿化2种方式,通过胞内或胞外酶直接作用于周围环境中的农药。尽管矿化作用是消除环境中农药污染的最佳方式,但是自然界中此类微生物的种类和数目十分缺乏,而转化作用却相当普遍,某一特定属种的微生物以共代谢方式实现对农药的转化作用,并同环境中的其他微生物以共代谢的方式最终将农药完全降解。
研究显示DDT的分解菌至少涉及30个属,其中包括细菌、酵母、放线菌、真菌以及藻类等微生物。六六六的分解菌除了很早知道的生芽孢梭芽孢杆菌和大肠杆菌外,Matsu mura等人从各种环境中分离出71株有分解六六六能力的细菌、真菌菌株。这些分解菌包括好气性、基本嫌气性、嫌气性等各种细菌以及真菌[9]。
常规环境条件下能降解目标污染物的微生物数量少,且活性比较低,当添加某些营养物包括碳源与能源性物质或提供目标污染物降解过程所需因子,将促进与降解菌生长相关联的有机物的降解代谢,即微生物只能使有机污染物发生转化,而不能利用它们作为碳源和能源维持生长,必须补充其他可以利用的基质,微生物才能生长。在共代谢过程中,微生物通过酶来降解某些能维持自身生长的物质,同时也降解了某些非微生物生长必需的物质。
2.2土壤温度
气候变暖是当今全球性的环境问题,大气中CO2浓度的不断增加对全球气候变化起着极其重要的作用。土壤中CO2的排放主要来自土壤原有有机质和外源有机物(如植物的凋落物、根茬及人为的有机污染物投入)的分解过程[10]。全球气候不断增暖将改变各地的温度场、蒸发量和降水量,而这些变化又影响着土壤有机污染物的分解。
土壤温度影响土壤微生物和酶活性及土壤中溶质的运移,还影响土壤反应的速度和土壤呼吸速率,最终影响土壤中有机污染物的降解转化。在一定温度范围内,温度升高会促进土壤有机污染物的分解,但随着温度的进一步升高,土壤有机污染物对温度的响应程度降低。Miko发现,在平均温度为5 ℃时,温度每升高1 ℃将会引起全球范围内10%土壤有机污染物的丧失;而在平均温度为30 ℃时,温度每升高1 ℃将会使得有机污染物丧失3%[11]。
但是,在冷冻条件下关于土壤有机污染物的分解和微生物的活性还存在分歧。Neilson 研究了冷冻对碳和氮循环的影响,发现冷冻加快了土壤碳和氮的循环速率,但不同植被品种、土壤层次和冷冻程度所增加的幅度不同,而且在冷冻程度非常大时,会促进土壤呼吸和二氧化氮的流量和矿化。
2.3土壤pH值
土壤的pH值对有机污染物的吸附有很大的影响,一般来说,pH值越低,土壤对有机污染物的吸附能力越强。土壤酸碱性通过影响组分和污染物的电荷特性、沉淀溶解、吸附解吸和络合平衡来改变污染物的毒性,土壤酸碱性还通过土壤微生物的活性来改变污染物的毒性。pH值对有机污染物如有机农药在土壤中的积累、转化、降解的影响主要表现为:一是土壤的pH值不同,土壤微生物群落不同,影响土壤微生物对有机污染物的降解作用,这种生物降解途径主要包括生物氧化和还原反应中的脱氯、脱氯化氢、脱烷基化、芳香烃或杂环破裂反应等。二是通过改变污染物和土壤组分的电荷特性,改变两者的吸附、络合、沉淀等特性,导致污染物浓度的改变。
2.4土壤水分
土壤水分是土壤中水溶性成分的运输载体,也是土壤反应得以正常进行的介质。王彦辉认为森林土壤有机污染物的分解速率在很大程度上受控于环境条件,其中含水量起着决定性作用,最佳含水量为被分解物饱和含水量的70%~90%,极度干旱或水分过多都会限制土壤微生物的活动,明显降低土壤中有机污染物的分解速率[12]。但是,Olivier认为在淹水条件下有机污染物料的分解速率加快,在长期的淹水条件下厌氧微生物反复利用腐解发酵的有机物料,会导致较低的净残留碳的矿化[13]。这与淹水、嫌气条件下有机物料的分解速率慢于旱地、分解量低于旱地的传统概念不同。
在非淹水条件下,温度对有机碳分解的影响随着分解时间的延长而逐步减小。淹水条件下培养7 d以后,温度对供试物料有机碳分解的影响不随培养时间的变化而变化。当土壤含水量为300、500 g/kg时,供试物料的有机碳分解最快,而土壤含水量为200 g/kg和淹水条件下的有机碳分解较慢,空白对照培养结果显示土壤有机碳的分解速率随着水分含量的提高而加快[14]。在相同的水热条件下,有机碳的分解量与土壤黏粒含量呈负相关。
不同的土壤含水量对土壤中植物残体的分解速率和土壤腐殖质组分(胡敏酸和富里酸) 数量的影响仍存在争议。由于常规研究土壤有机污染物动态变化的方法存在不足,所以可以通过同位素示踪方法(14C示踪法或13C自然丰度法)进一步定量研究。利用同位素示踪技术可以区分原有土壤有机质与外源有机物分解转化形成的土壤新有机质,从而了解土壤中植物残体分解转化的动态变化规律。
2.5土壤机械组成
土壤质地的差异形成不同的土壤结构和通透性状,因而对环境污染物的截留、迁移、转化产生不同的效应。由于黏土类富含黏粒,土壤物理性吸附、化学吸附及离子交换作用强,具有较强的保肥、保水性能,同时也把进入土壤中的污染物质的有机、无机分子、离子吸附到土粒表面保存起来,增加了污染物转移的难度。
在黏土中加入砂粒,可相对减少黏粒含量,增加土壤通气孔隙,可以减少对污染物的分子吸附,提高淋溶的强度,促进污染物的转移,但要注意到因此可能引起的地下水污染等问题。砂质土类的优点是有机污染物容易从土壤表层淋溶至下层,减轻表土污染物的数量和危害;但是有可能进一步污染地下水,造成二次污染。壤土的性质介于黏土和砂土之间,其性状差异取决于壤土中砂、壤粒含量比例,黏粒含量多,性质偏于黏土类,砂粒含量多则偏于砂土类。
一般而言,黏性土壤中的空气较砂性土壤少,好气性微生物活性受到抑制,土壤黏粒具有保持碳的能力,其含量影响外源有机物(有机化合物、植物残体)及其转化产物的分解速率。随着土壤黏粒含量的增加,土壤有机碳和土壤微生物量碳也增加,土壤有机碳与黏粒含量呈正相关,随着土壤黏粒含量的增加,碳、氮矿化量减少,但矿化部分的碳氮比并不受土壤质地的影响。
2.6气候及二氧化碳含量
气候变化通过影响土壤水分、溶质运移和温度的变化来影响微生物的活动,从而引起土壤中有机污染物含量的变化。凉爽季节向温暖季节转化会导致土壤有机碳的损失,热、湿润的气候有利于有机污染物的分解。在秋季和冬季,土壤中微生物数量增加;在春季积雪融化后,土壤中微生物数量迅速下降,这种微生物群落的动态变化与植物碳、氮的有效性相关联。
大气CO2浓度升高提高了植物的光合作用,使20%~50%光合产物通过根系分泌或死亡输入土壤,从而间接影响土壤生态系统。有些学者认为CO2浓度升高,会增加输入土壤的碳量,刺激土壤微生物的生长和活性,加强土壤的呼吸作用,增加了土壤中有机物的分解速率[15]。多数研究是在土壤—植物系统中进行的,CO2浓度升高通过增加植物同化碳来增加根系生物量,从而增加土壤中碳量输入。于水强研究了土壤外部不同O2、CO2浓度对土壤微生物的活性和土壤有机物分解及其组分的动态变化的影响,认为低CO2浓度有利于有机物的分解和胡敏酸的形成,而高CO2浓度有利于有机物的积累和富里酸的形成。
3结语
土壤是生态环境的重要组成部分,是人类赖以生存的主要资源之一,也是物质生物地球化学循环的储存库,对环境变化具有高度的敏感性。土壤的环境因子存在着不稳定性,但是通过研究最适合土壤中有机污染物降解转化的环境,可改变受污染严重的土壤中有机污染物的含量,改善环境质量,实现可持续发展。
4参考文献
[1] 郝亚琦,权.土壤污染现状及修复对策[J].水土保持研究,2007,14(3):248-251.
[2] 权桂芝.土壤的农药污染及修复技术[J].天津农业科学,2007,13(1):35-38.
[3] 夏北成.环境污染物生物降解[M].北京:化学工业出版社,2000.
[4] 张大弟,张晓红.农药污染与防治[M].北京:化学工业出版社,2001.
[5] 周启星.土壤环境污染化学与化学修复研究最新进展[J].环境化学,2006,25(3):257-264.
[6] 唐永銮,刘育民.环境学导论[M].北京:高等教育出版社,1987:178-180.
[7] 周启星,孔繁翔,朱琳.生态毒理学[M].北京:高等教育出版社,2004.
[8] 陈菊,周青.土壤农药污染的现状与生物修复[J].生物学教学,2006,31(11):3-6.
[9] 何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997(2):61-69.
[10] FANG C,MONCRIEFF J B. The dependence of soil CO2 effluxon tempe-rature[J].Soil Biology and Biochemistry,2001,33(2):155-165.
[11] 徐全胜,李凌浩,韩兴国,等.土壤呼吸对温度升高的适应[J].生态学报,2004,24(11):2649- 2655.
[12] 王丽莉.温度和水分对土壤腐殖质形成与转化的影响[D].长春:吉林农业大学,2003.
[13] 张文菊,童立成,杨钙人,等.水分对湿地沉积物有机碳矿化的影响[J].生态学报,2005,25(2):249-253.
篇3
本刊2012年第一期开始陆续介绍2011年-2015年专利到期的农药品种。敬请关注!
甲基二磺隆是德国拜耳作物科学公司(原安万特公司)研制的磺酰脲类除草剂。实验代号:AE-F130060-00、通用名称:Mesosulfuron-methyl、又名:甲磺胺磺隆。主要用于谷物苗后防除禾本科和阔叶杂草。 1 理化性质:
甲基二磺隆原药(93%)外观为浅黄色粉末;熔点195.4℃;蒸气压3.5×10-12Pa(20℃);溶解度(g/L,20℃):水中2.14×10-2(pH5.66),正己烷中<2.29×10-4,丙酮中13.66.制剂常温下贮存稳定。
2 毒性及环境生物安全评价:
原药对大鼠急性剂量经口、皮LD50>5000mg/kg,急性吸入试验的最大可能质量浓度为1.33mg/L;对皮肤、眼睛无刺激性,无致敏性;大鼠(90d):亚慢性喂饲试验无作用剂量:雄性为907mg/(kg·d)、雌性为976mg/(kg·d);致突变试验:Ames试验、小鼠微核试验和其它致突变试验均为阴性;未见致畸作用,无致癌性。制剂对大鼠急性剂量经皮LD50>2000mg/kg;对皮肤、眼睛有刺激性;无致敏性。该药属低毒除草剂。
对鱼和水生脊椎动物的LC50(96hr)为100mg/L ,绿藻的EC50(96hr)为0.21mg/L ,高等水生植物(浮萍)EC50(7dats)为0.6μg/L 。对鸟、蚯蚓和蜜蜂无毒。
只要根据标签说明和GAP (良好农事操作规范,Good Agriculture Practice) 标准使用,不会产生任何预见的风险。
正常条件下,可在大多数的耕作土壤中降解,其半衰期为8~68 天(平均39.1天) 。微生物降解是其主要的降解途径。根据田间降解研究(DT50) 结果分析,可在农田土壤中持续降解,在推荐剂量下使用后一年,土壤中几乎检测不到。三年的计算机模拟和溶度计的应用研究清楚地表明,在15ga.i./hm2的使用剂量下,及其代谢物都不会分散到1米或更深的土层中,且符合欧盟饮用水标准。
3 作用机理及特点:
篇4
关键词:高浓度;有机污染;土壤;处理技术
1引言
随着我国工业化和城市化发展及《斯德哥尔摩国际公约》的履约进程,近几年出现了一大批关闭搬迁或待关闭搬迁的化工有机农药生产企业,留下大量污染场地。据不完全统计,2006~2012年,全国共有近10万个工业搬迁场地[1]。仅上海化工龙头上海华谊的旗下就有300多家企业关停和搬迁[2]。中科院南京土壤研究所[3]对南京郊区某钢铁企业附近土壤进行调查的结果表明,所有土壤中15种优先控制PAHs均有检出,南京某大型矿业企业[4]周边农业土壤中PAHs检出率为100%。尤其是机氯农药禁用已达20余年,至今在许多土壤中依然能检测到不同含量的DDT[5]。土壤受到污染后,含污染物质浓度较高的污染表土容易在风力和水力作用下分别进入到大气和水体中,导致大气污染、地表水和地下水污染,对地表植物和摄取植物的动物和鸟类均有毒害作用[6],造成生态系统退化等其它次生生态环境问题,最终引起人类慢性中毒,干扰内分泌系统,影响生殖机能等[7]。土壤污染已成为继水污染、大气污染、噪声污染和固体废物污染后,受到社会关注最多的污染问题之一。
2有机物污染土壤的修复技术
有机化合物污染土壤的修复技术主要可以分为物理修复技术、化学修复技术和生物修复技术三类。
2.1物理修复技术
2.1.1热解吸法
热解吸法是通过直接或间接热交换系统,将污染物或所含污染物的介质加热到一定温度(通常被加热到150~540℃),以使得污染物能够挥发出来,从而起到分离的效果。空气、燃气或惰性气体常被作为被蒸发成分的传递介质。目前,热解吸法主要应用于苯类或石油烃化合物等易挥发污染物的研究[8~11]。影响土壤中有机物热解吸处理的主要因素有:土壤处理温度、总处理时间、不同温度下相应的处理时间及土壤的特征。其中主要的土壤特征为:土壤湿度、颗粒粒径分布和腐蚀物质与土壤的比重[12]。土壤水分的挥发不仅消耗大量能量,还会影响处理时间,而土壤颗粒的粒径将会影响有机物的传质和吸收[13,14]。
2.1.2土壤气相抽提法
土壤气相抽提法(Soil Vapor Extraction)最早由美国Terra Vac公司于1984年开发成功并获得专利权,逐渐发展成为20世纪80年代最常用的土壤有机物污染的修复技术。该技术是用处于负压状态的处理装置将土壤中的有机化合物从土壤中解析出来,再将解析气体进行吸附处理的一种物理化学修复技术[15]。贺晓珍等[16]曾以我国南方典型土壤-红壤为实验土样,选用最常见的挥发性有机物苯作为污染物,采用一维土柱通风模拟SVE过程,研究了通风流量、土壤含水率以及间歇操作对苯污染红壤去污过程的影响。
2.1.3土壤淋洗法
淋洗技术是通过水或含有某些能够促进土壤环境中污染物溶解或迁移的化合物(或冲洗助剂)的水溶液渗入或注入到被污染的土壤中,然后再将这些含有污染物的水溶液从土壤中抽提出来并送到污水处理厂进行再处理的过程。Villa等[17]研究了非离子型表面活性剂海卫X-100(Triton X-100)对土壤DDT和DDE的淋洗效果。田齐东[18]等研究了3种表面活性剂对有机氯农药污染场地土壤的增效洗脱修复的效果。Occulti等[19]使用从大豆中提取的卵磷脂作为表面活性剂,研究其对土壤中多氯联苯(PCB)的淋洗效果,并与Triton X-100作为淋洗剂的淋洗效果做比较,结果发现大豆卵磷脂不仅其生物毒性较低,并且能在较少地脱除土壤中组分的同时,有效地清除土壤中的多氯联苯。除表面活性剂外,有机溶剂也用来清除土壤中的有机污染物。如甲醇、2-丙醇被用来清除土壤中的DDT、DDD、DDE以及毒杀芬,当溶剂/土壤比为1∶6时,农药去除率达到99%以上[20]。
2.2化学修复技术
2.2.1氧化还原法
对于氯代有机化合物而言,通常加入还原剂(如零价铁)使土壤中的氯代有机化合物进行脱氯反应。Gillham等[21]对金属铁屑修复地下水进行了研究,结果表明金属铁能够有效的还原氯代有机化合物。该方法适用的氯代化合物种类和浓度范围广,反应条件温和,操作简单,金属铁还原剂价格便宜。目前认为金属铁对有机氯化合物的还原脱氯有4种可能的反应途径:氢解、还原消除、加氢还原、吸附作用[22]。Arnold等[13]的研究发现,氯代烯烃的反应性随卤化度的增加而显著降低,说明FeO对有机氯化物的转化是与脱氯还原反应在金属铁表面的吸附过程同时进行的。除了可以使用零价铁作为还原剂进行脱氯反应,还可以使用氧化剂将有机氯化合物氧化如H2O2。
2.2.2光催化氧化法
光催化氧化法是在光的作用下进行的化学反应,光化学反应需要分子吸收特定波长的电磁辐射,受激产生分子激发态,发生化学反应生成新的物质或变成引发热反应的中间化学产物,是一项新兴的土壤氧化修复技术,它有不需要另加化学试剂、可在低压下进行,对温度要求不高,而且不产生光环产物,催化剂成本较低等许多优点,可应用于对挥发性有机物及农药等污染物的处理[23,24]。常用的光催化剂包括二氧化钛(TiO2)、氧化锌(ZnO)、氧化锡(SnO2)、二氧化锆(ZrO2)、硫化镉(CdS)等多种氧化物硫化物半导体,其中二氧化钛因其氧化能力强,化学性质稳定无毒,成为世界上最常用的纳米光触媒材料。
2.2.3电化学修复法
电化学修复法是利用插入土壤的2个电极在污染土壤两端加上低压直流电场,在低强度电流作用下,水溶的或吸附在土壤颗粒表层的污染物根据各自所带电荷的不同而向不同电极方向运动。对于与土壤结合紧密的污染物,电解所致的阳极酸化可打破其与土壤的结合键。此时,大量的水以电渗流方式在土壤中流动,土壤毛隙孔中的液体被带到阳极附近,这样溶解于土壤溶液中的污染物迁移至土壤表层而得以去除[25]。有研究表明,电化学法对污染物的转移和去除主要取决于以下几个因素:电极反应、pH值、土壤表面化学、水系统平衡化学、污染物的电化学特征和土壤基质的水文特征。而污染物去除的关键在于阳极反应形成的酸面的转移[14]。
2.2.4微波分解法
微波是指频率在300MHz~300GHz之间的电磁波,对应的波长范围为1mm~1m[26,27],其中最常用的工业微波频率主要为2450MHz[28]和915MHz[29]。微波能够使介电材料[30,31]发热,且具有选择性加热的特点,可以只对污染物进行加热,提高了能量的利用率,节约了成本。Abramovitch[32]小组使用微波修复技术分别对六氯苯、五氯酚、多氯联苯污染土壤的异位修复进行模拟研究。研究发现,在最佳条件下,六氯苯的去除率达到96%。Abramovitch[33,34]小组选取石墨纤维、金属棒作等吸波材料,对污染土壤的原位修复技术进行模拟研究,实验结果表明多环芳烃的去除率为100%。王世强等[35]研究了微波法对土壤中氯丹降解的影响,结果表明,微波法对氯丹去除率能达到89%。Yuan等[36]使用微波修复技术对六氯苯污染土壤进行修复研究,实验表明,在酸性条件下,六氯苯的最高去除率为956%。Liu等[37,38]使用微波修复技术对多氯联苯污染土壤进行修复研究,实验结果表明,选取活性炭作为吸波材料,多氯联苯的去除率达到95%以上。
2.3生物修复技术
2.3.1植物修复技术
植物去除土壤中的氯代有机化合物的机理复杂,既可通过吸收并转移至木质素中浓缩固化,也可将其降解[39]。总的来说,植物主要通过3种机制去除环境中的氯代有机化合物,即植物直接吸收氯代有机化合物、植物直接释放分泌物和酶去除氯代有机化合物和植物增强区微生物矿化氯代有机化合物的作用[40,41]。氯代有机化合物被植物吸收以后,要么被植物分解,要么通过木质化作用使其转化成二氧化碳和水,或转化成无毒性作用的中间代谢产物(如:木质素等)储存在植物细胞内,达到去除环境中氯代有机化合物的作用。环境中大多数的含氯溶剂和短链的脂肪族化合物都是通过此途径去除的[14]。植物根系释放到土壤中的酶可直接降解有关化合物,植物死亡后释放到环境中的酶还可以继续发挥分解作用。
2.3.2微生物修复法
微生物修复法是指利用天然存在的或所培养的功能微生物群,在适宜环境条件下,促进或强化微生物代谢功能从而达到降低有毒污染物活性或降解成无毒物质的生物修复技术[42]。实验证明,环境中农药的清除主要靠细菌、放线菌、真菌等微生物的作用。如DDT可被芽孢杆菌属、棒杆菌属、诺卡氏菌属等降解;五氯硝基苯可被链霉菌属、诺卡氏菌属等降解;敌百虫可被曲霉、青霉等降解。残留于土壤内的农药,经过种种复杂的转化、分解,最终将农药分解为二氧化碳和水[43]。处在土壤中不同深度的微生物其降解机理不同,在表层土壤中由于氧气充足,常常发生氯代有机化合物的好氧生物降解,而在一定深度的土壤中往往处于缺氧状态,氯代有机化合物主要进行厌氧脱氯反应。同时,在植物根系附近的微生物也能发生植物微生物联合体系对有机氯农药的转化[40]。
3有机氯污染土壤修复技术比较和展望
分离浓缩技术中热解吸法、土壤气相抽提法和淋洗法虽然作用原理不同,但都是一种将污染物从土壤中分离,然后对分离收集的污染物再处理的方法,上述方法对土壤的孔隙率有一定的要求,并且收集到的污染物需进行二次处理,增加了污染土壤的修复成本。植物修复法和转化分解技术中的生物修复法虽然处理成本低,可适用于大面积的土壤修复,但对污染土壤的修复环境要求高,在季节变化大的北方地区很难得到推广,同时高浓度、高毒性的有机物会杀死修复中使用的植物或微生物,限制了这两种方法的推广和应用。化学修复法是一种传统的修复方法,适用性较强,但药剂费用高,对于大规模的土壤污染,化学修复法在具体操作上存在一定的困难。电化学法操作简单,对现有景观、建筑影响较小,但修复时间长,并主要适用于粘土含量高的污染土壤修复,同时容易造成土壤pH值的变化。光催化氧化法、微波分解与放射性分解法是近十几年来研究的新技术,其处理效率高,不易造成二次污染,但仍处于实验室研究阶段。
随着经济的不断发展,城市改扩建步伐的不断加快,近几年来我国将关闭搬迁一大批工业和农药生产企业,这些污染场地污染物种类多、毒性大、浓度高,采用单一处理技术很难满足处理要求,因此协同两种或以上修复技术,形成联合修复技术,不仅可以提高单一污染土壤的修复速率与效率,而且可以克服单项修复技术的局限性,实现对多种污染物的复合/混合污染土壤修复,这已成为土壤修复技术中的重要研究趋势。
2014年11月绿色科技第11期参考文献:
[1] 齐旭东,李志会.制药废水微波辅助类芬顿预处理技术的影响因子优化[J].北京工业大学学报,2013(12):1898~1904.
[2] 吉敏.我国城市工业污染场地土壤修复综述[J].上海环境科学,2014(3):44~47.
[3] 葛成军,安琼,董元华.钢铁工业区周边农业土壤中多环芳烃(PAHs)残留及评价[J].农村生态环境,2005(2):66~69,73.
[4] 葛成军,安琼,董元华,等.南京某地农业土壤中有机污染分布状况研究[J].长江流域资源与环境,2006(3).
[5] 赵其国,周炳中,杨浩.江苏省环境质量与农业安全问题研究[J].土壤,2002(1).
[6] 蘧丹.典型污染场地有机氯农药污染特征研究[D]:成都:四川师范大学,2013.
[7] 李宛泽.滴滴涕污染土壤的植物修复研究[D].长春:吉林农业大学,2007.
[8] Kasai E,Harjanto S,Terui T,等.Thermal remediation of PCDD/Fs contaminated soil by zone combustion process[J].Chemosphere,2000,41(6):857~864.
[9] 张闻,张瑜,孙红文.土壤中芳烃化合物水解吸和热解吸比较研究[J].环境科学,2010(1).
[10] Pina J,Merino J,Errazu AF,et al.Thermal treatment of soils contaminated with gas oil:influence of soil composition and treatment temperature[J].Journal of Hazardous Materials,2002,94(3):273~290.
[11] Anthony EJ,Wang J.Pilot plant investigations of thermal remediation of tar-contaminated soil and oil-contaminated gravel[J].Fuel,2006,85(4):443~450.
[12] 黄昊,何永恒.制药废水处理研究现状[J].广东化工,2013(14):238~239.
[13] 周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004.
[14] 赵志强,牛军峰,全燮.氯代有机化合物污染土壤的修复技术[J].土壤,2000(6).
[15] 杨乐巍,黄国强,李鑫钢.土壤气相抽提(SVE)技术研究进展[J].环境保护科学,2006,32(6):62~65.
[16] 贺晓珍,周友亚,汪莉,等.土壤气相抽提法去除红壤中挥发性有机污染物的影响因素研究[J].环境工程学报,2008(5).
[17] Villa RD,Trovo AG,Nogueira RFP.Soil remediation using a coupled process:soil washing with surfactant followed by photo-Fenton oxidation[J].Journal of Hazardous Materials,2010,174(1~3):770~775.
[18] 田齐东,王国庆,赵欣,等.3种表面活性剂对有机氯农药污染场地土壤的增效洗脱修复效应[J].生态与农村环境学报,2012(2):196~202.
[19] Occulti F,Roda GC,Berselli S,et al.Sustainable decontamination of an actual-site aged PCB-polluted soil through a biosurfactant-based washing followed by a photocatalytic treatment[J].Biotechnology and Bioengineering,2008,99(6):1525~1534.
[20] Sahle-Demessie E,Meckes MC,Richardson TL.Remediating pesticide contaminated soils using solvent extraction[J].Environmental Progress,1996,15(4):293~300.
[21] Gillham RW,O'Hannesin SF.Enhanced degradation of halogenated aliphatics by zero-valent iron[J].Ground Water,1994,32(9):958~967.
[22] 王占杰.有机氯化物滴滴涕降解研究[D].北京:北京化工大学,2008.
[23] Higarashi MM,Jardim WF.Remediation of pesticide contaminated soil using TiO2 mediated by solar light[J].Catalysis Today,2002,76(2~4):201~207.
[24] Vann AR.Soil Pollution:Origin,Monitoring and Remediation[M].Ibrahim A.Mirsal.Springer-Verlag,2004:252.
[25] Virkutyte J,Sillanp M,Latostenmaa P.Electrokinetic soil remediation ―― critical overview[J].The Science of The Total Environment,2002,289(1~3):97~121.
[26] 谌伟艳,韩永忠,丁太文,等.微波热修复污染土壤技术研究进展[J].微波学报,2006(4).
[27] Appleton TJ,Colder RI,Kingman SW,et al.Microwave technology for energy-efficient processing of waste[J].Applied Energy,2005,81(1):85~113.
[28] Jacob J,Chia LHL,Boey FYC.Thermal and non-thermal interaction of microwave radiation with materials[J].Journal of Materials Science,1995,30(21):5321~5327.
[29] Eskicioglu C,Terzian N,Kennedy KJ,et al.Athermal microwave effects for enhancing digestibility of waste activated sludge[J].Water Research,2007,41(11):2457~2466.
[30] Wu T-N.Environmental Perspectives of Microwave Applications as Remedial Alternatives:Review[J].Practice Periodical of Hazardous,Toxic,and Radioactive Waste Management,2008,12(2):102~115.
[31] Vorster W,Rowson NA,Kingman SW.The effect of microwave radiation upon the processing of Neves Corvo copper ore[J].International Journal of Mineral Processing,2001,63(1):29~44.
[32] Abramovitch RA,BangZhou H,Davis M,et al.Decomposition of PCB's and other polychlorinated aromatics in soil using microwave energy[J].Chemosphere,1998,37(8):1427~1436.
[33] Abramovitch RA,Bangzhou H,Abramovitch DA,et al.In situ decomposition of PCBs in soil using microwave energy[J].Chemosphere,1999,38(10):2227~2236.
[34] Abramovitch RA,Bangzhou H,Abramovitch DA,et al.Decomposition of PAHs in soil and desorption of organic solvents using microwave energy[J].Chemosphere,1999,39(1):81~87.
[35] 王世强,赵浩,朱骏,等.微波法不同影响因素对土壤中氯丹降解的影响[J].生态与农村环境学报,2013(4):524~528.
[36] Yuan S,Tian M,Lu X.Microwave remediation of soil contaminated with hexachlorobenzene[J].Journal of Hazardous Materials,2006,137(2):878~885.
[37] Liu XT,Yu bined effect of microwave and activated carbon on the remediation of polychlorinated biphenyl-contaminated soil[J].Chemosphere,2006,63(2):228~235.
[38] Liu X,Zhang Q,Zhang G,et al.Application of microwave irradiation in the removal of polychlorinated biphenyls from soil contaminated by capacitor oil[J].Chemosphere,2008,72(11):1655~1658.
[39] 周宁.利用植物修复污染土壤的研究综述[J].安徽农业科学,2011(6):3390~3391+3404.
[40] 董洪梅,万大娟.有机氯农药污染土壤的植物修复机理研究进展[J].现代农药,2011(6):7~9+14.
[41] Alkorta I,Garbisu C.Phytoremediation of organic contaminants in soils[J].Bioresource Technology,2001,79(3):273~276.
[42] 马淑敏,刘雅娜,金文标,等.有机污染土壤的生物修复研究进展[J].河北建筑科技学院学报,2006(3):39~42.
篇5
关键词:农药,污染,健康,环境保护
一、农药污染途径
农药的污染途径众多,但农药之所以会造成严重的污染后果的主要原因在于其基本特性,如:农药的理化特性,包括:农药的溶解性、降解性、附着性、渗透性和内吸性等。
1、直接污染
顾名思义,直接污染就是农药的有害部分直接作用于受污染体。农药直接作用于蔬菜瓜果等可食作物的表面,经过长期的生长过程侵入其内部,在进入食物链,就直接危害人体健康。
2、间接污染
所谓间接污染,就是说作物的食用部分并非农药的直接受体,而是农药经由土壤中的水分养料进入作物体内并富集,从而形成农药残留。
3、违规用药
农民为减小作物受病害、虫害等灾害的影响,不仅会违规交叉使用蔬菜上禁用的高毒农药,例如:甲胺磷、对硫磷、甲基对硫磷等。而且还会频繁用药或增高用药量,这些都是造成农药污染的主要途径。
二、农药污染的危害
1、农药污染对人体健康的危害
农药作为农业生产资料对减轻作物病虫害的防治作用是不可忽略的,但是,它也是一把双刃剑,农药在对作物实施保护的同时会才六在作物体内,通过食物链而危害人体健康。科技论文。具体而言,农药可经过消化道、呼吸道及皮肤三条途径进入人体而引起中毒。尤其是有机磷农药,可以通过皮肤进入人体,从而对人体的健康造成危害。某些高效农药,会引起急性中毒,严重者会引发生命危险。
2、农药对生态环境的污染
随着科学技术的发展,农药对生态环境的影响也得到了重视。农药多是以液体喷洒使用的,在喷洒中或使用后,农药中的拥堵成分会随水分一起蒸发到空气中,从而对大气造成影响,如果污染物的含量超过本底值,并达到一定数值就称为污染。如果污染物浓度超过卫生标准或生物标准,就视之为污染或严重污染。而一旦达到污染或严重污染,就势必会对人体健康、其他生物健康及整个生态平衡造成威胁。
3、农药对水环境的污染
水体中农药的来源主要是以下几个方面:向水体直接施用农药;含有农药成分的雨水落入水体;植物或土壤粘附的农药,经水冲刷或溶解进入水体;生产农药的工业废水或含有农药的生活污水等进入水体等。农药的使用时刻都危害着水环境及水生生物的生存,甚至会破坏水生态平衡。科技论文。如密西西比河、莱茵河等一些世界著名河流的河水中都检测到严重的农药超标问题。
4、农药对土壤的污染
土壤中的农药来源有三种情况:第一种是农药直接进入土壤,如除草剂的施用;第二种是防治病虫害喷撒农田的各类农药。第三种是随着大气沉降,灌溉水和植物残体。而农药对土壤的污染主要有两个方面:第一,深入土壤之中的农药会随着养料和水分进入作物体内;另外还会对土壤微生物的生存造成危害
三、农药污染危害与环境保护措施
众所周知,我国是一个农业大国,所以造成了农药使用品种多、用量大的局面。然而,可有人知晓,对作物所使用的农药中70%~80%直接渗透到自然环境中,并对土壤、水甚至是人们一心想要保护的农产品造成污染,从而进入生物链,对所有生物和人类健康都产生严重的、长期的和潜在的危害性。
尽管我国从实施了“预防为主,综合防治”的植保方针以来,在病虫害防治问题上取得了很大的成效,但是,离完全控制化学农药对环境污染的目标还有很远。植保是我们不能放弃的,如何才能使植保的功能兼顾持续增产、人畜安全、环境保护、生态平衡等多方面。采取相对有效的防治措施,充分发挥自然抑制的作用,将有害生物种群控制在经济损害水平下,使经济效益、环境效益都达到相对平衡的程度。
1、建立有害生物防治新思想体系
摈弃传统的以农药抑制作物病虫害的思想观念,由新的、更合理的方法取代。比如生物防治,利用生物防治作用物来调节有害生物的种群密度,以生物多样性来保护生物,使有害生物的在种族密度保持在经济效益所允许的受害范围以内。科技论文。从持续农业观念看,这种方法是十分可行的。不过从技术上看还有待研究与推广。
2、研究开发有害生物监测新技术
要在植物病原体常规监测方法中的孢子捕捉、诱饵植株利用、血清学鉴定基础上开展病原物分子监测技术的研究,采用现代分子生物学技术监测病原物的种、小种的遗传组成的消长变化规律,为病害长期、超长期预测提供基础资料。对害虫的监测也可利用现代遗传标记技术(RFLP’RAPD等)监测害虫种群迁移规律。对于杂草应充分考虑到杂草群落演替规律,分析农作物——杂草、杂草——杂草间的竞争关系,另外还应考虑使用选择性除草剂给杂草群落造成的影响,对杂草的生态控制进行研究。
3、 建立有害生物的超长期预测和宏观控制
为适应农业的可持续性发展,预测、预报应对有害生物的消长变化做出科学的判断,也就是要对有害生物消长动态实施数年乃至十年的超长期预测。要在更人的时空尺度内进行,其理论依据不单单只是与有害生物种群消长密切相关的气候因子,亦包括种植结构、环保要求、植保政策以及国家为实现农业生产持久稳定发展所制定的政策措施。
参考文献:
[1] 冯雨峰,闾振华,化学农药对环境的危害原因及其防治对策[J].环境科学与技术,2007-1
[2]邹喜乐,论农药对环境的危害[J].湖南农机,2007-07
[3] 刘英东,化学农药对环境的危害及其防治对策的探讨[J].中国环境管理干部学院学报,2006-01
[4] 海浪,大协作致力降低农药污染[J].山东农药信息,2010-02
[5] 刘世友,农药污染现状与环境保护措施[J].河北化工,2010-01
篇6
关键词 秸秆生物反应堆技术;优点;作用;棚室生产;应用
中图分类号 S216.2 文献标识码 A 文章编号 1007-5739(2013)09-0218-01
秸秆生物反应堆技术是以植物饥饿原理、植物生防理论、叶片主被动吸收原理和秸秆中矿物质元素循环利用原理为基础,通过采用农作物秸秆生物反应堆专用菌和植物生防疫苗,将秸秆转化为作物所需的CO2、热量、抗病孢子、有机质和矿物质元素,从而增加土壤中的有机质,改善温室内的生态环境[1-2];秸秆生物降解技术是温室获得高产、高效、优质无公害农产品的有效途径,它是一项先进的科技成果。然而,在日常农业生产中,作物收获后,剩余大量的秸秆。尤其在大棚生产中,室内CO2浓度偏低,地温和室温不能同步提升,土壤质地改良效果差等原因,制约了大棚的增产增收[3-4]。因此,笔者通过生产实践和自己的工作经验介绍秸秆生物反应堆技术和秸秆生物降解技术。该技术充分利用废弃的作物秸秆资源,通过特效微生物菌种,将农作物秸秆和杂草进行分解,从而转化为农作物生长所需要的CO2、有机质等,进而大幅度提高瓜果蔬菜产量,改善农产品品质,同时起到改善农村生态环境,提高农作物质量,促进增产、增收的作用。现将秸秆生物反应堆和降解技术介绍如下,以供种植者参考和引导农业生产。
1 秸秆生物反应堆技术的优点
1.1 热量效应
棚户生产中,冬季低温是影响大棚生产的关键因素,尤其是辽宁东部地区,在冬季想要提高1 ℃地温非常困难,据测量在北方大棚地温一般就是在5~10 ℃,甚至更低。低温造成棚内蔬菜叶片小和不能正常结果,影响蔬菜产量和经济效益。应用秸秆反应堆技术,秸秆分解除释放CO2外产生大量的热量,1 kg秸秆可释放12.71 MJ的热量,特别是应用内置式反应堆形式,据专家测定,20 cm地温能提高3.5~6.5 ℃,棚室温度提高4~6 ℃,这就克服了冬季棚室低温的问题,有效地保护了作物的生长。
1.2 生物防治效应
大棚温湿度大,病虫害发生重,甚至新老病虫害交替发生,导致药量加大和棚户防治成本的上升,也严重影响食品安全。秸秆反应堆技术利用的是高活性专用菌种,菌种在转化秸秆过程中产生大量的抗病孢子,对病虫害产生较强拮抗、抑制和致死作用,使植物发病率降低90%以上,农药用量减少90%以上,标准规范化操作可基本上不用农药,这就大大降低了化学杀菌剂的使用量。
1.3 有机改良土壤效应
棚室生产中化肥使用量常常大大超过了作物需求,甚至是多了几倍,这些化肥往往残留在土壤里,使土壤板结、盐渍化。相反,采用了秸秆生物反应技术,在大棚生产中,20 cm耕作层土壤孔隙度提高1倍以上,有益微生物群体增多,各种矿质元素被定向释放出来,有机质含量增加10倍以上,不仅改良了土壤质量,也为农作物根系生长提供优良的生长条件。
1.4 提高自然资源综合利用效应
秸秆生物反应堆技术在加快秸秆利用的同时,也提高了微生物、光、水、空气游离氮等自然资源的综合利用率。据测定:在CO2浓度提高4倍时,光利用率提高2.5倍,水利用率提高3.3倍,豆科植物固氮活性提高1.9倍。
2 秸秆生物降解技术的作用
2.1 促进作物光合作用
作物的光合作用与CO2浓度密不可分,CO2浓度,高光合作用旺盛,植株生长健壮。通常情况下,棚室内CO2的浓度为330 mg/kg,加上室内空间有限,空气不能正常而有效流动,远不能达到作物的需要。特别是在作物生长的中、后期,室内CO2浓度迅速降低,光合作用效率低,使得大棚作物无法正常生长。采用秸秆生物降解技术,就是利用特效微生物菌种,将农作物秸秆及杂草等分解、转化为作物生长所需要的CO2、热量和有机质等,促进作物光合作用和提高地温,起到改善农村生态环境、提高农作物质量、促进增产增收的作用。
2.2 改良土壤作用
棚室生产中很少采取测土配方施肥,化肥施用过度,作物重茬严重等,造成土质下降、土壤板结、透气性差,使得棚内作物根系无法正常吸收水分、肥料和矿物质等,导致根系畸形或腐烂,植株早衰和提前死亡。应用秸秆生物降解技术不仅提高了土壤的通气性和保水保肥能力,改善土壤微生态平衡,解决土壤板结问题,增强植株抗病虫害能力,同时可减少农药和化肥的使用量,使产品成为无公害产品,从而增加作物产量、提高作物品质,提前和延长果实采收期,使农产品的价格和效益得到大幅度提高。
2.3 协调温室气温、地温比例
目前,温室内地温和气温不成比例,造成植物的根冠比失调,制约作物产量的提高。在冬季的大棚里,白天气温升高很快,而地温却由于土壤的导热性能差,造成室温与地温不能同步,使作物的根系与茎叶的生长不能协调一致,影响了植物的生长。利用秸秆生物降解技术,在冬季最冷的时段内,可使20 cm地温提高4~6 ℃,气温提高2~3 ℃,从而有效地缓和了地温与气温不协调的矛盾,这就大大促进了地下根系生长,从而实现作物协同生长。可使大棚内瓜、果、菜提高产量30%以上,提前上市7~15 d,结果期延长20~30 d,那么,广大菜农的经济利益也就相应得到了提高。
3 应用方式
秸秆生物降解技术主要用于冬暧式大棚、早春大拱棚作物和陆地果树。反应堆有3种应用方式:一是内置式,二外置式,三是内、外结合应用。在本溪县的农业生产中,内置式的应用较为普遍。
3.1 菌种处理方法
撒施菌种前4~5 h处理好菌种;菌种与麦麸比例为1∶15,拌匀后加入适量水,湿度以用手攥有水珠渗出、松手后可散开为宜;将菌种配置好后堆置5 h,要遮光,如缺少麦麸,可用玉米糠和稻糠替代,其用量要适当增加。
3.2 具体技术步骤
一是物质准备。棚室需要菌种105~120 kg/hm2、麦麸1 500~1 800 kg/hm2、秸秆60 t/hm2以上。二是整地施肥。将腐熟的农肥(以马、牛、羊等草食动物粪肥为好),撒施于地表,然后翻耕整平待用。三是开沟。栽苗前7~10 d,在栽植行间挖沟,沟宽30~60 cm(畦宽沟宽、畦窄沟窄),沟深20~30 cm,沟长与栽植行等长。四是填放秸秆。秸秆顺沟交错铺放,铺满、铺平、踏实后30~35 cm厚(或与地面持平),两端要露出沟外长10 cm。五是撒施菌种。将处理好的菌种,按每沟所需量均匀撒在秸秆上,用锹拍震,使部分菌种渗入到秸秆缝中。六是覆土浇水。第1次覆土5~10 cm厚,不用平整,然后向沟内浇水,水量要大,使大部分秸秆浸在水中,不要让水漫到沟外。灌水后隔1~2 d进行第2次覆土,畦高10~20 cm,同时做好栽培畦,一般为弧形。七是覆盖地膜。栽苗前一天覆盖地膜(也可以不覆膜)。八是栽苗。要浇小水(埯浇),不要浇大水。九是打孔。栽苗后及时打孔,株间、行间都要打孔,孔距20~25 cm,孔径不小于2 cm,孔要扎到秸秆底部。
4 注意事项
浇水时不要冲施化学农药,特别是要禁冲杀菌剂,浇水后孔闭死要及时再打孔,地膜上也要打孔;浇水不能过多,如果水分过大,一是会使作物根系缺氧,水多氧气就少,根生长呼吸所需氧气缺乏,导致作物根系生长发育不良,甚至烂根,造成损失;二是会使菌种的复活生长受阻,甚至被闷死,反应堆效能难以很好的发挥;三是会给病害发生创造条件,水多湿度大,病害发生严重;四是会使冬春季地温降低,影响作物生长;前2个月不要冲施化肥,以免降低菌种活性,后期可适当追施化肥和复合肥。
5 参考文献
[1] 王珍,姜厚智.浅谈温室秸秆生物反应堆技术的应用[J].中国科技博览,2010(18):329.
[2] 张世明,徐建堂,杨先芬.秸秆“生物反应堆”技术的创新应用[J].农村实用工程技术:温室园艺,2004(3):73-77.
篇7
[关键字]:污染土壤;修复技术;研究现状;发展趋势
土壤污染指由于人类活动产生的有害、有毒物质进入土壤,积累到一定程度,超过土壤本身的自净能力,导致土壤形状和质量变化,构成对农作物和人体的影响和危害的现象。
近年来,随着我国经济的迅猛发展,国民生活水平得到普遍提高,但同时也给环境带来了巨大的灾难。工业废水、废渣的随意排放,企业长期生产和运输等过程中不可避免的会发生跑、冒、滴、漏等现象以及农业活动中化肥和农药的过量或不合理施用、污水灌溉等过程,都可能给场地带来严重的污染。
随着城市化进程的加速,许多原来位于城区的污染企业从城市中心迁出,许多原本属于农用地的土地需要再开发利用,大量的污染场地需要进行修复。这就要求我们要积极寻找切实、有效的土壤污染修复方法,提高土壤污染修复技术水平。
2016年5月国务院出台的《土壤污染防治行动计划》也将土壤修妥魑一项大事件,保护好土壤环境,加强污染防治,推动生态文明建设,这对于人类的健康和社会的可持续发展具有重要意义。
1、土壤中的主要污染物
1.1重金属
有些工业企业随意的排放未经处理的废水、废渣,使其中含有的不易在土壤中降解的重金属如铅、汞、镉、锡等在土壤中沉降、扩散,严重破坏了土壤的环境。再加上农民对农作物喷洒的超浓度的农药和使用的化肥,使我国土壤遭受了严重的迫害。
1.2有机化合物
在农作物的种植过程中,农民经常喷洒农药来杀死啃食农作物的害虫,但是超浓度的农药含有对土壤危害的有机化合物,造成土壤有机化合物污染,我国在早期曾广泛使用过的滴滴涕、六氯苯、氯丹等,这些农药均含有高残留的不易降解的有机化合物。除此之外,一些工厂如化工厂、涂料厂等的日常运行产生的废水废渣中由于含有很多有害的有机污染物无法自动降解也会污染土地,破坏土层结构。
有机化合物具有难溶解、毒性大的特点,它一旦进入土壤之后,就逐渐在土壤中积累、沉降下来,长期污染土壤和地下水,对农作物及人体造成严重危害。
2、污染土壤修复技术研究现状分析
环境保护部和国土资源部联合《全国土壤污染状况调查公报》,调查结果显示,全国土壤总的点位超标率为16.1%,土壤环境状况总体不容乐观,部分地区土壤污染较重。南方土壤污染重于北方,长三角、珠三角、东北老工业基地等部分区域土壤污染问题较为突出。
由于受地形及产业分布的影响,我国各地土壤污染的程度、污染源也不完全相同。有些工业集聚区,土壤污染较为严重,且污染地块密集,多为重金属污染或者有机物污染,也有些无机有机复合污染;有些农用地受污染情况较轻,但污染地块面积较大,多为重金属、有机氯农药、有机磷农药污染,也有重金属和有机物的复合污染。因此,这就要求我们要对具体地区的土壤污染现状进行具体分析,选择较为合适的修复方法以便更好地改善土壤质量。
在现阶段,常用的污染土壤修复技术如下:
2.1物理-化学修复技术。
这种修复技术包括热处理技术、土壤淋洗技术、土壤氧化-还原技术、电动力学法技术等。
2.1.1热处理技术。
这种技术操作比较简单,主要是通过热交换,对污染物质和介质一同加热,根据混合组分的熔点不同,通过挥发作用达到分离有机污染物的目的。这种技术包括两种,一种是低温操作,一种是高温操作。这种技术是一种简单的修复技术,目前,在工厂附近的土壤污染修复中被广泛使用。这种热处理技术对于土壤中那些易挥发组分和残留的农业以及半挥发的污染成分效果较好,但是对于土壤中一些重金属的污染则不适用。
2.1.2土壤淋洗技术。
土壤淋洗技术能够有效地促进土壤中污染物的溶解,它的原理是利用水压将清洗液有效地注入到被污染的土壤中,并根据自身特性,提取土壤中含有的污染液体,对其进行分离处理,从而达到修复的目的。这种技术主要采用一些化学剂如络合剂、氧化剂等为淋洗剂,由于不同淋洗剂的性质不同,对土壤中污染成分的作用也不同,因此,选择合适的淋洗剂对土壤的修复至关重要。在进行淋洗剂的选择时,不仅要考虑淋洗剂和污染物的作用,还要充分考虑到淋洗剂对土壤结构的作用,避免对土壤结构造成破坏,以免引起二次污染。
2.1.3土壤氧化-还原技术。
顾名思义,这种技术需要氧化剂或者还原剂,并将其投入到所要修复的土壤中,将其与土壤中的污染成分发生氧化还原作用,从而分解其中的污染物,达到净化的目的,这种方法还有稳定和改良土壤的作用。常见的氧化剂包括高锰酸盐、过氧化氢、芬顿试剂、过硫酸盐和臭氧。常见的还原剂包括硫化氢、连二亚硫酸钠、亚硫酸氢钠、硫酸亚铁、多硫化钙、二价铁、零价铁等。现阶段,对于这种氧化还原修复主要是针对对氧化或者还原比较敏感的污染物。
2.1.4电动力学法技术。
这种技术主要利用的是电化学原理,在待修复的土壤中插入电极,通过电极导入低强度的直流电,从而将土壤中的污染物清除。在通电后,处在阳极附近的酸物质会在毛细孔里移动,将土壤中的污染物释放在毛细孔中的液体里,毛细孔中的水会通过电渗透的方式移动到土壤表层进而被吸收,从而被消除。这种方法能够打破土壤中金属和土壤之间的化学键,通电时间越长,去除效果越好。但是对于导电性不好的土壤不宜采用此法进行土壤修复。
2.2生物修复技术。
生物修复技术是一种新兴技术,主要是采用现代的先进生物技术将土壤中的污染物进行去除分解,从而净化土壤的技术。这种技术根据主体的不同,主要包括三方面:微生物修复技术、植物修复技术和动物修复技术。其中动物修复技术在国外已经研究多年,国内研究还处于起步阶段。生物修复技术具有高效、快速、费用低的特点,但是由于生物技术的研究还处于起步阶段,目前主要用于衍生物及烃类的有机分解和去除。
2.2.1微生物修复技术。
微生物修复技术是采用微生物为主体,利用微生物的代谢活动将其中的污染物分解为水、二氧化碳以及其他无害的小分子物质。目前,这种修复技术主要用于石油泄漏以及其他有机污染物的污染处理中。但是由于微生物代谢活动有限,并不能很好地将所有污染物都分解掉,因而还需要进一步的研究完善。
2.2.2植物修复技术。
植物修复技术主要是利用植物的吸收和转化功能,在污染土地上繁殖非食用的种子、种植经济作物,实现对残留农药或者重金属等的吸收处理,从而净化土壤。土壤植物修复技术成本低,在修复污染土壤的同r还能净化周围空气,但是土壤植物修复过程相比其他方法过程缓慢、周期长,土壤植物修复技术对土壤肥力、气候、水分、盐度等自然条件有一定的要求。该技术理论体系、修复机理和修复工艺还需要在不断的实践中完善、优化。
3、污染土壤修复技术未来发展趋势
由于土壤污染问题日益得到重视,对土壤修复技术的需求也越来越大,目前我国土壤污染修复技术正在多元化稳步发展并取得多项研究成果。然而有的方法虽然在土壤污染修复方面大有成效,却不宜大范围推广实施。比如物理化学修复技术,它的推广实施不仅会消耗巨大的资金,还可能会导致土壤结构破坏、土壤肥力流失甚至产生土壤二次污染。相较于物理化学修复技术,微生物修复技术和植物修复技术更符合经济效益,且适合大范围污染地块使用。微生物几乎可以降解所有的有机物,且对土壤无害,是一项具有前景发展的土壤污染修复技术。植物修复技术不仅绿色廉价,且新型高效。该技术的推广,在修复有机物污染方面将发挥重要作用,《土壤污染防治行动计划》中也对农田修复,提出“对于轻度及中度污染耕地,采用农艺调控、替代种植等措施,降低农产品超标风险;对于重度污染耕地,采用退耕还林还草或种植结构调整”。未来,在污染土壤修复技术方面的发展趋势如下:
3.1发展综合型的土壤修复技术。在上文中,我们提及到很多土壤修复技术,但是每种技术都是双面性,有其自身的局限性,在推广的过程中受到限制。在修复技术研究过程中,我们可以将单一的修复方法综合使用,采取每一方法的可用之处,相互之间取长补短,将会收到不一样的效果。
3.2充分考虑经济效益与生态效益。现在我们提倡经济又好又快发展,走科学发展之路。但是,在大力发展经济的同时,我们还要兼顾生态环境的发展,经济的发展不应以牺牲生态文明为代价。因此,在研究土壤修复技术过程中,我们要多考虑危害较小的微生物修复技术和植物修复技术,加快生物修复技术的研究与实践,现实经济效益与生态效益双赢。
3.3借鉴、改进其他行业先进技术。目前水、大气治理技术日趋成熟,土壤修复技术可以借鉴其他行业的修复技术,在此基础上,实现自我创新。现在基因工程发展趋于优势,我们可以有效地利用基因重组技术寻找、驯化更多的抗逆性强、降解能力强的重金属富集植物,来修复土壤中的重金属的污染。
3.4异位修复向原位修复转型。异位修复分为异位原地与异位异地修复,无论哪种方式均可能在挖掘、转运、堆放、净化过程中带来二次污染。异位修复不仅处理成本高,而且许多无法开挖的地块很难推广异位修复方法。因而,发展多种原位修复技术以满足不同污染场地修复的需求是未来场地修复的发展方向。
“纸上得来终觉浅,绝知此事要躬行”,实践是检验真理的途径。土壤污染修复技术的方法多样,具体哪一样适合推广,哪一样符合实际,需要我们深入实践中去检验。只有采用绿色的、科学的、有效的修复技术,才能提高经济效益,促进生态环境的健康发展。
[参考文献]:
[1]谌伟艳,沈柱华,赵洁丽.污染场地土壤修复与管理研究.资源节约与环保,2015(5):152-152.
篇8
关键词:磺酰脲类除草剂;玉米;敏感性;苗期;残留
中图分类号:S482.4 S482.4+4文献标识码:A 文章编号:1673-0992(2010)02-011-01
磺酰脲类化合物是一类高选择性,广谱,低毒超高效除草剂,现已代表农药的主要发展方向。近年来广泛被应用。但是若使用不当会对敏感的后茬作物造成伤害或抑制生长,且其残留对敏感后茬作物产生药害屡有报道。为了科学用药,有必要了解不同玉米品种对磺酰脲类除草剂的敏感性差异。因此,采用室内生物测定法研究了不同玉米品种对磺酰脲类除草剂的敏感性和磺酰脲类除草剂对玉米苗期影响的盆栽试验,同时,也做了施药后不同时期的土壤残留试验。
1试验方法
1.1 磺酰脲类除草剂对不同玉米品种根长抑制试验
采用室内沙基添加法,在直径9.0cm培养皿上盖中加入100g洁净干沙(沙子经水洗,烘干过40目筛)。分别加入预先配置好的一定浓度的磺酰脲类除草剂溶液25ml(以加等量自来水为空白对照)。使沙子中农药最终浓度分别达0.25,0.50,1.00,2.00,4.00μg/kg)。玉米精算大小一致的种子,在室温下用0.1%多菌灵溶液浸种2h,,每皿放置8粒种子,种子完全插入沙子,每处理三次重复,于人工气候箱中温度28±1℃,湿度95%,光照昼夜比14/10h条件下培养72h,每24h加水5ml/皿,培养结束测量根长。计算不同浓度对根抑制生长率,以相对抑制的几率值(y)和浓度对数(x)分别建立回归方程,求出ED和ED的值。
1.2 磺酰脲类除草剂对玉米苗期影响的盆栽试验
取校园土(不含除草剂)以郑单958为盆栽供试品种,分别用10%苯磺隆可湿性粉剂,15%噻磺隆可湿性粉剂,10%苄嘧磺隆可湿性粉剂的200ml溶液分别与800g烘干土拌匀,使土中药剂浓度分别为1/10ED,ED,ED,2ED.药土装入花盆中,平整后播种,播深2cm,每盆8粒,3次重复(以加200ml自来水为对照)。在自然条件下培养,当有明显差异时测量根长,株高,单株叶面积(培养期间根据墒情加等量水)。
1.3 磺酰脲类除草剂在土壤中残留试验
试验地在滑县理工学校试验田,该地为黏性土壤药剂正常喷药,在试验田内划分为三个小区,每小区面积为333.3O药剂含量分别为10%苯磺隆可湿性粉剂0.225K/hO,15%噻磺隆可湿性粉剂0.15K/hO,10%苄嘧磺隆可湿性粉剂0.525K/hO.稀释后均匀喷洒田间,直到地面湿润为止。喷药后,分别于15d,25d,35d,69d,84d时取土样,每次采用对角线5点取样,取样深度0-15cm土层,采集的土壤混匀后,用四分法取0.85K装入内口径13.5cm的花盆中进行盆栽试验。种子是上述试验中较敏感的玉米品种郑单958的种子,每盆放置8粒玉米种子,播深2cm,3次重复,视墒情加等量的水,同时取校园土(不含除草剂)的土加入与处理等量的水为对照,于人工气候箱内温度28±1℃,湿度95,光照昼夜比14/10条件下培养72,培养期间每24时墒情加等量水。培养结束冲洗玉米种子根,测量根长,计算出根长抑制率,根据回归方程推算出噻磺隆,苄嘧磺隆,苯磺隆不同时段在土壤中的残留量。
2结果与分析
2.1 磺酰脲类除草剂对不同玉米品种根长抑制试验
不同玉米品种对三种磺酰脲类除草剂都比较敏感,且差异不大。供试品种间登海9号对苯磺隆、噻磺隆相对最敏感,郑单958对苯磺隆相对最敏感;供试品种间郑单958对噻磺隆相对有耐性,登海9号对苄嘧磺隆相对有耐性。但其ED值均达到级水平,说明供试品种均对三种磺酰脲类除草剂都相当敏感。
2.2 磺酰脲类除草剂对玉米苗期影响的盆栽试验
三种磺酰脲类除草剂对玉米根长抑制作用最明显,其次对单株叶面积也有明显的抑制作用,对株高抑制作用不太明显,苯磺隆表现较突出,且抑制作用随浓度升高而增强。在浓度较高从ED到2ED时,抑制作用随浓度升高而增强较快,苯磺隆对株高抑制作用相对较弱。
2.3 磺酰脲类除草剂在土壤中残留试验
在正常施药条件下,噻磺隆在土壤中降解速度最快,半衰期为25d,苯磺隆半衰期为30d,苄嘧磺隆半衰期一般为80d,照此降解速度推算,磺酰脲类除草剂在土壤中降解到ED以下,苯磺隆需要85d以上,噻磺隆需要70d以上,而苄嘧磺隆需要150d以上。磺酰脲类除草剂在土壤中降解的两条重要途径为化学水解和微生物降解。土壤湿度与温度对这两条途径起重要作用,所以磺酰脲类除草剂降解速度与土壤温度和湿度有密切关系。
3讨论
采用沙基添加法测定了不同玉米品种对三种磺酰脲类除草剂的敏感性,经回归分析,玉米根长抑制率转换成机率值(y)与除草剂浓度对数(x)之间相关性达到显著水平,相关系数达0.97以上,登海9号ED值在0.03―0.21可作为敏感植物用于磺酰脲类除草剂的残留生物测定。
三种除草剂对苗期的影响,主要说明玉米对三种除草剂均表现敏感,只是存在相对差异而已,试验还说明磺酰脲类除草剂主要通过内吸传导起作用,抑制根长,导致抑制单株叶面积生长,进而影响株高生长。
根据三种磺酰脲类除草剂在土壤中的残留特性,建议磺酰脲类除草剂苯磺隆和噻磺隆可作为防治麦田杂草的首选药剂,且推荐苯磺隆安全期为85d,噻磺隆安全期为70d,而苄嘧磺隆由于残留期长达150d以上,建议可年前11月份施用或禁用,以免对后茬敏感作物产生药害,从而为指导播种后茬作物安全期提供理论依据。■
参考文献
[1] 陈锡岭.磺酰脲类除草剂的化学作用方式选择性及降解特性[J]河南职技师院报.1998.(1).22-26
篇9
【关键词】硝基苯;有机污染物;环境安全
1 硝基苯类有机物的性质和特点
硝基苯是一种广泛应用的化工原料,常见的硝基苯类化合物有硝基苯、二硝基苯、二硝基甲苯、三硝基甲苯及二硝基氯苯等。该类化合物均难溶于水,易溶于乙醇、乙醚及其它有机溶剂。应用于印染、国防、塑料、医药与农药工业。全世界每年排入环境中的硝基苯超过10000t,成为常见的有毒污染物。美国环保局及我国环保部均将其列入优先污染物名单。排入水体后,可影响水的感官性状。人体可通过呼吸道吸入或皮肤吸收而产生毒性作用,可引起神经系统症状、贫血,可破坏人体的肝脏和呼吸系统,由于其毒性强、分布广,硝基苯可直接作用于肝细胞导致肝实质病变,引起中毒性肝病,肝脏脂肪变性,严重者可发生亚急性肝坏死。急性硝基苯中毒的神经系统症状较明显,严重者可有高热,并有多汗,缓脉,初期血压升高,瞳孔扩大等植物神经系统紊乱症状。慢性中毒可有神经衰弱综合症,慢性溶血时,可出现贫血、黄疸。吸入硝基苯后,由于它的氧化作用,使血红蛋白变成氧化血红蛋白(即高铁血红蛋白),大大阻止了血红蛋白的输送氧的作用,因而呈现呼吸急促和皮肤苍白的现象。症状严重的患者会因呼吸衰竭而死亡。硝基苯在水中具有极高的稳定性,由于起密度大于水,进入水体后回沉入水底,长时间保持不变。又由于其在水中有一定的溶解度,所以造成水体污染会持续相当长的时间。
2 环境污染趋势和研究现状
目前硝基苯对人类、动物和细菌的毒性效应国内外的科技工作者已进行了大量研究,对于难降解有机污染物的处理方法主要有物化处理法和生物处理法,在生物降解吸附方面研究较多,而主要针对的也是水体中的硝基苯类污染物,但有关天然土壤中硝基苯的环境行为的报道较少。
2.1 工业废水中的硝基苯类污染物
2.1.1 物化法处理硝基苯类污染物
含高浓度有毒强致癌物质的硝基苯类化合物的工业废水,尚还含有很高盐量或具有很强的酸碱性,一般难以直接用生物法处理,而采用物化预处理手段非常有效。它既可以降低硝基苯废水的浓度,又可以改善其生物降解性,为后续的生物处理创造条件。目前物化法处理技术主要包括化学氧化法、吸附法、萃取法和电化学法等。
2.1.2 生物法讲解硝基苯的研究现状
有关采用生物法寻找降解硝基苯的菌株来处理硝基苯类废水国内外都进行了大量的研究。有效菌株的获得主要有两个方面,一是,从污染现场或处理设施中筛选分离得到,在长期受到难降解有机物污染的现场,经过长时间的诱导以及缓慢的自然驯化和选择过程,常存在有少量有效降解菌株,通过筛选分离即可得到。在这一方面研究人员通过现场分离已得到了不少难降解有机物的高效降解微生物。二是,利用分子生物学技术构建工程菌。利用基因改良,原生质体融合等技术构建和改良基因工程菌。建设高效降解菌株库,构建系统进化树,从分子生物学水平探讨降解代谢途径的起源与进化,极大地丰富了微生物资源,并促进了微生物资源的利用。
2.2 土壤中的硝基苯类污染物
随着工业、城市污染的加剧和农用化学物质种类、数量的增加,土壤重金属污染日益严重,污染程度在加剧,面积在逐年扩大。重金属污染物在土壤中移动性差、滞留时间长、不能被微生物降解,并可经水、植物等介质最终影响人类健康。目前我国土壤的有机污染十分严重,且对农产品和人体健康的影响已开始显现。如我国从1959年起在长江中下游地区用五氯酚钠防治血吸虫病,其中的杂质二英已造成区域性二英类污染,洞庭湖、鄱阳湖底泥中的二英含量很高。有机氯农药[7]已禁用了近20年,土壤中的残留量已大大降低,但检出率仍很高。广州蔬菜土壤中六六六的检出率为99%,DDT检出率为100%。太湖流域农田土壤中六六六、DDT检出率仍达100%。同时,随着城市化和工业化进程的加快,城市和工业区附近的土壤有机污染日益加剧。由于土壤是植物和一些生物的营养来源,所以土壤中的有机污染物会通过食物链发生传递和迁移,目前动物和人类自身都遭受有机污染物的污染和威胁。在有机污染物沿食物链传递和迁移的过程中,含量逐级增加,其富集系数在各营养级中均可达到惊人的程度。
针对这些问题专家学者们就各种硝基苯的环境行为做了相对较多的研究,有硝基苯还原羰化反应制备氨基甲酸酯选择性的研究,一种硝基苯硝基还原酶及其编码基因与应用,硝基苯类污染物还原分析的系统误差等等。其他化合物的吸附研究有螯合有机金属化合物的吸附方法与氧化铝基吸附剂,一种亲水的酚羟基修饰聚苯乙烯树脂对酚类化合物的吸附热力学。
3 研究硝基苯等有机污染物在环境中的来源与归趋行为的意义
硝基苯等有机污染物在环境中的行为的研究是当今环境科学基础研究的主题,本文系统的总结了硝基苯类在废水和土壤中的来源与发展趋势。研究了国内外科研人员对此类污染物的处理方法及研究现状。同时探讨了土壤有机质对吸附的影响。近年来,国内外环境污染事故频发,随着人口的迅速增长和生产力的发展,科学技术的突飞猛进,工业及生活排放的废弃物不断地增多,从而使大气、水质、土壤污染日益严重,自然生态平衡受到了猛烈的冲击和破坏,维护生态平衡,保护环境是关系到人类生存、社会发展的根本性问题。因此通过对相关污染物环境行为的研究与预。可以了解其在土壤环境中的存在状况和迁移转化规律,以便控制其污染及提出有效防治措施。研究结论不仅将为污染控制、防止与治理提供理论依据,也可为系统地分析和规划环境奠定基础。
【参考文献】
[1]陈宜菲,张二华,陈少瑾,谢凝子,吴双桃.Fe0对土壤中硝基苯的还原作用[J].环境保护科学,2005,31(6):56-58.
[2]徐锡彪,褚宏伟,孙建中.优先污染物大名单[J].环境保护,2001(3):17.
[3]李皓,徐华.有关硝基苯的一些研究[J].环境保护,2001(2):20.
[4]张嘉义,祝万鹏.污染物研究综述[J].境科学进展,1995(6):18.
[5]魏宏斌,李田筹.重金属污染现状[J].环境科学进展,1994(3):50.
[6]薛向东,金奇庭.土壤中的农药污染[J].环境保护,2001(6):13.
[7]董德明,朱利中.环境化学实验[M].北京:高等教育出版社,2002:65-68.
[8]邢其毅.基础有机化学(第二版)[M].北京:高等教育出版社,1984:737.
[9]齐兵,俞珊珊.环境研究的趋势[J].环境保护,2000,4:15.
[10]徐鸥,吴虹.硝基苯的危害[J].环境保护化学,2000,26:17.
[11]王连生.有机污染化学[M].北京:中国科学出版社,1990:9-46.
篇10
关键词:农业面源污染;现状;危害
随着我国对环境问题的日渐重视,点源污染已逐步得到了控制和治理,而面源污染问题却越来越突出。面源污染相对点源污染而言,故又被称为非点源污染,是指溶解的和固体的污染物从非特定的地点,在降水(或融雪)的冲刷作用下,通过径流过程汇入收纳水体,并引起水体富营养化或其他形式的污染。面源污染具有位置、途径、数量不确定,随机性大,分布范围广,防治难度大等特点。农业面源污染是面源污染的主要形式之一,是指人们从事农业生产活动时产生的面源污染物,主要来源于禽畜养殖、水产养殖、化肥和农药施用、农膜使用、秸秆污染、农村居民产生的未经收集处理的生活垃圾以及未能纳入规范排放的生活污水等。农业面源污染已带来和潜在的危害已受到世界各国的高度重视,控制农业面源污染已经成为保护环境的重要任务之一。
1.我国农业面源污染现状
农业面源污染目前已经成为了一个全球性的环境污染问题,也是我国水体污染的主要原因之一。根据2014年《中国环境状况公报》,我国七大江河水系均受到不同程度的污染,七大流域和浙闽片河流、西北诸河、西南诸河的国控断面中,Ⅰ类水质断面仅占2.8%,Ⅲ类以下水质断面占71.2%,主要污染指标为化学需氧量、五日生化需氧量和总磷。全国62个重点湖泊中三类水质以下水质湖泊38个,主要污染指标为化学需氧量和总磷,其中太湖为轻度富营养状态,巢湖为轻度富营养状态,滇池为中度富营养状。然而引起水体富营养化的原因,很大程度上是与农业面源污染相关。
农业部2010年公布的《第一次全国污染源普查公报》也显示全国农业面源污染物排放对水环境的影响非常之大。如表1所示,第一次全国污染源普查中农业源普查对象共2899638个,占总数的48.93%,其中畜禽养殖业1963624个,水产养殖业883891个,典型地区(指巢湖、太湖、滇池和三峡库区4个流域)农村生活源13884个。普查结果显示,农业污染源COD、TN、TP排放量分别占总量的43.71%、57.19%、67.27%,其中种植业总氮流失量159.78万吨,总磷流失量10.87万吨;畜禽养殖业排放污水中包含化学需氧量1268.26万吨,总磷16.04万吨,总氮102.48万吨;水产养殖业排放污水中包含化学需氧量55.83万吨,总磷1.56万吨,总氮8.21万吨。普查结果进一步证实了我国农业面源污染形式之严峻。
我国农业面源污染问题由来已久,但其受重视却相对滞后。自2011年起,环境统计中
表1 《第一次全国污染源普查公报》中农业源污染物排放量
项目 污染源个数 COD排放量(万吨) TN排放量(万吨) TP排放量(万吨)
污染源总计 5925576 3028.96 472.89 42.32
农业污染源 2899638 1324.09 270.46 28.47
农业污染源所占比例 48.93% 43.71% 57.19% 67.27%
才增加了农业源的污染排放统计,包括种植业、水产养殖业和畜禽养殖业排放的污染物。现有的公报关于农业源的排污统计仅限于COD和氨氮两个指标,设立的指标还不够全面。2011-2014年,我国农业源废水COD和氨氮的年均排放量分别为1142.03和79.18万吨。农业源COD占我国废水中排放总量的47.72%,接近50%,且呈现逐年递增的趋势;氨氮占31.74%,有略微下降的趋势[1]。
环保部增加了农业面源污染的排污统计,说明我国对农业面源污染已经越来越重视。但目前农业面源污染形式仍然十分严峻,如果不严加控制,不仅破坏环境,也会直接影响农业的可持续发展。
2.农业面源污染的危害
农业面源污染对农业生态环境的危害是多方面的,归纳起来,可以分为生态危害、社会危害和经济危害。生态危害主要包括水体污染、土壤污染和大气污染;经济危害则包括由于水体和土壤的污染造成对种植业、渔业和畜牧业的经济损失,体现为作物产量下降、品质降低、鱼类减产等方面。面源污染的社会危害比较复杂,它包括由于水体污染导致的饮用水水质恶化、水产品安全问题,以及由于土壤污染导致的食品安全等问题对人类健康造成的危害等。
2.1农业面源污染的生态危害
生态污染主要包括水体污染和土壤污染,还有一定程度的大气污染。为提高农业产量,农药、化肥被过度或不适当施用,农膜广泛覆盖却没有合理回收,养殖业没有配套的排污处理设施,秸秆就地焚烧等,这些不恰当的行为都会造成土壤、水体和大气污染。
2.1.1对土壤的危害
很多不当的农业耕作措施会对土壤造成不可逆的危害。农药及化学肥料中常含有铜、汞、砷、锡等重金属及其他非金属离子,这些重金属在环境中移动性小、残留性高,几乎完全累积在土壤中,导致土壤中重金属含量过高,加速土壤酸化及盐分积累,而植物长期吸收后,将造成作物的金属含量增加,导致枯萎、减产。此外因过度施用农药,土壤中农药残留过高,土壤中农药残留量过高会影响土壤微生物的生存,无法进行有机物分解或作物营养盐转换,致使土壤肥力下降,影响农作物生长。
农膜如果不进行回收,在土壤中逐年累计,覆膜5年的农田农膜残留量可达每亩5.2公斤。农膜本身是一种塑料薄膜,大部分的原材料是不可生物降解的高压聚乙烯或聚氯乙烯,都是不可生物降解的,堆积在土壤中经久不烂。长此以往,埋在土壤中的残膜不仅会改变或切断土壤孔隙连续性,影响水分下渗,降低土壤抗旱能力,导致土壤次生盐碱化;也会阻止土壤中的根系连通,影响作物吸收土壤中的水分和养分,导致作物减产。
2.1.2对水体的危害
在农业面源污染与不同环境要素的相互作用中,与水体之间的作用是最为直接且影响途径最多、强度最大、范围最广的:污染物可以直接排入水体,可随降水和地表径流进入水体,可通过水土流失进入水体,也可通过大气沉降进入水体,总之所有的农业源污染物通过多种途径最终都会有一部分是进入水体的。
农业面源污染导致水质恶化和水体富营养化。过度和不合理施用农药、化肥,导致大量的氮、磷和有害物质进入河流、湖泊、水库等地表水体,使水域生态系统富营养化,水体缺氧、变质,浮游生物大量繁殖,河道淤堵,耐污物种爆发,水生生物死亡,水生态系统失衡,同时污染物还会随渗滤、淋流等途径污染地下水体。根据环保部调查结果显示,农田、畜禽养殖和农村居民生活排污是造成流域水体富营养化的主要原因,其贡献率远超过工业点源污染和生活点源污染。
2.1.3对大气的危害
农业生产过程中会产生CO2、CH4及N2O等温室效应气体。农民所施用的氮肥会使土壤中的含氮量增加,氮经由土壤的硝化作用及脱氮作用产生N2O排放到大气中,产生温室效应。此外,我国每年有大量的秸秆被就地焚烧,秸秆焚烧除了会产生肉眼不可见的CO、CO2、SO2、氮氧化物等温室气体和有害气体外,还会产生颗粒物加剧雾霾,成为雾霾的“帮凶”。
2.2农业面源污染的社会危害
2.2.1污染水体,危及饮用水安全
农业面源污染已经成为我国水体污染的主要来源,大量湖泊、水库面临水体富营养化,地下水污染也由点到面,由浅层到深层。近年来,中央和地方加大了城乡饮用水年安全保障,采取了一系列措施解决城乡居民的饮用水安全问题,但我国目前饮用水安全形势仍然十分严峻,危及城乡居民饮用水安全。
2.2.2污染土壤,危及粮食与蔬菜安全
农业源导致的土壤污染主要包括两方面:一方面是病原体污染,主要是由人畜的排泄物、生活污水和生活垃圾导致的,被病原体污染的土壤会传播疾病,直接危害居民健康;另一方面是有毒物质污染,主要是由于过度施用农药、化肥、使用农膜等不恰当的耕作措施导致的。土壤污染的农田种植粮食、蔬菜等农作物,可能导致生产的粮食、蔬菜中农药、重金属、化学激素和其他有毒物质超标,危害人体健康。
2.3农业面源污染的经济危害
农业面源污染因其污染的分散性和广泛性,每年都会造成巨大的、不可估量的经济损失,主要包括由于水体和土壤的污染造成对种植业、渔业和畜牧业的经济损失,以及土壤营养物质流失造成的经济损失。我国虽然没有全国性的农业面源污染经济损失研究,但部分学者对区域性的农业面源污染经济损失进行了估算。鲍秋萍利用Johnes输出系数模型对2010年福建省农业面源污染TN、TP流失的损失进行估算,总损失约为73.323亿元,其中畜禽养殖污染物流失损失最大,约合人民币42.109亿元,农村生活流失损失次之,约合人民币18.855亿元。范良千等同样用Johnes输出系数模型估算了2009年浙江省的农业面源污染中农业种植、禽畜养殖和农村生活TN、TP流失所造成的经济损失,总损失共计23.29亿元,其中农业种植损失最大,约12.92亿元[2]。我国目前对于农业面源污染造成的经济损失还没有一个系统性的估算和统计,但从已有的区域性研究中可以看出,农业面源污染在经济效益方面带来了巨大的损失。所以要从造成非点源污染的根源出发,寻求适合的农业发展模式和技术,减少浪费,扩大经济效益。
3.结论
农业面源污染已经成为我国目前的主要环境问题之一,其在造成严重的环境污染同时,也带来了巨大的经济损失,还严重威胁到了人体健康,所以防治农业面源污染刻不容缓。目前农业面源污染的治理措施主要包括工程技术性措施和非工程性措施,在政策、法律上要对农业生产活动进行规范;在技术上要实施源头控制为主,辅之以过程控制并加强末端控制。
参考文献:
- 上一篇:对计算机辅助教学的认识
- 下一篇:小学高年级阅读教学方法