土壤的生态功能范文

时间:2023-12-05 17:56:16

导语:如何才能写好一篇土壤的生态功能,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

土壤的生态功能

篇1

关键词 芦苇湿地;土壤生态系统;功能;作用

中图分类号 F062.2 文献标识码 A 文章编号 1007-5739(2013)22-0238-01

根据1971年在伊朗拉姆萨所共同决议通过的“国际重要水鸟栖地保育公约”定义“湿地”为:“无论天然或人为、永久或暂时、静止或流水、淡水或咸水、或二者混合者,由沼泽、泥沼、泥煤地或水域所构成的区域,包括水深在低潮时不超过六公尺之沿海区域”。

从广义上说,湿地土壤为在上述定义湿地范围内的具有一定土壤化育程度的颗粒介质,其地下水层常达到或接近地表,喜水或水生植被生态相比较特殊。湿地土壤是湿地生物的载体、基质,将地下生物与地上生物联系起来。

1 芦苇湿地土壤的特征

芦苇湿地作为湿地类型中的一种,主要是淹水形成的土壤和成土物质。一般包括有机土壤和未过土形成过程的沉积物[1-2]。在大部分芦苇湿地中,许多有机残体积累大于分解,形成泥炭基质。季节性淹水的芦苇湿地,氧化还原过程交替变化,芦苇湿地的氧化还原条件对芦苇湿地生物地球化学循环具有重要作用。持续淹水的芦苇湿地,具有相对稳定的厌氧环境条件,使细粒矿物质和有机物沉淀,变成芦苇湿地的营养物质,土壤中丰富的物质养分、能量为生物的生存和发展提供了便利条件,其在整个湿地生态系统中占据着重要的地位。

2 芦苇湿地土壤的功能和作用

2.1 芦苇湿地土壤具有维持生物多样性的功能

在湿地中存在大量生物,其中的大部分生物的栖息、生长、繁殖等在湿地上进行。湿地土壤为生物如土壤微生物、植物、动物等提供栖息地,而且对土壤动物和微生物的数量、类群产生决定性作用,同时对植物的空间分布有决定性影响[3-5]。对盘锦市芦苇湿地进行调查表明,芦苇湿地内生长的大量水生植物和各种鱼类、虾、蟹等动物和微生物为鸟类、鱼类提供了丰富和良好的生存空间,在物种多样性保存与保护方面发挥了重要作用。

2.2 芦苇湿地土壤具有调节气候的功能

芦苇湿地土壤通过对温室气体如甲烷(CH4)、二氧化碳(CO2)、氧化亚氮(N2O)等进行调节以对气候产生影响。其中湿地土壤能明显影响氮、碳的变化,特别是对甲烷、二氧化碳、氧化亚氮等的释放、固定过程中起重要作用[6]。湿地土壤长期处于水湿环境,微生物活动受到明显抑制,有机物质分解缓慢,降低了氧化亚氮、二氧化碳等的释放速度,随着大量植物生长、衰亡,大量无机、有机碳、氮在芦苇湿地积累,起到了固定氮、碳的作用。研究表明,湿地土壤单位面积氮、碳储量居各生态系统之首。

盘锦市芦苇湿地属于温带大陆性半湿润季风气候区,四季分明,温度适宜,光照充足,降水集中,气候宜人。占全市国土面积28%的沼泽、泥碳土质的芦苇湿地资源,是一个庞大的温室气体储存库,对温室气体有较强的吸收能力和储存能力,对区域的气候产生了重要的影响。另外,芦苇湿地每年生产芦苇45万t,从芦苇茎叶向大气散发的水蒸气约为3 000万m3,因此,该市湿地比其他经纬度相同的地方的气候湿润,冬天不冷,夏天不热,因此被人们称为海洋气候[7]。这样的气候现象,与芦苇湿地土壤所起的调节作用密不可分。

2.3 芦苇湿地土壤具有养分维持功能

湿地土壤长期水分过高,处于还原的状态,抑制植物残体的分解,致使大量营养在土壤中积累,同时,湿地土壤沉积、截留大量营养,并通过这些养分的迁移、转化,为湿地植物生长提供肥料,为湿地动物生活提供能量[8-9]。因此,芦苇湿地土壤具有维持养分的功能。

2.4 芦苇湿地土壤具有净化功能

芦苇湿地土壤是一个庞大的自然过滤器,具有很强的降解污染的特殊功能。芦苇湿地不仅可以净化水质,还可以滞留沉积物和营养物,在生态系统中发生各种各样的物理、化学和生物学变化,从而消除对人类和生态环境的危害和影响。芦苇湿地土壤团粒结构较好,微生物、动物数量、种类较多,对污染物质的净化主要是通过土壤的吸收、截留、沉淀、交换、吸附、氧化还原、代谢等途径完成[10]。同时,土壤动物对有害物质进行分解,达到土壤净化;土壤微生物通过其生命代谢活动,吸附、络合、沉淀和转化重金属,降低其毒害,参与氮、碳、磷等元素的迁移、转化和循环及其他元素地球生物化学循环,减轻甚至消除有毒、有害物质,有效净化土壤。

盘锦市芦苇湿地的土壤结构和植被的分布特点,决定了其净化水质的显著特性。颗粒状的土壤类型,有利于沉淀、过滤、吸附、离子交换、络合反应、硝化、反硝化、营养元素的生物转化和微生物的分解过程[11-12]。芦苇对净化水质又具有神奇的功能,通过芦苇生长的吸收过程可变污水为肥料,是一个典型的资源循环利用过程,对于净化水质,建立人与自然的和谐环境,起到了非常重要的作用。因此,芦苇湿地既是一个庞大的天然过滤器,又是一个最廉价的污水处理场。

2.5 芦苇湿地土壤具有水文调节功能

由于芦苇湿地能够调节地表水,从而使其在水平衡调节方面显示出重要作用。由于芦苇湿地土壤具有特殊的剖面结构,使其水文物理特性体现出极强的持水、蓄水能力,具有巨大的水文调节、水源涵养功能。这是由于芦苇湿地土壤与一般土壤结构不同,它从上向下一般为草根层、泥炭层、潜育层、母质层。草根层、泥炭层的矿物质颗粒很少,孔隙较大,具有较强蓄水性和透水能力[13]。土壤中草根层和泥炭层的孔隙度达72%~93%,饱和持水量达830%~1 030%。当洪水流经芦苇湿地或雨季来临时,一定水量以表面的形式滞留或通过土壤下渗到地下水层而被贮存于湿地土壤中,可以直接减少下游的持水量,而当气候非常干旱时,湿地土壤中储存的水分可以通过毛管作用释放出来供植物生长。

2.6 芦苇湿地土壤能够指示环境和气候变迁

芦苇湿地土壤形成具有明显的气候、生物特征,能够有效记录不同类型湿地土壤的成土过程和环境变化特征。因此,利用土壤中不同土层的结核含量、铁锈斑及铁矿物的结构、形态、矿化物类型及伴生矿物组合、植物硅酸体种类组合和泥炭纤维同位素组成等能反映土壤侵蚀程度、古气候变迁、土壤的成土过程和年龄、湿地水体富营养化等。

3 参考文献

[1] 刘树,梁漱玉.芦苇湿地土壤有机质含量对芦苇产能的影响研究[J].现代农业科技,2008(7):153.

[2] 王金爽.盘锦市芦苇湿地土壤在芦苇生产中的变化及存在的问题[J].现代农业,2013(4):25.

[3] 谭波.三峡库区消落带湿地土壤碳氮的分布研究[D].重庆:西南大学,2011.

[4] 王立科.城市湿地生态功能及其保护措施[J].现代园艺,2011(16):37.

[5] 刘存歧,王伟伟,李贺鹏,等.湿地生态系统中土壤酶的研究进展[J].河北大学学报:自然科学版,2005(4):25.

[6] 崔巍,李伟,张曼胤,等.湿地土壤生态功能研究概述[J].中国农学通报,2011,27(20):203-207.

[7] 李伟.太湖岸带湿地种子库及土壤动物多样性研究[D].北京:中国林业科学研究院,2012.

[8] 王红丽,李艳丽,张文佺,等.湿地土壤在湿地环境功能中的角色与作用[J].环境科学与技术,2008,31(9):62-66.

[9] 崔巍,李伟,张曼胤,等.湿地生态系统中的土壤动物研究进展[J].中国农学通报,2011,27(32):200-204.

[10] 张友民,杨允菲,王立军.三江平原芦苇湿地生态系统N素的季节动态[J].安徽农业科学,2009(17):8148-8150

[11] 张友民,刘兴土,肖洪兴,等.三江平原芦苇湿地植物多样性的初步研究[J].吉林农业大学学报,2003(1):58-61.

篇2

关键词:土地利用总体规划;生态系统服务价值;LNOPT软件;景观优化;怀来县

中图分类号:F301;F205;N31 文献标识码:A 文章编号:0439-8114(2016)14-3587-07

DOI:10.14088/ki.issn0439-8114.2016.14.013

Abstract: The LNOPT platform and GIS software were used to analyze five ecological functions and build the ecological landscape optimization model in the study area. The equivalent factor method of value of ecosystem services was used to calculate and analyze the value of ecosystem services before the overall plan for land-use,land-use planning and after land-use. The results showed that, the total value of ecosystem service was 9.533 3×108 yuan in Huailai. After land-use planning, the total value of ecosystem services became 9.438 3×108 yuan, a decreasing of 1.00%. After optimizing land use landscape ecology, the total value of ecosystem services was 9.928 2×108 yuan, increasing 4.14%. After the land use planning,the individual service values of land all had been reduced except the food production. After optimization of the landscape, the individual values of ecosystem service all had been increased. Landscape ecological optimization model of the study area could achieve certain ecological effects. It could be used as a reference for the next round of land use planning and regional development.

Key words:land use general planning; value of ecosystem services; LNOPT software; landscape optimization, Huailai county

生态系统服务价值是指人类从生态系统中获得生活必需品并且保证生活质量这两部分的所有惠益。人类直接或间接地运用其过程、结构和功能来获取生存发展所需要的支持和服务。生态系统服务功能是指生态系统与生态过程所形成及所维持的人类赖以生存的自然环境条件与效用[1]。生态系统服务价值维持着人类的生存和发展,是人类所必需的自然资本。科技的不断发展影响生态系统服务功能,但是不可以替代自然生态系统服务功能。随着可持续发展的不断深入和研究,保护和维持生态系统服务功能已经成为可持续发展的重要基础。对于生态系统服务价值的研究是国内外研究可持续发展的热点之一。近些年来,国外学者对生态系统服务价值做了诸多的理论和实例研究[2-5],国内研究者也分别从不同区域尺度进行了积极探讨[6-11]。研究表明,开展土地利用背景下的生态系统服务价值的定量分析和区域比较,对促进区域生态建设和可持续发展具有重要意义。

土地利用总体规划是在一定区域内,根据国家社会经济可持续发展的要求和当地自然、经济、社会条件,对土地的开发、利用、治理、保护在空间上、时间上所作的总体安排和布局,是国家实行土地用途管制的基础[12]。土地利用总体规划是以经济效益为目标的,在这种目标下,土地的利用类型会发生变化,从而导致系统生态服务价值的变化。诸多学者将优化生态系统服务功能与土地利用总体规划相结合,对土地利用总体规划进行定量分析,协调经济效益和生态效益的关系,从而使土地利用总体规划更具科学性和直观性[13-17]。这对维持生态平衡、建立科学合理的土地规划利用方法具有重要指导意义。

1 基础数据来源与研究方法

1.1 基础数据来源

根据《怀来县土地利用总体规划(2010―2020)》、《怀来县土地利用现状(2010)》图件和文本等获取研究区土地利用类型数据。并将这些数据进行分类,即耕地、园地、林地、草地、水域、建设用地和其他土地。依据《河北省统计年鉴》和《河北省国民经济和社会发展统计》得到研究区社会经济发展状况的基础资料。

1.2 研究方法

从土地利用总体规划引起的土地类型变化入手,运用LNOPT软件进行研究区现状的景观生态优化,对水源涵养功能、物质生产功能、土壤保护功能、生物多样和娱乐文化功能5项功能选取不同的指标并结合专家打分法建立景观生态优化模型,将地区的景观建设引入土地利用总体规划中,并与现有的土地利用总体规划的生态系统服务价值进行对比分析。

LNOPT是2002年由Gruehn与Kenneweg提出,用于模拟中欧地区景观特色的生物评价模型。该模型是通过“函子”按照排列顺序进行数据处理,并进行动态反馈、数据层和多区域方法的运算。通过LNOPT的生物评估模型、社会经济评估模型和非生物评估模型这3个模型的平台分别对水源涵养功能、物质生产功能、土壤保护功能、生物多样和娱乐文化功能进行数据转化、矩阵加权和数据计算。通过三步封装,提供一系列的计算,利用ArcGIS 9.3成图。

采用Costanza等[18]的生态系统服务价值估算方法对气候调节、生物多样性、气体调节、土壤保护、物质生产、废物处理、水源涵养、娱乐文化和原材料9种生态系统服务功能价值进行估算,得出研究区优化前后的生态系统服务价值总量。

2 景观生态模型的构建

2.1 水源涵养功能模型

水源涵养服务功能的意义在于研究区中的水资源调节程度。根据该区域中的河流、水库的地理位置,以及整个河流水资源的利用和径流的调节作用进行综合考虑。一般地区涵养水源功能是由于地表覆盖、土壤渗透和地形这3方面构成,它们主要受地表覆盖率,土壤渗透力,地形等因素影响。根据该区域生态系统涵养水源服务功能的影响因素和生态环境的特征,考虑数据可获得性,选择地形坡度、土壤渗透、植被覆盖度和含水量作为重要评价指标,根据怀里地区的地形地貌特征,降水分布情况、土壤以及植被覆盖,进行不同等级划分,各指标的分级、赋值和权重通过专家打分法确定。

2.2 物质生产功能模型

从怀来县的生态系统服务功能出发,选择能够直接生产产品的功能进行评价。根据生态系统提供的农产品的能力作为重要的分级依据。评价研究区生态系统的物质涵养功能,结合该区域的地形地貌特征和产品生长条件,考虑该区域的数据可行性,选取土壤类型、剖面构型、有机质含量和坡度作为重要的评价指标,再根据该区域的地形地貌和生长条件进行等级划分,各指标的分级、赋值和权重通过专家打分法确定。

2.3 土壤保护功能模型

土壤保护功能的评价是在土壤侵蚀性的基础上,依据土壤侵蚀情况和土壤侵蚀对河流或者水资源的影响来进行评价。怀来县地形比较复杂,以山地为主,其中大多数都是坡度大于25°的坡地,该区域容易发生土壤侵蚀,是怀来县山区最为主要的土地生态环境问题。

土壤侵蚀敏感性是方便分辨出土壤侵蚀的区域,分析它对人类活动的影响。美国通用土壤侵蚀方程(USLE)包括坡面土壤流失影响程度的主要因素,该公式在国内外得到了广泛的应用。通用土壤侵蚀方程(USLE)的表达式为:

A=R・K・LS・C・P(1)

式(1)中,A为土壤侵蚀量,R为降水侵蚀力,K为土壤质地因子,LS为坡度坡向因子,C为地表覆盖因子,P为农业耕作措施因子。其中,农业耕作措施是人为因素。

从土壤侵蚀方程中,可以看出影响一个区域土壤侵蚀的主要有地理条件、水资源、植被、土壤和人类活动五大因素,这些因素同时可以被用来表示某个区域对土壤侵蚀的敏感性。根据怀来相关文献和获得数据情况,本研究选取了土地利用类型、坡度、土壤质地、水资源分布和距林场、林地距离作为评价因子,并对各指标因子进行不同等级划分,各指标的分级、赋值和权重通过专家打分法确定。

2.4 生物多样模型

怀来县拥有丰富的植物类型和复杂的生物群落,而植物是鸟类分布和多度的第一影响因子。鸟类常常作为植物群落的指示物种,进而反映栖息地及周边生态环境。本研究选取大白鹭作为怀来县的生态多功能优化的焦点物种,通过观察怀来县鸟类的生物习性、栖息地类型、生态特征等进行分析。大白鹭是大中型涉禽,栖息于平原和山地附近的河流、水田、湖泊及沼泽地带,以甲壳类、软体动物、水生昆虫以及小鱼、蛙、蝌蚪和蜥蜴等动物性食物为食,摄食区域主要是河流、沼泽等浅水区域。从大白鹭摄食地区的距离来看,大多数是在距离巢穴大约5~10 km范围内,少数在15~25 km的范围内,极少数在巢穴周围约2 km范围内摄食。本研究针对大白鹭栖息地和筑巢特征,确定影响大白鹭选择栖息地的因子,各指标的分级、赋值和权重通过专家打分法确定。

2.5 娱乐文化功能模型

怀来县具有良好的生态环境,拥有官厅水库、休闲度假太师庄、葡萄庄园、自然风景区等户外游憩空间,游憩资源具有类型多、数量大、分布广的特征。本研究根据研究区的各地区景点以及地形地类的分布情况,考虑研究区的数据可行性,选取坡度、土地类型、距农村道路和公路的距离、距水体的距离和距景区(特殊用地)的距离这5个因子作为评价指标,各指标的分级、赋值和权重通过专家打分法确定。

综上所述,运用LNOPT软件平台的非生物评估程序对水源涵养、物质生产、土壤保护功能进行优化,运用生物评价程序对生物多样进行优化,运用社会经济评价程序对娱乐文化功能进行优化。首先是运用GIS软件对怀来县遥感影像图解译,并进行矢量化和编辑处理每个图形的属性,再运用插值计算,将其表面数据转化成栅格图层;第二步,根据LNOPT软件的应用程序,确实功能因子,通过专家打分法确定每个因子的分值;第三步,对水源涵养的因子进行相关性检查,并且运用专家打分法确定权重,确定每个因子的权重分值;第四步,运用LNOPT软件平台,结合栅格数据,通过权重加权的方法进行计算;第五步,经过LNOPT平台数据验证模型以研究区现状为样本进行校正,确定该区域功能的景观优化图,结果见图1~图5。

2.6 综合生态系统服务功能景观优化模型

综合以上水源涵养功能、物质生产功能、土壤保护功能、生物多样和娱乐文化功能的景观生态优化模型,建立综合的景观生态优化模型。这5项生态系统服务功能的景观生态优化模型是具有同等重要性的,将其赋予相同的权重。将这5项生态系统服务功能的景观生态优化模型运用LNOPT软件中的矩阵加权方法进行叠加,根据最终分值确定怀来县生态系统服务价值景观优化模型(图6)。它们形成了连续而完整的生态系统服务功能格局,为区域生态系统服务的健康和安全提供保障。

高水平区域是生态系统服务功能在城市发展中最重要的保障范围,是不可打破的生态红线,是需要严格控制和特殊保护的地带,应该纳入城市的禁止区域和限制建设区;中水平区域是生态系统服务功能比较限制的区域,该区域可以发展农业、建设用地,适合开展一些旅游景点供给人们进行旅游和观赏;低水平区域是应该加强生态环境建设的区域,如在城市周围增加绿化,减少建设用地。这种景观生态优化模型维护了城市的基本生态环境,是怀来县可持续发展的基础保障,为城市建设提供一定的界线。

3 研究区生态系统服务功能变化分析

3.1 研究区生态系统服务价值系数计算

生态系统服务价值当量因子指生态系统产生生态服务相对贡献大小的潜在能力[19],将全国农田1 hm2粮食自然产量的经济价值定义为1,其他生态系统服务价值当量因子表示该生态服务相对于农田生态系统生产服务的贡献大小,本研究依据谢高地等[6]制定的不同省份农田生态系统生物量因子表,对怀来县所在地区的生态系统服务价值当量系数进行修正(河北省的修正系数为1.02)。

没有人力投入的自然生态系统提供的经济价值等于当年平均粮食单产价值的1/7[20,21],中国2005年单个生态系统价值当量的经济价值为449.1元/hm2,结合2006年《河北省统计年鉴》的相关数据,可以计算得出2005年环京津地区平均粮食产量为4 683.35 kg/hm2。全国地均粮食产量为5 896.50 kg/hm2,据此为标准对全国的生态系统服务价值当量价值进行系数修正,确定该地区单个生态当量的价值为356.70元/hm2,据此可得到该研究区单位面积土地生态系统服务价值系数(表1)。

本研究中生态服务价值当量因子按以下方法进行归类:耕地――农田,林地――森林,草地――牧草地,水域――水体,建设用地――居民点及工矿用地和交通用地;园地以本研究区的牧草地和林地的平均值为其生态系统服务单位价值[22]。

3.2 研究区生态系统服务价值计算

根据单位面积土地生态服务价值系数和各利用类型土地面积可以得出怀来县生态系统服务功能的总经济价值,其计算公式:

ESV=∑(VCk×Ak) (2)

式(2)中,ESV为土地生态服务价值,单位为元;VCk为第k类土地利用类型的生态服务价值系数,单位为元/hm2;Ak为第k类土地利用类型的总面积,单位为hm2。

依上可以得出怀来县2010年各类土地生态服务价值量(表2)。

从表2中可以得出研究区现状各类土地生态系统服务价值量。研究区域的林地面积居多,而且单位面积生态系统服务价值比较大,因此林地的生态系统服务价值总量最高,为3.541 3×108元。由表1可知,湿地的单位面积生态系统服务价值量比较高,但是生态系统服务价值总量受到土地类型面积的影响,湿地的生态系统服务价值量仅4.149×107元。同理,水域的生态系统服务价值为2.297 6×108元。研究地区中建设用地面积相对较大,且单位面积生态系统服务价值量变现为负效应,其价值量为-5.557×107元。研究区现状的各类土地生态系统服务价值总量为9.533 3×108元。

3.3 各类土地利用类型生态系统服务价值变化

由表3可知,依据土地利用总体规划方案,怀来县在土地利用总体规划前的总生态系统服务价值是9.533 3×108元,土地总体规划后总生态系统服务价值有所减少,为9.438 3×108元,总体减少9.50×106元。土地利用规划后,只有耕地增加了5.09×106元,其他土地利用类型的生态服务价值量均有下降,最为明显的是园地,为6.27×106元,水域的变化量最小,为4×104元。

基于LNOPT软件的景观生态优化方案,对研究区的进行景观优化后,生态系统服务价值总量有所增加,为9.928 2×108,增加率为4.14%。就土地利用总体景观规划后各类用地生态系统服务价值而言,只有林地减少了1.317 3×108元,其他利用类型的土地生态服务价值均有所增加,园地生态系统服务价值增加了1.378 1×108元,明显高于其他土地利用类型,建设用地次之,为2.162×107元。未利用地因其单位面积价值量低,面积变化小,因此生态服务价值量变化最小,仅增加了4.2×105元。

篇3

关键词:纳帕海;高原湿地;植物生物量;土壤有机碳;气候变化

中图分类号:P467

文献标识码:A文章编号:16749944(2017)8000704

1引言

竦刂参锏纳长与湿地土壤的碳积累密切相关,是生态系统碳循环重要的生物因子,决定碳输入的数量、形式及存留时间。植物生物量作为物质循环和能量流动基础对生态系统功能起着关键作用,强烈影响着湿地土壤的碳输入(郭绪虎等,2013)。在受到以温度升高为表征的气候变化作用下,植物生物量必然受到影响,理论上温度升高有利于广域分布种的生长发育,将为土壤提供更多的碳输入,使得土壤有机碳积累水平增加,改善湿地土壤的理化性质,增加保水与养分富集作用,进而为湿地植物的生长发育提供条件。

高原湿地作为全球湿地的重要组成,对气候变化十分敏感,位于横断山脉的纳帕海高原湿地拥有丰富的湿地植物群落(董瑜等,2014),其生物量积累是碳循环过程的重要环节,随着气候变暖,生物量积累增加,但土壤有机碳积累是否也随之增加?本研究利用云南高原立体地形的海拔梯度变化所形成的立体气候特征,以不同海拔梯度形成的温度差异作为影响因子,分析研究纳帕海湿地优势植物生物量增加对土壤有机碳积累的影响。进一步了解和认识高原湿地与气候变化间的关系及其响应过程,为应对气候变化提供理论依据。

2材料与方法

2.1实验设计

以滇西北高原典型湿地纳帕海(海拔3260 m)为研究对象,将适应了纳帕海湿地气候条件的茭草(IaniaCuciflora)、水葱(Scirpus abernaemontani)2种优势植物连同生长基质组成的植物-土壤单元,于2010年移至海拔2437 m的拉市海湿地和海拔1886 m的滇池流域。于植物生长初期,在原生地纳帕海分别挖取植株丛数不低于100 株的茭草、水葱植物群落及其土壤单元( 其中土壤厚约50 cm) ,各单元整体分别移栽至区域气候条件不同的丽江拉市海湖滨、滇池流域,分别置于长300 cm、宽150 cm、深100 cm 的实验池中,植物淹水深度以其原生环境为基准,每种植物设3个重复,以满足分析采样和统计分析要求。同时,在移出地纳帕海做同样移出实验,以作比较研究的参照。三地气候条件差异明显,从分别设置于三地的Portlog自动气象站多年观测数据(表1)可知,随海拔降低,降水和气温随之增加。

2.2样品与数据采集

于2010年和2016年分别在纳帕海、拉市海与昆明滇池流域三个研究地用原状取土管采集10~30 cm土壤,用塑封袋包装标号后带回,风干后挑出根系,研磨过100目筛,用重铬酸钾外加热法测定有机碳含量(鲍士旦,2000)。分别于2010年和2016年于植物生长末期(9月)设置3个1 m×1 m的样方,在每个调查样方中分别齐地刈割25 cm×25 cm植株,带回实验室放置于65℃的烘箱中,烘干至恒重,用电子天平分别进行称重,估算出植物生物量。

2.3数据处理

采用Excel 2007与SPSS19.0进行数据分析与统计制图。

3结果与分析

3.1茭草与水葱两种植物地上生物量

2010年实验池建立时采集计算三地的茭草与水葱植物生长末期地上生物量分别为(853. 6±58.2)g/m2和(730.7±7.8)g/m2,2016年纳帕海茭草与水葱生物量分别为(984.0±10.9)g/m2和(1122.6±11.9)g/m2;拉市海分别为(1484.6±13.7)g/m2和(1683.1±10.7)g/m2,相比纳帕海茭草生物量增加50.9%,水葱生物量增加49.9%;滇池流域分别为(1786.3±13.3)g/m2和(2000.9±11.5)g/m2,相比拉市海茭草生物量增加20.3%,水葱生物量增加18.8%,呈现出随海拔降低的温度升高,茭草与水葱的植物生物量逐渐增加的趋势(图1)。

3.2土壤有机碳含量变化

2010年试验初始时采集的三地茭草与水葱土壤有机碳含量分别为(67.91±4.58)mg/kg与(55.11±6.31)mg/kg,实验建立6年后(2016年)纳帕海湿地植物茭草的土壤有机碳含量为(60.34±3.91)mg/kg、水葱的土壤有机碳含量为(65.78±4.72)mg/kg,移至丽江拉市海湿地后,随着气候条件的改变,特别是温度的上升,茭草的土壤有机碳含量下降为(36.28±3.49)mg/kg、水葱的土壤有机碳含量下降为(34.66±2.58)mg/kg、;移至滇池流域试验地后,茭草,水葱2种植物的土壤有机碳含量分别为(21.75±1.35)mg/kg、(21.55±2.65)mg/kg。可见2种植物类型下的纳帕海湿地土壤有机碳含量,均随着海拔下降气候条件改变的温度上升,呈现出较为明显的梯度下降(图2)。移至拉市海湿地的2种植物茭草,水葱土壤有机碳含量分别减少39.87%,47.31%;移至滇池流域2种植物的有机碳含量在拉市海减少的基础上分别下降了40.05%,37.82%。

4讨论

随着纳帕海、拉市海与滇池流域的温度升高,三个研究地的茭草与水葱地上生物量依次增加。说明茭草与水葱作为湿地广域分布物种,其对温度胁迫有着良好的适应性,这与董瑜等人对纳帕海湿地优势植物生理生化特性的研究结果一致(董瑜等,2014)。高温促进了两种优势植物的生长发育,使其光合固碳能力提高,初级生产力增加,地上生物量的留存增加,理论上增加了其土壤有机碳的输入量。与理论预期不同的是,纳帕海湿地土壤有机碳积累水平在温度升高时减弱,从2010年试验初始时土壤有机碳含量与移出地6年后的土壤有机碳含量值比较看,虽差别不大,但呈现随着时间推移,土壤有机碳在不断积累的规律。作为纳帕海湿地生态系统重要的碳汇植物,这对高原湿地碳积累及其区域碳平衡有着重要意义,对维持长江上游的湿地水源涵养功能有着重要作用。在温度升高的背景下,茭草与水葱的生物量积累与土壤有机碳积累负相关,不仅直接影响到土壤有机碳的积累水平,而且影响到生态功能的发挥。虽然以温度升高为主要表征的气候变化促进了纳帕海湿地优势植物的生长发育,光和固碳能力得到提升,地上生物量增加,但其土壤有机碳积累水平却逐渐下降。湿地碳汇植物良好的生长发育未能给湿地土壤提供有效的碳输入,降低了土壤有机碳积累水平。另一方面,造成这种结果的原因有可能是温度升高加速了土壤有机碳的分解速率,导致土壤碳输出超过碳输入,在这种情况下,即使植物群落生物量作为碳汇在增加,土壤有机碳分解又变成碳源大量逸出,致使湿地土壤碳循环失衡,进一步增加了湿地温室气体的排放,加剧了地区气候变化(田昆,2008)。

5结论

以上研究与董瑜和郭绪虎等人的研究结果相似,进一步论证了气候变化影响土壤碳积累,温度升高导致湿地生态系统负反馈的研究结论。尽管以温度升高为主要表征的气候变化有利于湿地优势植物群落的生长发育和地上生物量的留存,但随着温度持续增加,是否会出现其他优势植物,纳帕海湿地优势植物的生态位是否会产生变化,其植物群落结构又是否会发生改变?目前受到研究时间尺度的限制无法进行验证。但持续的增温将最终将改变湿地生态系统的碳循环过程,进一步破坏其生态功能,反作用于当地小气候,放大了气候变化的不利影响。而湿地土壤有机碳积累水平的下降,将使高原湿地涵养水源,富集营养等各种功能减弱或遭到破坏,其所带来的负面效应远远超过正面效应。因此,在全球气候变化的大环境下,应加强监测研究,以应对气候变化。

参考文献:

[1]

董瑜, 田昆, 肖德荣, 等. 区域气候变化对纳帕海湖滨植物生理生化特性的影响[J]. 生态学报, 2014, 34(19).

[2]赖建东, 田昆, 郭雪莲, 等. 纳帕海湿地土壤有机碳和微生物量碳研究[J]. 湿地科学, 2014, 12(1).

[3]郭绪虎, 肖德荣, 田昆, 等. 滇西北高原纳帕海湿地湖滨带优势植物生物量及其凋落物分解[J]. 生态学报, 2013, 33(5).

[4]李月梅, 曹广民, 徐仁海. 植物群落生物量和有机碳对高寒草甸土地利用变化的响应[J]. 草业科学, 2007, 24(6).

[5]胡雷, 王长庭, 阿的鲁骥, 等. 高寒草甸植物根系生物量及有机碳含量与土壤机械组成的关系[J]. 西南民族大学学报,2015, 41(1).

[6]陆梅, 田昆, 张仕艳, 等. 不同干扰程度下高原湿地纳帕海土壤酶活性与微生物特征研究[J].生态环境学报, 2010, 19(12).

[7]陶宝先, 宋长春. 氮素形态对泥炭沼泽土壤有机碳矿化的影响[J]. 生态环境学报,2015,24(3).

[8]田昆, 常凤来, 陆梅, 等. 人为活动对云南纳帕海湿地土壤碳氮变化的影响[J]. 土壤学报, 2004, 41(5).

[9]肖德荣 , 田昆 , 张利权. 滇西北高原纳帕海湿地植物多样性与土壤肥力的关系[J], 生态学报, 2008, 28(7).

[10]王平, 盛连喜, 燕红, 等. 植物功能性状与湿地生态系统土壤碳汇功能[J], 生态学报, 2010, 30(24).

[11]侯翠翠, 宋长春, 李英成, 等. 不同水分条件沼泽湿地土壤轻组有机碳及微生物活性动态[J],中国环境科学, 2012,32(1).

[12]王长庭, 龙瑞军, 刘伟, 等. 高寒草甸不同群落类型土壤碳分布与物种多样性、生物量关系[J], 资源科学, 2010, 32(10).

[13]李顺姬, 邱莉萍, 张兴昌. 黄土高原土壤有机碳矿化及其与土壤理化性质的关系[J]. 生态学报, 2010, 30(5).

[14]李东, 黄耀, 吴琴, 等. 青藏高原高寒草甸生态系统土壤有机碳动态模拟研究[J]. 草业学报, 2010, 19(2).

[15]解宪丽, 孙波, 周慧珍, 等. 不同植被下中国土壤有机碳的储量与影响因子[J]. 土壤学报, 2004, 41(5).

[16]朱宏伟, 杨森, 赵旭矗 等. 区域气候变化统计降尺度研究进展[J]. 生态学报, 2011, 31(9).

[17]辜运富, 郑有坤, Petri Penttinen, 等. 若尔盖高原泥炭沼泽土嗜冷细菌系统发育分析[J]. 湿地科学, 2014, 12(5).

[18]何太蓉, 杨达源, 杨永兴. 三江平原泥炭沼泽土剖面P 、K养分分布特征及影响因素分析[J].农村生态环境, 2004, 20(1).

[19]姜明, 吕宪国, 杨青. 湿地土壤及其环境功能评价体系[J]. 湿地科学, 2006, 4(3).

[20]万忠梅, 郭岳, 郭跃东. 土地利用对湿地土壤活性有机碳的影响研究进展[J]. 生态环境学报, 2011, 20(3).

[21]祖元刚, 李冉, 王文杰, 等. 我国东北土壤有机碳、无机碳含量与土壤理化性质的相关性[J].生态学报, 2011, 31(18).

[22]谢迎新, 张淑利, 冯伟, 等. 大气氮素沉降研究进展[J]. 中国生态农业学报,2010,18(4).

[23]沈芳芳, 袁颖红, 樊后保, 等. 氮沉降对杉木人工林土壤有机碳矿化和土壤酶活性的影响[J].生态学报, 2012, 32(2).

[24]黄国勤, 赵其国. 红壤生态学[J]. 生态学报, 2014, 34(18).

[25]王娇月. 冻融作用对大兴安岭多年冻土区泥炭地土壤有机碳的影响研究[D]. 长春:吉林大学, 2014.

[26]杨f勤, 张健, 胡庭兴, 等. 森林土壤生态学[M]. 成都:四川科学技术出版社, 2006.

[27]黄耀, 周广胜, 吴金水, 等. 中国陆地生态系统碳收支模型[M]. 北京:科学出版社,2008.

[28]吕宪国. 湿地生态系统观测方法[M]. 北京:中国环境科学出版社, 2004.

[29]鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社, 2000.

篇4

1材料与方法

1.1供试材料

1.1.1供试土壤

供试土壤采自西北农林科技大学试验田,土壤塿类型为土,土壤肥力中等,其主要理化性质为:pH8.32,有机质13.20g•kg1,全氮、全磷、全钾含量分别为0.79g•kg1、0.61g•kg1和11.14g•kg1,碱解氮、速效磷、速效钾含量分别为61.03mg•kg1、16.67mg•kg1和154.40mg•kg1。土样风干、混合均匀后过筛备用。

1.1.2供试肥料

供试肥料包括尿素、磷酸二氢铵、硫酸钾、有机无机复混肥、生物复混肥。有机肥为将猪粪、小麦秸秆等调节到合适的C/N、pH和含水量后经高温堆制发酵腐熟制作而成,其主要养分含量为N18.6g•kg1、P2O59.0g•kg1、K2O12.2g•kg1。生物复混肥是在有机肥的基础上加入少量的无机肥,无机肥配比为N4%、P2O52%、K2O3%[10],然后将液体芽孢杆菌复合菌剂(固氮菌Azotobacterchroococcum、解磷菌Bacillusmegaterium、解钾菌Bacillusmucilaginous由西北农林科技大学资源环境学院微生物实验室提供,已鉴定各菌株间无拮抗)与蛭石按1∶2混合吸附,均匀掺入上述有机无机复混肥中。有机无机复混肥是添加等量灭菌的蛭石,其中的有机肥、无机肥及其配比均与生物复混肥完全相同。肥料均为自制,配制完成后保存1个月再施用。生物复混肥和有机无机复混肥中氮磷钾含量均为N55.5g•kg1,P2O518.7g•kg1,K2O36.9g•kg1,有机质360.8g•kg1,功能芽孢杆菌总量为0.21×108cfu•g1。

1.1.3供试作物

供试作物为“郑单518”玉米,由西北农林科技大学种子公司提供。

1.2试验设计

试验采用盆栽的方式,于2011年6月在西北农林科技大学资源环境学院玻璃网室中进行。试验设置对照(CK,不施肥)、无机肥(T1)、有机无机复混肥(T2)、生物复混肥(T3)4个处理,4次重复。生物复混肥按0.20g(N)•kg1(土)施入,其他肥料均按生物复混肥中氮磷钾的量等量施用。将肥料与12.5kg土样充分混匀后装盆,浇透水至土壤含水量为田间最大持水量的60%。玉米催芽后直接播种,出齐苗后间苗,每盆保留3棵,并于定苗1d、15d、30d、45d、60d时采集土壤样品,在各个处理4次重复内随机取0~20cm的土壤各100g并置于4℃冰箱,用于分析土壤微生物学特性;取玉米生长60d时的土样在48h内进行土壤微生物群落功能多样性分析。试验设置保护行,试验期间根据实际情况定量浇水,并经常更换盆的位置,不同处理的盆栽管理措施均一致。

1.3测定项目和方法

土壤微生物群落功能多样性分析采用BIOLOGECO测试板进行测定[11]。土壤微生物量碳、氮、磷用氯仿熏蒸提取法测定[1112],采用重铬酸钾外加热法测定提取液中的可溶性碳,采用过硫酸钾氧化法测定提取液中的总氮,采用NaHCO3浸提钼锑抗比色法测定提取液中的总磷,土壤微生物量碳、氮、磷的换算系数分别为0.38、0.54、0.40。

1.4数据处理

采用微平板培养96h的数据进行数据统计分析,采用AWCD、Shannon指数和丰富度指数来表征土壤微生物群落代谢功能多样性[8,13]。数据经Excel2003处理后,采用SPSS16.0软件进行方差分析和主成分分析,主成分分析采用协方差矩阵为因子提取依据,其他参数选取系统默认值。

2结果与分析

2.1生物复混肥对土壤微生物群落功能多样性的影响

2.1.1土壤微生物群落多样性指数分析

土壤微生物群落功能多样性是土壤微生物群落状态与功能的指标,反映了土壤微生物的生态特征。表1为玉米生长60d时各施肥处理的土壤微生物群落功能多样性指数,从表1可以看出,BIOLOG微平板培养96h时,T3处理AWCD与其他处理间差异显著;微生物群落Shannon指数大小顺序为T3>T1>T2>CK,T3处理与其他处理间差异显著;T3处理土壤微生物群落的丰富度指数高于其他处理。以上结果表明,生物复混肥处理(T3)可以提高土壤微生物群落的功能多样性和种群丰富度,有利于提高土壤生态系统的稳定性。

2.1.2土壤微生物对6类碳源的利用

土壤微生物对不同碳源的利用情况反映了土壤微生物的代谢功能类群。从表2可以看出,玉米生长60d时,T1、T2、T3处理土壤微生物群落利用碳源的显著类型为糖类、羧酸类和氨基酸类,可能是因为这3类碳源是土壤微生物代谢最基本的物质,能够被大多数土壤微生物代谢利用。而对于多聚物类、多酚化合物类和多胺类这3类碳源,T3处理与其他处理间差异显著,表明T3处理的土壤微生物碳代谢群落结构与其他处理有所不同,该处理土壤微生物群落对多酚化合物类的利用明显高于其他处理,可能是土壤中施入的有机肥在微生物作用下,腐殖化过程中多酚类物质有一定积累,进而激活了能够利用多酚类物质的微生物的活性,从而提高了土壤微生物对多酚化合物类物质的代谢与利用。土壤中微生物对多酚类物质的利用显著提高的现象在其他研究中也有出现[14],具体原因还需要进一步研究。

2.1.3土壤微生物群落功能多样性主成分分析

为清晰地了解不同施肥处理对土壤微生物群落代谢能力的影响,利用培养96h后测定的AWCD数据进行主成分分析(PCA)。从表3可以看出,对PC1(第1主成分)贡献大的碳源(特征向量≥0.50)有17种,其中糖类占35%,羧酸类占24%,影响PC1的主要碳源为糖类,其次为羧酸类和氨基酸类;对PC2(第2主成分)贡献最大的碳源糖类占50%,其次为羧酸类(25%),因此,对PC1和PC2起分异作用的主要碳源是糖类和羧酸类。与PC1正相关程度较高的碳源有α-D-乳糖和L-精氨酸,负相关的碳源有D,L-α磷酸甘油和吐温40,不同施肥处理土壤微生物在碳源的利用上既有共同点又有差异,差异可能是由于不同处理土壤微生物群落有所差异,也可能是因为某些碳源是微生物生理代谢途径中的重要物质[15]。从不同施肥处理土壤微生物群落功能多样性的主成分分析可以了解各种处理土壤微生物群落功能的相似状况,结果如图1所示,PC1方差贡献率为27.640%,PC2为19.089%。不同处理土壤微生物群落在碳源的利用能力上存在明显差异,表现在它们在第1、2主成分上得分系数差异明显。CK、T1和T2处理的土壤微生物在PC1上的得分值分布一致,与T3处理区分明显,T3处理土壤微生物在PC1上的得分值均为正值,CK、T1和T2处理土壤微生物在PC1上的得分值基本为负值;T2处理土壤微生物在PC2上的得分值为正值,而CK和T1处理土壤微生物在PC2上的得分值基本上为负值,较难分开。这表明生物复混肥处理的土壤微生物群落代谢结构与其他处理具有明显差异,而无机肥和CK处理土壤微生物群落功能相似。施用生物复混肥能提高土壤微生物对不同碳源的代谢能力,提高土壤微生物群落功能多样性,为土壤提供一个良好的生态环境。

2.2生物复混肥对土壤微生物量碳、氮、磷的影响

土壤微生物生物量是土壤有机库中的活性部分,是存在于土壤微生物体内或残体细胞中可供利用的养分的贮备库,是土壤养分转化的动力和中转站,与土壤中的C、N、P等养分转化和循环过程密切相关,反映土壤微生物活动的强弱和养分转化速率的快慢,从宏观上反映土壤微生物活性的总体状况,是土壤生物质量、土壤肥力变化的灵敏指标。研究表明,不同施肥制度对土壤微生物生物量也有显著影响[1618]。从图2可以看出,土壤微生物量碳、氮、磷的变化规律大体一致,土壤微生物量在玉米整个生长期中大致呈先升高后逐渐平稳的变化趋势,与王艳霞等[19]研究结果相似;且土壤微生物量碳、氮、磷的含量均以生物复混肥处理最高,最高值分别为333.21mg•kg1、53.02mg•kg1和22.20mg•kg1。在土壤微生物量碳变化规律中,生物复混肥处理在玉米生长第30d、45d时较高,并且显著高于其他处理。生物复混肥处理显著提高土壤微生物量碳的主要原因可能是生物复混肥中所添加的功能性微生物菌群施入到土壤中,能够使有益微生物在土壤中形成优势种群,很好地在植物根际成功定殖,发挥其生态功能;另一方面,生物复混肥本身带入的活性有机碳源促进了土壤微生物的繁殖,提高了土壤微生物活性。各处理土壤微生物量氮含量在定苗前期没有明显差异,在玉米生长第30d时显著升高,生物复混肥处理的微生物量氮含量与其他处理相比差异显著。反映出玉米快速生长期时由于根际活动等促进土壤微生物大量繁殖,生物复混肥处理提高了土壤微生物活性,氮素固定同化到微生物体内引起土壤微生物量氮含量升高。土壤微生物量磷的变化规律与土壤微生物量碳、氮不同,玉米生长前期各处理间差异不明显,在玉米生长第15d后生物复混肥处理的土壤微生物量磷显著升高,说明玉米快速生长期间,土壤微生物对土壤中有机态和无机态磷的同化作用加大,以微生物量磷的形式存在,土壤中微生物解磷与固磷作用也与土壤中可降解有机物的数量有关,有机或无机肥料中的磷素对土壤微生物量磷的增加有明显的贡献作用[2022]。本试验土壤微生物量磷的升高趋势比较稳定,与赵兰凤等[23]研究结果相似。

3讨论

不同施肥措施会导致土壤微生物功能多样性的系统变化,形成各自特定的土壤微生物种群,长期施用有机肥可明显增加土壤微生物种群的变异程度[24]。罗希茜等[25]研究稻田土壤微生物群落发现,施用化肥或配施有机肥可使黄泥土土壤微生物的碳源利用率显著高于对照,有利于维持土壤微生物的碳源利用能力。Wei等[26]研究长期不同施肥处理对黑土细菌群落结构和功能的影响,结果表明无机肥处理与有机无机复混肥处理土壤微生物在单一碳源利用率方面没有显著性差异,但在土壤微生物群落结构组成、功能稳定性上有差异,施用化学肥料会降低土壤微生物群落的稳定性,本研究结果与上述研究结果类似。徐华勤等[27]对茶园土壤微生物群落功能多样性的主成分分析表明,糖类和羧酸类物质是区分各处理的主要碳源。本研究主成分分析结果也表明,不同施肥处理土壤微生物功能多样性差异明显,起分异作用的主要碳源是糖类和羧酸类。Garland等[28]研究表明,样本在主成分轴上的分布与微生物对碳源底物的利用能力有关,PC1解释了大部分的变异,生物复混肥处理分布在PC1的正方向,结合生物复混肥处理对6类碳源的利用,进一步证实生物复混肥处理可提高土壤微生物的代谢能力。土壤微生物功能多样性变化不仅受施肥影响,还与土壤养分密切相关,但是这方面的研究还较少。孔维栋等[29]和区余瑞等[30]的研究表明,土壤有机质和全氮含量与土壤微生物功能多样性呈正相关。因此,为了全面表征土壤肥力的微生物指标体系,本研究将从土壤微生物多样性与养分的关系方面进一步探讨生物复混肥的施用效果。土壤微生物量能够快速反映土壤养分含量变化及植物根际活动带来的土壤微生物活性的变化。Masto等[17]认为微生物熵更能够反映出土壤微生物活性和土壤有机碳的动态变化。土壤微生物群落结构的变化可能是导致土壤微生物量变化的首要原因[31]。在本研究中,生物复混肥处理能够提高土壤微生物群落功能多样性,其土壤微生物群落结构也比较稳定,因此,在玉米快速生长期间生物复混肥处理的土壤微生物量显著高于其他处理,具有较大的N、P、K中转代谢库,能够为植株提供更多的有效养分。

篇5

关键词:LUCC变化;生态服务价值;中国北方农牧交错带

中图分类号:F323.22 文献标识码:A DOI编码:10.3969/j.issn.1006-6500.2014.01.017

Evaluation of Ecosystem Service Value Based on Land Use-Terrestrial Ecosystem Coupled Model

—A Case Study From the Farming-Grazing Transitional Zone of Northern China

JIANG Li1, XU Xia1, LIU Ying-hui2, XU Li1, TIAN Yu-qiang1

(1.State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China; 2.College of resource science and technology, Beijing normal university, Beijing Normal University, Beijing 100875, China)

Abstract: Land use is an important part of the human-earth system, it can provide huge ecosystem services. This paper considered the primary production, the balance of CO2 and O2, nutrient cycling, water conservation, soil erosion control and other major service functions, and proposed a method based on land use - terrestrial ecosystem coupled model to estimate the land use ecosystem service value. The results show that during 1970s—2000, the total ecosystem service value of the farming-grazing transitional zone of northern China has been changed from the 143.4 billion yuan to 129.6 billion yuan RMB lower after recovering from declines in 1990s. The land use structure and spatial pattern has an impact on the value of ecosystem services. The cropland and grassland ecosystem offered the main ecosystem service value, being 31% and 44% respectively. And the proportion of the ecosystem services value in forest ecosystem has continued to rise although it’s small size. We should further strengthen the protection of ecological environment.

Key words: land use change; ecosystem service value; the farming-grazing transitional zone of northern China

收稿日期:2013-10-31;修订日期:2013-11-28

基金项目:国家自然科学基金项目(41030535);国家自然科学基金项目(30900197);国家973项目(2011CB952001)

作者简介:蒋力(1987—),女,湖南人,在读硕士生,主要从事土地利用变化与陆地生态系统研究。

通讯作者简介:徐霞(1977—),女,湖北人,副教授,主要从事土地利用模拟模型研究。

生态系统服务是指通过生态系统自身的结构、过程和功能,直接或间接地得到生命支持产品以及提供服务[1-2]。根据相关研究提出的生态系统服务功能分类[3-4],生态系统服务功能可以归纳为供给功能、调节功能、生命系统支持功能和文化娱乐功能等。其中,为人类提供食物、工业原材料等可以商品化的功能,称为直接价值功能;而气候条件、水源涵养等难以商品化的功能,称为间接价值功能。生态服务功能的间接价值虽然不表现在国家的核算体制上,但它们的价值可能大大超过直接价值。Costanza在1997年最先开展了对全球生态系统服务价值的系统评估工作,确定了生态服务价值的评估原理和科学意义之后[1],生态服务价值研究已成为当今生态系统可持续性研究的热点之一[4]。

土地利用变化是目前人地系统研究中的一个重要方面,它对环境和生态的作用在全球环境变化研究领域受到高度重视。土地利用的生态服务价值首先表现在它不仅是农业和畜牧业发展的重要物质基础,而且还具有生物多样性保护、涵养水源、防风固沙等重要生态功能[5]。同时,土地利用是人类最基本的经济活动,它的不断变化也会引起生态系统结构和功能的变化,从而导致生态服务价值的改变[6-7],因此,研究土地利用变化下的生态系统服务价值具有重要意义。目前,我国对于土地利用驱动下生态服务价值的变化做了大量的研究,主要体现在:欧阳志云、王伟等对生态系统服务的概念、内涵和价值评估方法进行了阐述[7-8];谢高地等对中国自然草地和青藏高原高寒草地的生态系统服务价值进行了评估,并根据Costanza提出的核算理论利用专家打分法制定了中国生态系统服务价值当量因子表[9]。此后,以中国生态系统服务价值当量因子表为基础,结合不同研究区土地利用变化的生态系统服务价值评估大量展开[10-18]。此外,基于遥感和GIS技术研究土地利用/覆盖变化背景下区域生态系统服务价值变化的研究也逐渐增多[19-22],并对草地、森林、流域等生态系统服务价值进行评估。这些研究主要对当年的价值进行静态分析,且依赖于经济学理论,而缺乏对生态系统自身规律的分析。关于土地利用结构和格局与生态服务价值的内在联系的定量研究较少。由于生态系统的服务功能与生态系统自身的结构与过程有关,且极易受到不同区域地理、气候的影响,因此,能够进行土地利用格局变化、生态系统结构、生态过程与服务功能的关系分析,可进一步为生态服务功能评价提供相对可靠的生态学基础,也成为目前研究的一个方向[23]。本研究基于土地利用——陆地生态系统耦合模型(TESim_R模型),通过对气象、植被、土壤以及控件属性等参数的输入,得到不同土地利用模式下的生态过程数据,并在此基础上依据不同的生态服务功能,对土地利用的生态服务价值进行评估。

1 研究区概况

中国北方农牧交错带是分隔我国北方东部农区与西部天然草地牧区的生态过渡带,斜贯东北-西南,北起大兴安岭西麓的呼伦贝尔,西至青海东部,南至宁夏南部,总面积约为72.6万km2,包括有10省205县(旗),总人口约6 000多万[24],在地理上具有很强的过渡性,同时该地区自然资源条件多样和相当脆弱,使得该研究区成为我国一个重要的生态脆弱区和生态过渡带。此外,随着人类活动长期以来的超强度利用和干扰,该区域的土地利用强度与空间格局发生了巨大变化,严重影响了生态服务功能的发挥。因此,以中国北方农牧交错带为研究对象,研究土地利用数量结构和空间格局变化对于陆地生态系统服务价值的影响具有重大实际意义。

2 研究方法

2.1 数据来源及处理

(1)土地利用数据:本文中使用的土地利用数据有4期,20世纪70年代的土地利用数据来源于中国科学院地理与资源研究所1992年的1∶400万土地利用空间分布图,其他3期的数据来源于80年代中期,90年代初期和2000年的TM遥感影像的解译结果。

(2)气象、地形数据:来源于中国科学院地理科学研究所1992年的1∶400万数字地图中的中国地貌图、中华人民共和国国家测绘局1995年编制的1∶25万地形高程数据库。气候资料数据来源于中国气象局气象站点数据,选择了中国北方农牧交错带及其周边地区133个站点的数据,时间范围为1976—1999年。

(3)统计数据:包括1976—1999年的全国统计年鉴,中国北方农牧交错带10省统计年鉴,每年林业统计年鉴、最近时期的调查数据。价格数据来源于中国统计年鉴以及实际调研数据。

2.2 土地利用——生态系统耦合模型

土地利用——陆地生态系统耦合模型(TES-LUC模型),该模型包括几个大的模块,土地利用动态过程模块、净第一性生产力模块、水分运动模块、土壤侵蚀模块、碳氮元素循环模块,模型的驱动因素为气象、植被、土壤以及地理空间属性和不同植被的相关生理参数等。利用不同的输入参数,可以得到不同土地利用空间格局下的生态系统过程数据。针对研究区的土地利用实际情况,使用实际气象数据资料作为驱动,各种空间属性、植被以及土壤等相关参数,以及相关变量的初始值形成输入文件,驱动土地利用——生态过程耦合模型TES-LUC,在模型进行多次迭代运算之后,得到4期土地利用现状下研究区不同格点的净初级生产力(NPP(x))、平均土壤侵蚀量(E(x))、平均土壤含水量(Q(x))以及平均土壤有机质含量(U(x))的模拟结果,以及区域整体平均的净初级生产力(NPP(x))、平均土壤侵蚀量(E(x))、平均土壤含水量(Q(x))以及平均土壤有机质含量(U(x))的模拟结果,随后进行各个格点以及研究区整体生态服务价值的计算。

2.3 生态系统服务价值评价方法

根据Costanza等人的分类方法,考虑到研究区的地理地貌特征和植被土壤类型,本文将研究区生态系统服务价值划分为初级生产、气候调节、养分循环、水源涵养、侵蚀控制五大类评价指标,以土地利用—生态系统耦合模型模拟的净初级生产力(NPP)输出值为基础,分别计算5个类别的生态服务价值,各类别指标服务价值的评估方法如下。

2.3.1 初级生产价值 净初级生产力(NPP)和生物量是反映有机物质生产的两个重要指标,生物量是反映物质的储存量,而初级生产力是反映某一时间段(如一年)所生产的有机物质量,利用 TES-LUC模型模拟的净初级生产力(NPP),根据有机物质的单位质量价值,换算得到研究区内生态系统初级生产的价值,具体计算公式为:

Vn=∑∑NPP(x)×Pn(x)

式中,Vn为初级生产的生态系统服务价值(元),NPP(x)为每个栅格内的NPP模拟均值,Pn(x)为单位有机物价值。

2.3.2 气候调节价值 在评估生态系统固定CO2和释放O2两项服务功能时,根据光合作用与呼吸作用的反应方程式,推算每形成1 g干物质需要的CO2的量(一般取1.62 g)和释放O2的量(一般取1.2 g)[25];然后利用碳税法估算吸收CO2的功能价值,工业制氧法估算释放O2的功能价值, 计算公式为:

Vr=∑∑1.62×NPP(x)×Pr

Vo=∑∑1.2×NPP(x)×Po

式中,NPP(x)为TES-LUC模型模拟的每个栅格内的NPP,Pr、Po分别为碳税法中CO2的单位质量价值和工业制氧法中的工业制氧价格,CO2的单位质量价值借用瑞典碳税率0.15美元·kg-1(C)来计算,换算成吸收CO2的税率为3.36×10-4美元·g-1(CO2)[26]; O2的工业制氧价为4×10-4元·g-1 (O2)[27]。

2.3.3 养分循环价值 生态系统中的植被在生长过程中,能够同时固定其他养分物质,这些营养物质通过复杂的食物网而循环再生,并成为全球生物地化循环不可或缺的环节。评估生态系统在养分循环中的作用时,以TES-LUC模型模拟的NPP为基础,估算其重要营养物质氮、磷、钾在生态系统中的年吸收量。根据统计资料,氮、磷、钾肥的平均价格分别为400,350,350元·t-1;对应的纯氮、磷、钾元素的折算率分别为79/14,506/62,174/78,即:

Vu=Vun+Vup+Vuk

Vun=∑∑NPP(x)×Rn1×Rn2×Pn

Vup=∑∑NPP(x)×Rp1×Rp2×Pp

Vuk=∑∑NPP(x)×Rk1×Rk2×Pk

式中,Vu为区域生态系统在一时间段内吸收的营养物质价值;Vun、Vup、Vuk分别为吸收的氮、磷、钾元素价值;Rn1、Rp1 、Rk1分别为各类生态系统中氮、磷、钾元素在有机物中的分配率(表1)[28];Rn2、Rp2、Rk2为纯氮、纯磷、纯钾分别折算为氮肥、磷肥、钾肥的比例;Pn、Pp、Pk分别为区域时间段内氮肥、磷肥、钾肥的平均价格。

2.3.4 水源涵养价值 涵养水源是生态系统的一个重要功能,可以参照李金昌等[29]的研究方法来评价生态系统对涵养水源的间接经济价值。通过TES-LUC模型模拟水分的垂直运动得到不同土壤层的土壤体积含水量。而土壤涵养水源类似于水库蓄水,因此,通过建立需水量为1 t的水库的费用来估算涵养水源的价值,查阅工程造价成本可知,中国每建设1 m3库容的平均成本花费为0.67元[25]。

Vw=∑∑Q(x)×Pw(x)×S(x)

式中,Q(x)为TES-LUC模型模拟的土壤含水量,Pw(x)为建成单位库容的花费成本,S(x)为对应的面积。

2.3.5 土壤侵蚀价值 根据水利部颁布的《土壤侵蚀分级分类标准》[30],土壤侵蚀包括减少土地损失面积的价值、减少土壤肥力损失的价值和减少泥沙淤积的价值,可通过TES-LUC模型模拟的土壤侵蚀量和土壤有机质对这一价值进行计算。

(1)土地面积减少量。主要根据土壤侵蚀量和土壤耕作层的平均厚度来计算,以我国土壤耕作层的平均厚度(0.3 m)作为土层厚度,采用土地的机会成本法估算土地面积减少的经济价值,计算式为:

Vss(x)=[E(x)+0.3]×OC(x)

式中,Vss(x)为每个栅格处在一段时间内减少的土地面积损失价值,E(x)为TES-LUC模型模拟的土壤侵蚀量,OC(x)为土壤生产的机会成本(元·m-2)。其取值是根据不同的生态系统类型来确定的,如表2所示。

(2)土壤肥力损失量。保持土壤肥力主要包括减少有机质损失,氮、磷、钾损失,分别由以下公式计算:

Vfec(x)=E(x)×U(x)×Pfc

Vfec(x)=E(x)×N(x)×Pfn

Vfep(x)=E(x)×Cp(x)×Pfp

Vfek(x)=E(x)×Ck(x)×Pfk

Vfe(x)=Vfec(x)×Vfen(x)×Vfep(x)×Vfek(x)

式中,Vfec(x)、Vfen(x)、Vfep(x)、Vfek(x)分别为减少N、P、K损失的功能价值,E(x)为TES模型模拟的土壤侵蚀量;U(x)为TESim模型模拟的单位土壤有机质含量;N(x)、Cp(x)、Ck(x)、分别为土壤的纯N化肥当量,纯P化肥当量和纯K化肥当量;Pfc、Pfn、Pfp、Pfk分别为柴薪、氮肥、磷肥、钾肥的平均价格。土壤中的氮元素、磷元素和钾元素含量则参考研究区的文献数据北方农牧交错区[5] 部分(表3)。

(3)泥沙淤积价值。通常,土壤侵蚀会导致部分泥沙淤积于水库、江河、湖泊等处,并直接造成其需蓄水量的下降,从而在某种程度上加剧干旱、洪涝等灾害的发生。生态系统减少的这部分损失的价值可以近似根据蓄水成本来计算:

Vst(x)=E(x)×Ltr(x)×Pre(x)

式中,Vst(x)为生态系统在一段时间内减少淤泥损失的价值;E(x)为TES模型模拟的土壤侵蚀量;Ltr(x)为总侵蚀量中会造成淤积的泥例;Pre(x)为平均库容工程费。

综合上述3项因子价值,最终可得土壤侵蚀功能价值为:

Usr=Vss+Vfe+Vst

2.4 价格参数的处理

由统计资料不难发现,物价水平在1976—2000年的模拟期间,有着显著的上升趋势。由于生态效益评估涉及到不同年份间生态系统服务价值的比较,根据区域生态资产计算的特点,且受限于价格数据的来源,因此,必须对不同年份的价格变量进行转换和折算。本研究采用消费物价指数(Consumer price index,CPI),以1978年为货币基准年,近似处理不同年份得到的价格数据(图1),从而纳入统一的评估框架。

将所有价格数据和中间参数小结如下,表4展示了评估框架中,价格参量的数值、单位、数据来源和涵义。

3 结果与分析

3.1 不同土地利用数量结构下的生态服务价值

表5给出了从20世纪70年代—2000年研究区土地利用类型数量结构变化的统计结果。从表5中可以看出,我国北方农牧交错带土地利用结构以草地和耕地为主,分别占到总面积的33.26%(2000年)和41.63%(2000年),合计达到74.89%。自20世纪70年代到2000年,土地利用结构发生了较大变化,从总体趋势来看,可以分为两个阶段,第一阶段为20世纪70年代到20世纪80年代后期,土地利用数量结构剧烈变化。其中,耕地、草地所占面积急剧增加,其中增幅最大的是草地,上升了11%;而林地所占面积则大幅下降,产生原因可能是由于社会经济的快速发展和人口的急剧增加,大量的林地转化为可用于耕种的耕地和可用于放牧的草地。另一阶段是1980年代后期到2000年,土地利用变化方向产生一定转变,且土地利用变化程度减缓,其中,耕地保持平稳上升趋势,林地经过小幅上升后略有下降;而草地保持略微下降趋势。表明土地利用类型逐渐由林地向耕地和草地转化。另外,为了防风固沙、保持水土,一些防护林工程也陆续开始实施,使得1980年代后期的林地所占面积有所回升。

运用前文所述方法,对研究区生态服务价值进行计算,结果见表6。从表中可以看出,从生态服务价值总值来看,中国北方农牧交错带的生态服务总价值变化,大体上可以分为两个阶段,从20世纪70年代到20世纪90年代,生态服务总价值由1 434亿元下降到1 291亿元,这是因为土地利用变化总体趋势为耕地和草地大量增加,林地减少。而耕地和草地的单位生态服务功能价值指数远远小于林地。从20世纪90年代到2000年,生态服务总价值开始回升,这也与土地利用数量变化程度减缓和生态环境效益改善有关系。从不同土地利用类型所占的生态服务价值的数量比例来看,草地由于其面积较大,它所占的比重最高,平均每年占总生态服务价值的40%以上;林地的面积比例尽管下降,但其生态服务价值比例却逐渐升高;而耕地的生态服务价值所占比例相对稳定,为30%左右。不同生态系统所占的生态价值比例也充分体现了该区域土地利用以农业和牧业用地为主的显著特点。随着土地利用变化的加剧,不同生态系统生态价值也随之变化。

3.2 不同土地利用空间格局下的生态服务价值

由前文所述方法运用GIS软件得到中国北方农牧交错带不同时期生态服务价值空间分布图(图2)。从图2中可以看出,研究区生态服务价值受土地利用类型的影响相当明显,总体上呈现从东北向西南递减的趋势,由于研究区东北部主要分布着森林植被,其生态服务价值比较高,大部分高于10 000元·hm-2左右;中部为内蒙古高原向黄土高原过渡区,分布着较多的草地和耕地,生态服务价值约在3 000元·hm-2左右,南部为青藏高原向黄土高原过渡区,生态服务价值偏低,多低于1 000元·hm-2。从20世纪70年代—20世纪90年代期间,大量的林地向耕地和草地转移,研究区的生态服务价值呈现整体降低趋势,中西部地区尤为明显。其中,20世纪70年代—20世纪80年代年间,生态服务价值在中西部小部分地区略有下降;20世纪80年代—20世纪90年代期间,研究区全区生态服务价值有一定程度的减弱,其中以中西部地区最为明显,耕地和草地的生态环境进一步恶劣;20世纪90年代—2000年间,区域生态服务的空间变化趋势减缓,从图中较难看出明显差异,这与之前的数量分析结果相对应。

进一步对全区生态服务价值进行分级,并统计各级栅格个数(表7),可以看出,20世纪70年代研究区生态服务价值主要集中在1 000~3 000元·hm-2的区间,共占了生态服务总值的58%,生态服务功能价值较高;20世纪80年代,全区生态服务价值分布在1 000~3 000元·hm-2之间的比例基本持平,但大于4 000元·hm-2的比例显著下降,表明高生态服务价值区逐渐减少;20世纪90年代,生态服务价值主要集中在1 000~2 000元·hm-2之间,其中低于1 000元·hm-2的面积比例明显增大,而高于4 000元·hm-2比例继续减少,表明区域生态服价值继续降低;2000年,全区生态服务价值在低于1 000元·hm-2之间的分布最多,达39.01%,而高于4 000元·hm-2的比例也降至10.51%。生态服务价值两极分化日趋严重。

4 结论与讨论

参照前人研究成果,结合研究区实际情况,我们确定了研究区土地利用生态服务价值的计算方法。并利用土地利用——生态系统耦合模型的模拟数据作为基础数据,通过GIS等手段实现对中国北方农牧交错带生态服务价值的时空格局变化的研究。本研究基于生态系统过程,然后将直接和间接市场价值引入生态系统服务评价体系,从而把生态系统过程和社会经济紧密联系起来,使评价结果更加客观和可靠。

为了验证本文计算结果,将他人研究成果进行简单的面积比例折算,与本研究的结果对比分析(均进行物价指数处理)。经过文献检测发现,国内其他大尺度的自然及社会条件相近地区的生态系统服务评价工作大部分在1990年代开展,其中包括:运用遥感技术对内蒙古生态资产测量,经过折算后结果为1 663.9亿元[31];利用直接和间接价值计算法评估青藏高原,折算到本研究面积的生态系统服务价值为2 658亿元[9]。本文评价结果表明,中国北方农牧交错带的生态系统服务功能平均总价值在1990年代为1 255亿元,由于本研究只是不完全评估了5种生态系统服务,因此可以认为,本研究与众多其他研究的评价结果在数量上基本一致。

本研究的生态经济分析结果表明,不同的土地利用数量结构对生态服务价值有重要影响。由于1970年代至1990年代,土地利用结构主要表现在林地大量减少,耕地和牧草地大量增多,导致高生态服务价值用地向低生态服务价值用地转化,北方农牧交错带生态总价值在30年中从1 434亿元降低到1 070亿元。进入1990年代中后期,随着土地利用结构变化日趋平缓及一些政策促进生态环境的改善,北方农牧交错带生态效益总价值开始逐步回升。

研究也表明,土地利用空间格局不同,其生态服务价值也有很大差异。分布着森林的东北部单位面积平均生态服务价值最高,分布着耕地的西部地区则相对最低。1970年代—1990年代中,高生态服务价值地区不断减少,低值地区不断增多,生态服务总价值也出现减少趋势,因此,制定政策时需要关注如何提高单位面积的生态服务价值,以及扩大单位生态服务价值高的区域的面积,通过本文分析可知,保证较高的森林覆盖率是维持生态环境的重要措施。

由于数据和资料的局限,本文只计算了2000年之前的生态服务价值,而从2000年起,研究区开始大面积实施退耕还林/草工程,此政策对土地利用模式和生态服务效益都有一定的良好影响,还有待做进一步的持续性研究。

参考文献:

[1] Costanza R, D'Arge R, de Groot R, et al. The value of the world's ecosystem services and natural capital [J]. Nature, 1997(386): 253-260.

[2] Repetto R. Accounting for environmental assets [J]. Scientific American, 1992: 64-70.

[3] The Conceptual Framework Working Group of The Millennium Ecosystem Assessment. Ecosystem and human well-being [M]. Washington D C: Island Press, 2003.

[4] 岳书平, 张树文, 闫业超. 东北样带土地利用变化对生态服务价值的影响[J]. 地理学报, 2007, 62(8): 879-886.

[5] 郑淑华, 王堃, 赵萌莉, 等. 北方农牧交错区草地生态系统服务间接价值的初步评估—以太仆寺旗和沽源县境内为例[J]. 草业科学, 2009, 26(9): 18-23.

[6] 王科明, 石惠春, 周伟, 等. 干旱地区土地利用结构变化与生态服务价值的关系研究—以酒泉市为例[J]. 中国人口·资源与环境, 2011, 21(3): 124-127.

[7] 欧阳志云, 王如松, 赵景柱. 生态系统服务功能及其生态经济价值评价[J]. 应用生态学报, 1999, 10(5): 635-639.

[8] 王伟, 陆健健. 生态系统服务功能分类与价值评估探讨[J]. 生态学杂志, 2005, 24(11): 1314-1316.

[9] 谢高地, 鲁春霞, 冷允法, 等. 青藏高原生态资产的价值评估[J]. 自然资源学报, 2003, 18(2): 189-196.

[10] 汤洁, 庄玉夏, 刘亚修, 等. 土地利用变化对生态系统服务价值的影响研究—以吉林省大安市为例[J]. 吉林农业大学学报, 2007, 29(3): 298-302, 306.

[11] 王宗明, 张树清, 张柏. 土地利用变化对三江平原生态系统服务价值的影响[J]. 中国环境科学, 2004, 24(1): 125-128.

[12] 周鑫, 左平, 滕厚峰, 等. 基于土地利用变化的生态系统服务价值核算——以江苏盐城滨海湿地为例[J]. 海洋通报, 2011, 30(6): 656-661.

[13] 胡喜生, 洪伟, 吴承祯. 福州市土地生态系统服务功能价值的评估[J]. 东北林业大学学报, 2011, 39(12): 90-94.

[14] 吕明权, 王延平, 王继军. 吴起县土地利用变化及其生态服务价值研究[J]. 水土保持研究, 2010, 17(1): 144-148, 153.

[15] 孙慧兰, 李卫红, 陈亚鹏, 等. 新疆伊犁河流域生态服务价值对土地利用变化的响应[J]. 生态学报, 2010, 30(4): 887-894.

[16] 周飞, 陈士银, 吴明发. 土地利用结构变化及其生态服务功能响应——以广东省湛江市为例[J]. 安全与环境学报, 2007, 7(5): 76-79.

[17] 谢余初, 巩杰, 赵彩霞, 等. 干旱区绿洲土地利用变化的生态系统服务价值响应——以甘肃省金塔县为例[J]. 水土保持研究, 2012, 19(2): 166-170.

[18] 曹银贵, 周伟, 袁春. 基于土地利用变化的区域生态服务价值研究[J]. 水土保持通报, 2010, 30(4): 241-246.

[19] 于智强, 臧德彦, 陈龙乾, 等. 基于遥感的抚州市土地利用变化及生态系统服务功能价值变化研究[J]. 西北农业学报, 2010, 19(5): 202-206.

[20] 高清竹, 何立环, 黄晓霞, 等. 海河上游农牧交错地区生态系统服务价值的变化[J]. 自然资源学报, 2002, 17(6): 706-712.

[21] 吴海珍, 阿如旱, 郭田保, 等. 基于RS和GIS的内蒙古多伦县土地利用变化对生态服务价值的影响[J]. 地理科学, 2011, 31(1): 110-116.

[22] 陈美球, 赵宝苹, 罗志军, 等. 基于RS和GIS的赣江上游流域生态系统服务价值变化[J]. 生态学报, 2013, 33(9): 2761-2767.

[23] 李文华, 张彪, 谢高地. 中国生态系统服务研究的回顾与展望[J]. 自然资源学报, 2009, 24(1): 1-10.

[24] 王静爱, 徐霞, 刘培芳. 中国北方农牧交错带土地利用与人口负荷研究[J]. 资源科学, 1999, 21(5): 19-24, 8.

[25] 欧阳志云, 王效科, 苗鸿. 中国陆地生态系统服务功能及其生态经济价值的初步研究[J]. 生态学报, 1999, 19(5): 607-613.

[26] 国家环境保护局. 中国生物多样性国别报告[M]. 北京: 中国环境科学出版社, 1997.

[27] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 1992.

[28] 中国生物多样性国情研究报告组. 中国生物多样性国情研究报告[M]. 北京: 中国环境科学出版社, 1998:191-210.

[29] 李金昌, 姜文来, 靳乐山, 等. 生态价值论[M]. 重庆: 重庆大学出版社, 1999.

篇6

关键词 城市绿地;生态;评价体系;研究

中图分类号 X826 文献标识码 A

文章编号 1002-2104(2012)04-0067-05 doi:10.3969/j.issn.1002-2104.2012.04.013

生态系统功能主要分为对内和对外两种功能,对内功能是生态系统维持自身运转的能力对外功能是为人类和其他动物提供服务的功能,其中维持自身运转功能包括物质循环、能量流动、信息传递和演替过程等。随着城市化的快速推进和对高质量城市人居生活的强烈要求,城市绿地承担着越来越多的生态功能、景观美化功能和经济社会功能。在对城市绿地生态系统评价研究中人们关注焦点主要集中在城市绿地为人类提供的生态服务功能,而忽视绿地自身运转功能;评价体系的设置也过多依赖于数量指标,同时,未能借助指标对绿地结构合理性、功能状况、质量高低等问题进行科学评价。高估了城市绿地生态功能,影响城市绿地规划、建设和管理。

1 城市绿地生态系统评价忽略的几个问题

1.1 绿地数量和面积与生态功能的关系

1993年11月国家建设部颁布《城市绿化规划建设指标的规定》,确定以城市人均公园绿地面积、城市绿化覆盖率和城市绿地率等3大指标为城市绿地评价的主要指标。建设部2002年颁布的《城市园林绿地分类标准》(GJJ/T85―2002)和2010年颁布的《国家园林城市标准》、《城市园林绿化评价标准》(GB/T50563-2010)中,建成区绿地率、建成区绿化覆盖率、人均公园绿地面积、公园绿地面积等数量指标是城市绿地评价考核的重点。导致各级部门将完成数量指标看作是绿地建设管理的重要任务,公众也误认为绿地数量越多、面积越大、人均越多,城市绿地生态功能越好,一味追求数量指标,而忽视了绿地质量建设。在目前城市绿化建设用地极为有限、城市人口迅速增加、园林绿化设计和建设滞后的情况下,通过扩大绿地面积来提高城市绿地覆盖率,必然会带来造假行为或歪曲绿地建设实质。

1.2 人工绿地生态系统与自然生态系统生态功能的差异

通常情况下,城市绿地生态功能效益评价指标和参考标准直接来源于研究人员多年对自然生态研究的结果,但忽略了人工绿地生态系统与自然状态下的绿地具有一定的差异性,因此城市绿地的生态功能经常被人们高估。在对自然生境与人工生境中鸟类的种类、数量及鸟类群落研究中发现,人工生境中鸟类物种数及密度显著低于自然生境,人类活动所造成的生境改变对鸟类多样性有不利影响[1]。在选取物种多样性指数对黄土丘陵区主要天然及人工群落物种多样性进行的研究中,天然植物群落物种丰富度、多样性指数均高于人为干预的人工植物群落[2]。城市绿地在涵养水源、防风固沙、保持水土、维持生物多样性等方面的效果都不如自然植被,甚至某些生态功能面临缺失的危险。

1.3 对城市绿地特殊生存环境和后期科学管护的忽视

城市建筑、道路、管道等基础设施的修建,改变了城市地下地质结构,破坏了绿地的径流和根系统,增加了土壤侵蚀速度。城市热岛效应形成小气候,影响城区温度、湿度。大气悬浮物和氮氧化物等有害气体会干扰或破坏植被的呼吸和蒸腾功能。城市污水,超出绿地净化速度和能力。城市的噪音、夜晚照明扰乱植被的新陈代谢,加快植被衰老和枯萎速度,阻碍对营养物质的吸收。城市特殊的地表和环境特征,改变了绿地生态机体生存条件,对绿地健康构成较大威胁。

很多情况下,对园林绿地的管理只限于移栽、浇水、修剪等基本护理,而少有林业、土壤、生态等专业人员参与研究、实验和改良。以致城市绿地对人工形成依赖,失去生态系统的自然特性、生命机能容易扰,能量自给能力、抵抗自然灾害和病虫害的能力降低。

1.4 重视城市绿地功能和价值,忽视建设和管护成本

铺设大面积的观赏性草坪再栽种一些灌木是目前城市绿地建设的普遍做法,简单而又方便管护。为了保持草坪的整洁和清新,需要定期进行修剪、使用大量杀虫剂、不停地用水龙头进行浇灌。设置花台和盆栽是美化城市风貌的新渠道,由于植被只能在薄薄的土层中和狭小的土壤空间生长,土壤失去了涵养水源的功能、缺少有机物质成分和微生物活动,不能维持水分、营养的供给,需要定期浇水、施肥、修剪、移栽等保育措施才能维持其生存状况。

在城市地标、高档住宅小区设计和建设中,投入大量人财物引进或者移栽一些名贵树种、古树或建设整齐划一园林绿化工程,大多数情况下并未取得预期的效果。植物具有群落性特征,仅仅一棵或者是少数几株树种无法发挥其生态、景观效益,还会导致树种的水土不服。过分注重景观性或者过分依赖于人工来建设城市绿地是一种极不经济的行为,花费了大量的人财物力,建设成本较大,生态功能不稳定,发挥的景观效益也非常短暂、有限。

1.5 绿地建设的内涵在城市园林绿化中被曲解

城市园林绿化是以生态学、城市规划、风景园林等专业原理为指导,以人工培育的绿色植被群落为主体,通过对城市一定规模的绿地生态系统进行改造,并添加文化和艺术内涵综合构成的具有生态、景观、文化等功能的城市绿色空间系统,是一个对城市人居生态环境改善,促进城市社会、经济和环境协调可持续发展的一种方法和过程。绿地不再局限于单纯的绿化功能空间,而是从区域自然生态、人工生态与环境保护以及建设的角度组织绿地与生态要素体系[3]。

绿地作为城市园林绿化建设的重要内容,绿地首要的功能应当是维持城市生态平衡,强调一定地域范围内的植物种类情况及其相互间的关系,而非仅仅是视觉上的“绿化”。将绿地建设误以为在一块草坪上配植几株灌木,误认为绿地建设就是绿化,误认为有了绿色就会发挥生态效益;有时候把景观与绿地的概念混淆或轻重颠倒,这样既没有很好发挥城市绿地的生态功能,又缺乏景观特色,在很大程度上曲解了绿地建设的内涵。

2 城市绿地生态系统综合评价体系构建原则

2.1 整体性

各种形式的生态系统服务之间形成了多种相互关联的模式,例如气体成分的调节伴随着气候调节,水分调节与土壤保持相依存,水分调节与土壤肥力保持和食品生产功能相关联,同时生态系统服务功能发挥还与周边环境以及人们的感知认识紧紧相关。城市绿地作为一个有机整体,在指标和样本选取时不能将中心城区与郊区分开,也不能将公园绿地、生产绿地、防护绿地、附属绿地和其他绿地区别对待,在评价内容选取时全面考虑绿地自身、绿地与生存环境之间、以及公众对绿地感知认识的综合。

2.2 前瞻性

评价体系的构建既要反映城市绿地的现状,也要通过建立资源、经济、社会和环境各要素之间的关系,借以指示城市绿地未来的发展趋向。例如,随着城市面积增加、人口增多,加上城市生活水平提高以及多元化追求和个性化的人居环境需求,城市绿地被赋予了越来越多的功能期望。评价体系对于绿地设计和建设具有导向功能,提前预测和推算未来发展趋势,可以更好地满足未来各项需求。

2.3 简单和可操作

评价指标的概念需具体和明确,易测易得,数据应便于统计和计算,且有足够的数据量。指标的设计应以相关部门和研究机构的标准以及研究成果为参考,得出的结果也便于被采纳。

2.4 相关性

城市绿地作为一个有机生态系统,各个部分之间具有较强的相互联系,在指标选取时应当考虑指标之间具有较强的相关性,指标之间能够相互应证和补充。同时,指标要具有针对性,与绿地某一特征和实际情况有较强的关联,能反映绿地质量、数量、功能和结构关系。

2.5 便于比较

城市绿地受到地理条件、经济发展水平以及城市建设与管理等影响,不同类型城市评价指标体系构建应既要有个性特征还应具有共性,各项评价指标应具有明确的含义和统一的测算标准,尤其是在设计主观层次的问题时,在问题程度上拉开距离,这样便于将国内外、不同地理环境、不同类型城市之间的评价结果作比较。

3 城市绿地生态系统综合评价体系构建

生存环境的优良性、绿地自身的健康是确保城市绿地各项功能充分发挥的前提,而居民的感知认识是绿地是否能有效满足公众需求的重要测评标准。将这三方面与传统绿地生态系统服务功能评价相结合作为新的研究视角,综合构建城市绿地生态系统功能评价体系,这样的研究还不多见。

参照一些学者对城市绿地生态系统评价指标的研究[4-5,9,12],根据《城市园林绿化评价标准》(GB/T50563-2010)和国家园林城市标准,选择其中一些指标,增加一些来自林业、生物、生态等学科当中能反应绿地生存环境、绿地自身健康状况的指标,构建新的城市绿地生态系统评价体系框架(图1)。

图1 城市绿地生态系统评价体系

Fig.1 The evaluation system of urban green space

3.1 生存环境优良性

3.1.1 城市小气候

城市小气候又称为微气候,主要受到城市人动的影响形成热岛效应,改变了局部区域的温度、湿度、光照、降水、风等条件。这些条件是否改变了当地常年平均水平或者能否满足城市绿地生长发育,需要设计针对性的指标来考证和研究。

3.1.2 水

城市地表水、浅层地下水是绿地生长的直接水源,需要有指标来测量绿地用水的数量及受污染状况、矿物元素含量、酸碱程度等显示城市水体质量的指标。例如可以选取地表水各类水质比率指标,或者直接对绿地地表水进行测验来确定。

3.1.3 大气

汽车、工厂、家庭厨房以及建筑施工,产生了污染大气环境的CH4、H2S、CO、SO2、NO2、O3等有害气体和颗粒物,影响绿地植被呼吸、蒸腾,污染物跟随降雨到达地面,腐蚀根系、影响植被生长。因此,需要对城市大气中气体成分和含量,尤其是有毒成分进行计量和监测,选择用年空气污染指数小于或等于100的天数等类似指标来综合测算。

3.1.4 土壤(土地能力)

城市绿地的土壤主要来源于建筑垃圾、建设开挖的深土层,而绿地中的树叶和杂草在管护中被清扫干净,土壤当中缺乏有机质和分解有机质的微生物、动物。因此,通过考察土壤结构、土壤有机和无机成分、土壤酸碱度、土壤封盖度、土壤退化程度和土地生产潜力等指标来测量绿地土壤能力。土壤中的生物和动物对土壤的形成、发育、物质循环、肥力演变等有较大影响,有助于指导科学栽培、施肥、灌溉、排水和施用农药等,改善土壤质量。因此,为了衡量绿地生存环境优良状况,还需要有测量土壤中微生物、动物等情况的指标。

3.2 绿地健康状况

运用生态系统健康理论与相关指标对城市绿地生态系统进行评价和分析,动态地揭示绿地系统的现状和变化趋势,为城市绿地生态系统的科学管理和可持续发展提供科学依据。绿地生态系统的健康性主要包括系统的整合性、稳定性和可持续性,本文从群落结构、生物多样性、建设与管理水平和绿地能力等四方面来衡量绿地的健康状况。

3.2.1 群落结构

若仅注重观赏价值和成本,栽培整齐划一的树种或者是仅仅栽种少数品种植被,造成树木的种类、年龄、层级、高度等趋向一致,极易出现水土流失、地力衰退等不良生态后果,也易发生森林火灾和病虫害问题。

群落的稳定性主要看是否满足各构成组分的生态习性;受环境污染危害的程度可以通过观测植物高生长,叶片选择和叶子是否正常生长,以及成片树木的叶子变黄或濒临死亡来判断;树木病虫害情况也可通过观测来完成[6]。城市绿地群落结构的考察指标主要有四类[7]:植物群落水平结构(群落密度、覆盖度 )、植物群落垂直结构(乔灌草比例、层片值、叶面积综合指数)、树种组成结构指标(树种多样性、自然度)、树木年龄结构指标(速生慢生比、胸径结构)。

3.2.2 生物多样性

只有品种多样化才有生物多样性,只有生物多样性才有生态稳定性,只有绿地生态系统稳定,才能保持系统整体健康性并对有害生物保持较强的抵抗力。在对橡胶园和茶树种植园研究表明,随着种类增加,层次复杂加大,系统在生物量及生产力上均有明显增加,随着结构的复杂化加大,相对湿度也随着增加,最高温度降低,最低温度升高, 风速减少,土壤流失明显减少,对低温风害的抵抗力加强[8]。城市绿地生物多样性的研究包括了遗传多样性、物种多样性、生态系统多样性和近年研究得较多的景观多样性等领域[9]。绿地生物多样性测量可选取的指标主要有:植物种类多样性、常绿植物与落叶植物比、乔木与灌木比、植被丰度、土壤中生物种类和单位生物量、公园内虫鸟种类和出现频率、乡土树种比率。

3.2.3 建设与管理水平

根据《城市园林绿化评价标准》(GB/T50563-2010),选取综合管理、建设管控中主要指标。(1)综合管理:城市园林绿化维护专项资金、城市园林绿化科研能力、城市园林绿化管理信息技术应用。(2)建设管控:公园管理规范化率、古树名树保护率、节约型绿地建设率、立体绿化推广率、公园绿地应急避险成所实施率、城市园林绿化管护力度即肥料的种类、施肥的保证率、树木和草坪的修剪及时性、防治病虫害农药的种类、灌溉水保证率和灌溉方式以及灌溉量等。

3.2.4 绿地能力

一是植被生长能力,它包括植被平均寿命、新增绿地存活率、林木平均生长率、乔灌木根系延伸范围,二是受损弃置生态与景观恢复率,三是植被的适应性,包括树种的适宜性、植物生长发育状况、病虫害的发生情况等。

3.3 绿地综合效益评价

城市绿地系统综合效益是生态效益、经济效益、景观效益、社会效益的统一体,唯有兼顾四者,协调四者之间的关系才能真正实现城市绿地系统功能发挥。在构建绿地综合效益评价指标体系时,采用六个分类[10]。

3.3.1 生态功能

绿地系统连续性、绿地到达便利程度、绿地廊道宽度与联通性、绿地板块形状和面积、绿地空间景观多样性。

3.3.2 结构形态

吸收二氧化碳释放出氧气状况、吸收有毒气体净化空气状况、滞尘状况、防止噪声、调节气候温度状况、涵养水源蓄水保土状况。

3.3.3 经济效益

城市绿地与周边或外界绿地的关系、城市绿地的区位、绿地空间的绿地及其他用地比例、绿地空间郁闭程度。

3.3.4 生态过程

苗木产值或增益值、经济林木比例、公园和风景区经营收入。

3.3.5 景观效益

古树名木保护和园林文化生态价值、绿视率、绿地对视线的抗干扰程度、园林游览观赏效应。

3.3.6 规划定量

绿地面积或人均绿地面积、公共绿地面积或人均公共绿地面积、绿地率、复层绿色量或人均复层绿色量、绿化三维量或人均绿化三维量、城市绿量率、公共绿地率、道路绿地率、防火绿地比例。

4 居民感知认识

城市绿地生态系统的综合效益和功能,还可以通过对城市居民对绿地主观感知认识的调查分析得到。为了比较不同自然地理环境下、不同级别城市的居民对城市绿地建设满意度和存在问题差异性的了解,从绿地生态系统的主要服务群体需求入手,将全国划分为南部季风区、北部季风区、西北干旱区和青藏高寒区等四个季风区,在每个季风区抽取一定比例的城市居民作为调查对象,形成样本,从城市绿地规模与数量、可达性、公平性、乔灌草结合度、野生性、多样性、观赏性、绿地生态服务功能、绿地管理、对绿地的满意度、公众参与等11个重要方面考查当地居民对城市绿地的需求程度,对绿地的切身感受和绿地建设与管理问题。将调查结果作为城市绿地生态系统功能评价,改善绿地建设和管理的重要参考依据。

5 结 论

由于我国各个城市和地区社会经济状况,生态环境差异水平和气候差异都较大,尽快建立起一套统一的、有效的“多类型多层次”绿地指标体系,构建多维度、多层次的城市绿地生态综合评价指标体系,来评价我国城市绿地生态水平,指导我国生态城市的建设。[11]城镇绿地生态系统功能综合评价体系的构建,从多角度、多方面借鉴和综合了前人的一些研究成果,评价体系既依靠客观统计数据,也以主观的调查分析作为支撑,涉及到林业、生态、生物、统计、环保、城镇规划等多个方面,指标涵盖了传统评价内容当中的数量指标、质量指标、结构指标以及功能指标。本文提出的评价体系旨在为城镇绿地生态功能综合评价打开一个新的研究视角,希望能为城镇绿地规划、建设和管护提供更加科学的依据。

参考文献(References)

[1]蔡音亭,王强,张颖,等.西天目山低山地区人工与自然生境夏季鸟类群落比较[J].动物学杂志, 2008,43(4):20-25.[Cai Yinting, Wang Qiang, Zhang Ying, et al. Bird Communities at Artificial and Natural Environment in Lower Mountain Regions of West Tianmu Mountain[J]. Journal of Zoology, 2008,43(4):20-25.]

[2]卜耀军,温仲明,焦锋,等.黄土丘陵区人工与自然植物群落物种多样性研究:以安塞县为例[J].水土保持研究,2005,12(1):4-6.[Bu Yaojun, Wen Zhongming, Jiao Feng, et al. Research on Biodiversity of Artificial and Natural Plant Communities in Loess Hilly Region: Taking An Sai County As an Example[J]. Research of Soil and Water Conservation,2005,12(1):4-6.]

[3]姜允芳,刘滨谊.区域绿地分类研究[J].城市问题,2008,29(3):82-86.[Jiang Yunfang, Liu Binyi. Classification study on regional green space[J].Urban Problems, 2008,29(3):82-86.]

[4]李妮,李艳红,尹林克,等.克拉玛依市中心城区绿地系统健康现状评价与分析[J].安徽农业科学.2008,36(15):6305-6306,6343.[Li Ni, Li Yanhong, Yin Linke, et al. Evaluation and Analysis on Karamay Central City Zone Green System Healthy Present Situation[J].Journal of Anhui Agricultural Sciences, 2008,36(15):6305-6306,6343.]

[5]陈春娣,荣冰凌,邓红兵,等.欧盟国家城市绿色空间综合评价体系[J].中国园林,2009,25(3):66-69.[Chen Chundi, Rong Bingling, Deng Hongbing, et al. Comprehensive Assessment System of Urban Green Spaces in the European Union[J]. Chinese Landscape Architecture, 2009,25(3):66-69.]

[6]李成.影响城市绿地生态质量主要评价项目因子分析[J].山东林业科技,2006,163 (2):83-84.[Li Cheng. Analysis on main factor Affect the city green land ecological quality evaluation project[J].Journal of Shandong Forestry Science and Technology, 2006,163 (2):83-84.]

[7]徐晓红,尹林克,等.干旱区绿洲城市园林绿地系统健康的评价方法:以新疆克拉玛依市为例[J].干旱区研究, 2008,25(4):464-469. [Xu Xiaohong, Yin Linke, et al. Study on the Evaluation Methods of the Health of Greenland System in the Oasis Cities in Arid Areas: A Case Study in Karamay City,Xinjiang[J].Arid Zone Research,2008,25(4):464-469.]

[8]冯耀宗.物种多样性与人工生态系统稳定性探讨[J].应用生态学报,2003,14(6):853-857.[Feng Yaozong. Species Diversity and Managed Ecosystem Stability [J].Chinese Journal of Applied Ecology, 2003,14(6):853-857.]

[9]杨伟儿,张乔松,周先武.广州城市绿地生物多样性的现状与展望[J].广东园林,2006,28(2):47-52.[Yang Weier, Zhang Qiaosong, Zhou Xianwu. Current Status and Prospects of Biodiversity in Guangzhou Urban Green Space[J].Guangdong Landscape Architecture, 2006,28(2):47-52.]

[10]刘滨谊,姜允芳.中国城市绿地系统规划评价指标体系研究[J].城市规划汇刊,2002,138(2):27-29.[Liu Binyi, Jiang Yunfang. The Inclined Errors and Countermeasures of Urban Green Space System Planning in China:The Research on Indices System of the Urban Green Space System Planning[J]. Urban Planning Forum, 2002,138(2):27-29.]

[11]张利华,张京昆,黄宝荣.城市绿地生态综合评价研究进展[J].中国人口・资源与环境,2011,21(5):140-147. [Zhang Lihua, Zhang Jingkun, Huang Baorong. Research Progress in Comprehensive Evaluation of Urban Green land[J]. China Population,Resources and Environment,2011,21(5):140-147.]

New Perspective of Comprehensive Evaluation Research on Urban Green Space Ecosystem

ZHANG Lihua1 ZOU Bo2 HUANG Baorong1

(1. Institute of Policy and Management,Chinese Academy of Sciences,Beijing 100190,China; 2. College of Resources Science, Beijing Normal University, Beijing 100875,China)

篇7

关键词:森林生态系统;水土保持;功能表现

【分类号】:S41

森林和林地有着丰富的多样性,是世界上最丰富的生物基因库。森林生态系统比其他生态系统具有更复杂的空间结构和营养结构,其系统自身调节能力远比草原要强,森林总的利用率和生物生产力也是天然系统中最高的。森林植被具有固土、保土、改善土壤结构、防止土壤水蚀及风蚀等多种功能。森林植被破坏会引起土壤流失,土资源减少,影响人类生产生活等一系列问题。因此,森林环境问题,对土资源有重大的影响。同时,土资源也是森林生存发展的基础。

地球表面陆地只占29.2%,其余均被水覆盖。但是,生活在地球上的绝大多数高等生物栖居在陆地上,特别是人类全部都居住在陆地上。因此,陆地是生物圈的最重要的组成部分。人类依赖陆地生态系统从事农业、牧业、林业以及其他多种经济活动,以满足食品和其他方面的需要。在陆地生态系统中,土壤又是最基本、最重要的条件,是决定生态系统构造及其类型的主要因素之一。适于植物生长的土壤是岩石经过千万年风化侵蚀和生物作用的复杂变化演化而成的。在人类过分榨取和不适当的利用下,土壤可以在几十年,甚至几年之内退化或破坏。土壤一旦发生退化或破坏,通常是难以恢复原状的。土壤的破坏是对农林业生产的最大冲击。

森林的保土保肥效的效能表现为:减少土壤侵蚀、保持土壤肥力、防沙治沙、防灾减灾(如山崩、滑坡、泥石流)等。

⒈固持土壤的作用

森林的树冠、深厚的枯枝落叶层不但截留天然降水,还可有效地减轻雨滴对土壤的直接冲击。林地下强壮且成网络的根系与土壤牢固地盘结在一起,从而起到有效的固土作用。各种植物的根系都有固持土壤的作用,以林木树种为好。乔灌木树种依靠其深长的垂直根系和扩展较广的侧根系,能以相当大的深度和幅度固持土体,加之树木之间根系相互交错,构成地下“钢筋”,固土作用就更大。如一株平茬后三年生沙棘,其根系向水平方向延伸最长可达6.3m,新生根蘖苗95株,固土面积4.8m2。据张嘉宾的测定分析,即使是微小的细根,也有很强的固持土壤能力,平均直径只有0.8mm粗的细根,具有固持1.31kg土壤的能力。

2.改良土壤的作用

森林通过改善土壤的形成条件和本身的生理活动,对土壤物质的某些更新产生影响。森林是庞大的生产有机物质的“工厂”。林木通过其强大的根系向深层土壤吸收无机盐分,再通过庞大的树冠进行光合作用,制造有机物质,这样就提供了林地土壤肥力改善条件。林木中每年有70%的有机物质以枯枝落叶的形式归还到土壤里。林地中的根系,一方面从土壤中吸收养分建造自身,另一方面又向土壤内分泌碳酸和其他有机化合物,增加了土壤中无机化合物和有机化合物的分解和溶解,为土壤的微生物活动创造了良好的条件,经过微生物的分解,使土壤腐殖质含量增加。

大尺度估算:水土保持功能在大尺度上可以通过计算森林生态系统每年减少土壤侵蚀的总量来评价。结合土壤侵蚀遥感调查图与不同气候带具有代表性的主要森林类型侵蚀模数从大、小两个尺度上确定区域森林土壤的现实侵蚀模数;潜在土壤侵蚀模数按全国土壤侵蚀分类级别的“强度级”对应水、风蚀模数上限8000t/(km2.a)进行估算。利用上述方法可以计算出某一森林生态系统的潜在土壤侵蚀量、森林覆盖区的土壤侵蚀量及森林每年减少的土壤侵蚀量。

森林生态系统每年减少土壤侵蚀的损失估算可以从土壤侵蚀的后果来考虑,包括可耕面积减少;土壤肥力 (营养物质)的损失;泥沙对江河湖泊的淤积等带来的损失。通常重点考虑以下三个方面:

(1)森林生态系统每年减少土地损失面积及其经济价值。根据土壤侵蚀量、土壤容重和土壤耕作层的平均厚度来推算土地面积减少量。通过所取得植被分区的土壤容重和土壤厚度数据,再结合上述计算所求得的森林各气候带每年减少的土壤侵蚀量,从而估算出森林每年减少的土地面积。采用机会成本来估算森林每年减少的经济损失。

(2)单位森林每年减少土壤损失的经济价值。土壤侵蚀带走了大量的土壤营养物质,主要是土壤的有机质、N、P和K。通常只考虑土壤中全N、全P和全K的含量。根据以往对我国主要森林生态系统土壤中全N、全P和全K的含量的研究和我国森林每年减少的土壤侵蚀量进行估算。

(3)减少泥沙对江河湖泊淤积的间接经济价值。按照我国主要流域的泥沙运动规律,一般土壤侵蚀的流沙有24%淤积于水库、江河、湖泊,这部分泥沙直接造成了水库、江河、湖泊蓄水量的下降,在一定程度上增加了干旱、洪涝灾害的发生。根据我国l m3库容的水库工程费用为0.67元人民币来估算某地森林每年减少泥淤积的经济价值。

篇8

关键词:矿山边坡;植被恢复;目标和方法1 植被恢复的概念

植被是生长并覆盖于地球表面植物群落的统称,根据植物生长环境和特点的不同又可以分为高山植被、草原植被、海洋及岛屿植被等多种类型。通过结合生态学及工程学原理,将由于矿产资源的开采、公路修建等造成的已被破坏的植被重新修复,以维持该地区植物种类的多样性以及生态环境的正常和可持续发展的行为,即被称为植被恢复。

2 矿山边坡植被恢复的目标

2.1 理想目标

矿山植被恢复的理想目标是将矿山边坡的生态环境与矿山所在地区的自然生态环境调节至和谐统一的等级,使矿山边坡的植被恢复生物物种的多样性,并使其能在一定程度上防御自然灾害,对周围的环境具有一定的保护和改善作用。

2.2 阶段性目标

矿山边坡的阶段性目标可以分为以下3个阶段,分别涵盖了生态学、功能性、观赏性等3个方面的内容。

2.2.1生态学目标。这一目标是矿山边坡植被恢复的首要阶段目标,其具体内容是使矿山边坡的植被的生物学及生态学特点与该矿山所在的自然环境相适应[1]。换而言之,就是指通过采取一定的手段使原本被破坏的植被的生长状况、植物的形态、物种多样性等逐渐恢复至未被破坏前的状态。

2.2.2 功能性目标。当矿山边坡的植被生态学目标达到之后便可开始第2阶段的目标实现,即植被的功能性目标,具体包括使植被的水文效应、对环境的改善作用、水土维持作用等功能与未被破坏前或天然植被的功能趋于最大程度的近似水平。

2.2.3 观赏性目标。在前2个目标均已实现的前提下,为了提高矿山边坡植被的美观程度,可以对植被的整体群落形态、植被的选择、植物的修剪等进行改进,以进一步提高其观赏性。

3 矿山边坡植被恢复的方法

3.1 边坡土地的整改

对矿山边坡植被进行恢复工作的第一步就是对边坡土地进行整改。对边坡土地的整改要将矿区的整体生态环境纳入考虑,对原有的土质进行合理地利用,同时要注意维持边坡的整体稳定性,避免因坡体结构被破坏而引起的坍塌。除此之外,对弃渣坡面土地进行改造时,要对其进行分级,以保证坡体以及水土的稳定性。而对于开采岩质的坡面,应根据其具体的地质类型和特点,保证没有浮石和危石的潜在威胁,并避免开山施工对边坡土地造成的二次损坏。

3.2 边坡土壤的改善

在对矿山边坡的土地进行整改后可开展土壤改造工作。由于矿山的土壤通常源自被剥离的表面土壤、废矿石等,因此,对边坡土壤的改良应从土壤的物理结构着手,将不利于植被生长的土质成分剔除掉。之后对边坡土壤的营养状况进行取样调查,分析其有机物与无机物的比例、酸碱度、肥沃程度等,对于土地贫瘠、营养状况差的土壤进行化学改造,如在土壤中施加营养废料、改变土壤酸碱度等[2]。

3.3 边坡植被的修复

首先,选择合理的植物种类。根据矿山植被恢复的阶段性目标可知,在对边坡植物物种进行选择时应充分考虑矿山所在地区的地理环境、气候特点、物种生长特点及多样性等因素,具体可以通过矿山边坡周围的自然环境中生长的植被进行植物物种的选择。第二,做好种群的配置。要达到矿山边坡植被恢复的目标,在选择好合适的植被种类之后不能随意的配置物种,因为不同生长习惯的植物可能会产生相互克制的作用,从而影响植被的恢复效果。同时,还应充分考虑到矿山边坡的土地情况,根据土壤的肥沃与贫瘠程度选择适合生长的植被。第三,采用合适的植被建造方法。对易于生长的植物通常采用喷播的方式进行植被建造,该方法也是经济性最强的种植方法。对部分发芽迟缓但不影响其它植被生长的植物可以先采用容器种植的方法进行树苗的培植,之后再移植到矿山边坡的植被中去。

4 结语

综上所述,文章对植被恢复的相关概念做出了阐述,对不同阶段的矿山边坡植被恢复目标进行了分析,并提出了相应的植被恢复方法,拟为边坡生态环境的治理提供可靠的理论性依据。

参考文献

篇9

关键词:水土保持 水土流失 水土保持功能

《水土保持法》及其《实施条例》中没有出现“水土保持功能”的术语,但是在水土保持法律文件中,水利部《关于水土保持设施解释问题的批复》第一次采用了“水土保持功能”的术语,表明了 “水土保持功能”正式从一个学理概念转变和提升为一个专门的法律概念。该批复规定,水土保持设施是指具有防治水土流失功能的一切设施的总称。《实施条例》第21条第2款中所称的‘补偿’,是指对损毁或侵占水土保持设施所造成的水土保持功能的丧失或降低所必须给予的补偿。正确理解和适用“水土保持功能” 这个专门的法律概念,对于开展水土保持执法具有重要的实践意义。

1、解释水土保持功能必先解释水土保持

1.1水土保持在学理上首先指一种自然状态或自然规律

在学理上,水土保持首先是指岩石土壤圈、水圈和生物圈相互作用和保持生态平衡下的水和土相互依存、自我更新的一种健康和谐的正向演替的状态和规律。从岩石到成土母质,从成土母质到土壤,都是在光、水、生物的作用下的一种健康和谐的正向演替的状态,最终土壤厚度不断增加,土壤肥力不断提高,给植物提供源源不断的养份。大气水、地下水、土壤水、地表水之间保持循环和相互补充,最终通过土壤水源源不断地给植物提供生态用水和养份。1957年颁布的《水土保持暂行纲要》有“…禁止滥伐林木,破坏水土保持”的表述,1982年颁布的《水土保持工作条例》也有“严禁滥伐林木破坏水土保持”的表述。这里的“水土保持”都指一种林木被覆下的水土资源不断自我维护和提高的自然状态或自然规律。

1.2水土保持在学理上还指人们一种有目标的思想、行为或技术

在学理上,水土保持还指人们在正确认识水土保持规律的前提下对人为活动进行调控,以纠正人为活动对水土保持状态所造成偏差和紊乱。这里的水土保持指人们这种有目标的水土保持思想、行为和技术。1981年国务院学科委员会明确,水土保持学科范围是“研究水土流失发生的原因和规律,水土保持的基本理论,据以组织综合措施,防治水土流失,维护和提高水土资源和土地生产力,从而有利于发展生产,合理利用水土资源,改善环境条件和自然面貌的一门综合性为其特点的应用技术科学。”1992年《中国大百科全书·水利卷》提出,水土保持学是一门水土流失规律和水土保持综合措施,防治水土流失,保护、改良和合理利用山丘区和风沙区水土资源,维护和提高土地生产力,以利于充分发挥水土资源的生态效益、经济效益和社会效益综合性技术应用科学。1996年关君蔚主编的《水土保持原理》提出,水土保持指防治水土流失,保护、改良和合理利用(山区、丘陵区和风沙区)水土资源,维护和提高土地生产力,以利于充分发挥水土资源的经济效益和社会效益,建立良好生态环境综合性技术科学。有意识地通过人力力所能及的手段,改变一部分环境因子,促使外力的破坏力减少,土体的抵抗力增强,终将使外力的破坏力小于或者等于土体的抵抗力,就控制了水土流失,也消除了水土流失对生产和生活上的危害,进而可以保护改善和合理利用水土资源,维护和提高土地生产力,建立良好生态环境,达到有益人民生活和生产的目的。这是水土保持最基本的原理。

1.3水土保持在法理上只能指人们与水土保持有联系的行为

在法理上,水土保持只能指人们与水土保持有联系的行为,包括消极行为和积极行为。但是不能包括与水土保持有关的思想、理论或者观点。因为法律是一种调整人们社会行为的规范,它的调整对象是人们的行为。因此,水土保持工作中,人们的水土保持思想观念问题是水土保持法律规范本身无法解决。《水土保持法》第二条规定,“本法所称水土保持,是指对自然因素和人为活动造成水土流失所采取的预防和治理措施。”

水土保持法律关系的客体一般只有水土保持设施(即物)和人们与水土保持有联系的行为(即行为)。根据环境与资源保护法原理,环境与资源保护法律关系中作为权利义务对象的物,必须是人们可以影响和控制的、具有环境功能的自然物。在水土保持法律关系中这种物就是水土保持设施,如森林、草地、荒山等。而这些行为则如林业采伐、整地造林、抚育幼林、垦复油茶、油桐等经济林木、开发建设项目的生产建设等。

2、解释水土保持功能必先解释水土流失

水土流失的概念在学理上有多种表述,但是在法律文件中没有法律概念上的表述。水土流失学理概念表述典型的有水土流失过程论、水土流失结果论等,以不同的学理概念表述为基础来理解法律概念上的水土流失,会造成《水土保持法》的适用上的不同法律效果。

2.1水土流失过程论

水土流失过程论,这里列出两种典型。 1981年科学出版社《简明水利水电词典》提出,水土流失指“地表土壤及母质、岩石受到水力、风力、重力和冻融等外力的作用,使之受到各种破坏和移动、堆积过程以及水本身的损失现象。这是广义的水土流失。狭义的水土流失是特指水力侵蚀现象。”土壤侵蚀指“土壤在各种自然因素和人为因素的影响下发生破坏和搬运的现象。…土壤侵蚀有时仅指受水流作用,这与水土流失相似。”1990年王汉存编的《水土保持原理》提出,“土壤侵蚀就是在外界自然力量和人类不合理的经营活动影响下,土壤、母质、风化物、甚至基岩被剥蚀破坏、搬运和沉积的全过程。我国通称的水土流失,严格地讲应属土壤侵蚀中的水力侵蚀,而且除指土壤、母质的流失外,尚包括水的损失。不过习惯上,人们常将‘水土流失’与‘土壤侵蚀’两词等同起来使用。”

水土流失过程论虽为学理解释,但是通俗易懂。在水土保持科学知识宣传普及中采用,能产生较好的效果。特别在南方丘陵山区的人们在生产生活实践中对水土流失(水力侵蚀)有类似的感性认识,对此更好理解。根据水土流失过程论的定义,判断是否为水土流失的标准有三条:一是水土流失的对象是土壤、母质、风化物、基岩和水;二是水土流失的原因是外界自然力量和人类不合理的经营活动;三是水土流失的过程是破坏、搬运和沉积三个环节。但是水土流失过程论的定义有两点缺陷:一是对“水的损失”没有阐述清楚,是指土壤水的损失,还是地表水的损失,或者是地下水的损失?怎样理解水的损失?一般的业外人士都认为降雨转化为地表径流、地下渗流和地表蒸发,最终汇入江河湖海,水循环怎么会有损失呢?二是单纯强调具有破坏、搬运和沉积三环节的全过程,只是从现象上进行定义,没有从本质上进行定义。既容易导致概念的泛化,又对于认定特殊形式水土流失现象有一定障碍。如有的同志主张,旧城改造中旧砖房被折除过程,不负责的环卫工人在打扫垃圾时向城市排水管口倒垃圾,都是造成水土流失,这是典型的概念泛化。如有一块四周高的荒地,地面较平整,拟房地产开发,开发商提出他们进行基础开挖,土壤也不存在位移,不存在破坏、搬运和沉积三环节的全过程,因而不存在水土流失。作为水土保持执法人员如果也严格按此定义还真不好驳倒。这就需要水土流失结果论的定义了。

2.2水土流失结果论

1996年关君蔚主编的《水土保持原理》提出,水土流失是在陆地表面由外营力引起的水土资源和土地生产力的损失和破坏。土壤侵蚀是陆地表面,水力、风、冻融和重力等外力作用下,土壤、土壤母质和其他地面组成物质被破坏、剥蚀、转运和沉积的全过程。

显然,水土流失结果论,比起水土流失过程论,更宏观、简洁,也更接近水土流失的本质。根据水土流失因果论的定义,判断是否为水土流失有三条标准:一是水土流失发生的场所是陆地表面,除了海洋外的地球表面都有可能发生水土流失;二是水土流失产生的原因必须是外营力,最主要的外营力是水力、风力、重力和人为活动;三是水土流失产生的结果是水土资源和土地生产力的损失和破坏。

但是水土流失结果论也有其不足:一是更抽象,对于业外人士不好理解,需要作进一步的阐述。要解释外营力这个地学术语,要解释水土资源和土地生产力的损失和破坏。比如水的损失主要指降雨落到地表后,由于蒸发和蒸腾、地面径流和土体内渗流、向深层渗漏,从而造成对生产和生活不利的现象。二是容易导致水土流失概念的外延的无限扩张。单纯从“水土资源和土地生产力的损失和破坏”字面上理解,任何环境污染现象似乎属于水土流失的范畴,比如土壤污染、水污染,都导致水土资源和土地生产力的损失和破坏,都离不开水和人为活动的外力作用。

2.3水土流失的法律概念

虽然在法律文件中没有水土流失法律概念上的表述,但是可以从《水土保持法》总则部分,特别是第一条和第二条看出,《水土保持法》采用的学理基础是水土流失结果论的概念。进一步分析《水土保持法》总则部分,可以得出水土流失的法律概念有以下两个构成要件:

(1)水土流失的后果,或是水土资源的破坏和损失,或是加重水、旱、风沙灾害,或是恶化生态环境,或是影响生产,四者居其一则可满足。《水土保持法》第一条规定了立法宗旨,即为预防和治理水土流失,保护和合理利用水土资源、减轻水、旱、风沙灾害,改善生态环境,发展生产,制定本法。法律所要保护的,自然就是需要预防的水土流失所可能造成后果;(2)水土流失的原因既可以是单纯的自然因素,又可以是单纯的人为因素,还可以自然因素和人为因素的共同作用。水土流失是否有人为因素参与在所不问。

3、如何在水土保持执法中适用水土保持功能的法律概念

3.1水土保持功能的定义

根据《现代汉语词典》,功能有两种含义,一是事物或方法所发挥的有利的作用;另一种是效能。而效能指事物所蕴藏的有利的作用。因此,功能是指事物所发挥或蕴藏的有利的作用。那么,什么是水土保持功能呢?笔者认为,水土保持功能指陆地表面的各种类生态系统所发挥或蕴藏的有利于维护和提高水土资源和土地生产力的作用。为避免了循环论证,这个定义没有用“水土保持设施”,而准确地采用了陆地表面的各种类生态系统。因为生态系统是一个适用任何范围或任一等级的一个很广泛的概念,它可以具体指一个池塘、一块农田、一片森林,也可以指最大的生态系统生物圈。这里土地生产力是一个衡量和判断水土保持功能是否降低的重要指标,不能用政治经济学上的生产力概念来理解,只能采用生态学上的生态系统的生产力的基本原理来理解。

3.2森林、植被的水源涵养作用是水土保持功能的重要表现形式

森林和植被水源涵养作用指森林和植被覆被地面,截持降水,调节和吸收地面径流,固持和改良土壤,保护和滞蓄下渗水分,抑制蒸发,提高水分有效蒸腾,均匀积雪,改变雪和土壤的冻融性质,并能促进降水增加等有利人们生产和生活的效能,其本质是森林对水资源的有益影响,这种有益影响不仅局限于森林所在地区,而且对邻近地区,特别是江河下游地区影响更为突出。因此,在江河的水源区必须充分发挥森林水源涵养作用,做到“蓄水于山”和“蓄水于林”。因此,滥伐森林,毁坏植被、陡坡开荒等行为,从影响水源涵养作用意义上说,就是降低水土保持功能。

3.3生物生产力是表征水土保持功能的重要指标之一

生物生产力是一个生态系统中最基本的数量特征。生态系统内能量流的起点是绿色植物光合作用对光能的固定。世界上生物和人类生活的全部活动皆取决于植物光合作用中所获取的能量。植物在单位面积和单位时间(通常一年)内积累光能合成的总量称总生产力,通常用有机物质干重g/m2/年表示。通常情况下,按总生产力从大到小进行排序是森林、农田、疏林和灌丛、草原、荒漠。在其他环境因子如光照、水分、温度等条件相同情况下,植物数量和分布越少,总生产力越低,也就是水土地生产力越低,说明水土保持功能降低。这也就从理论上论证了人为生产活动挖掘、破坏地表和倾倒土(石、渣)占压地表,破坏植被,从而降低水土保持功能的命题。试问原来的植被都被占压和毁坏,何来光合作用和光能利用率,何来生物生产力?

3.4土壤水是是反映水土保持功能的重要指标之一

水分是土壤的一个重要组成部分。它不仅影响土壤的物理性质,制约着土壤中养分的溶解、转移和微生物的活动,是构成土壤肥力的一个重要的因素,而且本身更是一切作(植)物赖以生存的基本条件。 土壤中的水分或者被吸附在土粒表面,或者处在孔隙中,并且和外界的水一样,也以固态、液态、气态三种形态存在。土壤水分从形态上,大致分为化学结合水、吸湿水和自由水三类:(1)化学结合水:要在600℃~700℃温度下才能脱离土粒。(2)吸湿水:是土粒表面分子力所吸附的单分子水层。(3)自由水:可以在土壤颗粒的孔隙中移动。自由水又可分为:膜状水,毛管悬着水,毛管支持水,重力水。从生产意义讲,化学结合水和吸湿水在土壤中不能自由移动,故不能被植物利用;膜状水仅能作极缓慢的移动,且含量很少,远不能满足植物的需要;毛管悬着水和毛管支持水是供植物吸收利用的最有效的水分,重力水因只能暂时存在,不能持续为植物利用,而且过多时,常又会造成土壤通气不畅,影响植物生长。

篇10

关键词土地开发整理生态环境分析环境影响评价评价因子

土地开发整理是在一定的区域内,按照土地利用总体规划或城市规划所确定的对区域内新增耕地的目标,采取行政、经济、法律和工程技术的手段,对土地利用状况进行调整改造、综合整治,提高土地利用率和产出率,改善生产、生活条件和生态环境的过程。包括土地整理、土地复垦、土地开发三种类型。改善生态环境是土地开发整理的重要目标,针对如何来落实和实现耕地增加目标,如何在土地开发整理项目的实施过程中,保护、建设和优化生态环境问题,许多学者对此给予了特别的关注和研究。

土地整理生态评价作为项目规划设计、实施前对项目区生态环境的预评价,从区域生态学和景观生态学的角度,考虑土地利用和覆被变化对生态环境的影响,以土地生态要素为基础,判断土地利用的生态合理性,评估土地利用的生态价值和功能。土地整理生态评价不仅可以为新增耕地的数量和质量提供科学的依据,为土地整理规划设计、农地整理工程措施的实施指明方向,还是土地整理生态规划和景观保护的基础。

1土地整理的生态环境分析

1.1对水资源及水环境的影响

(1)改变水文结构。作为土地整理活动重要内容的水利水电工程、农田灌溉工程以及坡地垦殖与梯田建设等往往会改变地表水系的网络结构,不仅会直接影响自然生境类型的改变,还可能影响伴随原有水系网络而形成的各种相关生态过程。

(2)影响区域水资源分配。包括提高粮食产出、耕地增加及植树种草在内的土地整理活动都会相应提高水资源需求量,因此对区域水资源分配所造成的影响不可低估。

(3)影响水环境质量。土地整理中的工矿企业安置与开发、村镇归并及新集镇建设等均会带来工业污水和生活污水的排放问题,从而对整理区内部及其周边乃至区域水环境质量产生影响。

1.2对植被及相关生态过程的影响

伴随村镇迁并、耕地垦殖率的提高,荒地的开发等一系列土地整理活动的实施,对地表植被及其相关生态过程产生深远影响,其数量结构与空间格局都发生了巨大变化。

(1)数量结构。非农建设用地的扩张,提高土地垦殖率及开发荒地等导致原生、次生自然植被及人工植被的大面积减少和退化;表现在植被组成逐步为单一的农作物替代,景观多样性降低,病虫害发生的频度与强度将会增加,野生动植物资源的生存空间日趋减少。

(2)空间格局。村镇迁并、荒地开发、筑路修渠等土地整理活动势必会改变已有的各类型植被单元构成的地表景观格局并因此造成许多生态过程的中断。

1.3对土壤及相关生态过程的影响

在土地整理方案的实施过程中,土壤的各种理化性质及相关生态过程均受到不同程度的影响。

(1)改变土壤结构土壤质地。如荒地垦殖改变原有土层结构;筑路及村镇建设机械压实土壤,从而破坏土壤结构;坡地开垦扰动地表、坡面,引起或加剧水土流失和土地沙漠化,并有可能造成局地气候恶化。

(2)影响土壤肥力。为追求提高耕地产出率而一味加大耕地垦殖力度或不顾土地适宜性要求调整土地利用方式,反而会造成土壤肥力下降,生产力降低,甚至会引发一系列灾害过程的发生,如土壤侵蚀、土地荒漠化等,进一步加剧土壤养分的流失。

(3)造成土壤污染和加剧土壤退化。如大量使用化肥、农药等不仅会对土壤造成污染,还会杀害土壤中丰富的微生物;不适当的灌溉和排水导致土壤次生盐渍化等。另外,一般工业、畜牧、家庭污水未经处理就任意排入渠道注入农田,也将全面污染农地。

1.4对大气及相关生态过程的影响

土地整理活动对大气及相关生态过程的影响主要是通过改变地表植被覆盖状况、土壤结构与质地,以及改变水文结构、地形地貌等间接方式表现出来。主要反映在造成大气污染、影响局地小气候过程及区域大气质量状况等方面。

1.5对敏感生态系统及景观组分的影响

由于土地整理活动是一项综合性的区域开发活动,在土地整理方案实施过程中,往往会在短期经济利益和地方政绩的驱使下,对一些具有特殊重要意义的自然生态系统及人文景观造成永久性破坏,造成无法弥补的经济和生态损失。

1.6对社会经济环境的影响

(1)影响生活工作环境质量。土地整理活动往往规模和强度都较大,不仅本身会创造新的人工景观,对整理区内部及所在区域的自然、人文景观的影响,以及由此形成的地方环境氛围和特色的影响也十分强烈,并且往往是不可逆的。

(2)影响区域产业结构和投资环境。通过调整土地利用方式和基础设施建设,鼓励发展具有地方特色的观光农业、生态旅游等,带动地方渡假休闲产业和相应服务产业等第三产业的发展,一方面有利于转移农村剩余劳动力和地方经济的发展;一方面也缓解了耕地的压力。

(3)引发社会问题。土地整理活动的逐步展开,将引发一系列的社会问题。如筑路和公路的开通所具有的城镇化效应会占用大量耕地,加剧对剩余耕地的压力;同时间接引起包括农村剩余劳动力的转移问题、优质农田的非农化对未来粮食安全所产生的威胁等。

2土地整理的生态评价

2.1评价指标体系的建立

本着综合性、差异性等原则,选取影响土地质量和生态功能显著的因子和反映土地质量和生态功能差异性的因子为评价指标。参考生态评价相关评价指标体系,并结合土地整理基本特点,土地整理项目生态评价指标应包括地形地貌、土壤、植被、水文与自然灾害等因素,坡度、坡向、土壤PH值、土壤有机质含量、土层厚度、水源保证率、地下水位、自然灾害率等因子。

2.2评价指标的量化与标准化

由于各评价指标的量纲各异,需要按照一定的标准进行指标的量化、标准化处理。本研究采用级差标准化法,其计算公式如下:Aj=(X-X)X-X×100%(1)(1)式中,Aj为第j个单项指标的标准化值;Xi为单项指标的原始值;Xmin为研究区域内该指标的最小值;Xmax是研究区域中该指标的最大值。

2.3指标权重的确定

由于各评价指标对综合评价所产生的影响是不同的,因此需要合理确定各评价指标权重。确定评价指标权重的方法主要有特尔菲法(Delphi)、模糊聚类分析法(Fuzzy)和层次分析法(AHP)等,本研究采用层次分析法。

2.4栅格数据叠加运算及单元赋值

空间分析功能是GIS应用于地理数据分析的关键所在,其中最主要的分析方法是空间叠加。本研究中,利用ARCGIS软件中spatialAnalyst模块的RasterCalculator(栅格计算器),根据评价模型(式2)进行各单项指标栅格图层的叠加运算,对评价单元赋值并生成评价结果图。Sm=WiGi(i=1,2,3,……n)(2)(2)式中,Sm为第m个评价单元的生态综合评价指数;Wi为经标准化后的第$个评价指标值;Gi为该指标相对于生态环境质量评价重要性的权重值,n是参与生态综合评价的指标数。

3案例研究

3.1研究区域概况

湖北安陆市位于湖北省的东北部。地跨北纬31°21′42″~31°23′11″,东经113°34′02″~113°34′43″,属亚热带季风气候区,自然地理条件对发展农业生产十分有利。但由于农业交通、水利等基础设施不够完善,中低产田比重大,低畦水渗、毁损严重,地块杂乱,荒草地、滩涂等未利用地的潜力未被充分挖掘,农业生产条件不理想。

湖北省安陆市孛畈镇镇土地整理项目属国家投资重点项目,项目区位于安陆市的北部,项目区总面积为286.09hm2。其中耕地225.08hm2,其它农用地34.53hm2,水利设施用地0.10hm2,居民点6.25hm2,砖瓦窑及学校3.81hm2,未利用土地12.10hm2,零星地4.22hm2;地貌为低丘平原,地势西高东低;土壤以红壤和紫色土为主,PH值为中性或微酸性,有机质含量中等偏上,水土流失较严重,土壤侵蚀较严重;部分区域植被稀少;项目区地势起伏较大,易受干旱威胁。

3.2评价指标的选取及数据处理

针对项目区存在水土流失、土壤侵蚀、旱涝灾害等方面的土地利用和生态问题,建立土地整理项目生态评价指标体系(见表1)。在GIS支持下,将各单项指标进行量化、标准化后,对各单项指标专题数据栅格化。根据项目区实际情况,栅格单元确定为50m×50m,共得到1144个评价单元。

3.3评价指标量化及权重确定

将各专题数据的属性值按(1)式量化和标准化,经层次分析法,得到项目区生态环境评价因子权重(见表1)。

3.4栅格数据的空间叠加

在ARCGIS支持下,将各单项指标栅格图层与指标的权重值结合,利用栅格数据的空间叠加运算功能,将专题数据层进行叠加,并按(2)式加权求和,计算每个基本评价单元的综合评价指数,得到土地整理项目区生态评价综合分值统计表(见表2)。

3.5结果分析

由评价结果可知,该项目区总体生态环境状况较好,但存在较明显的地域差异。在对项目区进行规划设计及工程实施时,将生态环境综合状况较好的区域优先划为耕地,继续完善和改进土地利用条件和生态环境质量;对生态环境一般和较差的区域在整理为耕地时,针对区域存在的土地利用和生态问题,合理进行沟、渠、路、林的布局,并采取适当的农业工程措施,如深翻改土、种植绿肥、加强水土保持措施等;将生态综合状况较好的园地和林地保持原有利用类型,生态环境综合状况恶劣的耕地考虑退耕还林。此外,集中的农村居民点用地、独立工矿用地、特殊用地虽不参加整理,但通过生态评价了解其生态综合状况,对其存在的生态问题采取相应的措施,有利于提高整个项目区的生产、生活环境。