生物质资源的特点范文

时间:2023-12-05 17:54:43

导语:如何才能写好一篇生物质资源的特点,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

生物质资源的特点

篇1

关键词:低碳经济;生物质能;发展

一、生物质能是发展低碳经济的重要新能源

发展低碳经济,其重要理念在于:一是减少C02排放,降低气象灾害发生;二是调整能源结构,降低能源的供应风险。树立低碳经济理念,探讨低碳经济的发展模式正在成为世界各国重大议题。我国近30年来,GDP持续高速增长,但这是以高消耗的代价换取而来。在能源消耗上我国使用以煤为主要的能源结构,随着煤、石油等不可再生能源的大量耗尽,不可再生能源约束日益增大。调整能源结构,使用新能源既是解决我国能源紧缺问题的必然之路,也是发展低碳经济的根本要求。生物质能具有环保性特点,从其产生转换的过程考察看,燃烧时释放的硫化物和氮化物极少,C02排放量接近于零,属清洁能源。目前,生物质能是仅次于煤炭、石油和天然气而居世界消费总量第四位的能源。据预测,到下世纪中叶,采用新技术生产的各种生物质能将占全球总能耗的40%以上。生物质能产业作为一种可再生能源,占据可再生资源比重的80%。2000-2020年将是世界各国大力发展生物质能的关键时期。

二、农林资源禀赋地区发展生物质能产业具有明显的优势

生物质是通过自然界光合作用而产生的各种有机体。生物质能产业则是利用生物质原料如树木、木材加工废弃物、草、农作物、农产废弃物和废弃动物等,进而生产出燃料酒精、生物柴油、沼气、生物制氢等能源的产品。燃料酒精是目前应用最广泛的生物燃料,是较为理想的汽油替代品;生物柴油是脂肪酸与低碳醇在催化剂的存在下,发生酯化反应,形成脂肪酸甲酯或乙酯,可代替柴油燃烧;沼气发酵可以综合利用有机废物和农作物秸秆,对水资源和土壤等再生和资源化有促进作用;生物制氢是利用某些微生物代谢过程来生产氢气的一项生物工程技术,所用原料是阳光和水,也可以是有机废水、秸秆等,来源丰富,价格低廉,生产过程清洁、节能。

生物质能虽具有普存性特点,但农林资源禀赋地区发展生物质能产业更具明显的优势。我国适宜种植甘蔗、玉米、木薯以及森林资源丰富的地区发展生物质能产业潜力巨大。以广西为例,位于亚热带地区,甘蔗产量大,在4900多万常住人口中,有近1800万是蔗农,蔗糖产量占全国总产量60%;广西是我国最大的木薯基地,种植面积和产量连续10年居全国之首。据有关部门统计数据,目前,广西木薯种植面积近500万亩,产量超过700万吨,两项均占全国的70%以上。此外,广西森林覆盖面有近57%,植物资源种类在全国位于第三位。农林资源禀赋地区发展生物质能产业具有重大的现实意义。开发利用生物质能,可以有效处理农业废弃物,减轻环境污染,改善农村卫生状况,这是社会主义新农村发展的根本要求。

三、农林资源禀赋地区发展生物质能产业思考

(一)制定发展生物质能产业规划,预防重复建设现象产生

新能源是我国十二五规划中重点扶持的新兴产业,生物质能作为新能源十分重要形式这一,必定受到各地区的重点关注。农林资源禀赋地区将更为关注重生物质能产业发展。吸取以往产业发展的经验教训,在倡导发展生物质能过程中,为避免产生跟风和消除重复建设现象,需制定生物质能产业发展规划,实现生物质能产业生态效益、经济效益和社会效益的统一。

(二)因地制宜对生物质能产业进行合理布局

鉴于生物质具有很强的地域性和地区资源存在的差异性,认真开展生物质资源的调查和评估,了解资源的分布和总量。以种植业为的地区,一般其农作物秸杆十分丰富;森林覆盖面高的地区,其经济林、薪柴林数量多,林木废弃物资源丰富……。根据资源分布情况,认真分析各区域生物质能利用的重点及发展方向,因地制宜提出生物质能的产业布局,务必做到就地取材,节约成本,合理开发。

(三)加大对生物质能技术研究和开发,增强核心竞争力

生物质能技术涉及多学科,技术交叉明显,而我国生物质能起步晚,技术普遍薄弱,加快生物质能技术发展步伐,注意做好以下工作:一是整合技术资源,形成技术优势;二是加大对现有技术人员培训力度;三是建立示范基地,以点带面,辐射各区域;四是引进紧缺技术人才,采取优厚待遇引进携项目带技术的人才。

(四)采取积极金融措施,引导资金投入生物质能产业

在资本引进方面,制定多元化的投入策略,鼓励当地内资民营企业投入生物质能产业发展;鼓励区外和国外的资本进入生物质能产业领域。引导商业银行向生物技术产业倾斜。将优惠措施引申到企业放贷的银行中去;简化贷款审批环节和手续,加大对经营良好的生物技术企业贷款规模;对生物质能企业开辟直接融资的渠道,鼓励龙头企业发行企业债券或以上市的形式进行融资。

(五)运用财政、市场机制等手段,确保生物质能产业持续发展

我国生物质能产业是新兴产业,在起步阶段,市场规模小,并且生物质能等再生能源产品价格一般高于常规能源产品,产品竞争力不强。鉴于生物质能产业目前尚是一种具有环境效益的弱势产品,极需政府在财税上给予扶持。安排预算专项经费,实行减税、免税、补贴和无息低息货款等优惠政策。另一方面,充分利用市场机制,对生物质能产品通过市场检验,淘汰不合格生物质能产品,使优良的产品得以保存,从而确保生物质能产业良性地持续发展。

(六)注重发展生物质能产业集群

生物质资源丰富地区,一般原料价格低廉。多样性的生物质能产业的产品,燃料酒精、生物柴油、沼气、生物制氢等能源等都是利用可再生资源来生产的产品。这些项目包括其上下游产业链,容易聚集成产业群。因此,组建龙头企业,并以龙头企业所在地为中心,以深加工的项目规模化来加以匹配,聚集上下游企业形成产业群的集中地。发展生物质能产业集群,有利于发展有市场优势的特色生物质能产品,促进生物技术产业更快全面地发展。

篇2

关键词:农村能源 生物质能 SWOT

一、浙江省农村能源供应概述

在我国,农村能源的概念包含两方面意思,一方面是从能源角度讲,专指适应当前农村需要,并可就地开发利用的能源,主要是指非常规能源,包括自然资源能源、生物质能和畜力等生物资源能源;另一方面是从经济角度讲,泛指农村地区能源的供需和管理,包括当地能源资源的开发利用,国家分配和供应常规能源以及各种农村用能问题。本文讨论后一概念的农村能源中的较为丰富且运用普遍的生物质能资源。

(一)农村能源供应的现状及存在的问题

在我国城乡二元结构体制的影响下,长期以来,农村的能源供应,特别是生活用能的供应,主要依赖于当地的生物质能源资源,比如秸秆、薪柴等传统低效的燃用方式。虽然在经济条件较好的农村地区,已用上部分的商品能,但生物质能仍是农村用能的重要组成部分。这种传统低效的应用模式一方面不能满足由于人口增加和经济发展所带来的能源需求,同时还导致了一系列的生态环境问题:森林植被过度采伐和空气污染等。

(二)生物质能资源的特点及开发意义

生物质能是可再生能源,通常包括:木材及森林工业废弃物、农业废弃物、油料植物、城市和工业有机废弃物、动物粪便。在世界能耗中,生物质能约占14%,在不发达地区占60%以上。全世界约25亿人的生活能源的90%以上是生物质能。生物质能的优点在于资源丰富,灰分少污染少,易于燃烧,效率高,是一种清洁的可再生能源;缺点在于热值低,能量密度低,体积大而不易运输,收集运输和预处理过程费用高,此外高效利用的技术成本也偏高。

从能源供求的角度来看,中国化石能源短缺,人均煤炭、石油、天然气资源约低于世界平均水平,但能源消费世界第二,今后,经济发展导致能源供求缺口将更大。因此,开发利用农村生物质能,有利于保障国家能源安全,可以增加能源总量、缓解能源供应压力。鉴于生物质能本身的特点,结合当今的能源局势和农村的能源现状,开发生物质能刻不容缓,是新农村建设的重要物质保障。

此外,开发利用农村生物质能,还可以减少畜禽污染物、秸秆对水体的污染,减少对空气的污染,降低对土壤的危害,减少对人体健康的危害,有利于保持生态平衡。

二、农村生物质能技术的SWOT分析

(一)农村生物质能技术简介

一般说来,通过不同的技术,可将资源广泛的生物质能固化,气化和液化成为高品质和方便使用的能源形式,而其中固化和气化技术相对发展较为成熟,特别是气化技术得到较广泛的应用。

沼气技术。农作物秸秆、粪便、有机废水等有机废弃物在厌氧环境通过微生物发酵产生一种以甲烷为主要成分的可燃性混合气体,即沼气。生物质沼气技术在中国的应用较早,也是得到最普遍推广的能源利用技术'适用面积广,不仅解决了农民的做饭燃料问题,而且还可用于生活照明、取暖等方面。

生物质固体燃料技术,是将秸秆、稻壳等有机废弃物,用机械加压的方法,将无定型、低发量的生物质原料压制成具有一定形状、密度较高的固体成型燃料。生物型煤与原煤比具有成本低等优点,既能节省能源,又能明显减少大气污染,具有储存、运输和使用方便等特点。这一技术在农村具有很大的推广使用价值,既可直接燃用,也可用于发电。

(二)SWOT分析

1.生物质能开发利用的优势

浙江省农村生物质能非常丰富,2005年,全省秸秆资源量为700万吨,相当于替代常规能源消费350万吨标准煤,养殖废弃物约1430万吨,年产沼气20.1亿立方米,相当于替代常规能源消费143万吨标准煤,林业废弃物为4820万吨,相当于替代常规能源消费2700万吨标准煤。

截至2006年底,浙江省已在大、中型规模畜禽养殖场建起各类大、中型沼气工程1148处,农村户用沼气池10万户,可替代能源4.7万吨标准煤。同时,已在10万多户农民家庭推广“猪沼果”模式的沼气示范工程,可生产沼气0.65亿立方米,约占可利用量的3.2%。另外,浙江省农村能源技术专家组在《2008―2010年浙江省农村能源行业主推技术》中,指出各地可根据当地实际,将畜禽养殖场污染治理技术、“三沼”综合利用技术、农村生活污水处理技术等推广为当地的实用技术,以促进浙江农村能源行业健康发展。我国还开展了秸秆生物质气化与集中供气的生物质气化技术的研究工作,在农村具有广泛的开发应用前景,集中供气系统每立方米燃气成本低于0.15元目前全国已经推广建成115个示范工程。

此外,生物质能资源是一种清洁、环境友好型能源,有助于减少空气污染、温室气体,不危害农作物和人畜健康,改善自然界的平衡。

2.生物质能开发利用的劣势

新技术开发不力,利用技术单一,缺乏可靠的技术人才和完善的市场体系。我国的生物质利用主要集中在沼气利用上,近年才逐渐重视热解气化技术的开发利用,也取得了一定的突破,但其他技术开展却非常缓慢,农村实际应用尚有较大的距离。

生物质能属于高新技术和新兴产业,技术研发和市场培育都需要大量资金投入。但是我国各级政府对生物质能源的投入太少。迄今为止,我国生物质能建设项目还没有规范地纳入各级财政预算和计划,没有为这些建设项目建立如常规能源建设项目同等待遇的固定资金渠道。

生物质能的推广应用中,后续的维修服务网络还处于发展的初级阶段。在沼气技术中,大部分乡镇没有建立沼气技术服务机构,沼气池建设质量保证期后出现的故障和问题无人受理,后续服务的网络不健全,零配件供应点没有深入乡村。

3.生物质能开发利用的机会

自2006年1月1日《中华人民共和国可再生能源法》生效以来,有关部门相继颁布了《可再生能源发电有关管理规定》等一系列配套政策,《能源法》也在积极制定之中;在财政部的《中央环境保护专项资金项目申报指南》和环保总局的《国家先进污染治理技术示范名录(第一批)》中,生物质发电技术均作为秸秆资源化综合利用的一种方式,纳入补贴范畴。上述政策措施的出台有力保证了投资人的利益,生物质能的开发利用迎来前所未有的历史机遇,这将全面促进我国生物质能产业的发展。

同时,《京都议定书》中规定,在2012年前发达国家需要减排的温室气体的量为50亿吨CO2,其中一半由国内完成,另一半约需要通过清洁发展机制、联合履约和排放贸易完成。因此,开发沼气技术的清洁发展机制项目,出售经核实的碳减

排量(CERs),可为我国大中型沼气工程以及农村户用沼气开辟新的融资渠道,并提高整个项目的经济回报率。此外,CDM将为我国引进发达国家的先进技术提供一种崭新的模式,可以在沼气发电、自动化控制等方面引进国外的先进技术,缩短开发时间,进一步提高我国沼气工程的技术水平。

随着经济社会的可持续发展观念的深入人心,公众的环保意识不断增强,为开发利用生物质能替代常规能源的政策的推行,扫清了内在阻碍。

4.生物质能开发利用的威胁

虽然当今国际原油价格不断上涨,但是与生物质能相比,常规能源具有低价竞争的优势,在市场上的仍占有相当的地位,对生物质能的发展构成很大的威胁。

在这么多年的发展中,石油、煤炭等化石能源已经具备了成熟的技术,而且在居民生活、工业生产中得到方便应用,还占据很大的市场份额,并且有完善的市场体系;而我国生物质能的开发利用还处于发展的初级阶段,缺乏完善的市场运作体系,尚未建立包括行政管理、技术推广、产业和社会化服务等相对健全的农村生物质能资源体系;政府对于生物质能的优惠鼓励措施还缺乏力度,各级政府现有的管理模式和职能仍残留着不少计划经济的烙印,配套政策的落实还不够。

三、浙江省生物质能发展对策

(一)总体规划,明确目标

在建设社会主义新农村的进程中,发展生物质能是一个重要的手段。因此,首先要制定新农村生物质能建设的总体规划,与农民生活、农业生产、生态环境建设结合起来。从长远的眼光来看待,切实提高对开发利用生物质能重要性的认识,明确目标,从我国实际出发发展,根据可再生能源规划思路,我们应大力推广以沼气为纽带的能源生态模式,把发展农村户用沼气作为重中之重,然后再发展大、中型沼气工程;在帮助农民解决生活清洁能源的同时,发展沼气发电;另外要大力研究推广先进实用的秸秆综合利用技术,如秸秆气化、秸秆固化和发电等。

(二)技术研发,技能培训

生物质能利用技术种类很多,技术的成熟程度也不一样,建议设立生物质能专项资金,增加科研经费投入,加大技术引进力度,促进先进技术的进步。对于已经比较成熟的生物质能技术,要选择有发展潜力的生物质能技术进行试点和示范加强对农民的技能培训,加强生物质能技术的操作可行性,形成相应的服务网络,以达到农民自行管理为主,辅之农村技术网络的技术支持,真正发挥生物质能的综合效益。

篇3

关键词:生物质,稻壳,裂解,催化剂,气相色谱(GC),气相色谱-质谱联用(GC-MS),

中图分类号: S216 文献标识码: A 文章编号:

0 引言

近年来,我国的粗放型经济已严重损坏了我国的生态平衡,沙尘暴天气己严重威胁着我国的北部。为了避免我国生态环境的进一步恶化,必须建立一个经济发展的新时代,这一新时代建立在资源和环境得以持续发展的基础上,既满足当代人的需要,又不对后代人满足其需要构成危害,也即可持续发展的概念[1]。可持续发展的新型资源观逐步深入人心,在减少资源消耗的基础上,提高资源的利用率,促进可再生资源的增长,使全球生态系统结构功能保持良好状态,这已成为世界各国的行动纲领。由上可见,如此迫切的形势要求我们必须寻求新的能源来源。从长远观点来说,我国的能派战略和世界能源战略一样必然要进入以可再生能源为主的可持续发展能源道路[2]。

1 生物质能源及其在能源中的作用

1.1 生物质能的概念

生物质能是以生物质为载体的能量,即蕴藏在生物质中的能量,是绿色植物通过叶绿素将太阳能转化为化学能而贮存在生物质内部的能量形式。生物质通常是指以木质素、纤维素、半纤维素以及其他有机质为主的陆生植物(木材、薪材、秸秆等)和水生植物等,是一种稳定的可再生能源资源。生物质能是人类一直赖以生存的重要能源[3]。

1.2 生物质能优点

生物质能源是一种理想的可再生能源,与常规能源相比具有以下特点:

(1) 可再生性,只要太阳辐射能存在,绿色植物的光合作用就不会停止,生物质能就永远不会枯溺。

(2) 低污染性。生物质硫含量、氮含量低,燃烧过程中产生的SO2、NOx 较低,生物质作为燃料时,二氧化碳净排放量近似于零,可有效地减少温室效应。

(3) 广泛的分布性。缺乏煤炭的地域可充分利用生物质能。所以,利用生物质作为替代能源,对改善大气酸雨环境,减少大气中二氧化碳含量从而减少“温室效应”都有极大的好处。生物质能的低硫和CO2 的零排放使生物质成为能源生产的研究热点。 因此利用生物质作为替代能源,对改善环境、促进循环经济发展、提高能源利用率及提高社会的文明程度都有极大的好处[4]。

1.3 国内生物质能现状

目前,生物质能的利用占世界总能耗的14%,相当于12.57亿吨石油。在发展中国家,生物质能占总能耗的35%,相当于11.88亿吨石油。目前全世界仍有25亿人口用生物质能做饭。取暖和照明。但是生物质利用总量还不到其生产总量的1%,由此可见,生物质能的开发利用前景十分广阔。生物质能的开发利用有利于改善环境,同时可以满足我们对能源的需求。由绿色植物派生的生物质包括:城市垃圾、有机废水、粪便、林业生物质、农业废弃物、水生植物以及能源植物等。生物质能源转换技术包括生物转换、化学转换和直接燃烧三种。生物质能源转换的方式有生物质气化、生物质固化、生物质液化和生物质发电四种。生物质能有这样一些具体利用形式:沼气及其综合利用,节柴灶,生物质固化压块成型,生物质热解气化,生物质热解液化,生物质发酵醇类,生物质发电技术,能源植物,生物质发酵产氢。描述了沼气及其综合利用,热解气化、发酵乙醇、能源植物、压块成型、垃圾能源回收和发酵产氢等生物质能源转换技术。

1.4 生物质资源开发的重要意义

生物质能在工业生产和日常生活中占有相当重要的地位在工业社会以前,生物质能主要作为生活燃料,其用户是农村居民和城镇的少数居民。工业社会以后,生物质能的终端用户除了农村居民外,很重要的一部分是产生生物质废弃物的企业,如糖厂、木材厂、碾米厂以及废水和垃圾处理厂等[5]。

生物质能是仅次于煤、石油和天然气的第四位能源,是人类生存和发展的重要能源之一,在整个能源系统中占有重要地位。全世界约25亿人的生活能源的90%以上是生物质能。有关专家估计,生物质能极有可能成为未来可持续能源系统的重要组成部分,到本世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能耗的35~40%以上。人类面临着经济增长和环境保护的双重压力,因而改变能源的生产方式和消费方式,用现代技术开发利用包括生物质在内的可再生资源,对于建立持续发展的能源系统,促进社会经济的发展和生态环境的改善具有重大的意义[6]。

2 生物质转化利用技术

生物质能技术的研究与开发已成为世界重大热门课题之一。生物质能新技术的研究开发如生物技术高效低成本转化应用研究,常压快速液化制取液化油,催化化学转化技术的研究,以及生物质能转化设备如流化床技术等是研究重点,一旦获得突破性进展,将会大大促进生物质能开发应用。世界各国正逐步采用如下方法利用生物质能:

(1)直接燃烧法

(2)热化学转换法,获得木炭、焦油和可燃气体等品位高的能源产品

(3)生物化学转换法

(4)物理转换法

2.1 生物质的气化技术

生物质气化是生物质转化过程最新的技术之一。生物质原料通常含有70%~ 90% 挥发分,这就意味着生物质受热后,在相对较低的温度下就有相当量的固态燃料转化为挥发分物质析出。由于生物质这种独特的性质,气化技术非常适用于生物质原料的转化。

2.2 生物质的液化技术

生物质是惟一可以转化为液体燃料的可再生能源,将生物质转化为液体燃料不仅能够弥补化石燃料的不足,而且有助于保护生态环境。我国生物质资源丰富,发展生物质液化替代化石燃料有巨大的资源潜力。

(1) 快速热解液化

(2)加压液化

(3) 生物质液化产物的性质及应用

2.3稻壳利用生产工艺研究

2.3.1我国稻壳利用的现状

我国是农业大国,农作物秸秆是农业生产的副产品也是我国农村的传统燃料。秸秆资源与农业种植业的生产关系十分密切。我国稻谷产区主要分布在长江中下游的湖南、湖北、江西、安徽、江苏,华南的广东、广西、福建以及东北三省。南方以釉稻为主,北方以粳稻为主。我国稻谷产量达到2亿吨左右,居世界首位,稻壳作为谷物加工的主要副产品之一,占稻谷籽粒重量的30%左右,稻壳是最难利用、数量最大的农业废弃物,绝大多数作为废弃物扔掉,稻壳综合利用一直是人们希望研究解决的课题。对稻壳成分分析表明,稻壳中含有15%~18%的无定形水合二氧化硅,其它成分主要是碳氢化合物。

2.3.2稻壳热解产品应用

稻壳热解产物主要由生物油、不可冷凝气体和木炭(稻壳灰)组成[7]。

1、生物油的应用。生物油可作为液体燃料直接燃烧或用于涡轮机发电,还可从生物油中提取某些重要的化学品。生物油具有特殊的意义,其相比于生物质原料具有较高的能源密度,并且易运输,易储存,可作为燃油锅炉及加热设备的现有燃料的替代品。此外,可将生物质油加工改质为生物质柴油、食品添加剂、防腐剂、树脂等。

2、不可冷凝气体的应用。由于稻壳热解得到的不可冷凝气体热值较高,可用于生产其它化合物及为家庭和工业生产提供燃料。

3、木炭(稻壳灰)的应用。木炭呈粉末状,黑色物质。研究表明,木炭具有如下特点:疏松多孔,具有良好的表面特性;灰分低,具有良好的燃烧特性;含硫量低;易研磨。因此生产的木炭(稻壳灰)与碱反应制备活性炭、水玻璃及白炭黑。

3 总结

稻壳裂解气化的最佳工艺条件是烘干稻壳,温度在800℃~900℃之间,可定在850℃,反应时间定为2小时,催化剂为白云石。

篇4

中图分类号: TK223文献标识码: A

一、生物质能的特点与发展生物质能意义 

(一)生物质能的特点

1、可再生性 

生物质属可再生资源,生物质能由于通过植物的光合作用可以再生,与风能、太阳能等同属可再生能源,资源丰富,可保证能源的永续利用; 

2、低污染性 

生物质的硫含量、氮含量低、燃烧过程中生成的硫化物、氮氧化物较少;生物质作为燃料时,由于它在生长时需要的二氧化碳相当于它排放的二氧化碳的量,因而对大气的二氧化碳净排放量近似于零,可有效地减轻温室效应;

3、广泛分布性 

缺乏煤炭的地域,可充分利用生物质能。 

4、生物质燃料总量十分丰富 

根据生物学家估算,地球陆地每年生产1000~1250亿吨生物质;海洋每年生产500亿吨生物质。生物质能源的年生产量远远超过全世界总能源需求量,相当于目前世界总能耗的10倍。

(二)发展生物质能意义

生物质能源的开发利用早已引起世界各国政府和科学家的关注。国外生物质能研究开发工作主要集中于气化、液化、热解、固化和直接燃烧等方面。许多国家都制定了相应的开发研究计划,如日本的阳光计划、印度的绿色能源工程、美国的能源农场和巴西的酒精能源计划等发展计划。其它诸如加拿大、丹麦、荷兰、德国、法国、芬兰等国,多年来一直在进行各自的研究与开发,并形成了各具特色的生物质能源研究与开发体系,拥有各自的技术优势。 

我国生物质能研究开发工作,起步较晚。随着经济的发展,开始重视生物质能利用研究工作,从八十年代起,将生物质能研究开发列入国家攻关计划,并投入大量的财力和人力。已经建立起一支专业研究开发队伍,并取得了一批高水平的研究成果,初步形成了我国的生物质能产业。生物质能是一个重要的能源,预计到下世纪,世界能源消费的40%来自生物质能,我国农村能源的70%是生物质,我国有丰富的生物质能资源,仅农村秸杆每年总量达6亿多吨。随着经济的发展,人们生活水平的提高,环境保护意识的加强,对生物质能的合理、高效开发利用,必然愈来愈受到人们的重视。因此,科学地利用生物质能,加强其应用技术的研究,具有十分重要的意义。 

二、生物质能发电工艺 

生物质锅炉是将生物质直接作为燃料燃烧,将燃烧产生的能量用于发电。当今用于发电的生物质锅炉主要包括流化床生物质锅炉和层燃锅炉。

(一)流化床燃烧技术

流化床燃烧与普通燃烧最大的区别在于燃料颗粒燃烧时的状态,流化床颗粒是处于流态化的燃烧反应和热交换过程。生物质燃料水分比较高,采用流化床技术,有利于生物质的完全燃烧,提高锅炉热效率。生物质流化床可以采用砂子、燃煤炉渣等作为流化介质,形成蓄热量大、温度高的密相床层,为高水分、低热值的生物质提供优越的着火条件,依靠床层内剧烈的传热传质过程和燃料在床内较长的停留时间,使难以燃尽的生物质充分燃尽。另外,流化床锅炉能够维持在 850℃稳定燃烧,可以有效遏制生物质燃料燃烧中的沾污与腐蚀等问题,且该温度范围燃烧NOx排放较低,具有显著的经济效益和环保效益。但是,流化床对入炉燃料颗粒尺寸要求严格,因此需对生物质进行筛选、干燥、粉碎等一系列预处理,使其尺寸、状况均一化,以保证生物质燃料的正常流化。对于类似稻壳、木屑等比重较小、结构松散、蓄热能力比较差的生物质,就必须不断地添加石英砂等以维持正常燃烧所需的蓄热床料,燃烧后产生的生物质飞灰较硬,容易磨损锅炉受热面。此外,在燃用生物质的流化床锅炉中发现严重的结块现象,其形成的主要原因是生物质本身含有的钾、钠等碱金属元素与床料(通常是石英砂)发生反应,形成K20·4Si02和Na20·2Si02的低温共熔混合物,其熔点分别为870℃和760℃,这种粘性的共晶体附着在砂子表面相互粘结,形成结块现象。为了维持一定的流化床床温,锅炉的耗电量较大,运行费用相对较高。

(二)层燃燃烧技术

层燃燃烧是常见的燃烧方式,通常在燃烧过程中,沿着炉排上床层的高度分成不同的燃烧阶段。层燃锅炉的炉排主要有往复炉排、水冷振动炉排及链条炉排等。采用层燃技术开发生物质能,锅炉结构简单、操作方便、投资与运行费用都相对较低。由于锅炉的炉排面积较大,炉排速度可以调整,并且炉膛容积有足够的悬浮空间,能延长生物质在炉内燃烧的停留时间,有利于生物质燃料的充分完全燃烧。但层燃锅炉的炉内温度很高,可以达到1000℃以上,灰熔点较低的生物质燃料很容易结渣。同时,在燃烧过程中需要补充大量的空气,对锅炉配风的要求比较高,难以保证生物质燃料的充分燃烧,从而影响锅炉的燃烧效率。

三、国内外生物质锅炉的开发及应用

生物质发电在发达国家己受到广泛重视,在奥地利、丹麦、芬兰、法国、挪威、瑞典等欧洲国家和北美,生物质能在总能源消耗中所占的比例增加相当迅速。

(一)国外生物质锅炉的开发及应用

生物质锅炉的技术研究工作最早在北欧一些国家得到重视,随焉在美国也开展了大量研究开发,近几年由于环境保护要求日益严格和能源短缺,我国生物质燃烧锅炉的研制工作也取得了进展。生物质

燃料锅炉国内外发展现状示于表1。

美国在20世纪30年代就开始研究压缩成型燃料技术及燃烧技术,并研制了螺旋压缩机及相应的燃烧设备;日本在20世纪30年代开始研究机械活塞式成型技术处理木材废弃物,1954年研制成棒状燃料成型机及相关的燃烧设备;70年代后期,西欧许多国家如芬兰、比利时、法国、德国、意大利等国家也开始重视压缩成型技术及燃烧技术的研究,各国先后有了各类成型机及配套的燃烧设备。

丹麦BWE公司秸杆直接燃烧技术的锅炉采用振动水冷炉排,自然循环的汽包锅炉,过热器分两级布置在烟道中,烟道尾部布置省煤器和空气预热器。位于加拿大威廉斯湖的生物质电厂以当地的废木料为燃料,锅炉采用设有BW“燃烧控制区”的双拱形设计和底特律炉排厂生产的DSH水冷振动炉排,使燃料燃烧完全,也有效地降低了烟气的颗粒物排放量。同时,还在炉膛顶部引入热空气,从而在燃烧物向上运动后被再次诱入浑浊状态,使固体颗粒充分燃烧,提高热效率,减少附带物及烟气排放量。流化床技术以德国KARLBAY公司的低倍率差速床循环流化床生物质燃烧锅炉为代表。该锅炉的特点主要体现在燃烧技术上。高低差速燃烧技术的要点是改变现有常规流化床单一流化床,而采用不同流化风速的多层床“差速流化床结构”。瑞典也有以树枝、树叶等作为大型流化床锅炉的燃料加以利用的实例。国内无锡锅炉厂、杭州锅炉厂、济南锅炉厂等都有燃用生物质的流化床锅炉。

(二)我国生物质锅炉的开发及应用

我国生物质成型燃料技术在20世纪80年代中期开始,目前生物质成型燃料的生产已达到了一定的工业化规模。成型燃料目前主要用于各种类型的家庭取暖炉(包括壁炉)、小型热水锅炉、热风炉,燃烧方式主要为固定炉排层燃炉。河南农业大学副研制出双层炉排生物质成型燃料锅炉,该燃烧设备采用双层炉排结构,双层炉排的上炉门常开,作为燃料与空气进口;中炉门于调整下炉排上燃料的燃烧和清除灰渣,仅在点火及清渣时打开;下炉门用于排灰及供给少量空气。上炉排以上的空间相当于风室,上下炉排之间的空间为炉膛,其后墙上设有烟气出口。这种燃烧方式,实现了生物质成型燃料的分步燃烧,缓解生物质燃烧速度,达到燃烧需氧与供氧的匹配,使生物质成型燃料稳定、持续、完全燃烧,起到了消烟除尘作用。20世纪80年代末,我国哈尔滨工业大学与长沙锅炉厂等锅炉制造企业合作,研制了多台生物质流化床锅炉,可燃烧甘蔗渣、稻壳、碎木屑等多种生物质燃料,锅炉出力充分,低负荷运行稳定,热效率高达80%以上。浙江大学等也开展了相关研究工作。下面介绍两种国产的代表性锅炉。

1、无锡华光锅炉股份有限公司

锅炉为单锅筒、集中下降管、自然循环、四回程布置燃秸秆炉。炉膛采用膜式水冷壁,炉底布置为水冷振动炉排。在冷却室和过热器室分别布置了高温过热器、中温过热器和低温过热器。尾部采用光管式省煤器及管式空气预热器。炉膛、冷却室和过热器室四周全为膜式水冷壁,为悬吊结构。锅筒中心线标高为32100m。锅炉按半露天。布置进行设计。

2、济南锅炉集团有限公司

济南锅炉集团有限公司在采用丹麦BWE技术生产生物质锅炉的同时,也开发出循环流化床生物质锅炉,其燃料主要为生物质颗粒。其燃料主要通过机械压缩成型,一般不需添加剂,其颗粒密度可达到1~017t/m3,这样就解决了生物质散料因密度低造成的燃料运输量大的问题。但颗粒燃料的生产电耗高,一般每生产1t颗粒燃料需耗电30~

55kW,因而成本较高,大约在300元/t。循环流化床锅炉炉内一般需添加粘土、石英沙等作为底料已辅助燃烧。由于燃料呈颗粒状,因而上料系统同输煤系统一致,很适于中小型燃煤热电厂的生物质改造工程,在国家关停中小型燃煤(油)火力热电政策和鼓励生物质能开发政策下有广阔的市场前景。

四、我国生物质直燃发电政策

我国具有丰富的新能源和可再生能源资源,近几年在生物质能开发利用方面取得了一些成绩。2005年2月28日通过了《可再生能源法》,其中明确指出“国家鼓励和支持可再生能源并网发电”,它的颁布和实施为我国可再生能源的发展提供了法律保证和发展根基。随后,与之配套的一系列法律、法规、政策等陆续出台,如《可再生能源发电有关管理规定》(发改能源[2006]13号)、《可再生能源发电价

格和费用分摊管理试行办法》(发改价格[2006]7号)、《可再生能源电价附加收入调配暂行办法》(发改价格[2007]44号)、《关于2006年度可再生能源电价补贴和配额交易方案的通知》(发改价格[2007]

2446号)、《关于2007年1—9月可再生能源电价附加补贴和配额交易方案的通知》(发改价格[2008]640号)等的。与此同时,国务院有关部门也相继了涉及生物质能的中长期发展规划,生物质能的政策框架和目标体系基本形成。2012年科技部日前就《生物质能源科技发展"十二五 "重点专项规划》、《生物基材料产业科技发展"十二五"专项规划》、《生物种业科技发展"十二五"重点专项规划》、《农业生物药物产业科技发展"十二五"重点专项规划》等公开征求意见。表示将建立政府引导和大型生物质能源企业集团参与科技投入机制,推进后补助支持方式向生物质能源科技创新倾斜,形成政府引导下的多渠道投融资机制。这些政策的出台为生物质发电技术在我国的推广利用提供了有力的保障。

四、高效洁净生物质锅炉的开发应用建议

(一)重点开发适用于秸秆捆烧的燃烧设备

目前对生物质直接燃烧的研究,比较多地集中在生物质燃烧特性、燃烧方法和燃烧技术等方面,而对各种燃烧技术的经济性研究较少,更缺乏对不同燃烧方法、燃烧技术经济性的比较分析。实际上,由于生物质(尤其是农作物秸秆)原料来源地分散,收集、运输、贮存都需要一定的成本,有些燃烧技术需先对生物质燃料进行干燥、破碎等前期加工处理,真正适用的、值得推广的是能源化利用总成本最低、从收集到燃烧前期加工处理过程耗能最少、对环境影响最小的技术。例如,对于秸秆类生物质,捆烧将会是最有市场竞争力的燃烧方法,所以,应针对我国农村耕种集约化程度较低的现状,开发各种秸秆的小型打捆机械,并重点开发适用于秸秆捆烧的燃烧设备。农林加工剩余物(如甘蔗渣、稻壳、废木料等)则宜就地或就近燃烧利用,如剩余物数量较大且能常年保证供应,则可作为热能中心或热电联产锅炉燃料,热电联产的锅炉型式应优先采用循环流化床锅炉,数量较少或不能保证常年供应的,则可采用能与煤混烧的燃烧设备。

(二)加大科技支撑力度,加强产学研结合,突破关键技术和核心装备的制约

加大科技支撑力度,尽快将生物质能源的研究开发纳入重大专项,开发低成本非粮原料生产燃料乙醇和高效酶水解及高效发酵工艺,研究可适用不同原料、节能环保的具有自主知识产权的生物柴油绿色合成工艺,开发适宜中国不同区域特点的高效收集秸秆资源、发展成型燃料的关键生产技术与装备。

(三)做好技术方面控制

生物质锅炉的开发过程中应当克服以下技术问题:

1、粉尘控制与防火防爆 

目前生物质电厂的燃料储运是在常压下进行的,由于生物质燃料自身的特点,在其粉碎过程中或者在运输过程中出现落差的情况下,会产生大量的粉尘,导致了上料系统合锅炉给料系统的粉尘含量高,粉尘浓度甚至进入爆炸极限范围,存在极大的安全隐患。 

针对这种情况,需要我们根据国内燃料供应情况,在燃料粉碎、运输及上料环节上对生产工艺做相应修改,如采用封闭式负压储运;在落差较大的位置设置除尘装置;增设粉尘浓度传感器对粉尘进行实时监测;保持料仓的通风性良好,监测并控制料仓的温度、湿度。 

2、燃料输送系统的简化 

目前燃料输送系统和锅炉给料系统环节较多,工艺复杂,螺旋和斗式提升机经常堵塞的现象。燃料输送系统故障会导致炉前料仓断料,不能满足锅炉负荷下的燃料供应。 

为了避免这种现象发生,可以考虑改进现有的给料工艺,减少给料环节,不采用斗式提升机,改用栈桥、皮带,直接将料仓的料输送到炉前料仓。同时严格控制燃料湿度和粒度,防止燃料结团、缠绕,并改进自动化控制手段,保证输料系统连续稳定运行。 

3、结焦和腐蚀 

生物质燃料的成分和煤粉存在极大差异,尤其灰分中含有大量碱金属盐,这些成分导致其灰熔点较煤粉的灰熔点低,容易产生沾污结焦和腐蚀。因而生物质锅炉产生结焦、腐蚀的工况参数与普通燃煤炉不同,应该根据燃料性质及燃烧特性的不同,对锅炉及其辅助设备的工艺设计提出不同要求,并改进相关自动化控制使工艺运行环境符合现有设备要求。

随着国家大气污染排放标准的提高,因重视对废气排放的控制,炉内脱硫技术是控制空气污染的有效方法。循环流化床是我国燃煤发电重要的清洁煤技术。历经二十余年的发展,我国掌握了300MW亚临界循环流化床锅炉设计制造运行的系统技术,发展超临界参数循环流化床锅炉已经势在必行。国家发改委自主研发超临界600MWCFB锅炉是当前技术的典范。

参考文献

[1]刘强,段远源,宋鸿伟.生物质直燃有机朗肯循环热电联产系统的热力性能分析[j].中国电机工程学报,2013年26期.

篇5

0 引言

随着中国经济与社会发展的持续加速,能源资源短缺和环境污染问题日益突出。加快生物质能开发利用,开辟新型能源供应,对于缓解国家能源供需矛盾,减少化石能源消耗,有效保护生态环境,促进农村经济和社会可持续发展具有积极的推动作用。提高资源利用效率,发展可再生能源资源,加快发展循环经济,保障国家能源安全,将成为我国经济发展的一项重要战略任务。

1 生物质能利用现状及发展目标

1.1生物质能利用现状

截至2006年10月,黑龙江垦区应用新型专利技术,建设了7处秸秆气化集中供气工程、3处大中型沼气工程、3700户户用沼气池、6套秸秆固化成型燃料机组、15套稻壳发电机组,建设总投资28400万元。秸秆气化工程年利用作物秸秆5800t,可节约常规能源折合标准煤900t,直接受益农户2196户。大中型及户用沼气工程年可处理畜禽粪便6万t,节约常规能源折合标准煤2200t,直接受益农户5100户。利用秸秆固化成型技术生产秸秆固化燃料年可替代原煤4200t。稻壳发电机组总装机容量达24800kW,年可利用稻壳21万t,年发电量4590万kW。应用生物质气化、固化及稻壳发电技术,提供新型清洁能源,改善了传统用能方式,提高了生活质量和用能品位,降低了生产和生活成本,防止了畜禽粪便污染,既取得了较好的经济效益,也带来了减少二氧化碳、二氧化硫、废弃物等污染物排放的环境效益,为垦区节约能源、保护生态环境走出了一条新路。

目前存在的主要问题,一是受传统观念影响,农村能源开发利用与垦区经济社会总体发展水平差距较大,资源潜力没有得到有效开发,现代农业循环经济产业链还没有形成。二是生物质能源技术及装备处于较低水平,其可靠性和稳定性有待进一步提高。三是生物质能源项目初始投资较大,比较效益低下,难以实现市场化、商业化运作。

1.2发展目标

“十一五”期间,黑龙江垦区大力推进以生物质为原料的气化、固化、液化及发电工程建设,计划建设40个生物质气化站,生物质固化燃料年生产能力达到20万t、液化燃料5万t,装备20台套稻壳发电机组,装机容量4万kWh,建设2座生物质直燃发电、热电联产装置,装机容量5万kWh。生物质年利用量占一次能源消费总量的8,发电装机容量占全国的2。

2 开发利用生物质能的优势与潜力

黑龙江垦区地处东北三江平原,总面积5.62万km2。其中,耕地面积220万km2,农业机械总动力433.6万kW,总人口158.6万人,年粮食生产能力达1000万t,已成为国家重点商品粮基地和现代农业示范基地,因此,发展生物质能源具有独特优势与潜力。

一是资源优势。黑龙江垦区年可利用作物秸秆量达800多万t。2005年末,大牲畜存栏80.5万头,生猪存栏174万头,年畜禽粪便量达622万t。集约化、规模化生产为生物质能利用提供了基础保证。有效利用作物秸秆及畜禽粪便等生物质能,可进一步调整生产用能结构、提高生活用能质量、改善当地生态环境、促进农民增收、实现农业和畜牧业可持续发展。

二是机械化优势。现代农机装备作业区已达到160个,大马力作业覆盖面积约900万亩,农业综合机械化率达到93,农机化总水平居国内领先,机械化作业为生物质收集利用提供了先决条件。

三是农垦小城镇建设优势。按照垦区“十一五”规划,计划将原有2000多个生产队合并建成660个管理区,农业职工全部集中居住,住宅全部实现砖瓦化。利用小城镇基础设施完善、服务功能齐全、信息便捷的优势,使更多的农业富余劳动力向小城镇转移,壮大城镇经济规模和人口规模,为生物质利用提供了发展空间。四是典型示范优势。在国家和省有关部门积极支持下,已建成多处大中型沼气、秸秆气化、秸秆固化、稻壳发电等生物质能源示范工程项目,积累了丰富的建设经验,为生物质利用提供了技术支撑。

3生物质能工程技术方案及可行性

3.1大中型沼气工程

3.1.1工艺方案

综合考虑大中型养殖场物料特点及北方地区气候寒冷等因素,适宜采用底物浓度高、加热量小、运行费用低和沼液量少的“能源生态型”卧式池中温发酵工艺。工艺流程示意图如下(见图1)。

3.1.2可行性

发展大型沼气工程及沼气综合利用,是解决垦区规模化养殖粪便处理、发展生态有机农业的最有效途径。充分利用畜牧业废弃物生产清洁能源,可进一步改善农场职工生活条件,减少环境污染,探索和形成垦区“粮-畜-沼-肥-粮”的资源良性循环生态农业新模式。

实践证明该工艺在北方地区运行稳定,产气效率平均高达0.6m3/(m3.d),沼气、沼渣、沼液应用前景广阔,具有较好的经济和社会效益,适宜在6000头猪以上的规模化养殖场及集中居民区附近建设。

3.2秸秆气化集中供气工程

3.2.1工艺方案

推广使用下吸式固定床气化炉技术。下吸式固定床气化炉具有以下优点:(1)操作简便,运行可靠;(2)原料适应性强;(3)气化效率高;(4)热裂解充分,焦油含量低。工艺流程示意图如下(见图2)。

3.2.2可行性

以往农作物收获以后,除少量的秸秆粉碎后还田用于饲料及烧柴外,其余全部在田间烧掉,造成资源极大浪费,也给环境带来了污染。同时,随着煤炭、液化石油燃气价格不断上涨,居民生活用能成本不断增加。充分利用秸秆燃气,则可以更好地满足人们的生活需要,提高生活用能品位,带来良好的经济效益和社会效益。

3.3生物质液化燃

料工程 3.3.1工艺方案

根据黑龙江垦区地域及气候特点,重点发展甜高粱秸秆制取燃料乙醇。工艺流程示意图如下(见图3)。

发展燃料乙醇有利于中国能源多元化、减少环境污染、发展畜牧养殖、增加农民收入。黑龙江垦区土地资源丰富,种植甜高粱产量高,成本低。生产甜高粱乙醇,可替代石油资源,减少车辆尾气污染,废渣废液可作优质饲料和液体肥料综合利用,是一项从种植到加工、从农业到能源的新型能源农业工程。

目前,黑龙江垦区在已建成甜高粱良种繁育基地的基础上,又扩大试种面积3000km2,为生产燃料乙醇提供了原料保证。

3.4生物质发电工程

秸秆发电是一项新兴能源产业。据调查,黑龙江垦区粮食作物区25km半径内,大豆、玉米、水稻等秸秆剩余量达58万t。随着农业生产科学技术不断发展,粮食单产进一步提高,秸秆剩余量将进一步增加。发展秸秆发电,一是可以加快秸秆转化步伐,增加农民收入,实现经济协调发展;二是可以增加电力供应,拉动工业经济增长;三是可以提高资源利用效率,改善生态环境;四是可以拉动农区运输服务等相关产业发展。

项目采用具有国际先进水平的生物质直燃发电技术,工艺系统主要包括机组、电气

、热力、燃烧、燃料输送、水处理、除灰、采暖、通风、除尘、消防等装置。黑龙江农垦所属宝泉岭、红兴隆、建三江、牡丹江、九三等地区地质条件良好,水源充足,交通方便,电力接口便捷,可充分利用发电余热等优势,适宜建设25~50MW秸秆热电联产发电项目。

4 发展生物质能源的对策措/!/施

(1)进一步加大《可再生能源法》的宣传力度。通过典型示范,提高开发生物质能源的认识,加快农村能源项目的推进和落实,形成全社会支持生物质能发展的良好氛围。

(2)全面开展生物质能资源评价。制定农业生物质资源评价技术规范,调查生物质资源量、能源作物适宜土地资源量,选育能源作物优良品种。

篇6

从上世纪90年代开始,许多沿海国家都把开发利用海洋作为基本国策。美、日、英、法、俄等国家分别推出包括开发生命活性物质和海洋药物在内的“海洋生物技术计划”“海洋蓝宝石计划”“海洋生物开发计划”等,投入巨资发展海洋药物及海洋生物技术。全世界范围内已从海洋动植物及微生物中分离得到1.5万多种新型化合物,研发获得了抗肿瘤、抗艾滋病等不同类型的新型海洋药物以及海洋功能保健食品等。

近年来,随着我国海洋生物产业的发展,海洋生物资源高值利用的理念也被广泛应用。国家相继在海洋生物资源高值利用方面进行项目部署,重点关注我国海水养殖产业的品种优化、病害防治、增产增收等产业问题,并取得了一批重要的科技创新成果。

目前,我国海洋经济发展正在推进。在海洋生物活性物质作用机理和重要生物制品开发方面,我国针对海洋药物开发中的生物活性物质作用机理、毒副作用降低和药效增强以及产品高值化开发中的产品设计、构效优化和规模生产技术等关键科学问题,重点开展了自主创新药物的药源技术、新型农用产品的制备工艺、新颖海洋生物产品设计等方面的研究工作。

目前,中国科学院已完成了微波技术制备甲壳低聚糖、壳寡糖的工艺优化,获得了废弃虾蟹壳作为新型生物农药源的资源再利用工艺技术,合成抑菌效果增强的5种壳聚糖新衍生物,并获得了3种微生物制剂;研究建立了具有海洋生物特点的卤素过氧化物酶生物催化体系,为工业应用提供科学依据;获得了海洋贝类活性物质开发新型鲜味增强剂的关键技术,并实现产业化和制订产品企业标准;攻克了海藻多糖胃溶植物空心胶囊的研制及产业化关键技术,获得新型植物胶囊材料并实现产业化。

在海洋微生物活性物质及其组合物合成技术研发方面,我国针对热带海洋微生物的种属选择性培养基和培养条件、难培养分离菌株及稀有菌种菌株的稳定培养和传代技术,微生物发酵液中的微量、难分离成分的分离纯化和结构新颖、复杂的化合物的结构确定,多靶点生物活性成分筛选技术,热带海洋微生物显效化合物的显基因的重组技术和功能代谢酶的表达技术等关键科学问题,重点开展了南海热带海洋微生物的生物学、遗传学、酶学和次生代谢产物的特征研究,探讨微生物活性化合物的代谢机制,开发热带海洋微生物的组合生物合成技术。

海洋生物资源高值利用是海洋领域一个重要的新兴交叉方向,是海洋战略性新兴产业的支柱性主导产业和突破口,是解决制约人类资源短缺等重大问题的必然选择和有效途径。

(选自《中国科学报》2014年4月8日,有删改)

篇7

[关键词]生物质 能源使用现状 参考数据 燃烧

[中图分类号]U676.3 [文献码]B [文章编号]1000-405X(2013)-6-187-1

1 生物质资源概述

1.1 生物质燃料的概念

生物质的原料主要为玉米等农作物的秸秆、稻草、稻壳、木屑、芦苇、蒿草、树枝、树叶等生物质废弃物。这些农林剩余物经粉碎、混合、挤压、烘干等工艺,最后制成颗粒状燃料,可直接作为生物质燃料熄灭,具有熄灭时间长、炉膛温度高、经济实惠等特性,因而能够作为煤炭、自然气、电、油等能源的补充以至是替代能源。

1.2 我国能源使用现状

如今我国大力倡导能源的利用效率,以高新技术开发低污染、可再生的新能源,逐步取代石油,煤,天然气等不可再生能源,是解决能源危机和环境问题的重要途径。在我国冬季采暖常用的方式就是应用煤炭、燃油供暖。耗能高、污染大,是这些供暖方式是有很大的弊端的。一到冬季,矿物质燃料在供暖中的大量运用,严重地污染着我们身边的空气环境。国内能源专家普遍以为:生物质燃料是很好的清洁性可再生能源,在环保形势日益严峻的今天,应该依据实践,以生物质燃料取代煤、油燃料。

据调查,采用生物质燃料的取暖锅炉,1小时耗费生物质颗粒约8kg,依照冬季取暖时节5个月计算,共需求耗费生物质颗粒约124吨,以每吨650元计,需求消费近9000元,相比过去燃煤的破费,每个冬季可俭省1612元,并且无污染,有利于维护环境。此外,当前采用电、油、燃气的供暖及供气企业,由于各类清洁燃料价钱的上涨,迫切需求清洁、经济的替代燃料。因而物质燃料锅炉的推行具有重要意义。

2 锅炉生物质能技改项目概况

2.1 锅炉工况的分析

减少和防止锅炉四管漏泄要从备件的运行操作和检修工艺等最基本方面人手,坚持预防为主,质量第一的方针。组织由锅炉检修、锅炉运行、热工、电气、化学、金属和热力试验人员组成的攻关小组,做好基础工作,分析原因,提出合理的措施,开展长期、经常性的防止受热面漏泄的工作。进行了较为全面的工业性试验。根据锅炉生物质料层的高度和布置要求,对燃煤锅炉的前墙水冷壁管进行重新设计制作,增加前锅炉的排表面的距离,增大其空间,对生物质粉料喷口和二次风,增加链条炉排长度并在炉前新设片状生物质小料斗,根据热力计算工况增大省煤器受热面,以适应生物质燃料燃烧特性。

2.2 炉内壁温

锅炉内壁温随负荷的变化。从炉内壁温曲线上可以看出,炉内壁温随着负荷的增加而增加,同时总体壁温水平偏高。处于水平烟道右侧和入口在三通涡流区中的管壁温水平最高。这是热偏差与水利偏差相叠加的结果,实际运行证明了这一点,该管在管材提高档次前常发生爆管。炉内壁温测点采用金属喷涂法安装热电偶,测量值是正误差,曾做过标定,试验值偏高10℃-15℃。热偏差在通过调节炉膛火焰中心位置以达到调节再热气汽温的目的。燃烧器下摆,炉膛出口烟温下降,各级受热面的壁温也随着下降,对改善对流受热面的运行条件,作用是非常明显的。调整好喷嘴角度,由于喷嘴角度检修不当,使火焰冲刷水冷壁及炉墙而结焦。应根据结焦规律和炉膛结构调整喷嘴方位,一般是将火焰尽可能调向炉膛中心中心切圆附近以减少结焦。在此使用优质生物质在锅炉内燃烧,在稳定燃烧区域比较集聚。生物质燃烧得很干净,不留过多灰烬。同时在大量增加燃烧量的情况下,加大鼓引风至最大保证其压力平衡,可以降低其燃烧热度。并且能源节省也很明显。

2.3 锅炉燃烧生物质与煤的燃料特性对比及燃烧特点

生物质中硫的含量极低,基本上无硫化物的排放。所以,利用生物质作为替代能源,对改善环境,减少大气中的CO2含量,在“温室效应”都有极大的好处。因此,将生物质作为化石燃料的替代能源,便能向社会提供一种各方面都可被接受的可再生能源。下面表2典形生物质成型燃料和煤的工业分析及元素分析

分析表2生物质成型燃料的特点:

(1)灰分少,燃烧得充分,残余量极少,利于减少锅炉排热损失。

(2)相比与煤炭生物质含量很高,一般超过50%,它的含氧量也多于煤炭,容易燃烧火势旺。然而,碳的含氧量较低,因此它的发热值较相对低,要想达到锅炉的热力,必须加大燃料供给量,同时还要满足完全燃烧的条件。

(3)生物质的硫的含量极低,对环境的保护的相当有益的,污染空气指数小。

从矿物能源资源有限和因大量使用会造成环境状态恶化的战略观点出发,结合我国拥有丰富生物质资源的现实,逐步发展工业锅炉生物质的燃烧技术,对节约常规能源、优化我国能源结构,将有积极意义。

常规热电联产业配备的燃煤锅炉进行改燃生物质的改造,取得了成功,为我国家节能减排工作作出了贡献。对新能源的开发利用做好榜样,起到了较好的实践示范作用。同时为各企业今后的发展开启先导。

3 结语

在发展中国家中,好的锅炉能提高效率减少燃料垃圾的收集的排放,使得生活环境得到提升,新的先进技术替代陈旧的工业市场中的燃烧技术。在生物能源项目和市场规模不断扩大。在各类市场应用大规模的转换装置的趋势将会持续。增加燃料适应性,降低风险,使得费用最小化,并通过将燃煤锅炉改造为生物质能锅炉其节能减排的功效较为明显,同时也将生物质能利用效率大大提高。采用规模经济对生物质能整体来说非常重要。能源系统的发展是个整体,生物质的使用将日渐成为人们生产运输燃料或生物材料的重要工具。

参考文献

篇8

一、中国生物质能源开发利用现状

20世纪70年代,国际上第一次石油危机使发达国家和贫油国家重视石油替代,开始大规模发展生物质能源。生物质能源是以农林等有机废弃物以及利用边际土地种植的能源植物为主要原料进行能源生产的一种新兴能源。生物质能源按照生物质的特点及转化方式可分为固体生物质燃料、液体生物质燃料、气体生物质燃料。中国生物质能源的发展一直是在“改善农村能源”的观念和框架下运作,较早地起步于农村户用沼气,以后在秸秆气化上部署了试点。近两年,生物质能源在中国受到越来越多的关注,生物质能源利用取得了很大的成绩。沼气工程建设初见成效。截至2005年底,全国共建成3764座大中型沼气池,形成了每年约3.4l亿立方米沼气的生产能力,年处理有机废弃物和污水1.2亿吨,沼气利用量达到80亿立方米。到2006年底,建设农村户用沼气池的农户达2260万户,占总农户的9.2%,占适宜农户的15.3%,年产沼气87.0亿立方米,使7500多万农民受益,直接为农民增收约180亿元。生物质能源发电迈出了重要步伐,发电装机容量达到200万千瓦。液体生物质燃料生产取得明显进展,全国燃料乙醇生产能力达到:102万吨,已在河南等9个省的车用燃料中推广使用乙醇汽油。

(一)固体生物质燃料

固体生物质燃料分生物质直接燃烧或压缩成型燃料及生物质与煤混合燃烧为原料的燃料。生物质燃烧技术是传统的能源转化形式,截止到2004年底,中国农村地区已累计推广省柴节煤炉灶1.89亿户,普及率达到70%以上。省柴节煤炉灶比普通炉灶的热效率提高一倍以上,极大缓解了农村能源短缺的局面。生物质成型燃料是把生物质固化成型后采用略加改进后的传统设备燃用,这种燃料可提高能源密度,但由于压缩技术环节的问题,成型燃料的压缩成本较高。目前,中国(清华大学、河南省能源研究所、北京美农达科技有限公司)和意大利(比萨大学)两国分别开发出生物质直接成型技术,降低了生物质成型燃料的成本,为生物质成型燃料的广泛应用奠定了基础。此外,中国生物质燃料发电也具有了一定的规模,主要集中在南方地区的许多糖厂利用甘蔗渣发电。广东和广西两省(区)共有小型发电机组300余台,总装机容量800兆瓦,云南也有一些甘蔗渣电厂。中国第一批农作物秸秆燃烧发电厂将在河北石家庄晋州市和山东菏泽市单县建设,装机容量分别为2×12兆瓦和25兆瓦,发电量分别为1.2亿千瓦时和1.56亿千瓦时,年消耗秸秆20万吨。

(二)气体生物质燃料

气体生物质燃料包括沼气、生物质气化制气等。中国沼气开发历史悠久,但大中型沼气工程发展较慢,还停留在几十年前的个体小厌氧消化池的水平,2004年,中国农户用沼气池年末累计1500万户,北方能源生态模式应用农户达43.42万户,南方能源生态模式应用农户达391.27万户,总产气量45.80亿立方米,相当于300多万吨标准煤。到2004年底,中国共建成2500座工业废水和畜禽粪便沼气池,总池容达到了88.29万立方米,形成了每年约1.84亿立方米沼气的生产能力,年处理有机废物污水5801万吨,年发电量63万千瓦时,可向13.09万户供气。

在生物质气化技术开发方面,中国对农林业废弃物等生物质资源的气化技术的深入研究始于20世纪70年代末、80年代初。截至2006年底,中国生物质气化集中供气系统的秸秆气化站保有量539处,年产生物质燃气1.5亿立方米;年发电量160千瓦时稻壳气化发电系统已进入产业化阶段。

(三)液体生物质燃料

液体生物质燃料是指通过生物质资源生产的燃料乙醇和生物柴油,可以替代由石油制取的汽油和柴油,是可再生能源开发利用的重要方向。近年来,中国的生物质燃料发展取得了很大的成绩,特别是以粮食为原料的燃料乙醇生产已初步形成规模。“十五”期间,在河南、安徽、吉林和黑龙江分别建设了以陈化粮为原料的燃料乙醇生产厂,总产能达到每年102万吨,现已在9个省(5个省全部,4个省的27个地(市))开展车用乙醇汽油销售。到2005年,这些地方除军队特需和国家特种储备外实现了车用乙醇汽油替代汽油。

但是,受粮食产量和生产成本制约,以粮食作物为原料生产生物质燃料大规模替代石油燃料时,也会产生如同当今面临的石油问题一样的原料短缺,因此,中国近期不再扩大以粮食为原料的燃料乙醇生产,转而开发非粮食原料乙醇生产技术。目前开发的以木薯为代表的非食用薯类、甜高粱、木质纤维素等为原料的生物质燃料,既不与粮油竞争,又能降低乙醇成本。广西是木薯的主要产地,种植面积和总产量均占全国总量的80%,2005年,木薯乙醇产量30万吨。从生产潜力看,目前,木薯是替代粮食生产乙醇最现实可行的原料,全国具有年产500万吨燃料乙醇的潜力。

此外,为了扩大生物质燃料来源,中国已自主开发了以甜高粱茎秆为原料生产燃料乙醇的技术(称为甜高粱乙醇),目前,已经达到年产5000吨燃料乙醇的生产规模。国内已经在黑龙江、内蒙古、新疆、辽宁和山东等地,建立了甜高粱种植、甜高梁茎秆制取燃料乙醇的基地。生产1吨燃料乙醇所需原料--甜高粱茎秆收购成本2000元,加上加工费,燃料乙醇生产成本低于3500元,吨。由于现阶段国家对燃料乙醇实行定点生产,这些甜高粱乙醇无法进入交通燃料市场,大多数掺入了低质白酒中。另外,中国也在开展纤维素制取燃料乙醇技术的研究开发,现已在安徽丰原生化股份有限公司等企业形成年产600吨的试验生产能力。目前,中国燃料乙醇使用量已居世界第三位。生物柴油是燃料乙醇以外的另一种液体生物质燃料。生物柴油的原料来源既可以是各种废弃或回收的动植物油,也可以是含油量高的油料植物,例如麻风树(学名小桐子)、黄连木等。中国生物柴油产业的发展率先在民营企业实现,海南正和生物能源公司、四川古杉油脂化工公司、福建卓越新能源发展公司等都建成了年生产能力l万~2万吨的生产装置,主要以餐饮业废油和皂化油下脚料为原料。此外,国外公司也进军中国,奥地利一家公司在山东威海市建设年生产能力25万吨的生物柴油厂,意大利一家公司在黑龙江佳木斯市建设年生产能力20万吨的生物柴油厂。预计中国生物柴油产量2010年前约可达每年100万吨。

二、中国生物质能源发展政策

为了确保生物质能源产业的稳步发展,中国政府出台了一系列法律法规和政策措施,积极推动了生物质能源的开发和利用。

(一)行业标准规范生产,法律法规提供保障

本世纪初,为解决大量库存粮积压带来的财政重负和发展石化替代能源,中国开始生产以陈化粮为主要原料的燃料乙醇。2001年,国家计划委员会了示范推行车用汽油中添加燃料乙醇的通告。随后,相关部委联合出台了试点方案与工作实施细则。2002年3月,国家经济贸易委员会等8部委联合制定颁布了《车用乙醇汽油使用试点方案》和《车用乙醇汽油使用试点工作实施细则》,明确试点范围和方式,并制定试点期间的财政、税收、价格等方面的相关方针政策和基本原则,对燃料乙醇的生产及使用实行优惠和补贴的财政及价格政策。在初步试点的基础上,2004年2月,国家发展和改革委员会等8部委联合《车用乙醇汽油扩大试点方案》和《车用乙醇汽油扩大试点工作实施细则》,在中国部分地区开展车用乙醇汽油扩大试点工作。同时,为了规范燃料乙醇的生产,国家质量技术监督局于2001年4月和2004.年4月,分别GBl8350-2001《变性燃料乙醇》和GBl8351-2001《车用乙醇汽油》两个国家标准及新车用乙醇汽油强制性国家标准(GBl835l一2004)。在国家出台相关政策措施的同时,试点区域的省份均制定和颁布了地方性法规,地方各级政府机构依照有关规定,加强组织领导和协调,严格市场准入,加大市场监管力度,对中国生物质燃料乙醇产业发展和车用生物乙醇汽油推广使用起到了重大作用。

此外,国家相关的法律法规也为生物质能源的发展提供保障。2005年,《中华人民共和国可再生能源法》提出,“国家鼓励清洁、高效地开发利用生物质燃料、鼓励发展能源作物,将符合国家标准的生物液体燃料纳入其燃料销售体系”。国家“十一五”规划纲要也提出,“加快开发生物质能源,支持发展秸秆、垃圾焚烧和垃圾填埋发电,建设一批秸秆发电站和林木质发电站,扩大生物质固体成型燃料、燃料乙醇和生物柴油生产能力”。

(二)运用经济手段和财政扶持政策推动产业发展

除制定相应法律法规和标准外,2002年以来,中央财政也积极支持燃料乙醇的试点及推广工作,主要措施包括投入国债资金、实施税收优惠政策、建立并优化财政补贴机制等。一是投入国债资金4.8亿元用于河南、安徽、吉林3省燃料乙醇企业建设;二是对国家批准的黑龙江华润酒精有限公司、吉林燃料乙醇有限公司、河南天冠燃料乙醇有限公司、安徽丰原生化股份有限公司4家试点单位,免征燃料乙醇5%的消费税,对生产燃料乙醇实现的增值税实行先征后返;三是在试点初期,对生产企业按保本微利的原则据实补贴,在扩大试点规模阶段,为促进企业降低生产成本,改为按照平均先进的原则定额补贴,补贴逐年递减。

为进一步推动生物质能源的稳步发展,2006年9月,财政部、国家发展和改革委员会、农业部、国家税务总局、国家林业局联合出台了《关于发展生物质能源和生物化工财税扶持政策的实施意见》,在风险规避与补偿、原料基地补助、示范补助、税收减免等方面对于发展生物质能源和生物化工制定了具体的财税扶持政策。此外,自2006年1月1日《可再生能源法》正式生效后,酝酿中与之配套的各项行政法规和规章也开始陆续出台。财政部2006年10月4日出台了《可再生能源发展专项资金管理暂行办法》,该办法对专项资金的扶持重点、申报及审批、财务管理、考核监督等方面做出全面规定。该《办法》规定:发展专项资金由国务院财政部门依法设立,发展专项资金的使用方式包括无偿资助和贷款贴息,通过中央财政预算安排。

三、中国生物质能源发展中存在的主要问题

尽管中国在生物质能源等可再生能源的开发利用方面取得了一些成效,但由于中国生物质能源发展还处于起步阶段,面临许多困难和问题,归纳起来主要有以下几个方面。

(一)原料资源短缺限制了生物质能源的大规模生产

由于粮食资源不足的制约,目前,以粮食为原料的生物质燃料生产已不具备再扩大规模的资源条件。今后,生物质燃料乙醇生产应转为以甜高粱、木薯、红薯等为原料,特别是以适宜在盐碱地、荒地等劣质地和气候干旱地区种植的甜高粱为主要原料。虽然中国有大量的盐碱地、荒地等劣质土地可种植甜高粱,有大量荒山、荒坡可以种植麻风树和黄连木等油料植物,但目前缺乏对这些土地利用的合理评价和科学规划。目前,虽然在西南地区已种植了一定数量的麻风树等油料植物,但不足以支撑生物柴油的规模化生产。因此,生物质燃料资源不落实是制约生物质燃料规模化发展的重要因素。

(二)还没有建立起完备的生物质能源工业体系,研究开发能力弱,技术产业化基础薄弱

虽然中国已实现以粮食为原料的燃料乙醇的产业化生产,但以其他能源作物为原料生产生物质燃料尚处于技术试验阶段,要实现大规模生产,还需要在生产工艺和产业组织等方面做大量工作。以废动植物油生产生物柴油的技术较为成熟,但发展潜力有限。后备资源潜力大的纤维素生物质燃料乙醇和生物合成柴油的生产技术还处于研究阶段,一些相对成熟的技术尚缺乏标准体系和服务体系的保障,产业化程度低,大规模生物质能源生产产业化的格局尚未形成。

(三)生物燃油产品市场竞争力较弱

巴西以甘蔗生产燃料乙醇1980年每吨价格为849美元,1998年降到300美元以下。中国受原料来源、生产技术和产业组织等多方面因素的影响,燃料乙醇的生产成本比较高,目前,以陈化粮为原料生产的燃料乙醇的成本约为每吨3500元左右,以甜高粱、木薯等为原料生产的燃料乙醇的成本约为每吨4000元。按等效热值与汽油比较,汽油价格达到每升6元以上时,燃料乙醇才可能赢利。目前,国家每年对102万吨燃料乙醇的财政补贴约为15亿元,在目前的技术和市场条件下,扩大燃料乙醇生产需要大量的资金补贴。以甜高粱和麻风树等非粮食作物为原料的燃料乙醇和生物柴油的生产技术才刚刚开始产业化试点,产业化程度还很低,近期在成本方面的竞争力还比较弱。因此,生物质燃料成本和石油价格是制约生物质燃料发展的重要因素。

(四)政策和市场环境不完善,缺乏足够的经济鼓励政策和激励机制

生物质能源产业是具有环境效益的弱势产业。从国外的经验看,政府支持是生物质能源市场发育初期的原始动力。不论是发达国家还是发展中国家,生物质能源的发展均离不开政府的支持,例如投融资、税收、补贴、市场开拓等一系列的优惠政策。2000年以来,国家组织了燃料乙醇的试点生产和销售,建立了包括燃料乙醇的技术标准、生产基地、销售渠道、财政补贴和税收优惠等在内的政策体系,积累了生产和推广燃料乙醇的初步经验。但是,由于以粮食为原料的燃料乙醇发展潜力有限,为避免对粮食安全造成负面影响,国家对燃料乙醇的生产和销售采取了严格的管制。近年来,虽有许多企业和个人试图生产或销售燃料乙醇,但由于受到现行政策的限制,不能普遍享受到财政补贴,也难以进入汽油现有的销售渠道。对于生物柴油的生产,国家还没有制定相关的政策,特别是还没有生物柴油的国家标准,更没有生物柴油正常的销售渠道。此外,生物质资源的其它利用项目,例如燃烧发电、气化发电、规模化畜禽养殖场大中型沼气工程项目等,初始投资高,需要稳定的投融资渠道给予支持,并通过优惠的投融资政策降低成本。中国缺乏行之有效的投融资机制,在一定程度上制约了生物质资源的开发利用。

四、中国生物质能源未来的发展特点和趋势

(一)逐步改善现有的能源消费结构,降低石油的进口依存度

中国经济的高速发展,必须构筑在能源安全和有效供给的基础之上。目前,中国能源的基本状况是:资源短缺,消费结构单一,石油的进口依存度高,形势十分严峻。2004年,中国一次能源消费结构中,煤炭占67.7%,石油占22.7%,天然气占2.6%,水电等占7.0%;一次能源生产总量中,煤炭占75.6%,石油占13.5%,天然气占3.O%,水电等占7.9%。这种能源结构导致对环境的严重污染和不可持续性。中国石油储量仅占世界总量的2%,消费量却是世界第二,且需求持续高速增长,1990年的消费量刚突破1亿吨,2000年达到2.3亿吨,2004年达到3.2亿吨。中国自1993年成为石油净进口国后,2005年进口原油及成品油约1.3亿吨,估计2010年将进口石油2.5亿吨,进口依存度将超过50%。进口依存度越高,能源安全度就越低。中国进口石油的80%来自中东,且需经马六甲海峡,受国际形势影响很大。

因此,今后在厉行能源节约和加强常规能源开发的同时,改变目前的能源消费结构,向能源多元化和可再生清洁能源时代过渡,已是大势所趋,而在众多的可再生能源和新能源中,生物质能源的规模化开发无疑是一项现实可行的选择。

(二)生物质产业的多功能性进一步推动农村经济发展

生物质产业是以农林产品及其加工生产的有机废弃物,以及利用边际土地种植的能源植物为原料进行生物能源和生物基产品生产的产业。中国是农业大国,生物质原料生产是农业生产的一部分,生物质能源的蕴藏量很大,每年可用总量折合约5亿吨标准煤,仅农业生产中每年产生的农作物秸秆,就折合1.5亿吨标准煤。中国有不宜种植粮食作物、但可以种植能源植物的土地约l亿公顷,可人工造林土地有311万公顷。按这些土地20%的利用率计算,每年约可生产10亿吨生物质,再加上木薯、甜高粱等能源作物,据专家测算,每年至少可生产燃料乙醇和生物柴油约5000万吨,农村可再生能源开发利用潜力巨大。生物基产品和生物能源产品不仅附加值高,而且市场容量几近无限,这为农民增收提供了一条重要的途径;生物质能源生产可以使有机废弃物和污染源无害化和资源化,从而有利于环保和资源的循环利用,可以显著改善农村能源的消费水平和质量,净化农村的生产和生活环境。生物质产业的这种多功能性使它在众多的可再生能源和新能源中脱颖而出和不可替代,这种多功能性对拥有8亿农村人口的中国和其他发展中国家具有特殊的重要性。

(三)净化环境,进一步为环境“减压”

随着中国经济的高速增长,以石化能源为主的能源消费量剧增,在过去的20多年里,中国能源消费总量增长了2.6倍,对环境的压力越来越大。2003年,中国二氧化碳排放量达到8.23亿吨,居世界第二位。2025年前后,中国二氧化碳排放量可能超过美国而居首位。2003年,中国二氧化硫的排放量也超过了2000万吨,居世界第一位,酸雨区已经占到国土面积的30%以上。中国二氧化碳排放量的70%、二氧化硫排放量的90%、氮氧化物排放量的2/3均来自燃煤。预计到2020年,氧化硫和氮氧化物的排放量将分别超过中国环境容量30%和46%。《京都议定书》已对发达国家分配了2012年前二氧化碳减排8%的指标,中国是《京都议定书》的签约国,承担此项任务只是时间早晚的问题。此外,农业生产和废弃物排放也对生态环境带来严重伤害。因此,发展生物质能源,以生物质燃料直接或成型燃烧发电替代煤炭以减少二氧化碳排放,以生物燃油替代石化燃油以减少碳氢化物、氮氧化物等对大气的污染,将对于改善能源结构、提高能源利用效率、减轻环境压力贡献巨大。

(四)技术逐步完善,产业化空间广阔

从生物质能源的发展前景看,第一,生物乙醇是可以大规模替代石化液体燃料的最现实选择;第二,对石油的替代,将由E85(在乙醇中添加15%的汽油)取代E10(汽油中添加10%的乙醇);第三,FFVs(灵活燃料汽车)促进了生物燃油生产和对石化燃料的替代,生物燃油的发展带动了传统汽车产业的更新改造;第四,沼气将规模化生产,用于供热发电、(经纯化压缩)车用燃料或罐装管输;第五,生物质成型燃料的原料充足,技术成熟,投资少、见效快,可广泛用于替代中小锅炉用煤,热电联产(CHP)能效在90%以上,是生物质能源家族中的重要成员;第六,以木质纤维素生产的液体生物质燃料(Bff。)被认为是第二代生物质燃料,包括纤维素乙醇、气化后经费托合成生物柴油(FT柴油),以及经热裂解(TDP)或催化裂解(CDP)得到的生物柴油。此外,通过技术研发还将开拓新的资源空间。工程藻类的生物量巨大,如果能将现代生物技术和传统育种技术相结合,优化育种条件,就有可能实现大规模养殖高产油藻。一旦高产油藻开发成功并实现产业化,由藻类制取生物柴油的规模可以达到数千万吨。

据专家预测估计,到2010年,中国年生产生物燃油约为600万吨,其中,生物乙醇500万吨、生物柴油100万吨:到2020年,年生产生物燃油将达到1900万吨,其中,生物乙醇1000万吨,生物柴油900万吨。

篇9

本篇分析、讨论生物质发电项目设计中环保涉及的重点问题,作好生物质发电工程的环保设计工作,使生物质发电设计更趋先进合理、符合国情,产生良好的环境效益、社会效益和经济效益。

1生物质发电工程概念及特点

1.1生物质发电工程概念

生物质发电工程主要为农林生物质直接燃烧和气化发电、生活垃圾(含污泥)焚烧发电和垃圾填埋气发电及沼气发电工程。本篇主要讨论、分析以农林生物质直接燃烧的生物质发电工程。

1.2燃料特性分析

农林生物质的种类包括农作物的秸秆、壳、根,木屑、树枝、树皮、边角木料,甘蔗渣等。秸秆一般为燃料的主要成份,根据燃料特性,秸秆分为硬质秸秆、软质秸秆。硬质秸秆:棉花、大豆等茎干相对坚硬的农作物秸秆及树枝、木材加工下脚料的统称。软质秸秆:玉米、小麦、水稻、高粱、甘蔗等茎干相对柔软的农作物秸秆的统称。

1.3特点

生物质发电工程燃料为废弃作物秸秆及木材下脚料等,属可再生能源,利用秸秆、木材下脚料等发电,可减少煤、油等常规能源消耗,节省了资源,又避免焚烧污染环境。产生的灰渣可作为一种优质肥料还田或复合肥厂生产原料,100%综合利用,不需设置灰渣场,节省土地,减少水土流失,节省工程造价。减排二氧化碳,按每度供电减排0.997kgCO2,按1×30MW高温高压凝汽式汽轮发电机组,配1台130t/h高温高压生物质锅炉的工程,年二氧化碳减排量约171528t,对减轻大气温室效应,缓解全球气候变暖和气候变化起到了促进作用。

2环保标准的执行

2.1烟气污染物排放标准

单台出力65t/h以上采用甘蔗渣、锯末、树皮等生物质燃料的发电锅炉,参照《火电厂大气污染物排放标准》(GB13223-2003)规定的资源综合利用火力发电锅炉的污染物控制要求执行。

单台出力65t/h及以下采用甘蔗渣、锯末、树皮等生物质燃料的发电锅炉,参照《锅炉大气污染物排放标准》(GB13271-2001)中燃煤锅炉大气污染物最高允许排放浓度执行。

有地方排放标准且严于国家标准的,执行地方排放标准。引进国外燃烧设备的项目,在满足我国排放标准前提下,其污染物排放限值应达到引进设备配套污染控制设施的设计运行值要求。

2.2无组织排放控制标准

粉尘执行《大气污染物综合排放标准》(GB16297-1996)无组织排放监控浓度限值:1.0mg/m3。

3厂址选择

3.1燃料供应

发电厂应布置在农作物相对集中的地区。发电厂所在区域半径50km范围内应有丰富的秸秆、木材下脚料、果木皮等生物质资源、可靠的产量及持续的可获得量。项目开展前期工作时,应调查研究厂址附近多年秸秆产量,对秸秆产量进行分析,编制《生物质资源专题收集报告》;厂址宜选择在秸秆丰产区的城镇附近,应有保证发电厂连续运行的秸秆用量;同时保证在农业欠年可获得秸秆量能够满足电厂的年秸秆消耗量。

3.2交通条件

燃料运输宜采用公路运输,当有较好水路运输条件时,可通过技术经济比较,采取水路运输或陆水联运的方式。电厂的进厂道路宜为7m~9m,应分别与通向城镇和秸秆收贮站的现有公路相连接,且应短捷、顺畅,同时考虑秸秆运输车辆在排队等候称重时对当地道路交通的影响。

3.3水源条件

供水水源必须落实可靠,宜采用当地城市中水,节约水资源。在确定水源的给水能力时,应掌握当地农业、工业和居民生活用水情况,以及水利、水电规划对水源变化的影响。采用直流供水的发电厂,宜靠近水源。并应考虑取排水对水域航运、环境、养殖、生态和城镇生活用水等的影响。当采用江、河水作为供水水源时,其取水口位置必须选择在河床全年稳定的地段,且应避免泥砂、草木、冰凌、漂流杂物、排水回流等的影响。

3.4地质、气象条件

厂址应尽可能利用荒地和劣地,不得占用基本农田。不得设在危岩、滑坡、岩溶强烈发育、泥石流地段、发震断裂带以及地震时易发生滑坡、山崩和地陷地段。厂址应避让重点保护的文化遗址和风景区,不宜设在居民集中的居住区内和有开发价值的矿藏上,并应避开拆迁大量建筑物的地区。厂址宜设在城镇、居民点和重点保护的文化遗址及风景区常年最小频率风向的上风侧。

4主要污染物治理措施

1)除尘一般设两级除尘,采用旋风分离器+布袋除尘器除尘,设计除尘效率一般不小于99.90%,有效地控制烟尘排放浓度。

2)锅炉采用低氮燃烧方式,运行时炉内温度比较低,可以有效抑制NOx的生成量。同时,预留烟气脱除氮氧化物装置空间。

3)为增加烟气的扩散稀释能力,降低污染物落地浓度,锅炉烟气通过高烟囱排放,并满足发电厂的烟囱高度应高于厂区内最高建筑物高度的2~2.5倍。目前,生物质发电工程大多数烟囱高度为80m。

4)在锅炉尾部烟道上装设烟气连续监测系统,为运行管理和环境管理提供依据。

5)配备贮灰渣装置或设施,配套灰渣综合利用设施,做到灰渣全部综合利用。

6)露天料场须采取可行的二次污染防治措施,整个料场进行地面硬化,并在每个堆垛周边设排水沟;大风及雨雪天气时,在堆垛上方覆盖帆布或防雨苫布进行遮盖,减少对环境的污染。

7)厂外收储站负责生物质资源的收购、破碎、储存,并用专用生物质运输车运至发电厂干料棚及露天燃料堆场存放。在收购站库房内设置除尘器,减小干燥秸秆在破碎、打包过程中对粉尘对大气环境的影响。通过以上措施的落实,工程能够满足现行标准的要求及相关规定,减少工程对环境的污染,最大限度的保护环境。

5难点问题分析及解决

1)从环保标准选择上,要特别关注入炉燃料收到基低位发热量,不能机械的一律按资源综合利用火力发电厂锅炉执行。对于一般的生物质燃料收到基低位发热量小于12550kJ/kg,但对于不同地域,不同的施肥生长环境,燃料成份有很大的差异。根据燃料成份分析,收到基低位发热量大于12550kJ/kg,执行标准参照火力发电厂锅炉执行;如果收到基低位发热量小于等于12550kJ/kg,则参照《火电厂大气污染物排放标准》(GB13223-2003)规定的资源综合利用火力发电锅炉的污染物控制要求执行。

2)对生物质电厂来说,燃料的贮存是一件大事,一般而言普通燃煤电厂只考虑15d左右的消耗量,而由于农作物秸秆收购具有很强的季节性,无法连续均衡收购,所以往往生物质电厂需要大量土地来储存数月甚至半年的秸秆用量。同时还要考虑秸秆的霉变、自燃、防潮、防火及防雷电等。其中消防防火是一个关键而复杂的问题。目前的消防设计一般是参照《造纸行业原料消防安全管理规定》执行。储料场应设置在厂区及居民区全年主导风向的下风向或者最小风频的上风侧,同时要求每个堆场存储量不得大于2×104t,且在每个堆场周围设置环形消防通道。通过调查已投产的电厂,目前电厂堆料比较混乱,基本没有按照消防间距的要求,直接就堆在路边。建议以后电厂应加强堆料管理,要严格按照消防间距进行存储。

3)电厂排雨水一般采用道路和暗管相结合的方式。厂区场地以一定排水坡度坡向道路,再经雨水口收集,排入雨水管网。但对燃料堆场来说,由于燃料中的稻壳、木屑等比较细小往往容易堵塞周边的雨水口,使雨水无法正常排出,而且不好清理。建议堆场周围的排水应采用明沟和道路排水相结合的方式。

4)除尘器及效率的选择,从初可、可研、环评、初设等设计阶段,一直是环保关注的重点。建议工程在前期工作中定一个合适的除尘器及效率,以免在设计中各过程污染物排放的不一致,造成业主及各设计单位、配合单位的困惑及疑虑。虽然达到现行排放标准的最低保障除尘效率相对都比较低,但对于日趋严格的环保要求及二次征求意见稿的公布征求意见,设计应体现先进性,前瞻性,再者布袋除尘器效率一般不低于99.9%;所以,建议采用旋风分离器+布袋除尘器除尘,效率定为99.9%。

篇10

【关键词】生物技术;环境保护;应用

前 言:现代生物技术有两大类,一类是传统神农购物技术,一类是新兴生物技术,前者是利用生物天然机能所进行的物质生产过程的一项技术。而后者则是利用各种新兴技术,比如基因工程、细胞工程,通过人工改造生物机能与酶进行物质生产与处理过程的技术。而生物技术应用到环境保护方面也有两类,分别是为了去除环境污染的直接应用,比如生物精华、废弃物生物利用等等;以及保护生态环境的间接应用,比如把化肥用生物固氮替换,或者把化学农药用生物农药替换等等,与直接应用相比,间接应用的领域与空间则广泛的多。

一、生物技术的内容与特点

不少研究学者认为,现代生物技术应有四个部分组成,分别是微生物工程、酶工程以及细胞与基因工程,每个工程都有各自的理论特点与使用范围,但是它们又不是相互独立存在的,它们之间有密切联系会进行互补,从而形成完整的一个体系。现代生物技术特征有五点,第一,其主要对象与工具是生物,对资源循环重复使用十分重视,倡导保护环境;第二,生物技术可以在常规温度与压力下进行,操作方式简单方便,而且能够持续性操作,能源消耗低,进而对环境带来的污染要小;第三,可以根据需求要培育与创造新品种等产品;第四,效率更高,生产成品的途径与方法也更多;第五,该特点也是最重要的一个特点,就是现代生物技术可以解决传统方法所不能处理的问题。正是因为这些特点,让现代生物技术从20世界末出现以来就广受关注,而其带来的巨大经济利益与潜力更是让众人的目光移不开。

二、生物技术在环境保护中的应用分析

1.生物技术在水处理中的应用

生物技术在改善水体质量,治理水源污染方面有很重要的作用。首先,在水体质量改善方面,生物技术应用最为广泛。污水中含有许多的有毒物质,成分十分复杂,其中包括重金属、有机磷、酚类、氰化物、有机酸、醛及蛋白质等等。利用微生物自身的新陈代谢等生命活动,能够将水体中的部分有毒有害物质很好的去除,从而使得水体中的有害物质转化为无毒物质,使水体得到净化。固定化酶技术就是应用最为广泛的一种污水处理技术,主要是通过武力吸附法或者化学键合法使水溶性酶和固态不溶性载体相结合,从而将酶变成不溶于水但仍保留催化活性的衍生物,从而有效的对污水中的有机污染物进行处理。除此之外,生物膜处理法、活性污泥法、稳定塘法、人工湿地处理系统工程以及土地处理系统法等都是常见的水污染控制与治理的生物技术。

2.生物技术在废气净化方面的应用

生物技术应用于水环境治理当中已经有了很长的历史,但是在废气治理方面历史还很短,研究也非常有限。上个世纪80年代末期,生物技术在工业废气净化处理领域的应用成为许多学者研究的热点。当前比较成熟的废气生物处理技术有生物洗涤、生物吸附以及生物过滤法等等,与传统的废气处理工艺相比,突显出许多的优势,如果高效率、低成本、高安全性等等。目前,废气生物处理技术主要可以分为吸附法和过滤法两大类,吸收法主要在一些含有胺、酚和乙醛等污染物的气体的净化中广泛应用,去除率能够高于百分之九十,而生物过滤常被用作除臭工艺,用于臭味废气的降解。德国利用生物膜过滤处理含硫臭气时,硫化氢去除率能够达到百分之九十以上。

3.生物技术在固废处理中的应用

固废主要指城市生活垃圾、污泥、工农业生产废物等。利用生物技术,能够将固体废弃物进行无害化、资源化、减量化的处理,从而使其成为用于农业生产废料或者其他有用产品,从而真正实现变废为宝。一般生活垃圾堆肥工艺可以分为好氧堆肥和厌氧堆肥两大类,其中目前研究最为热门的是高温好氧堆肥工艺。通过高温好氧堆肥工艺得到腐熟肥料具有改良土壤、增强肥效等优点,是实现城市生活垃圾资源化,达到保护环境的目的的有效措施。

4.生物技术在土壤污染治理中的应用

在对土壤污染治理过程中,生物技术主要应用于重金属污染修复过程,也就是利用微生物或者植物的作用,对土壤中的重金属进行净化和削减,从而降低其毒性。通过生物作用,土壤中的重金属会转变其化学形态,从而使重金属固定或者解毒,通过生物吸附,还能够将重金属的量减少甚至消除。去除重金属之后的土壤,能够提高有机质的含量,改善生态结构,从而有利于土壤固定,更好的避免水土的流失。

5.生物技术在环境监测中的应用

(1)生物芯片和生物传感器应用于环境监测

生物芯片、生物传感器是利用固定在载体上的生物大分子与检测对象间的特异性地相互作用的原理做成的检测模块。载体上的生物大分子与检测对象相互作用的过程中发生的物理或化学变化现象转化成生物电信号,检测系统将电子信号放大,可得到与生物转感器或生物芯片相互作用的环境物质的相关信息。这类检测方法灵敏度高、针对性强、检测速率快,目前已有产品成功应用于环境监测领域,诸如生物需氧量生物传感器、微生物毒性生物传感器等。

(2)生物免疫检验

生物免疫检验是利用检验系统的免疫自我识别功能,对环境毒性物质进行抗原或抗体的特异反应而检测环境毒性物质。该方法灵敏度高、针对性强、操作方便、成本低,目前已广泛应用到环境污染物的实时监控领域。

(3)Ames实验

1975年美国加利福尼亚大学Ames教授建立Ames实验。该实验广泛应用于食品、化妆品的致突变性。方法适用于测试样品中的混合污染物,反映的是多种污染物的综合致突变效应,是一种较好的环境潜在突变物的预警手段。

6.环境污染修复中的应用

生物修复指的是用那个生物本身的代谢功能来消除、降低环境中的污染成本的技术,主要从增加通气程度与菌种等方面进行,有些生物本身就具有天然的分解有毒成分的物质,所以可以有效达到治理环境污染的目标。生物修复技术出现的时候只在石油烃污染上使用,但由于带来的治理效果非常后,慢慢的被应用到更多领域中,治理各种污染类型。不仅我国对其重视,国外也对生物修复技术十分关注,不断研究发现,微生物的分解功能可以治理大面积受到污染的区域。

三、展望

生物技术以其成本低、产出高、无二次污染等诸多优点,在环境保护中已获得了广泛的应用,并取得了明显的经济效益、环境效益和社会效益。虽然生物技术还存在不如化学技术快速、效率高、条件要求高等不足,但是随着现代生物技术的快速发展,以及经济快速发展导致的资源短缺、环境状况恶化情况的加剧,生物技术的环境保护功能显得越来越重要。可以推测,现代生物技术的迅猛发展及其在环保领域的广泛应用必将成为解决资源短缺、能源危机以及环境问题的有力手段,在环境保护领域得到更高的重视和推广。

结束语

总之,环境保护工作离不开生物技术的应用,生物技术在环境保护工作中起到了不可替代的重要作用。在未来,生物技术在环境保护过程中必须要考虑到发展的因素,必须将经济发展同环境保护有效的统一起来,形成与经济密切配合的环境保护体系,从而实现生物技术真正的价值,保障生物技术的不断发展,为人们创造更多的经济效益和社会效益,为不断促进经济发展与环境保护的协调统一作出应有的贡献。

参考文献:

[1]沈德中.污染环境的生物修复[M]北京,化学工业出版社,2002.