阐述狭义相对论基本原理范文

时间:2023-12-05 17:33:19

导语:如何才能写好一篇阐述狭义相对论基本原理,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

阐述狭义相对论基本原理

篇1

一、理论物理学的重要方法

探索性的演绎法是理论物理学的重要方法。

在爱因斯坦看来,理论物理学的完整体系是由概念,被认为对这些概念是有效的基本原理(亦称基本假设、基本公设、基本定律等),以及用逻辑推理得到的结论这三者所构成的。因此,理论物理学家所运用的方法,就在于应用那些作为基础的基本原理,从而导出结论;于是,他的工作可分为两部分:他首先必须发现原理,然后从这些原理推导出结论。对于其中第二步工作,他在学生时代已得到很好的训练和准备。因此,如果在某一领域中或者某一组相互联系的现象中,他的第一个问题已经得到解决,他就一定能够成功。可是第一步工作,即建立一些可用来作为演绎的出发点的原理,却具有完全不同的性质。这里并没有可以学习的和可以系统地用来达到的的方法。科学家必须在庞杂的经验事实中间抓住某些可精密公式来表示的普遍特征,由此探求自然界的普遍原理。

爱因斯坦指出,一旦找到了作为逻辑推理前提的基本理,那么通过逻辑演绎,推理就一个接着一个地涌现出来它们往往显示出一些预料不到的关系,远远超出这些原理依据的实在的范围。但是,只要这些用来作为演绎出发点原理尚未得出,个别经验事实对理论家是毫无用处的。实际上,单靠一些从经验中抽象出来的孤立的普遍定律,他甚至么也做不出来。在他没有揭示出那些能作为演绎推理基础原理之前,他在经验研究的个别结果面前总是无能为力。

爱因斯坦把物理学理论分为两种不同的类型,其中之一是“原理理论”。建立这种理论使用的是分析方法,而不综合方法。形成它们的基础和出发点的元素,不是用假设造出来的,而是在经验中发现到的,它们是自然过程的普遍特征,即原理。这些原理给出了各个过程或者它们的理论表述所必须满足的数学形式的判据。热力学就是这样力图用分析的方法,从永动机不可能这一普遍经验得到的事实出发,推导出一些为各个事件都必须满足的必然条件。用探索的演绎法建立起来的相对论,就属于“原理理论”。但是物理学理论大多数是构造性的。它们企图从比较简单的式体系出发,并以此为材料,对比较复杂的现象构造出一幅图像。气体分子运动论就是这样力图把机械的、热的和扩散的过程都归结为分子运动——即用分子假设来构造这些过程。当我们说,我们已经成功地了解一群自然过程,我们的思想必然是指,概括这些过程的构造性的理论已经建立起来了。爱因斯坦认为,构造性理论的优点是完备,有适应性和明确,原理理论的优点则是逻辑上完整和基础巩固。

相对论就是爱因斯坦自觉地运用探索性演绎法的杰作。它不仅以其革命性的新观念和卓有成效的理论结果为人津津乐道,而且它所体现出的科学方法的新颖、精湛以及理论的逻辑结构的严谨,也令人叹为观止。爱因斯坦在创立狭义相对论(1905)时,他依据的仅仅是光行差现象和斐索实验这两个并不充分的实验材料,著名的二阶以太漂移实验即迈克耳孙-莫雷实验,对他并没有直接影响。他主要通过对16岁时想到的“追光”思想实验的沉思,对经典力学和经典电动力学基础的深入考察,发挥了思维的自由创造,提出了两个基本假设——相对性原理和光速不变原理(美国著名科学史家霍耳顿认为,在狭义相对论中,除了被提高为公设的两个基本原理外,爱因斯坦还作了另外四个假定:一是关于空间的各向同性和均匀性,另外三个是定义钟的同步的三个逻辑性质。霍耳顿的学生米勒后来指出,另外的四个假定也是两个基本原理的必然结果,他们不是独立的假设。然后,他以此为逻辑前提,接二连三地推导出了关于运动学和电动力学的结论,著名的质能关系式是他先前根本没有料想到的,这些结论大大超出了两个原理所依据的实在的范围。广义相对论(1915)的建立也是这样。作为广义相对论的两个基本原理,即广义相对性原理和等效原理,前者是爱因斯坦基于把相对性原理贯彻到底的信念(从惯性系推广到加速系)提出的,后者是依据厄缶实验(惯性质量等于引力质量)和升降机思想实验提出的。

在1905年,由于爱因斯坦采用了探索性的演绎法,从而使他能够高屋建瓴、势如破竹,一举砍断了哥尔提阿斯死结(哥尔提阿斯是古代夫利基阿国王,相传他曾把自己的车乘的辕与轭用绳结系住,死得无法解开,声言能解开此死结者,得以结治亚细亚。这个死结后来被亚历山大大帝用剑砍断),开拓了一个奇妙的新世界。那些恼人的以太漂移实验,那些使人迷惑不解的单极电机电动势的“位置”问题,在爱因斯坦的理论体系中已根本不成其为问题。但是,同时代的博大精深的科学大师,诸如洛伦兹、彭加勒,却热衷于同迈克耳孙-莫雷实验等以太漂移实验打交道,迷恋于做出种种构造性假设,建立他们的构造性理论——电子论和电子动力学。例如,洛伦兹1904年的著名论文尽管声称是以“基本假设”而不是以“特殊假设”为基础的论文,但事实上却包含有11个假设:假设有静止以太,假设静止电子是球形的,假设电子的电荷分布是均匀的,假设电子的全部质量都是电磁质量,假设运动电子收缩,假设电子之间的作用力与分子力相同等等。洛伦兹和彭加勒虽说走到了狭义相对论的大门口,但他们并没有打开这扇大门,其原因固然是多方面的。从方法论上讲,就在于他们运用的是传统的经验归纳法,而没有采用探索性的演绎法。在当时的科学发展的形势下,仅靠个别的经验事实进行归纳,是建立不起什么崭新的理论的。洛伦兹、彭加勒的电子论和电子动力学固然富丽堂皇,但毕竟只是经典物理学的最后的建筑物。它们虽然包罗万象,可是由于不适应科学发展的总趋势,最终还是被人们遗忘了,仅有历史的价值。

二、采用探索性的演绎法是科学发展的必然趋势

从文艺复兴到19世纪的经典科学,一般称为近代科学。在科学史上,这个漫长的时期主要是积累材料和归纳材料的时期。与这一科学发展状况相适应,产生了经典的科学哲学,它始于弗兰西斯•培根的归纳主义。培根认为,科学的发展是从个别上升到一般,从经验归纳出理论。他比喻说,只要及时采摘成熟的葡萄,科学的酒浆就会源源不断。到19世纪,整个科学一般说来还没有摆脱这种“原始”状态,因而经典科学哲学能够得以通过穆勒之手发展成为更完备的经验论形态,经验归纳法依然是正统的科学方法。

在物理学领域,这个时期的最大成就是牛顿力学和麦克斯韦的电动力学。牛顿力学虽则是超越了狭隘经验论的人类理智的伟大成就,但它又同人们的日常经验密切相关。力学中的许多概念都比较直观,可以直接在现实生活中找到某种原型。这种状况掩盖了基本概念和基本原理的思辨性质,甚至牛顿本人也深深陷入这一幻觉之中。他一再声称他“不作假设”,实际上却作了许多假设,他要求人们“必须把那些从各种现象中运用一般归纳法导出的命题看作是完全正确的”。19世纪的经典物理学也具有现象论和经验论的特征:它尽量使用那些接近经验的概念,因而在很大程度上必须放弃基础的统一性。热、电、光都用那些不同于力学量的各个状态的变数和物质常数来描述,至于要在它们的相互关系以及同时间的相互关系中去决定全部变数的任务,主要只能由经验来解决。麦克斯韦及其同代人,在这种表示方式中看到了物理学的终极目的,他们想像这个目的只能纯粹归纳地从经验得出,因为这样所使用的概念同经验比较接近。从认识论上看,穆勒和马赫大概就是根据这个理由来决定他们的立场的。总而言之,这个时期的科学家和科学哲学家大都以为,“理论应当用纯粹归纳法的方法来建立,而避免自由地创造性地创造概念;科学的状况愈原始,研究者要保留这种幻想就愈容易,因为他似乎是个经验论者。直至19世纪,许多人还相信牛顿的原则——“我不作假设'——应当是任何健全的自然科学的基础。”

但是,在某些个别的科学部门,已经悄悄地透进了新时代的曙光;尤其是非欧几何学,它仿佛故意向经验论示威一样,以毋庸置辩的方式显示了理性思维的强大威力和奇妙作用。彭加勒正是在《科学与假设》中通过对非欧几何学的深入研究以及对经典力学和经典物理学的慎密考察揭示出,科学的基本概念和原理不是经验的直接归纳,而只能以经验事实为指导,通过精神的自由活动(其产品即约定)来创造。通过研读彭加勒的科学哲学著作,尤其是通过创立狭义和广义相对论的科学实践,使爱因斯坦清楚地看到,人们可以在完全不同于牛顿的基础上,以更加令人满意和更加完备的方式,来考虑范围更广泛的经验事实。但是,完全撇开这种理论还是那种理论优越的问题不谈,基本原理的虚构特征却是完全明显的,因为我们能够指出两条根本不同的原理,而两者在很大程度上都同经验相符合。这—点同时又证明,要在逻辑上从经验推出力学的基本概念和基本假设的任何企图,都是要失败的。爱因斯坦还清楚地看到,相对论是说明理论科学在现展的基本特征的一个良好的例子。初始假设变得愈来愈抽象,离经验愈来愈远。另一方面,它更接近一切科学的伟大目标,即要从尽可能少的假设或者公理出发,通过逻辑的演绎,概括尽可能多的事实。同时,从公理引向经验事实或者可证实的结论的思路也就愈来愈长,愈来愈微妙。理论科学家在他探索理论时,就不得不愈来愈听从纯粹数学的、形式的考虑,因为实验家的物理经验不能把他提高到最抽象的领域中去。正是科学发展的这种理论化趋势,使爱因斯坦认识到:“科学一旦从它的原始阶段脱胎出来以后,仅仅靠着排列的过程已不能使理论获得进展。由经验材料作为引导。研究者宁愿提出一种思想体系,它——般地是在逻辑上从少数几个所谓公理的基本假定建立起来的。”他进而指出:“适用于科学幼年时代的以归纳为主的方法,正在让位给探索性的演绎法。”

三、爱因斯坦大胆运用探索性的演绎法的直接动因

只是在广义相对论建立之后,爱因斯坦才把探索性的演绎法作为一个方法论原则从理论上加以论述。可是,早在创立狭义相对论时,他就在研究中大胆运用这一科学方法了,并在思想上对它已有比较深刻的认识。促使爱因斯坦大胆运用探索性的演绎法的直接原因有两个:其一是赫兹、玻耳兹曼、彭加勒等人的思想影响,其二是当时的物理学现状使得他不能不那样做。

在联邦工业大学期间(1896~1900),爱因斯坦自学了赫兹、玻耳兹曼等科学大师们的著作。赫兹在他的名著《力学原理》(1894)中试图重构力学,为此他仅利用空间、时间和质量三个原始概念。赫兹的力学体系建立在通过科学家个人的“内在直觉规律”从经验引出的公理之上,它能够导出经验预言。赫兹认为“内在直觉规律”的功能像“康德意义上的先验判断”一样,并且声称他的力学重构是演绎系统,与牛顿的《原理》(全称《自然哲学的数学原理》)有许多相同的风格。在这个公理体系中,我们可以推演出与我们的观察记录相对照的可检验的结论,依据该结论与可观察的世界一致还是不一致,来决定这个体系是否正确。尽管爱因斯坦不赞同赫兹的隐质量概念和“把自然现象追溯到力学的主要定律”的长远目标,但是赫兹强调公理描述的威力却给他留下了深刻的印象。这种公理描述与其说在经验材料上预言理论结构,倒不如说在公理和直觉上预言理论结构。

爱因斯坦也自学了玻耳兹曼的《力学讲义》(1897)。在该书中,玻耳兹曼把力学作为物理学的核心,爱因斯坦当然不会同意这种看法的。但是,玻耳兹曼重构力学的方法的下述特点,一定会强烈地震撼爱因斯坦敏感的心弦:“恰恰是力学原理的不明晰性,在我看来不是同时以假设的智力图像为起点而得到的,而是从一开始就以与外部经验相联系的尝试而得到的。”玻耳兹曼的意思很清楚:力学原理的不明晰,在于经验归纳,而不在于智力图像。玻耳兹曼的“智力图像”概念比赫兹的“外部对象的图像或符号”更自由,爱因斯坦可能山此注意到,力学的发展已使原理凌驾于经验材料之上。

彭加勒在《科学与假设》(1902)中对约定主义的论述,对爱因斯坦的探索性的演绎法的形成必定大有裨益,爱因斯坦在“奥林比亚科学院”时期(1902~1904)曾和他的同伴索洛文、哈比希特一起研读过这本脍炙人口的畅销名著。彭加勒通过对数理科学的基础进行了敏锐的、批判性的审查和分析后得出:几何学的公理既非先验综合判断,亦非经验事实,它们原来都是约定。物理学尽管比较直接地以经验为基础,但它的一些基本原理也具有几何学公理那样的约定特征。例如惯性原理,它不是先验地支配我们的真理,否则希腊学者早就知道它了,它也不是经验的事实,因为人们从来也不能用不受外力的物体做实验,因而无法用实验证实或否证它。经过最终分析,它们化归为约定或隐蔽的定义。因此,彭加勒得出结论说:在数学及其相关的学科中,“可以看出自由约定的特征”;他进而指出:“约定是我们的精神的自由活动的产品”,“我们在所有可能的约定中进行选择时,要受实验事实的引导;但它仍是自由的,只是为了避免一切矛盾起见,才有所限制。”

彭加勒在考察了物理学的理论后认为,物理学有两类陈述——原理和定律。定律是实验的概括,它们相对于孤立的系统而言可以近似地被证实,原理是约定而成的公设,它们是十分普遍的、严格真实的,超越了实验所及的范围。彭加勒还阐述了约定主义的方法论意义。他说,当一个定律被认为由实验充分证实时,我们可以采取两种态度。我们可以把这个定律提交讨论,于是,它依然要受到持续不断的修正,毋庸置疑,这将仅仅以证明它是近似的而终结。或者,我们也可以通过选择这样一个约定使命题为真,从而把定律提升为原理。在彭加勒看来,经典力学和经典物理学的六大基本原理(迈尔原理即能量守恒原理、卡诺原理即能量退降原理、牛顿原理即作用与反作用原理、相对性原理、拉瓦锡原理即质量守恒原理、最小作用原理)就是这样形成的。

彭加勒提出约定主义并不是无缘无故的。在近代科学发展的早期,弗兰西斯•培根提出了经验归纳的新方法,这种方法对促进近代科学的发展起了巨大的作用,但后来却助长了狭隘经验事义的盛行。到19世纪,以惠威尔、穆勒为代表的“全归纳派”和以孔德、斯宾塞为代表的实证主义广为流行,把经验和归纳视为唯一可能的认识方法。到19世纪末,第二代的实证主义的代表人物马赫更是扬言要把一切“形而上学的东西”从科学中“排除掉”。另一方面,康德不满意经验论的归纳主义的阶梯,他把梯子颠倒过来,不是从经验上升到理论,而是以先天的“感性直观的纯形式”(时间和空间)和先天的“知性的纯粹概念或纯粹范畴(因果关系、必然性、可能性等十二个范畴)去组织后天经验,以构成绝对可靠的“先验综合知识”。彭加勒看到,无论是经验论还是先验论,都不能圆满地说明科学理论体系的特征。为了强调在从事实过渡到原理时,科学家应充分有发挥能动性的自由,他于是提出了约定主义。约定主义既要求摆脱狭隘的经验论,又要求摆脱经验论,它顺应了科学发展的潮流,反映了当时科学界自由创造、大胆假设的要求,在科学和哲学上都有其积极意义。

《科学与假设》一书对爱因斯坦的印象极深,他和同伴们花了好几个星期紧张地读完了它。爱因斯坦坦率地承认彭加勒对他的直接影响。他赞同“敏锐的深刻的思想家”彭加勒的约定主义观点,认为概念和公理是思维的自由创造,是理智的自由发明。他这样说过:“一切概念,甚至那些最接近经验韵概念,从逻辑观点看来,都是一些自由选择的约定。

一开始,爱因斯坦也对洛伦兹的电子论(是1895年的论文,而不是1904年的电子论的最终形式)发生过兴趣,这是一种构造性的理论。可是不久,他从普朗克的量子论中看到,辐射具有一种分子结构。这是同麦克斯韦理论相矛盾的,而且麦克斯韦理论也不能导致出正确的辐射压涨落。爱因斯坦在“自述”中谈到了他当时的转变:“早在1900年以后不久,即在普朗克的首创性工作以后不久,这类思考已使我清楚地看到:不论是力学还是热力学(除非在极限情况下)都不能要求严格有效。渐渐地我对那种根据已知事实用构造性的努力去发现真实定律的可能性感到绝望了。我努力得愈久,就愈加绝望,也就愈加确信,只有发现一个普遍的形式原理,才能使我们得到可靠的结果。”从此时起,爱因斯坦就断然决定用探索性的演绎法来解决问题。

四、爱因斯坦的探索性的演绎法的特色

作为科学推理的演绎法,可以说是源远流长了。早在古希腊时代,著名的哲学家、形式逻辑的创始人亚里士多德就提出了归纳和演绎这两种逻辑方法,并认为演绎推理的价值高于归纳推理。而古希腊名声最大的数学家欧几里得,在《几何原本》中把几何学系统化了,这部流传千古的名著就是逻辑演绎法的典范。牛顿在建立他的力学理论体系时虽然运用了归纳法,但其集大成著作《原理》的叙述方法却采用的是演绎法。爱因斯坦的探索性的演绎法绝不是这种古老的演绎法的简单照搬。他根据自己的科学研究实践,顺应当时理论科学发展的潮流,对演绎法作了重大发展,赋予了新的内容。也许是为了强调他的演绎法与传统的演绎法的不同,他在“演绎法”前面加上了限制性的定语——“探索性的”,这个定语也恰当地表明了他的演绎法的主要特征。与传统的演绎法相比,爱因斯坦的探索性的演绎法是颇有特色的。这主要表现在以下三个方面。

第一,明确地阐述了科学理论体系的结构,恰当地指明了思维同经验的联系问题,充分肯定了约定在建造理论体系时的重要作用。爱因斯坦把科学理论体系分为两大部分,其一是作为理论的基础的基本概念和基本原理,其二是由此推导出的具体结论。在爱因斯坦看来,那些不能在逻辑上进一步简化的基本概念和基本假设,是理论体系的根本部分,是整个理论体系的公理基础或逻辑前提。它们实际上“都是一些自由选择的约定”;它们“不能从经验中抽取出米,而必须自由地发明出来”。谈到思维同经验的联系问题时,爱因斯坦说:直接经验ε是已知的,A是假设或公理,由它们可以通过逻辑道路推导出各个个别的结论S;S然后可以同ε联系起来(用实验验明)。从心理状态方面来说,A是以ε为基础的。但是在A和ε之间不存在任何必然的逻辑联系,而只有通过非逻辑的方法——“思维的自由创造”(或约定)——才能找到理论体系的基础A。爱因斯坦明确指出:“物理学构成一种处在不断进化过程中的思想的逻辑体系。它的基础可以说是不能用归纳法从经验中提取出来的。而只能靠自由发明来得到。这种体系的根据(真理内容)在于导出的命题可由感觉经验来证实,而感觉经验对这基础的关系,只能直觉地去领悟。进化是循着不断增加逻辑基础简单性的方向前进的。为了要进一步接近这个目标,我们必须听从这样的事实:逻辑基础愈来愈远离经验事实,而且我们从根本基础通向那些同感觉经验相联系的导出命题的思想路线,也不断地变得愈来愈艰难、愈来愈漫长了。”

第二,大胆地提出了“概念是思维的自由创造”、“范畴是自由的约定”的命题,详细地阐述了从感觉经验到基本概念和基本原理的非逻辑途径。爱因斯坦指出,象马赫和奥斯特瓦尔德这样的具有勇敢精神和敏锐本能的学者,也因为哲学上的偏见而妨碍他们对事实做出正确的解释(指他们反对原子论)。这种偏见——至今还没有灭绝——就在于相信毋须自由的构造概念,事实本身能够而且应该为我们提供科学知识。这种误解之所以可能,是因为人们不容易认识到,经过验证和长期使用而显得似乎同经验材料直接相联系的那些概念,其实都是自由选择出来的。爱因斯坦认为,物理学家的最高使命就是要得到那些普遍的基本定律,由此世界体系就能用单纯的演绎法建立起来。要通向这些定律,并没有逻辑的道路,只有通过那种以对经验的共鸣的理解为依据的直觉,才能得到这些定律。”

为了从经验材料中得到基本原理。除了通过“以对经验的共鸣的理解为依据的直觉”外,爱因斯坦还指出可以通过“假设”、“猜测”、“大胆思辨”、“创造性的想像”、“灵感”、“幻想”、“思维的自由创造”、“理智的自由发明”、“自由选择的约定”等等。不管方法如何变化,它们都有—个共同点,即基本概念和基本原理只能通过非逻辑的途径自由创造出来。这样一来,基本概念和基本原理对于感觉经验而言在逻辑上是独立的。爱因斯坦认为二者的关系并不像肉汤同肉的关系,而倒有点像衣帽间牌子上的号码同大衣的关系。也正由于如此,从感觉经验得到基本概念和原理就是一项十分艰巨的工作,这也是探索性的演绎法的关键一步。因此,爱因斯坦要求人们“对于承担这种劳动的理论家,不应当吹毛求疵地说他是‘异想天开';相反,应当允许他有权去自由发挥他的幻想,因为除此以外就没有别的道路可以达到目的。他的幻想并不是无聊的白日做梦,而是为求得逻辑上最简单的可能性及其结论的探索。”

关于爱因斯坦所说的“概念是思维的自由创造”和“范畴是自由的约定”,其中的“自由”并非任意之谓,即不是随心所欲的杜撰.爱因斯坦认为,基本概念和基本原理的选择自由是一种特殊的自由。它完全不同作家写小说时的自由,它倒多少有点像一个人在猜一个设计得很巧妙的字谜时的那种自由。他固然可以猜想以无论什么字作为谜底,但是只有一个字才真正完全解决了这个字谜。显然,爱因斯坦所谓的“自由”,主要是指建立基本概念和基本原理时思维方式的自由、它们的表达方式的自由以及概括程度高低的自由,—般说来,它们包含的客观实在的内容则不能是任意的。这就是作为反映客观实在的人类理智结晶的科学之客观性和主观性的统一。诚如爱因斯坦所说:“科学作为一种现存的和完成的东西,是人们所知道的最客观的,同人无关的东西。但是,科学作为一种尚在制定中的东西,作为一种被迫求的目的,却同人类其他一切事业一样,是主观的,受心理状态制约的。”

第三,明确地把“内在的完备”作为评判理论体系的合法性和正确性的标准之一。在爱因斯坦看来,探索性的演绎法就是在实验事实的引导下,通过思维的自由创造,发明出公理基础,然后以此为出发点,通过逻辑演绎导出各个具体结论,从而构成完整的理论体系。但是,评判这个理论体系的合法性和正确性的标准是什么呢?爱因斯坦晚年在“自述”中对这个问题作了纲领性的回答。他认为,第一个标准是“外部的证实”,也就是说,理论不应当同经验事实相矛盾。这个要求初看起来似乎十分明显,但应用起来却非常伤脑筋。因为人们常常,甚至总是可以用人为的补充假设来使理论同事实相适应,从而坚持一种普遍的理论基础。但是,无论如何,这种观点所涉及的是用现成的经验事实采证实理论基础。这个标准是众所周知的,也是经常运用的。有趣的是爱因斯坦提出的第二个标准——“内在的完备”。它涉及的不是理论同观察材料的关系问题,而是关于理论本身的前提,关于人们可以简单地、但比较含糊地称之为前提(基本概念和基本原理)的“自然性”或者“逻辑简单性”。也就是说,这些不能在逻辑上进一步简化的元素要尽可能简单,并且在数目上尽可能少,同时不至于放弃对任何经验内容的适当表示。这个观点从来都在选择和评价各种理论时起着重大的作用,但是确切地把它表达出来却有很大困难。这里的问题不单是一种列举逻辑上独立的前提问题(如果这种列举是毫不含糊地可能的话),而是一种在不可通约的质之间作相互权衡的问题。其次,在几种基础同样“简单”的理论中,那种对理论体系的可能性质限制最严格的理论(即含有最确定论点的理论)被认为是比较优越的。理论的“内在的完备”还表现在:从逻辑的观点来看,如果一种理论并不是从那些等价的和以类似方式构造起来的理论中任意选出的,那么我们就给予这种理论以较高的评价。

爱因斯坦看到了“内在的完备”这一标准不容忽视、不可替代的特殊作用。他指出,当基本概念和基本原理距离直接可观察的东西愈来愈远,以致用事实来验证理论的含义就变得愈来愈困难和更费时日的时候,“内在的完备”标准对于理论的选择和评价就一定会起更大的作用。他还指出,只要数学上暂时还存在着难以克服的困难,而不能确立这个理论的经验内涵:逻辑的简单性就是衡量这个理论的价值的唯一准则,即使是一个当然还不充分的准则。爱因斯坦的“内在完备”标准在某种程度上是不可言传的,但是它在像爱因斯坦这样的具有“以对经验的共鸣的理解为依据的直觉”的人的手中,却能够有效地加以运用,而且预言家们在判断理论的内在完备时,它们之间的意见往往是一致的。

篇2

科学革命的实质是什么?科学进步的图像是什么?换言之,科学革命变革的主要实体是什么?科学发展的模式是什么?国外学者对此问题做出了形形的回答。

一、国外学者的回答

波普尔(K.Popper)认为,科学是人类心灵的壮丽探险,科学的本质就在于永无止境的探索。他把“问题”作为整个科学探索的起点,运用“可否证性”(falsifiability)或“否证”(falsification)概念,提出了科学进步的四段图式;P1(问题1)TT(试探性理论)EE(消除错误)P2(问题2)。这个图式周而复始,永无止境。显然,波普尔把理论看作科学变革的实体——科学革命是科学理论的变更,因此理论是暂时的、脆弱的,它随时都可以被一次否证。

本世纪60年代初,库恩(T.Kuhn)出版了他的代表作《科学革命的结构》。在这本小册子中,库恩反对逻辑经验主义把科学的发展看成是各种货色一件件地或—批批地添加到不断加大的知识货堆上。他力主动态地、历史地看待科学的进步,把科学的发展视为常规时期和革命时期交替出现的过程。他不满意波普尔把理论看作科学变革的实体,他的科学观的核心是“范式”(paradigm)概念。库恩给范式赋予多种含义(有人统计共有21种用法),从“一种具体的科学成就”到“一组特定的信念和预想”。综而观之,它是由理论要素、心理要素以及联合这两个要素的本体论和方法论要素组成的,每一种要素内又包括五花八门的具体内容。库恩认为科学革命就是抛弃旧范式,采纳新范式。他利用范式概念建立了下述的科学发展的动态模式:前科学常规科学危机科学革命新的常规科学……

库恩开创了以科学史料为基础来考察科学哲学问题,探讨科学发展和知识增长规律的先河。继库恩之后,又有拉卡托斯、费耶阿本德、劳丹等人的学说汇入其中,形成了一股历史主义的潮流。

拉卡托斯(I.Lakotos)既不满意波普尔的否证主义,也不满意库恩范式的模糊性和选择范式的非理性标准。为了强调科学发展的连续性和科学进步的合理性,他提出了研究纲领的模式。在拉卡托斯看来,科学总是以研究纲领的形式向前发展的。科学发现和评价科学理论的基本单位是研究纲领,它是一个有结构、有层次的整体。研究纲领内部有相对稳定的“硬核”,外部是柔韧多变的“保护带”,还有一套解决疑难的机制,即助研究法(heuristic)。硬核是约定的,是作为研究纲领未来发展基础的、最普遍的基本假设和基本原理,它比范式具有更大的稳定性。保护带由各种辅助假设构成,当遇到反常或否证时,保护带可以通过调整辅助假设而达到保护硬核的目的。当研究纲领失去解释力和预测力时,它就会因逻辑的和经验的原因而碎裂,人们就会抛弃这样的退化的研究纲领,而采纳进步的研究纲领,这是科学革命的基本原理,是一个自然的新陈代谢过程。

在同库恩的论战中,费耶阿本德(P.Feyerabend)描绘了他的科学发展模式。他认为科学有一定的“韧性”,人们总能够从许多理论中选出一种可望取得成功的理论,即使遇到巨大困难时仍可加以坚持,而置大量反证于不顾。在这一点上,他不赞同波普尔关于理论总是被不断驳倒的观点。有了韧性,我们就不必用顽强的事实取消某一理论了,我们可以使用其他理论T′、T″、T″′等,即对现行的理论进行调整,这就不可避免地要接受增生原理,容许不同理论的并存。在这一点上,他又坚决反对范式的绝对统治。在费耶阿本德看来,科学之所以不断发展,正是增生与韧性相互作用的结果。

劳丹(L.Laudan)把科学看作一种解决问题、定向问题的活动。他同意理解和评价科学进步的工具是较一般的大理论,而不是单个的具体理论。他认为这种大理论不是范式或研究纲领,而是所谓的研究传统。研究传统为发展具体理论提供了一套指导方针。它们中的一些构成了一种本体论,以—般方式详细阐述研究传统所属领域中的基本实体的类型。研究传统中具体理论的作用,就是通过把经验问题还原为研究传统的本体论,来解释这些经验问题。研究传统还概括了这些实体相互作用的方式。研究传统也往往说明某种程序,它构成这一传统内的研究者所愿意接受的合法的研究方法。这些方法论原则广泛包括试验技术、理论检验和评价方式等。简而言之,研究传统就是有关领域的一组本体论和方法论的“做”与“不做”。在劳丹看来,科学革命不过是竞争着的研究传统之间的特别引人注目的一次决定性冲突所带来的研究传统此消彼长的新格局。

为了说明科学革命的实质并描绘科学进步的图像,其他西方学者也从不同的角度对库恩的范式论进行了批判、修正和改造。例如;尼古拉斯•麦克斯韦(NicholasMaxwell)的“形而上学蓝图”、斯尼德-斯台格缪勒(Sneed-Stegmüller)的“理性重组”(S纲领)、夏佩尔(D.Shapere)的“域”(domain)理论等,我们对此不拟一一加以介绍。在这里,有必要提及苏联学者凯德洛夫(Б.М.Кедров)的观点。

凯德洛大是从列宁关于革命的普遍定义出发来论述科学革命概念的,他从认识论和方法论两个方而对“革命”概念进行厂逻辑分析,并详细论述了科学革命的三个特点。在此基础上,他对科学革命做了下述定义:“所谓自然科学革命,应当首先理解为研究和说明自然现象的观点本身的根本转折,用来认识(反映)所研究的对象的思维结构本身的转折。真正的自然科学革命的实质恰恰在于思维方式这种急剧的转折,恰恰在于由已经陈旧的科学认识方法向新的进步的科学认识方法的转变。”以此为根据,凯德洛夫把历史上的科学革命分为四种不同的类型:第一类革命——哥白尼革命——从外观到现实性,第二类革命——康德革命——从不变到发展,第三类革命——“自然科学最新革命”(列宁在《唯物主义和经验批判主义》中的称谓),第四类革命——科学技术革命。在凯德洛夫看来,这也是在科学史上先后发生的四次革命。鉴于这个问题本文作者已有专文论述,此处不拟赘述。

国外学者的探索是难能可贵的,他们构造的实体和模式都从不同方面或角度说明了科学进步的事实,包含有部分的真理性。但是,他们的实体似乎都没有抓住科学革命的实质,他们的模式也不完全能说明科学发展的历史实际。波普尔把科学变革的实体视为理论,他涉及的层次似乎偏低,结果他的四段图式导致了走马灯式的“不断革命”。劳丹的研究传统、凯德洛夫的思维方方式,指的都是科学的哲学基础或科学中的哲学成分,其涉及的层次恐怕偏高,把它们的变革看作是科学革命的实质,似乎也没有深中肯綮。拉卡托斯的研究纲领、费耶阿本德的韧性原理和增生原理,尤其是库恩的范式,又显得过于庞杂,使人不得要领。

那么,科学革命的实质或科学革命变革的主要实体究竟是什么呢?弄清这个问题,才能比较正确地描绘科学进步的图像。而要弄清这个问题,必须首先从分析科学理论的结构入手。

二、科学理论的基础或框架——科学观念

不少人承认,科学革命的最关键的因素是重建科学理论的基础或框架。然而,人们对这样的基础的理解却不尽相同。有人认为科学理论的基础是这门科学的经验材料、基本理论原理和基本概念的总和;有人认为它是基本理论的、逻辑的或哲学的思想观念;有人认为它是本体论和方法论的信条;有人认为它是世界图像、研究的普遍方法、解释的思想、知识的构架;还有人认为它是认识活动的全部综合,其中包括主体及其目的和任务,认识的手段、方法和条件,知识的认识作用和体系,等等。

说起来,爱因斯坦对科学理论的结构是有真知灼见的。他在谈到科学理论时这样写道:“科学一旦从它的原始阶段脱胎出来以后,仅仅靠着排列的过程已不能使理论获得进展。由经验材料作为引导,研究者宁愿提出一种思想体系,它一般地是在逻辑上从少数几个所谓公理的基本假定建立起来的。我们把这样的思想体系叫做理论。”爱因斯坦以理论物理学为例,说明科学理论的完整体系是由基本概念、被认为对这些概念是有效的基本关系以及用逻辑推理得到的结论这三者构成的,其中前两者是科学理论的基础或根本部分,它们不能在逻辑上进一步简化。在爱因斯坦看来,所谓基本关系,就是基本概念之间的根本关系,他往往又称基本关系为基本假定、基本假设、基本公设、基本公理、基本原理、基本定律、基本命题等。爱因斯坦在一些场合还把基本概念和基本关系统称为基本观念,或曰科学观念。这样一来,科学观念就是科学理论的基础,它也是科学理论的逻辑前提或框架。

例如,牛顿力学的理论基础是:具有不变质量的质点,任何两个质点之间的超距作用,关于质点的运动定律。在狭义相对论中,就是相对性原理和光速不变原理以及同时性概念等。

科学观念(基本概念和基本关系)虽然在科学理论的逻辑结构中仅占很少的比重,但由于它是最核心、最抽象的部分,因而反映了科学对象的最深刻、最本质的联系,蕴涵着十分丰富的内容,从中可以导出原先料想不到的结论(如从狭义相对论的前提导出质能关系式),甚至还隐含着“尚未理解的东西的残余”,它的更隐秘的根源有待于人们进一步去揭示。

爱因斯坦十分强调科学观念在科学理论中的显著地位。他认为通过最少个数的基本概念和基本关系的使用,就可以尽可能完备地理解全部感觉经验的关系。他甚至认为理论物理学的目的,就是要以数量上尽可能少的、逻辑上互不相关的假设为基础,来建立概念体系,如果有了这种概念体系,就可能确立整个物理过程总体的因果关系。

关于科学理论的基础的来源、特点及其与感觉经验的关系,爱因斯坦有一段原则性的论述(他虽然是就物理学而言的,实际上也适用于其他理论科学):“物理学构成一种处在不断进化过程中的思想的逻辑体系,它的基础可以说是不能用归纳法从经验中提取出来的,而只能靠自由发明来得到。这种体系的根据(真理内容)在于导出的命题可由感觉经验来证实,而感觉经验对这基础的关系,只能直觉地去领悟。进化是循着不断增加逻辑基础简单性的方向前进的。为了要进一步接近这个目标,我们必须听从这样的事实:逻辑基础愈来愈远离经验事实,而且我们从根本基础通向那些同感觉经验相关联的导出命题的思想路线,也不断变得愈来愈艰难、愈来愈漫长了。”

三、科学革命是科学观念急剧而根本的改造

科学观念是科学家或科学共同体借助于经验事实的提示,通过思维的自由创造和理智的自由发明而抽象出来的。它在逻辑上不能再加以分析,是不能再简化的一种逻辑元素,其中包含着人们当时还不甚理解的东西。因此,它反映了在科学发展的一定历史阶段人们对科学对象的认识,是当时历史条件下科学认识的界限,只具有相对的意义。随着时间的推移,大量反常现象和新的经验知识无法纳入这一框架之中,它自身的尚未被理解的残余也充分被揭示出来。这样,原来被视为基本概念和基本关系的东西不再是“基本”的了,它从科学发展的形式变为科学发展的桎梏。只有打碎旧的科学观念,科学发展的潜力才能充分发挥出来。这时,科学革命的时机就成熟了。

科学革命并没有抛弃已有的经验材料和经验知识,而只是改变了理解这些材料和知识的准则,确定了它们的合法地位。彭加勒说得好,只要人们不把那些用实验确证了的理论推到极端,“它就会有十分清楚的意义”,“只有它溶化到更高级的和谐中,它才能消失。”科学革命打碎的只是科学理论的旧框架,摧毁的只是科学理论的旧基础。爱因斯坦谈到这一点时说过,这里的基础这个词,并不意味着同建筑的基础在所有方面都有雷同之处。从逻辑上看,各个物理定律当然都是建立在这种基础上面的。建筑物会被大风暴或者洪水严重毁坏,然而它的基础却安然无恙;但是在科学中,逻辑的基础所受到的来自新经验或者新知识的危险,总是要比那些同实验比较密切接触的分科来得大。基础同所有各个部分相联系,这是它的巨大意义之所在,但是在面临任何新因素时,这也正是它的最大危险。

在科学革命中,即使是旧的科学观念,也并非统统被抛弃,其中一部分是辩证的扬弃。旧科学观念中的一些只是丧失了自己以前独有的统治地位,从以前的不正确的、与事实不符的壳体中解放出来,被赋予新的意义。它们原有的真理颗粒被保留下来,并作为从属成分有机地溶入新科学观念之中。

从历史上的科学革命来看,科学观念的改变通常有以下几种方式。1.彻底取代。如以地球为中心的观念被以太阳为中心的观念取代,原子不可分的观念被原子有内部结构的观念取代,超距作用被媒递作用取代,目的论和神创论被进化论取代。2.旧名新意。如道尔顿的原子论虽然可以追溯到古希腊的原子论,但他把纯哲学思辨变为科学的论证,给原子论以真正的科学内容。又如经典力学中的质量、惯性、时间、空间等基本概念在相对论中已被赋予新的含义和内容。3.合理推广。如力学中的相对性原理在狭义相对论中被推广到光学和电磁学,在广义相对论中又被从惯性系推广到加速参照系。4.辩证综合。如光的微粒说和波动说被综合为波粒二象性,分立的粒子的概念和连续的场的概念被综合为物质波的概念。5.包容蕴含。如能量子概念否定了“自然无飞跃”的传统观念,但这只在微观过程才显示出来,在经典系统中,由于h很小(h=6.626×1027尔格•秒),使得分立的能量谱实际上无法区分而连成一片,这时能量的连续作为极限情况被包括在新概念内。6.独辟蹊径。如自然选择、光速不变原理、等效原理、海森伯测不准关系、泡利不相容原理等都是在科学革命中提出的新观念。

对科学革命中原有经验知识的地位和科学观变革方式的考察,使我们清楚地看到,科学革命尽管使科学本身发生了质的变化,但是在新旧科学理论体系之间也存在着明显的继承关系。同时,也可以看到,科学革命的形式不仅有库恩所说的“危机”型,还应该容许其它形式存在,如“综合”型、“推广”型等等。

革命性变革最深刻的普遍特征是形成新理论体系的实体基础,而这样的实体基础就是科学观念,因此科学革命的实质是科学观念急剧而根本的改造。

在这里,我们之所以选择“改造”这个词,是经过深思熟虑的。在汉语中,改造一词具有双重含义:其一是,“就原有的事物加以修改或变更,使适合需要”;其二是,“从根本上改变旧的、建立新的,使适应新的形势和需要”。这样,“改造”一词就能恰如其分地描绘出科学观念的各种变革方式,体现了科学中的革命与继承的辩证关系。我们在“改造”二字前加上“急剧”和“根本”两个修饰语,无非是从速度上和程度上强调科学观念的改造是迅速的、彻底的,而不是缓慢的、逐步的、局部的、审慎的、尽可能少破坏的。因此,我们所谓的科学革命,指的是一种整体性的革命,这既可以针对整个科学而言(如历史上的三次科学革命,即以哥白尼的《论天球的运行》和牛顿的《原理》为标志的革命,以道尔顿的原子论、达尔文的进化论、麦克斯韦的电磁理论为标志的革命,以相对论和量子力学为标志的革命),也可以针对某一学科而言(如物埋学革命、化学革命、生物学革命等)。至于某一学科内部某个理论体系中的个别科学观念的变化,我们一般不称其为科学革命,而把它视为科学观念的局部变革(也有人称之为“局部革命”或“小型革命”)。这种变革虽然也是科学观念的部分质变,但并未引起整个科学观念的根本质变。

把科学观念作为科学革命中的变革的主要实体,一个优点在于它的明晰性,因为它不像范式、研究纲领等那么庞杂、含混。更为重要的优点在于它的合理性。科学观念是属于经验成分(经验知识、具体的理论等)和哲学成分(本体论、方法论、自然观、思维方式等)二者之间的中间层次。—方面,它是科学理论的基础,与科学具体理论本身紧紧相联。另一方面,它又是高度思辨、高度抽象的产物,与哲学成分密切相关。它既不像科学理论那么脆弱,易受实验触动;也不像哲学成分那么僵硬,难以改变,而具有相对的稳定性和一定的可变性。这就避免了波普尔、库恩等人的观点的缺陷。

在这里,有必要从更广阔的视野上稍加考察。事物的本质基础并非建筑在这一事物的范围内,而是以这一事物的全部因素为基础。基础属于这一事物,同时又不完全属于它。在一定的关系中,基础应该是内容丰富的,基础是体系的决定性的属性。作为科学理论的基础的科学观念正是这样,它决定着科学理论的性质:它属于科学理论体系,但在某些方面似乎又超出了科学理论体系的范围,因为它具有浓厚的哲学色彩。严格地讲,像本体论、方法论、思维万式、自然观等哲学成分,并不是科学理论体系之内的东西,它们是外在的。把科学革命的实质归结为某一种或某几种哲学成分的转变是不妥当的,因为科学革命毕竟不是哲学革命,科学革命变革的主要实体只能在科学自身中寻找,而无须到哲学中去寻找。

科学革命的最关键因素,科学革命的核心是形成本质上全新的基础。不过,在科学观念发生急剧而根本的改造的同时,科学理论也会焕然一新。也就是说,新的科学框架不仅能容纳已有的经验知识,而且还能容纳许多新的经验知识,而这些新知识是无法纳入旧科学框架中去的。另外,由于科学观念与那些哲学成份有千丝万缕的联系,新科学观念对旧科学观念的否定,必然耍伴随或导致新的自然观、方法论和思维方式等的全面变革。因此,笔者尝试给科学革命下这样一个定义:科学革命是科学观念急剧而根本的改造,与此同时,也伴随或导致科学理论、自然观、方法论和思维方式的全面变革。科学革命这一概念是关于科学进步的辩证诠释的基本概念。

四、科学发展的“进化一革命”互补图像

作为科学理论基础或框架的科学观念具有完整性、内在统一性和进一步发展的能力,这些逻辑构架起着组织、建立以及解释科学理论的作用,并调节和控制获得新知识的过程。因为它们在某种程度上是科学的(正确的、郑重的、不是荒唐的)抽象,比较深刻、比较正确、比较完全地反映了科学认识对象,从而具有巨大的现实统摄力量和潜在的容异功能。科学观念一旦建立起来;它的现实统摄力量就会不断地得以发挥,它所统辖的研究领域的知识不断积累,且日益成熟和完善。在科学发展的一定阶段,科学观念原有的潜在容异功能也会转化为现实性。也就是说,它可以作为一种研究指导纲领扩展到其它领域,甚至把与它不相协调的经验知识容纳进来或暂存起来。这时,科学观念对科学发展起着促进作用,科学呈现出相对平静的发展趋势,知识的增长主要表现在量的积累上。这就是科学的进化时期。进化时期主要是科学家在已有的科学观念指导下进行的定向研究时期,这也是科学理论的多产时期。

从牛顿的《原理》奠定了近代物理学的基础到19世纪末,物理学大体经历了两百多年的进化时期。在这段漫长的时间内,经典力学的基本观念被物理学家作为研究传统而接受下来,决定了他们的思想、研究和实践方向。牛顿力学起初主要处理质点问题(质点力学),后被推广到流体和刚体,流体力学和刚体力学就是在牛顿所提出的科学观念的基础上建立起来的。力学的基本观念又被引进光学、热学和电磁学的研究中。尽管热学中熵的概念和热力学第二定律以及电磁学中的场的概念,都是超出牛顿力学的基本观念之外的新东西,但是它们分别通过对分子热运动进行统计解释和通过以太的力学模型的运用,而把这些具有革命性的新观念纳入到力学框架之中。

科学的进步会引起它的基础的深刻变革。在进化阶段的后期,科学观念已基本穷尽了它的统摄力量和容异作用,科学理论也在这个基础上发展到了顶峰。这时,科学观念通过修修补补已无法容纳大量的反常现象,而且各理论体系之间发生的概念问题也越来越暴露出已有科学观念的局限性。这时,唯一的出路就是对这些科学观念进行根本的改造,提出新的科学观念,这就是科学发展中的革命时期。在这个时期,那些具有哲学头脑、思想活跃、敢于背离陈规旧说的科学家,往往成为科学革命的主将。

相对地讲,科学革命时期一般是不太长的,如历史上的三次科学革命所经历的时间分别为144年(1543~1687)、61年(1803~1864)和33年(1895~1928)。哥白尼-牛顿革命之所以持续时间最长,是因为它要摧毁亚里士多德的自然哲学教条,而这些教条在将近两千年间一直禁锢着人们的头脑,并被经院哲学当作毋庸置辩的真理。而且,当时科学成果和科学思想的交流受到各种条件的限制,远不如后来那么频繁和自由。尤其是,这次革命要总结人类有史以来的关于自然的知识,建立第一个真正的近代科学体系——牛顿力学。在哥白尼《论天球的运行》问世时(1543年),欧洲人所具有的力学知识是否像阿基米德(公元前287~212)所了解的那么多,还是值得怀疑的。但是,到这次革命的终结,牛顿力学已牢固建立起来,能够说明天上和地上所遇到的一切力学现象。照此看来,百余年的革命并不算长。第二次科学革命之所以持续时间较长,是因为这次科学革命的带头学科不是一门学科,而是一组学科(主要是化学、生物学和物理学)。这样一来,科学观念的变革发生在不同的领域,而这些科学观念彼此又不甚相关,一个学科中的科学观念的变革对另一个学科中的科学观念的变革没有什么直接的影响。于是,革命的持续时间势必要稍长一些。

科学的进步就是“进化-革命”的无穷系列。在进化时期与革命时期之间,也可能存在库恩所说的危机阶段,这在世纪之交物理学革命的前夕表现得尤为明显(但是,不见得每次科学革命前夕都有一个危机时期)。危机是科学革命的前夜,旧科学观念摇摇欲坠,新科学观念尚未诞生或尚未巩固之时,就是科学的危机时期。不过,科学发展的进化-(危机)革命阶段只是为叙述的方便而提出的理想模式,它们的界限并非泾渭分明。它们就像电影中的一串串渐隐镜头,当一串场景的最后几幅画面还未完全消失时,第二串场景的开头几幅画面就逐渐溶入,致使两串场景相接处的几幅画面我中有你,你中有我。

正如劳丹批评库恩时所说的,常规科学并非像库恩所描绘的那样“常规”,科学革命也不像库恩所断言的那么“革命”。因此,我们拟提出“进化-革命”互补图像来描绘科学的发展。在这里,“互补”的含义有二:其一是进化与革命互相转换,即进化转换为革命,革命又转换为进化,周而复始,以至无穷,而每一次循环,都使科学发展到一个新的更高的阶段;其二是进化与革命互相渗透,这不仅表现在二者的衔接处,而且也表现在二者的过程之中。例如,18世纪基本上是科学的进化时期,经典力学的基本观念不仅在力学发展中表现得生机勃勃,而且也指导着其他学科(例如电学、热学、化学等)的研究。但是,值得注意的是,康德在这个时期提出的星云假说,把发展的观念引入自然科学,这是超越于经典力学的新观念。拉瓦锡的氧化说和元素概念也否定了燃素说和燃素概念(燃素说是在经典力学基本观念指导下提出的燃烧理论)。这一切,都是在进化时期科学观念所发生的局部变革,或像有人说的局部革命或小型革命。同样,在革命过程中也伴随着一些进化。爱因斯坦1905年提出的狭义相对论标志着物理学一个领域的革命的开始,而普朗克1906年通过对爱因斯坦的电子运动的方程的修正进而得到的动能的表达式,以及闵可夫斯基1908年提出的四维世界理论,都不过是狭义相对论的自然进化而已。

因此,如果把事物的发展比喻为波浪式发展、螺旋式上升的话,那么科学的进步则可以形象地描绘为具有小波纹的滚滚向前的大波浪,或以大螺线为轴心而攀援上升的小螺线(等于把一个长而细的弹簧绕成螺线)。这就是科学发展的“进化-革命”互补图像(尽管它也是一个不尽恰当的模式)。后一个比喻显然与黑格尔的下述命题有某种相通之处:“科学表现为一个自身旋绕的圆圈,中介把末尾绕回到圆圈的开头,这个圆圈以此而是圆圈中的一个圆圈,因为每一个别的支节,作为方法赋予了灵魂的东西,都是自身的反思,当它转回到开端时,它同时又是一个新的支节的开端。”

参考文献

Б.М.Кедров,ЛениниНаучныеРевалюции•Всте-ствазнание•Физика,Издательства《Наука》,Москва,1980.

李醒民:简论凯德洛夫的科学革命观,北京:《自然辩证法通讯》,1985年,第1期。

《爱因斯坦文集》第一卷,许良英等编译,北京:商务印书馆,1976年第1版,第115页。

篇3

爱因斯坦在回答施威策的信中,在讲到中国为什么没有近代科学技术而西方在这方面却层出不穷时指出:西方科学的发展是以两个伟大的成就为基础的,那就是:希腊哲学家发明的形式逻辑体系(在欧几里的几何中),以及(在文艺复兴时期)发现通过系统的实验有可能找出因果关系。在我看来,中国的贤哲没有走上这两步。”在这里,爱因斯坦把科学成就与哲学成就,特别是与哲学在研究方法上的成就紧密联系起来,认为西方科学得以发展的重要原因就是把西方哲学家发明的哲学研究方法成功地运用到了自然科学的研究中,并为科技工作者从事自然科学的研究提供了正确途径。而中国的哲学家没有做这类研究,也就谈不上将哲学与自然科学结合从而取得科技的巨大发展。由此表明,哲学与科技发展关系密切,在科技发展的历程中有着不可忽视的作用。

一、科技创新的关键是方法创新

人类文明史,就是一部人类创新活动的历史。创新活动贯穿于人类生产实践、社会斗争实践、科技实践之中,知识为体方法为魂,方法是创造一切的关键。对于科技创新来说,科学方法的创新是关键环节。因为科学方法能使科学研究更严密,从而使科技创新更有效地进行。巴甫洛夫曾深有体会地认为:“方法是最主要和最基本的东西”,“方法掌握着研究的命运”。科学方法是科技工作者认识客观事物的手段。这个认识手段在黑格尔看来“是主体方面的某个手段”,即主体在探索的认识中所拥有的能动的思维能力和思维方法。黑格尔又说:方法也就是工具”。因此,科技工作者掌握了优秀的科学研究方法就等于拥有了先进的科研工具,用这个工具去进行科技创新,定能促使科技创新的实现。因为任何方法都包含着对有关对象规律性的认识,它是根据这种规律而制定出来的用以进一步认识和改造现实,并从而获得一定成果的手段或工具。众所周知,在科技史上开普勒因善于运用科学的研究方法概括出了行星运动三大定律,而他的老师第谷因却使得真理从眼前溜掉。所以,通常情况下科技工作者们不仅非常注意科学研究的具体内容,而且非常重视科学研究的方法。法国数学家、物理学家、哲学家笛卡儿说:“我可以毫无踌躇地说,我觉得我有很大的幸运,从青年时代以来,就发现了某些途径,引导我作了一些思考,获得一些公理,我从这些思考和公理形成了一种方法,凭借这种方法,我觉得自己有了依靠,可以逐步增进我的知识,并且一点一点把它提高到我的平庸的才智和短促的生命所能容许达到的最高点。法国天文学家拉普拉斯说:认识一位天才的研究方法,对 于科学的进步,……并不比发现本身更少用处。科学研究的方法经常是极富兴趣的部分。”

科学方法是科技工作者所应掌握的一种创造性的复杂技能,但这种技能不是人们先天就有的,是人们通过学习不断总结经验而逐步地提高和发展的。对于一个科学家来说,他在科学研究中所运用的方法,大致有三个主要来源:一是从前辈或同行中学习得来;二是在科研实践中摸索、体会出来;三是在哲学方法论的指导下获得。哲学是科学研究相当重要的方法源泉之一。因此,学习哲学是科技工作者获得科技创新方法的一条必不可少的途径。作为科技工作者应重视对哲学的学习,因为:第一,哲学是最高层次的方法论,哲学研究的方法,如归纳法、演绎法、矛盾分析法等能为科学方法的创新提供最普遍的方法论指导;第二,哲学是主体的纯粹思维活动,是主体方面反思人类各种活动(包括科技活动)的重要手段,它总是超越关于经验对象的思考,超越既定的科学理论,做出新的科学发现或提供新的科学理论;第三,从科技史上看,大凡在科学活动中有创新举措的科技工作者都具有很高的哲学素养,都自觉地使用哲学的方法指导自己的工作;大凡有众多科技创新成果产生的年代,也都是人们在哲学观念(思维)转变的带动下使科学方法有重大突破的年代。20世纪的创新巨匠爱因斯坦,年轻时就曾如饥似渴地钻研过古希腊哲学家和近代笛卡尔、康德、马赫、彭加勒等人的哲学著作,并从中获得很多启发,他认为,哲学“是全部科学之母”。他讲:科学如果脱离了认识论一只要这是可以设想的一就成为粗俗的、混乱的东西。[1因此,一个国家、一个科技工作者要想有不断的科技创新成果产生,就必须重视对哲学的学习,不断改进科研方法:4]。

二、哲学为科技创新提供普遍有效的方法

哲学是世界观,也是方法论。它在给人提供世界是什么的同时也提出认识世界的方法应当是什么样的,即为人们提供认识世界的工具。古希腊哲学家、科学方法论的创始人亚里士多德称自己的哲学为“工具论”,近代经验论哲学鼻祖弗朗西斯·培根也把他自己崭新的哲学叫做“新工具”。哲学的这一工具性突出地体现在它为科学技术发展提供了以下三种主要方法。

(一)哲学的逻辑思维为科技工作者提供了科学的归纳法和演绎法,为科技创新开辟了新思路

恩格斯说,在认识事物的过程中,甚至连形式逻辑也首先是探寻新结果的方法,由已知进到未知的方法。形式逻辑是古希腊哲学家亚里士多德在对人类思维的形式进行专门研究的基础上建立的关于人类思维规则的学问。它揭示了正确的思维形式,让人们弄清了思维必须符合哪些条件才能达到认识的目的。逻辑思维方法是哲学研究中重要的也是最常用的方法。由于逻辑推理具有使人的思维更严密、严格、严谨的优点,被逐渐运用于自然科学研究中,并成为科技工作者进行科学研究的重要方法。近代以来,随着西方科学研究的日益发展,通过逻辑论证获得科学知识的方法越来越受到极大关注,科技工作者们根据一定的科学事实和经验材料,遵循逻辑思维规律和思维规则,按照严格的逻辑程式进行科学思考、判断和推理,获得了极大的科研成就。特别是进一步系统化和程序化的逻辑论证方法一归纳法和演绎法的诞生和运用,为科学研究方法注入了新的活力,为科技工作者开创了新的思路,迎来了科技创新史上的一次大丰收。

归纳法和演绎法是由两位著名的哲学家弗朗西斯。培根和笛卡儿在建立科学知识体系时将具体的科学方法上升至哲学的高度进行提炼、研究提出来的。

归纳法是一种建立在对大量观察资料进行理智分析比较的基础上,由个别到特殊,由特殊到一般从而得出关于此类事物的规律性认识的科学研究方法。进一步系统化了的科学归纳法是培根在批判经院哲学和传统教条阻碍科学发展的前提下,从经验论的角度,进一步阐述科学试验的必要性和重要性,强调必须建立一个合乎时代需要、能促进科学与生产发展的新哲学的思想指导下首先提出,后经赫舍尔、惠威尔等人完善和扩大的。比起以往自发的归纳法来,科学归纳法能根据对某类事物的典型对象及其属性之间必然联系的认识,推出该类所有对象中都具有某种属性的一般性结论,深刻揭示和显现事物的因果关系,是一种上升到自觉的、有计划的、有组织的层次进行科学研究的方法。因此倍受科技工作者的青睐,是科学方法的创新。这一创新在物理学领域使科技工作者们发现了许多新定理、定律。例如:力学中的牛顿三定律,热学中气体的三定律,电学中的库仑定律、欧姆定律、焦耳一楞次定律,光学中的反射、折射定律,等等,都是归纳实验的结果。在生物学领域达尔文进化论的创立,也与他自觉地运用归纳法有直接关系。

而瑞典生物学家林耐由于忽视归纳法的运用,仅仅用分类方法分析问题,得出了物种不变的错误观点。恩格斯指出:从个别东西开始的一切推理形式都是实验上的和以经验为基础的东西。演绎法是从已知的某些一般原理、定理、公理或概念出发推出个别结论的思维方法,是从一般到个别的推理。它是笛卡儿在批判经院哲学和传统教条阻碍科学发展的前提下,从理性主义角度提出的必须把科学知识大厦及其每一组成部分都建立于“理性”的基础上的科学方法和思想。笛卡儿认为,从感觉经验中引申出来的认识不具有普遍性和必然性,运用归纳法只能得到或然性的、不确定的知识。

而近代科学中的力学和天文学已不满足于个别经验材料的搜集甚至也不满足于系统经验材料的初步整理,而是要求建立完整的、逻辑上自恰的科学理论体系。于是,笛卡儿借助数学建立了他的直观一演绎法。后经以伽利略、牛顿等为代表的科学家和以杰文斯为代表的哲学家的发展,又建立了假说一演绎法。演绎法的创立和使用,加强了科学研究的理性思维特征性,是科学方法的又一个创新。因为它可以在大前提的第一原理下通过一系列的间接论证得到“较远的推论”,它是发现的逻辑是发现真理的一种最有效的方法。演绎法使科技工作者从中受到很大启发,产生了许多科技创新成果。例如,狭义相对论的一系列重要结果,是爱因斯坦运用演绎法从两个基本原理得出的,一个是相对性原理,一个是光速不变原理。从这两个原理出发,推导出洛仑兹变换,进而演绎出物体在高速运动时,钟慢、尺缩、质增以及同时性的相对性等等。建立了与经典物理学的时空理论根本不同的现代物理学的时空理论即狭义相对论。又如,热力学的全部内容便是从热力学的三个定律出发,按照严格的逻辑推理而演绎出的一系列新结论。

其实,在实际的科学认识过程中,归纳法和演绎法是互为条件、互相渗透的,是不可绝对分开使用的。正如恩格斯所指出的:“归纳和演绎,正如分析和综合一样,是必然相互联系着的。不应当牺牲一个而把另一个捧到天上去,应当把每一个都用到该用的地方,而要做到这一点,就只有注意它们的相互联系,它们的相互补充。”[5归纳法和演绎法都是哲学逻辑思维的基本方法,在被一些科技工作者自觉运用于科学研究之后,使科学活动一改过去工匠式的从经验中摸索着创造技艺和工具的应用状态,成为用逻辑探索自然界规律的理性活动;使科技工作者一改过去那种只着重于“做什么”的闭塞思路,发展为要研究“为什么做”和“怎样做”这种寻求科技创新规律的新的思维风尚。逻辑思维方法已成为必不可少的思维工具。

(二)哲学的辩证思维为科技工作者提供了辩证逻辑方法,使科技工作者沿着理论与实践相统一的正确道路在实践中认识真理、丰富真理

著名的俄国生理学家巴甫洛夫曾经说过:科学是随着研究法所获成就而前进的。研究法每前进一步,我们就更提高一步,随之在我们面前也就开拓了一个充满着种种新鲜事物的、更辽阔的远景。因此,我们头等重要的事情乃是制定研究法。

从整个科学以及各门具体科学的发展史来看,科学认识的进步和科技创新成果的获得是同科学研究方法的提高密切相关的。随着科学的不断发展,单纯的归纳和演绎方法对于认识物质世界运动变化深层次的规律显得愈来愈不够用,科学已进入了需要用高于形式逻辑方法的方法去认识和揭示事物变化发展本质的阶段。此时哲学的辩证思维方法被引入到科学研究方法之中。由于辩证法是用联系的、发展的、全面的观点看世界,因此用辩证的方法思考问题,把辩证的方法和逻辑的方法结合起来就能实现严密揭示一切事物运动、变化和发展的规律的认识目的。辩证逻辑方法给人们开辟了一种新的、但又符合自然规律的认识模式,成为科学研究的重要方法和实现科技创新的重要手段,恩格斯说:“自然过程的辩证性质以不可抗拒的力量迫使人们不得不承认它,因而只有辩证法能够帮助自然科学战胜理论困难……”科学的辩证逻辑的方法是唯一的、最高度地适合于自然观的这一发展阶段的思维方法。

科学创新的实践,特别是近代以来的创新实践表明,许多重大的科技突破或科技创新都与科技工作者自觉地运用辩证逻辑方法分析问题、解决问题有密切关系。例如:哥本哈根学派的著名物理学家玻尔的“互补原理”就是在解决粒子波粒二象性统一的情况下,使用辩证的思维方法发明的。在1926年当哥本哈根学派的物理学家们为测不准关系所困扰的时候,玻尔指出,电子在原子中“轨道”的不确定并不是绝境,这只是对传统的质点运动轨道概念的否定。他认为,正是这种否定,反倒构成了原子能量唯一定义的必要条件。我们必须把否定本身看成是我们认识的真正进步。只要把粒子属性的两个方面看作是互相补充、彼此过渡的,就可以更全面地把握粒子的真实状态。“互补原理”的基本原则就是从共存的对立面中寻求二者的统一性。二象性是粒子两种对立的客观属性,即在某些观测仪器下,微观客体被描述为“微粒”,而在另一观测仪器下,它们又被描述为“波动”,这是粒子两种对立的客观属性,是客观事实。但这一事实在经典物理学的机械观点看来是无论如何也不能同时属于一个事物的,是无法统一的。但是波尔运用了辩证的思维方法,即按照客观事物本身的辩证规律去认识客观事物,承认粒子的两种对立的客观属性,并从对立面的特殊性中全面地把握了事物的丰富内容,正确地揭示了微观客体的特殊本质。

玻尔所使用的辩证的逻辑方法,随着现代科学的迅速发展,被广泛应用于现代物理学、现代宇宙学、现代数学、系统科学等学科,取得了巨大的成就。例如,1928年狄拉克根据它的新方程得出一个大胆的假说:“真空”不空,“真空”充满了电子。这一假设后被美国科学家安德森所证实。又如,日本现代核物理学家汤川秀树提出并证实的介子理论,为我们展示了质子和中子持续不断地相互渗透和相互转化,从而被紧紧地结合在一起的辩证本性。又如,彭加勒关于在数学中逻辑思维和直觉思维交互运用、相辅相成的思想,扎德提出的模糊数学,贝塔朗菲创立的系统学等等,无一不是借助辩证逻辑方法思考和研究得出的。

辩证逻辑方法的性质决定了辩证逻辑方法的作用:即揭示事物的对立方面,在对立面互补统一的关系中达到新的和谐一致,达到对事物的更完美的认识,实现理论和实践的统一。各门具体科学都应学会运用辩证逻辑方法,科技工作者也只有在辩证逻辑方法的引导下才能沿着理论与实践相统一的道路前进,才能取得更大的科技创新成果。

(三)哲学的具体问题具体分析方法引导科技工作者按照研究对象的本性确定与之相适应的方法

具体问题具体分析,这是唯物辩证法的灵魂,也是科学研究和科技创新中最具普遍意义的方法和最高的指导思想。任何一种科学方法都是在人类实践中逐渐形成的。人们在认识世界和改造世界的活动中,在考虑自己的行动方式时,始终要依据客观实际,依据目标和实际情况去选择和确定自己的研究方法。

所谓具体问题具体分析,就是科技工作者进行科学研究时所使用的科学方法应该按照研究对象的本性和研究的目的制定,不能随意制定。也就是说,不同的研究目的、不同的研究对象要采用不同的研究方法。

如果要寻找研究对象的某种现象或证明某种假设,就应该进行实证性的研究,这种研究的主要方法是经验认识的方法。经验认识方法主要包括观察法和实验法。经验认识方法比较重实践、重系统经验,它能为科学研究、技术发明、理论发现、科技创新提供大量的、真实的感性材料和对认识对象纯化的、定向性的、典型性的研究成果。比如天文学是较为典型的实证科学,它主要靠观察天体的位置、分布、运动、结构等因素来开展研究,不能去人为干预和改变这些因素,故天文工作者较多地使用经验认识的方法,他们长年累月地进行天体观测所积累的天文资料成为天文学发展的源泉。

如果要确定研究对象的本质特征和发展规律,就应进行基础理论性的研究,这种研究的主要方法是理论思维的方法。因为基础研究力图提供一个概念体系,把相关事实纳入一个可以理解的框架中,并通过这个概念体系,把各种各样的观察材料形成一个统一的整体。理论思维方法主要包括经验定律和理论原理,理论思维方法能从经验事实中归纳出经验定律,然后运用演绎的方法去解释或预测从经验定律中建立的某种假设原理。比如物理学中关于运动的基本定律和万有引力理论,就是将经验上千差万别的不同现象,如将自由落体、单摆、潮汐、月球、行星、慧星、双星、人造卫星的运动,显示为内在的一致性和规律性,显示为一个共同的基本机制的作用,由此可以对从苹果落地到卫星轨道等广泛的现象做出解释。基础科学就是用少量的原理法则对纷繁的自然现象做出统一的解释。

经验认识方法与理论思维方法也是相辅相成的,它们在科学研究中都具有非常重要的作用。问题的关键在于科技工作者能否自觉运用具体问题具体分析的方法进行研究。科技工作者只有学会根据不同的科研对象和在不同的科研阶段运用不同的科研方法,才能在科技创新中取得成就。简言之,具体问题具体分析是科技创新的又一内在方法。