命题逻辑的推理规则范文

时间:2023-12-04 18:02:13

导语:如何才能写好一篇命题逻辑的推理规则,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

命题逻辑的推理规则

篇1

【关键词】形式证明 命题 逻辑推理 序列

【中图分类号】G632 【文献标识码】A 【文章编号】1674-4810(2014)04-0141-02

在初中阶段的数学学习过程中,几何知识是许多学生都倍感头痛的问题,尤其是几何证明。这是一个较为普遍的现象,其成因颇多,既有主观因素也不乏客观因素。不少同学在听老师讲课时基本能懂能接受,但要其证明时就出现了这样那样的问题,不是不会写证明过程,就是说不清理由;不是东扯西拉,就是前后衔接不上……还有就是想当然者——“我觉得就是这样的”;更有甚者,将举例说明和证明混为一谈,真可谓是“百花齐放”,诸如此,林林总总,本文不在此一一列举。

何谓证明?“一个命题的正确性需要经过推理,才能做出判断,这个推理过程叫做证明。”人教版,七年级下册21页,如是说。诚然,这不能说其不对,但也确实不够清楚。什么是“推理过程”?具体问题又该如何“推理”?从课本的这段话中,我们恐怕不易弄清以上问题。许多初学几何的初中生虽能朗朗上口地背诵定理,但却不能真正理解其含义,更谈不上对其的运用。那么,为何初中生都普遍觉得几何难学呢?问题究竟出在哪里?这些问题本文将稍后逐步探讨。

几何学是一门非常古老的学科,早在古希腊时期几何学就已经非常繁荣,比如欧式几何。时至今日,我们所学的初等几何基本上都是建立在经历了两千多年的欧式几何的基础之上的,由此可见其古老性之一斑。虽然几何学由来已久,并经过了数千年的积淀和研究,然而它仍然令一代又一代的学习者为之困惑,缘何?笔者认为,几何学之难(尤其是几何证明)关键在于其形式化的公理、定理、性质以及演绎推理等。所谓形式化,即是用一系列约定的符号(如逻辑符号)来表示概念、符号化命题以及推理,并将一定范围内的所有正确的推理形式(逻辑规律)都汇集在一个整体中。在此基础之上,由几条公理及公设出发,并规定一些初始符号和规则,经过有效的逻辑推理,得出若干新的、正确的、可靠的结论(即命题),这些命题的集合就形成一个公理系统,这就是形式化几何。初中几何主要研究的是平面几何的图形性质及其数量关系,在欧式几何的公理体系和框架下,早已经形成了许多有关平面几何的命题,但是教师在教学的过程中绝不能只告诉学生们一个结果,更多时候教师需要引导他们去探索并发现规律,总结和证明他们发现的规律,要证明就必然要弄清形式化的推理。

下面,本文就从数理逻辑的角度来探讨何谓推理?何谓证明?为此,需要介绍一些有关的数理逻辑概念和符号。

一 命题与逻辑运算符

定义1:具有确定真假性的陈述句称为命题。

凡是命题都有真值,命题的真值只有两种情况,即取自集合{0,1},具体情况是:真命题的真值为1,假命题的真值为0。

定义2:具有唯一确定真值的陈述句称为命题。

要判断一个语句是不是命题,需要注意两点:一是先判断其是否为陈述句;其次是看其真值是否唯一确定,这两个条件缺一不可。例如,“x>5,x∈R”,该语句虽然是陈述句,但却无法判断真假。因为x是可变的,当x取3时,其为假命题;当x取7时,其为真命题。这类语句可称之为命题变元或称之为命题变量,值得注意的是命题变元不是命题,原因是其真值是可变的,时真时假。此外,还要特别注意像“我正在说谎话”这样的陈述句,这个语句无论你假设其真值为“1”还是“0”都会推出矛盾,这样的语句称之为悖论。在数学中比较著名的有“罗素悖论”。

通常命题可分为简单命题和复合命题,简单命题就是不能分解成更简单的陈述句的命题,简单命题也称为原子命题。复合命题就是除简单命题外的命题,复合命题也可以理解为是由逻辑运算符联结简单命题而成的。为了便于后面的讨论,本文约定用小写的英文字母p、q、r…表示命题或命题变元。

比较常用的逻辑运算符有5种:(1)“”称为否定运算符,读为“非”。(2)“”称为合取运算符,读为“且”或“与”。(3)“”称为合取运算符,读为“或”。(4)“”称为蕴含运算符,读为“蕴含”。(5)“”称为等价运算符,读为“等价”。

以上5种逻辑运算有其优先级,规定其优先顺序为:()、、、、、,其中“()”的意思是有()的就先算,然后再按照、、、、的顺序来做运算,对于同一优先级的运算符,先出现者先算。

二 推理和证明

定义3:命题公式递归定义如下:(1)单个的命题常量或命题变量是命题公式;(归纳基)。(2)若A、B是公式,那么A、AB、AB、AB和AB也是命题公式;(归纳步)。(3)所有的命题公式都是有限次使用(1)和(2)得到的符号串;(最小化)。

在这里可以使用大小写英文字母表示命题公式,英文字母还可带下标。以后在没有二义的情况下,将命题公式简称为公式。命题逻辑的推理理论就是利用命题逻辑公式研究什么是有效的推理。

定义4:推理就是从前提集合开始演绎出结论的思维过程,前提集合是一系列已知的命题公式,结论是从前提集合出发应用推理规则推出的命题公式。

若前提是一系列真命题,并且推理中严格遵守推理规则,则推出的结论也是真命题。在命题逻辑中,主要研究推理规则。

定义5:称蕴含式(A1A2…An)B为推理的形式结构,A1,A2,…,An为推理的前提,B为推理的结论。若(A1A2…An)B为永真式,则称从前提A1,A2,…,An推出结论B的推理正确(或说有效),B是A1,A2,…,An的逻辑结论或称有效结论,否则称推理不正确。若从前提A1,A2,…,An推出结论B的推理正确,则记为(A1A2…An)B。

通俗地讲(A1A2…An)B即是说,若A1,A2,…,An都正确,则B也正确。清楚了什么是推理以及推理的结构后,下面来讨论什么是证明。

定义6:证明是一个描述推理过程的命题公式序列A1,A2,…,An,其中的每个命题公式或者是已知的前提,或者是由某些前提应用推理规则得到的结论,满足这样条件的公式序列A1,A2,…,An称为结论An的证明。

在证明中常用的推理规则有3条:(1)前提引入规则:在证明的任何步骤都可以引入已知的前提;(2)结论引入规则:在证明的任何步骤都可以引入这次已经得到的结论作为后续证明的前提;(3)置换规则:在证明的任何步骤上,命题公式中的任何子公式都可用与之等值的公式置换,得到证明的公式序列的另一公式。

以上是一些基本的逻辑推理规则,如何运用这些规则进行推理和证明呢?在定义6中可以看到,证明实质上就是要把已知的命题公式按照一定顺序排列起来,那么具体问题的证明要如何来将那些已知的条件、公理、定理、推论以及性质等(诸如此类在逻辑上都可视为命题公式)按照怎样的顺序来排列呢?下面,通过初中几何中的具体实例进一步体会理解证明的实质。

例如,已知:如图在RtABC中,∠C=90°,AC=BC,AD=DB,AE=CF。

求证:DE=DF。

分析:由ABC是等腰直角三角形可知,∠A=∠B=45°,由D是AB中点,可考虑连接CD,易得CD=AD,∠DCF=45°。从而不难发现DCF≌DAE。

证明:连接CD。

AC=BC;

∠A=∠B。

∠ACB=90°,AD=DB;

CD=BD=AD,∠DCB=∠B

=∠A。

AE=CF,∠A=∠DCB,AD=CD。

DCF≌DAE。

DE=DF。

上述证明的过程,实质上就是一个命题的序列,可以如下来看:(1)等腰三角形ABC两腰相等(AC=BC);(2)等腰三角形ABC两底角相等(∠A=∠B);(3)已知条件(∠ACB=90°,AD=DB);(4)等腰三角形DCB两腰及两底角相等;(5)等量减等量得等量(AE=CF),(4)得出的结论(∠A=∠DCB,AD=CD);(6)三角形全等的判定定理SAS(DCF≌DAE);(7)全等三角形对应边相等(DE=DF)。

这里的(1)(2)(3)(4)(5)(6)(7)不就是一个序列吗?并且序列中的(7)就是要证明的结论,其实所有的证明都是如此,只要按照逻辑的推理规则构造出一个包含证明结论的序列即可。那么,在这七步的序列中运用了哪些推理规则呢?(1)前提引入规则;(2)前提引入规则;(3)前提引入规则;(4)假言推理规则;(5)置换规则和结论引入规则;(6)假言推理规则;(7)假言推理规则。

数学能够非常有效地训练人的逻辑思维能力,它是其他学科无可替代的,而数学证明又是最为有效的途径,正如罗增儒先生所说,数学证明有助于获得新的体验、发现新的结论;有助于增进理解,只有清楚了一个命题的证明,才能真正理解该命题的内容。对于几何证明,首先应该弄清题意,明确证明方向即把握好题目的已知条件和要证明的结论,然后结合图形理清思路,把和本题有关的命题搜索出来,再来思考需要用到哪些定理,将其罗列出来,最后按照逻辑的思维方法把它们构造成一个包含要证明结论的序列,这就完成了证明的过程。

参考文献

[1]人民教育出版社、课程教材研究所等.数学(七年级下册)[M].北京:人民教育出版社,2012

[2]张顺燕.数学的源与流[M].北京:高等教育出版社,2004

[3]耿素云.离散数学[M].北京:清华大学出版社,2008

篇2

本书共7章:1.命题逻辑:从公理和推理规则的证明。通过生活中的一个逻辑实例引入本节重点,依次介绍了纯命题演算、基于微积分的证明示例、纯正蕴涵命题演算、布尔逻辑等相关内容;2.一阶逻辑:量词的证明:包括一阶纯谓词演算与证明方法、平等谓词的相关介绍;3.集合论:脱离、对位和矛盾的论证:包括集合与子集的相关概念、并集与交集、笛卡尔积、函数与反函数、等价与序关系等相关基本知识;4.数学归纳:归纳法的定义和证明:包括整数、无理数、有限/无限基数的储备知识介绍,数学归纳法的引入与证明;5.形成集:通过超限归纳法证明已经有序集。包括超限的方法、超限集和序数及相关规律的介绍;6.选择公理:用超限归纳法证明。通过最优排序准则、集合的交叉与合并、策梅洛原则及其他相关公理证明选择性公理;7.应用:集合、功能和关系在诺贝尔奖获奖(Nobel-Prize Winning)中的应用的。引入了博弈论、匹配度及箭头的不可能性定理,解释诺贝尔奖运作过程的具体原理。

作者Yves Nievergelt是华盛顿大学数学系教授,曾于华盛顿大学获得数学硕士和博士学位,主要研究兴趣包括应用分析(数学应用于化学、医学诊断成像、物理),复杂分析、数值分析(科学规划数学)等。

本书包含大量的文献资料及相关文档的历史,主要包括逻辑、证明、集和数字理论,在理论方面逻辑严谨,内容详实,实例方面极具吸引力,可以作为一个独立的学习参考资源。本书适合数学,逻辑和计算机科学以及社会科学领域的本科二年级以上学生、感兴趣者或研究人员阅读。

篇3

形式逻辑不管思维内容,只管思维形式,这是学术界的一个共识。这个共识预设了一个前提:思维形式是可以脱离思维内容而独立的外在形式。这个预设是建立在内容与形式二元对立基础上的,并不符合事实,因而是没有根据的。我们必须超越这种二元对立,代之以内容与形式的统一。应该肯定,一切逻辑学,包括形式逻辑在内,都是既研究思维形式同时又研究思维内容的思维科学。

思维内容与形式不可分离

思维是存在的反映。同存在一样,思维也是一种既有内容又有形式的统一体。内容之所以成为内容,是因为它规定着自己的形式;形式之所以成为形式,也是因为它表现着自己的内容。这说明,内容与形式必然是相互渗透和转化的,正如黑格尔所说:“内容非他,即形式之转化为内容;形式非他,即内容之转化为形式。”①因此,只要断定逻辑学是研究思维形式的,就同样断定了它也是研究思维内容的,否则,逻辑学研究的思维形式就成为无内容的形式,因而也就失去了作为形式的意义及其存在的根据。进一步说,一门科学,如果它不具有自己特有的科学内容,它同样失去了作为一门科学的根据,逻辑学也不能例外。

可是,为什么我们又把形式逻辑称为形式科学呢?应该指出,在特定语境下,认为逻辑学不研究思维内容,也不能说是错的,否则,学术界为什么一直把它看作正确的观点并长期加以坚持?其实,我们通常说的逻辑学所不研究的思维内容,是指具体科学所研究的经验内容。按照黑格尔的说法,它是指可感知的内容。在这种意义上,不仅逻辑学,哲学也是不研究思维的经验内容的。这就是哲学和逻辑学同具体科学的区别。黑格尔说:“进一步就内容与形式在科学范围内的关系而论,我们首先须记住哲学与别的科学的区别。后者的有限性,即在于,在科学里,思维只是一种单纯形式的活动,其内容是作为一种给予的〔材料〕从外界取来的,而且科学内容之被认识,并不是经过作为它所根据的思想从内部自动地予以规定的,因而形式与内容并不充分地互相渗透。反之,在哲学里并没有这种分离,因此哲学可以称为无限的认识。当然,哲学思维也常被认作是单纯的形式活动,特别是逻辑,其职务显然只在于研究思想本身,所以逻辑的无内容性可算得是一件公认的事实。如果我们所谓内容只是指可以捉摸的,感官可以感知的而言,那么我们必须立即承认一般的哲学,特别是逻辑,是没有内容的,这就是说,没有感官可以知觉的那种内容。”①在黑格尔那里,逻辑学就是哲学,它们都是研究思维自身的运动,它的内容不是通过感官的感知得来的,因而不具有这种可感知的经验内容。

在这种意义上说,逻辑学是不研究思维内容的,即不研究由感官感知得来的经验内容。但是,它所研究的思维单纯形式的活动,其本身是有内容的,也属于思维的一种内容。所以,在哲学和逻辑学中,思维的内容与形式又是统一的,并不存在无内容的形式,也不存在无形式的内容。科学和艺术也具有这种统一的普遍性:“只有内容与形式都表明为彻底统一的,才是真正的艺术品。”②艺术的内容与形式,属于形象思维范畴,由美学研究。逻辑学本身是有科学思想内容的。逻辑学的发展,不只是思维形式的发展,它同样是逻辑思想的发展。许多逻辑史的著作被称为“逻辑思想史”,就是一个明证。这里的“逻辑思想”,作为逻辑学的内容,到底是什么,学者们可能有不同的理解,但它的存在已经表明,逻辑学发展史是思维的内容与形式统一的认识史。“这就不啻承认,思想不可被认作与内容不相干的抽象的空的形式,而且,在艺术里以及在一切别的领域里,内容的真理性和扎实性,主要基于内容证明其自身与形式的同一方面。”③自然科学和社会科学所研究的经验内容,都是通过实践活动从外部世界得来的,不可能从思维自我运动中产生。所谓思维的自我运动,即思维“单纯的形式活动”。在这种意义上,思维内容与思维形式存在一定程度的分离,“并不充分地互相渗透”。这种情况主要发生在不同思维层次之间,就是说,一个层次的思维内容与另一个层次的思维形式之间,是可以分离的。但在同一层次中,如在具体科学中,则是不可分离的。思维形式对思维内容发挥着重大的能动作用,即用自己的特有形式,如概念、命题、原理、定律等,来表达经验内容,使这些内容得到抽象和概括,并把它们组织到自己的形式模式中去,揭示这些内容的必然联系,并表述为科学规律。

特别值得注意的是,在讨论思维内容和形式时,必然涉及思维和语言之间的关系。无论是思维内容,还是思维形式,都是与语言分不开的。我们经常也把语言称为思维的形式,而这里所说的“思维”,其本身又是内容与形式的统一,说明了思维内容与形式之间关系的复杂性和多层次性。当我们说语言是思维的物质外壳时,这实际上是指语言是作为内容和形式统一体的思维的载体。如果没有语言,一切思想的表达都是不可能的。索绪尔说:“思想离开了词的表达,只是一团没有定形的、模糊不清的浑然之物。”④这又产生了另一种内容与形式的关系,即思维内容与语词形式的关系问题。在文学中,朱光潜把这种关系概括为“意”与“文”的关系。朱光潜说:“在为思想所凭借时,语文便杂在思想里,便是‘意’的一部分,是在内的,与‘意’的其余部分同时进行,所以,我们不能把语文看成在外在后的‘形式’,用来‘表现’在内在先的特别叫做‘内容’的思想。‘意内言外’和‘意在言先’的说法绝对不能成立。”⑤形式是表现内容的,只有在相应的形式中,内容才得以显现。这表明,内容与形式不仅是同时成就的,而且也是相随而变的。如果更动了文字,就同时更动了思想情感,说明了思想活动和语言活动的一致性。对于思想来说,语言是表达形式,在这种表达式中,既包括了思维的内容,同时也包括了思维的形式。所以,思维内容与思维形式统一于语言之中。“语言的形式就是情感和思想的形式,语言的实质也就是情感和思想的实质。情感、思想和语言是平行的,一致的。”①如果说,语言是思维的居所,那么,这就意味着语言不仅是思维内容的居所,同时也是思维形式的居所。语言是思维内容和思维形式统一的载体。一切科学,包括形式逻辑在内,只要运用语言来表达,它所表达的就不仅是思维形式,同时也表达了思维内容。如果逻辑学是研究思维形式的话,那么,它必定同时要研究相应的思维内容,因而也就是研究思维内容和思维形式的统一。#p#分页标题#e#

语词符号的意义

我们在研究思维时,习惯于先把思维的内容和形式分离开来,并对它们分别地加以抽象规定,说明什么是内容、什么是形式,由此认为内容和形式是事物内外的两种规定:内容是事物内在的规定性,是各种内部要素的总和;形式是事物外部的表现以及这些表现之间的联系或结构。这种分析,自然是必要的,作为认识的一个阶段,也是合理的。但它也提供了一种可能性,即把思维形式看作与内容不相关的外在形式,从而使形式脱离了内容,成为独立的部分,其结果必然要否定内容,否定内容与形式的统一。别林斯基说:“如果形式是内容的表现,它必和内容紧密联系着,你要想把它从内容中分出来,那就意味着消灭内容,反过来也一样,你要把内容从形式中分出来,那就意味着消灭形式。”②所以,单用分析方法是不够的,还必须同时把分析与综合结合起来。

思维以语词为载体。如果运用分析方法,把言语的思维分解成它的组成部分:思维和词语,这种方法虽然也看到它们之间的相互联系和相互作用,但不再把它们看作一个整体,这就必然使言语思维的原先特性消失。维果斯基把这种分析的方法称为“元素分析法”,并认为是不可取的方法,他指出:“把言语的思维分解成它的组成部分:思维和词语,并且互不联系地孤立地对它们分别进行研究,会使心理学在同样的死胡同里曲折前进。在分析过程中,言语思维的原先特性已经消失。研究者们一无所获,唯有发现两种元素的机械的相互影响,期望以纯粹的投机方式来重新构建业已消失的整体特性。”③因此,他不主张“元素分析法”,而主张“单位分析法”。这种方法就是整体分析法,分析的结果则是保留了整体的所有基本特性。

思维与语词是不同的两种事物,但是它们又是不可分离的。没有语词的思维是一片模糊,没有词义的言语是空洞的声音。思维是对存在的概括反映,它的表达形式是语词的词音,即听觉形象;语词的内容就是语义,即语词所负载的信息。所以,语词同样是形式和内容两个方面的统一,它们是无法割裂的。语义的概括同样不能不用语词来表达,因而语义是词的不可分割的部分。因此,词义既是思维又是言语。根据这种分析,维果斯基把语义看作言语思维单位。思维的“单位分析法”,就是语义分析法。他说:“在探究言语思维的本质过程中,所应遵循的方式便是语义分析(semanticanaly-sis)———研究这个单位的发展、功能和结构,它包含了思维和言语的相互关联。”④从思维与语言的发生史来考察,思维在最初发生时,语言并没有同步地发生。这不是说思维没有物质载体,只是表明,思维的最初载体并不是语言,而是动作。这时,思维与动作还没有分离,而存在于动作中。但是,思维是心理和观念形态,不具有被感知的特征,没有物质性的载体,它既不能表达也不能实现。后来,产生肢体语言,使思想得以开始交流。为了适应思维发展的需要,进一步产生了有声语言,使每一种声音都能传递某种信息,而且表达某种意义。语言的产生和发展反过来进一步推动了思维的发展,要求将思维的内容保留下来。经过长期的实践,出现了书写语言,即文字。文字的产生,是人类文明发展的重要里程碑,对思维的进一步发展起到了关键作用。这时,思维找到了固定的载体,语言不仅成为思维的居所,而且也成为人类的家园。为了克服自然语言的模糊性、歧义性,在自然语言的基础上又产生了人工语言,进一步推动了思维科学的发展和应用。这是语言在现展所取得的成就。

今天,我们所说的语言,应该包括自然语言和人工语言两个部分,而且都可以称它们为符号,即自然符号和人工符号。显然,同语词一样,无论哪种符号,它们也都是有意义的,否则它就没有任何用途了,因而也就不可能出现。我们使用符号的目的是表达和实现思想,因此符号必定包含有某种意义。可见,符号本身不仅具有意义,同时又是一种形式。符号具有怎样的意义?必须通过解释加以确定。根据实践和理论研究的需要,我们可以赋予符号一定的意义。在具体科学中,这是各门科学自身的工作,逻辑学不能代替而只能完成本学科的符号解释。只有当某个言语形式的意义在我们所掌握的科学知识范围内,我们才能准确地确定它的意义。所以,无论是在具体科学中还是在逻辑学中,符号都是内容与形式的统一。一切科学规律都是凭借这种统一来表述的,而且也只有凭借这种统一才能得以表述。例如,牛顿力学中的第二运动定律,可以用符号公式表述为:f=ma。这个表达式是人工符号表达式,其中用了四个符号。只有对每一个符号都作出解释,赋予一定的意义,才能使它表达第二运动定律的内涵,并被人们所理解。对于已学过牛顿力学的人,只要看到这个公式,就明白这个表达式的意义,因为他们已经知道了对符号所作的解释。这里的解释,有两个步骤。第一,赋予符号以特定的意义:“f”是对物体的外部作用力,“m”是被作用物体的质量,“a”是被作用物体在受外部作用后所得到的加速度,“=”是等值。第二,解释符号的关系:包括两个方面的内容,一是对量的关系的解释,这个公式表示,f等于m与a的乘积,两者的关系是,物体的加速度(a)与所受外力(f)成正比,与物体的质量(m)成反比;二是对质的关系的解释,即加速度(a)与外力(f)都是矢量,具有方向性,而且加速度的方向与外力的方向相同。通过上述解释,我们不仅知道了牛顿力学第二运动定律的形式,而且也知道了这个符号表达式的内容,从而表明了思维内容和形式的统一。这里的形式包含两个方面:第一,每一个符号都是一种形式;第二,符号之间的相互关系,即形式结构。因此,我们在研究思维内容与思维形式的关系时,主要任务不在于分辨谁是先在的,内在的,是决定者,谁是后在的,外在的,是被决定的,而在于寻求它们之间的统一。这种统一的多样性取决于是否存在经验内容的渗透以及这种渗透的程度,从而使逻辑科学构成一个庞大的“家族”。

思维内容和形式在形式逻辑中的统一

从思维内容和形式统一的观点看,形式逻辑不仅研究推理形式,同时也研究推理内容,研究思维内容和形式的统一。我们可以从以下四个方面认识这种统一的具体表现。第一,逻辑符号的内容和形式的统一。现代形式逻辑,又称符号逻辑。它的一切符号,只有通过解释,才具有特定的意义。这种意义,就是作为思维形式的符号所具有的思维内容。在形式逻辑中,不仅逻辑形式都是由符号构成的,而且逻辑内容也是用符号和符号组合来表达的。在符号逻辑中有许多作为逻辑常项的符号,对这些符号只有作出明确的解释,才能赋予它们意义。这种意义,就是被解释的符号所具有的逻辑内容。例如,对符号“?”的解释是“否定”,对符号“∧”的解释是“合取”,对符号“∨”的解释是“析取”,对符号“→”的解释是“蕴涵”,对符号“≡”的解释是“等值”,等等。这些意义,都赋予了逻辑形式特定的思维内容。不同的逻辑系统,有不同的符号。由于给予不同的解释,它们就具有各不相同的逻辑内容,从而形成思维内容和形式的不同统一。例如,在模态逻辑中,把符号“”解释为“必然”,把符号“”解释为“可能”;在时态逻辑中,把符号“P”解释为“过去”,把符号“T”解释为“现在”,把符号“F”解释为“将来”;在道义逻辑中,把符号“O”解释为“义务”,把符号“P”解释为“允许”,把符号“F”解释为“禁止”,等等。在这些不同逻辑系统中,有的符号是相同的,有的是不同的。即便是相同的符号形式,由于给予不同的意义,它们也就成为具有不同的内容的符号。例如,“P”这个符号,在直言命题中,它代表词项;在命题逻辑中,它是肢命题;在时态逻辑中,它被解释为“过去”;在道义逻辑中,被解释为“允许”。显然,这些符号的选择,完全是自由的,也完全是任意的,我们可以选择这些符号,也可以选择另一些符号。但无论选择什么符号,对它的解释,则是有确定内涵的,绝不能是完全任意的。而且,这些符号只有在特定的关系和形式系统中,才具有它的确定意义;在不同的关系和形式系统中,它们的意义也是不同的。这些都说明,符号形式和符号形式的意义,反映了在形式逻辑学中形式与内容在特定条件下的统一。#p#分页标题#e#

第二,逻辑基本规律的内容与形式的统一。逻辑基本规律是获得“逻辑的真”的规律,它们决定了形式逻辑必须研究命题真假关系的思维内容。形式逻辑教科书主要讨论形式逻辑的三大基本规律,即同一律、矛盾律和排中律。这些规律都可以由符号构成的公式来表述。同一律表述为:A≡A;矛盾律表述为:﹁(A∧﹁A);排中律表述为:A∨﹁A。对这些公式意义的解释,就是这些规律的内容。例如,亚里士多德对矛盾律的解释是:“一切意见中最为确实的是,矛盾的陈述不能同时为真。”①逻辑基本规律同存在、认识、心理和意义等是密切关联的。亚里士多德的逻辑学主要研究了矛盾律和排中律,对同一律也有所涉及;在逻辑规律的讨论中,涉及的不只是逻辑方面,而且还比较多地涉及本体论、认识论、心理学和语义方面的内容。这说明,逻辑规律是存在规律的反映。矛盾律为什么在我们的思维中占有特殊的地位?只能由存在规律来解释。格•克劳斯说:“我们不能把思维作为本原的东西,用思维来解释这一点。我们不能说:‘我们的思维当它逻辑上不矛盾时便正确’,而回答只能有一个:因为它合乎逻辑。不矛盾律的特殊作用取决于它是从本体论的规律即从本原的基础引申出来的,也就是说,它是存在规律的反映。”②可见,逻辑规律的基础是存在规律,彻底割断本体论与逻辑学的联系是不可能的,这是决定逻辑规律具有思维内容的重要根由。因此,在形式逻辑中,逻辑规律不只是形式方面,也不只是内容方面,而是内容与形式两个方面的统一。

第三,推理规则的内容和形式的统一。构成形式逻辑基础的是推理规则,它是逻辑基本规律在推理过程中的具体化。涅尔在《逻辑学的发展》中说:“逻辑是研究有效推理规则的。”③这就明确地表述了真与假的内容与符号的形式之间的统一。涅尔所说的逻辑,自然是指形式逻辑。他在这个说明中,特别强调的是形式逻辑推理的有效性以及保证推理有效性的规则,由此实现从真前提中有效地推出真结论。因为,逻辑规律与存在规律不同,存在规律的表述是有经验内容的,逻辑规律是没有经验内容的,它只是符号系统的规则,与现实世界中的因果关系不直接相关,只是反映命题之间的真假关系。所以,“在逻辑上具有巨大意义的规律,是表示一些判断的真(假)同另一些判断的真(假)之间的依赖关系的规律。这些规律决定着推理有合乎逻辑的正确形式”④。命题的真假,并不是思维的形式,而是思维的内容,但又只有在形式关系中,根据一定的规则,才能断定命题的真假。这表明,“真”与“假”不是事实关系中的真与假,而是形式关系中的真与假,即如何以形式之间的正确联系来达到这个“真”,这便成为形式关系中的内容。进一步说,所谓“有效性”或“无效性”,就是一种思维内容。有效性是真的,无效性是假的。由于推理形式本身包含了“有效规则”,因而它是内容和形式的统一。形式逻辑的核心,就是逻辑后承,或有效后承。所以,简要地说,形式逻辑只是研究有效推理的规则,只有遵守这种逻辑规则,才能使推理形式有效。有效的推理,其结论必定是真的;无效的推理,其结论必定是假的。“必然性”,“必然地推出”,是指内容方面的问题;如何通过形式之间的关系来实现这种“必然性”和“必然地推出”,关键在于形式的保证,是形式方面的问题。这同样表明,在任何形式中,都包含着与思维形式相适应的内容。

第四,内涵和外延都是思维内容。逻辑内容不仅包括作为符号内涵的质,而且也包括符号外延的量。在关于概念的讨论中,逻辑教科书都把内涵与外延看作概念的两个逻辑特征。不只是概念,语句也同样具有这两个逻辑特征。形式逻辑通常都不研究概念的内涵,而只研究概念的外延关系,因而我们都称形式逻辑为外延逻辑。正是这个原因,不少人把现代的哲学逻辑称为非形式逻辑或内涵逻辑,因为它引进了一些哲学范畴作为逻辑常项,如“必然”与“可能”,“过去”、“现在”与“将来”等。上面所说的对符号的解释,首先得到明确的是符号的内涵,即意义,然后即可确定它们的外延关系。例如,在模态逻辑中,符号“”和“”之间的关系,由于赋予了“必然”和“可能”的意义,同时也就规定了它们的外延关系。在模态对当方阵中的矛盾关系、差等关系和反对关系,同形式逻辑中的对当方阵一样,都是用外延关系来确定的。外延关系是由内涵决定的。如果说形式逻辑是外延逻辑,那么,模态逻辑也应该是外延逻辑。不同的是,模态逻辑引进了必然(“”)和可能(“”)等不同的逻辑常项,表明它具有不同的内容。但要进行逻辑运算,都必须依赖于外延关系。内涵是思维的内容,这是没有异议的。问题是,外延也是思维内容吗?形式逻辑对全称量词(?x)和存在量词(?x)的赋值,已经对这个问题作了肯定回答。因为这些赋值都属于量的方面,而且成为这些符号的意义。所以,外延的量同样是一种意义,属于思维内容。内涵与外延的关系,不属于内容与形式的关系,而是质与量的关系。任何事物都具有质和量的规定性,对这两种规定性的反映,使概念、词项、句子等都具有内涵与外延的属性。卡尔纳普认为,一个谓词包括作为“类”和作为“性质”两个方面的特性,如,“人”既是作为包含许多个别人为元素的类的“人”,又是作为具有同样人性的性质的“人”。于是,谓词“P”的外延是相应的类,而其内涵则是相应的性质。

关于语句,当它具有真值时,便是一个命题。因此,语句的内涵是命题,它的外延则是它的真值。关于某一个体词,它的内涵是它所表达的个体的概念,它的外延是它所指称的个体。所以,外延是由内涵决定的,因而内涵与外延是不能各自独立存在的,是不能分离的。詹斯奥尔伍德指出:内涵是“连接语言和这个世界的黏合物。一个内涵就是使一个语言表达式和它的外延产生联系的某种东西。它决定一个语言表达式的外延”①。在一切逻辑科学中,内涵与外延都是统一的,形式逻辑也不能例外。由于外延是由内涵决定的,因而外延的存在必须以确定的内涵为前提,所以它不属于逻辑形式,而属于逻辑内容。作为逻辑内容的内涵和外延,其中虽然也有对经验内容的进一步抽象,但不都是经验内容。事物的质和量,是现实世界中的形式和关系,它反映到逻辑科学中,表现为内涵和外延,这只是说明逻辑内容和逻辑形式的外表来源。“但是,为了对这些形式和关系能够从它们的纯粹状态来进行研究,必须使它们完全脱离自己的内容,把内容作为无关重要的东西放在一边”①。这样,我们就得到了没有经验内容的逻辑内容。内涵和外延,就是事物的质和量这些经验内容的抽象,说的都是逻辑学的思维内容。上述分析表明,形式逻辑不仅研究推理形式,而且也同时研究推理内容。所以,认为形式逻辑只管思维形式而不管思维内容的观点,是不能成立的。#p#分页标题#e#

逻辑学研究的意义逻辑转向

在宏观上,意义可以分为两类,一类是经验内容的意义,另一类是非经验内容的意义。具体科学中的意义属于前者,逻辑学中的意义属于后者。莱布尼茨早就提出了理性真理和事实真理的区分,他说:“有两种真理:推理的真理和事实的真理。推理的真理是必然的,它的否定是不可能的;事实的真理是偶然的,它的否定是可能的。”②形式逻辑所追求的是推理的真理,属于非经验内容的意义;具体科学所追求的是事实的真理,属于经验内容的意义。因此,推理的真理只是形式的真,只管形式的正确性,不管内容的真实性。其中的逻辑必然性,也只是形式必然性或抽象必然性,虽然它也是事实真理的必要条件,但并不是充分条件。要使抽象必然性向具体必然性过渡,实现逻辑的真理与事实的真理的统一,必须建构经验内容进入逻辑思维的通道。但形式逻辑系统的封闭性已经断绝了这种通道,也就已经无缘实现这种结合了。

一旦逻辑学向经验内容开放,它便离开了单纯的形式研究而进入逻辑应用的具体科学领域。这时,推理的有效性不仅依赖于形式的正确性,而且必须依赖于经验内容的真实性。斯蒂芬•里德指出:“经典逻辑坚持所有逻辑推论都是形式问题,就不能把其正确性依赖非逻辑词项之间的关系的推理作为有效推理。给定一个圆的对象,可以推出它不是方的;但这个推理根据形式不是有效的,如果根据内容,即根据‘是圆的’的含义,那么它是有效的。我们可以称这样的推理为实质有效推理,即根据内容而不是形式为有效的推理。”③实质有效推理所得到的结论是事实的真理。在这里,需要输入经验内容的意义。从单纯形式的立场看,知道了“若是圆的”,并不能知道它“不是方的”,而只能是:知道了“若是圆的”,就知道“不是非圆的”,即“若是p”,就“不是?p”。斯蒂芬•里德的分析,为我们提供了一个重要的启示:实质有效推理使逻辑学研究走向意义逻辑,是使理性真理向事实真理转化,实现两种真理的统一的途径。波普尔在研究社会科学的逻辑时,提出了27个命题。其中的第一个命题是:我们拥有大量的知识;第二个命题是:我们的无知是无限的、令人清醒的。关于这两个命题,波普尔指出:“当然,我的关于知识与无知的两个命题只是看上去好像彼此矛盾。这种表面的矛盾的主要原因在于这样一个事实,在这两个命题中各在颇不相同的意义上使用了‘知识’这个词。然而这两种意义都是重要的。”④要说明这两个命题的不矛盾性,同样需要经验内容的引入。

为什么从形式上看,这两个命题是自相矛盾的?因为这里的形式是指把“知识”这个语词作为“概念”,即作为一种符号来使用,作为同一个概念的符号只能给予同一种意义,但两个命题给出了两种相反的意义。如果合取这两个命题,那么,就要产生逻辑矛盾,这种逻辑矛盾表达式是:“A∧?A”。但由于输入了经验内容的意义,这两个命题中的“知识”一词具有了不同的意义:第一个命题中的“知识”是关于“已知”的知识,第二个命题中的“知识”是关于“未知”的知识。由于对“知识”一词作不同的解释,赋予不同的意义,因而成为两个不同的概念,不构成逻辑矛盾表达式。这说明,第一,在应用形式逻辑于知识内容的研究时,必须对思维形式赋予具有经验内容的意义;第二,在形式逻辑立场上认为存在逻辑矛盾的地方,往往产生了内容与形式的非对应性的错位,只有根据经验内容对符号的意义作出不同解释,才能消除这种逻辑矛盾。

篇4

[关键词]人工智能,常识推理,归纳逻辑,广义内涵逻辑,认知逻辑,自然语言逻辑

现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。当时的数学家们试图即从少数公理根据明确给出的演绎规则推导出其他的数学定理,从而把整个数学构造成为一个严格的演绎大厦,然后用某种程序和方法一劳永逸地证明数学体系的可靠性。为此需要发明和锻造严格、精确、适用的逻辑工具。这是现代逻辑诞生的主要动力。由此造成的后果就是20世纪逻辑研究的严重数学化,其表现在于:一是逻辑专注于在数学的形式化过程中提出的问题;二是逻辑采纳了数学的方法论,从事逻辑研究就意味着象数学那样用严格的形式证明去解决问题。由此发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。

本文所要探讨的问题是:21世纪逻辑发展的主要动力将来自何处?大致说来将如何发展?我个人的看法是:计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理(这一点在20世纪基本上已经做到了,如用计算机去进行高难度和高强度的数学证明,“深蓝”通过高速、大量的计算去与世界冠军下棋),而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素,例如选择性地搜集相关的经验证据,在不充分信息的基础上作出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,……由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。

实际上,在20世纪中后期,就已经开始了现代逻辑与人工智能(记为AI)之间的相互融合和渗透。例如,哲学逻辑所研究的许多课题在理论计算机和人工智能中具有重要的应用价值。AI从认知心理学、社会科学以及决策科学中获得了许多资源,但逻辑(包括哲学逻辑)在AI中发挥了特别突出的作用。某些原因促使哲学逻辑家去发展关于非数学推理

的理论;基于几乎同样的理由,AI研究者也在进行类似的探索,这两方面的研究正在相互接近、相互借鉴,甚至在逐渐融合在一起。例如,AI特别关心下述课题:

·效率和资源有限的推理;

·感知;

·做计划和计划再认;

·关于他人的知识和信念的推理;

·各认知主体之间相互的知识;

·自然语言理解;

·知识表示;

·常识的精确处理;

·对不确定性的处理,容错推理;

·关于时间和因果性的推理;

·解释或说明;

·对归纳概括以及概念的学习。[①]

21世纪的逻辑学也应该关注这些问题,并对之进行研究。为了做到这一点,逻辑学家们有必要熟悉AI的要求及其相关进展,使其研究成果在AI中具有可应用性。

我认为,至少是21世纪早期,逻辑学将会重点关注下述几个领域,并且有可能在这些领域出现具有重大意义的成果:(1)如何在逻辑中处理常识推理中的弗协调、非单调和容错性因素?(2)如何使机器人具有人的创造性智能,如从经验证据中建立用于指导以后行动的归纳判断?(3)如何进行知识表示和知识推理,特别是基于已有的知识库以及各认知主体相互之间的知识而进行的推理?(4)如何结合各种语境因素进行自然语言理解和推理,使智能机器人能够用人的自然语言与人进行成功的交际?等等。

1.常识推理中的某些弗协调、非单调和容错性因素

AI研究的一个目标就是用机器智能模拟人的智能,它选择各种能反映人的智能特征的问题进行实践,希望能做出各种具有智能特征的软件系统。AI研究基于计算途径,因此要建立具有可操作性的符号模型。一般而言,AI关于智能系统的符号模型可描述为:由一个知识载体(称为知识库KB)和一组加载在KB上的足以产生智能行为的过程(称为问题求解器PS)构成。经过20世纪70年代包括专家系统的发展,AI研究者逐步取得共识,认识到知识在智能系统中力量,即一般的智能系统事实上是一种基于知识的系统,而知识包括专门性知识和常识性知识,前者亦可看做是某一领域内专家的常识。于是,常识问题就成为AI研究的一个核心问题,它包括两个方面:常识表示和常识推理,即如何在人工智能中清晰地表示人类的常识,并运用这些常识去进行符合人类行为的推理。显然,如此建立的常识知识库可能包含矛盾,是不协调的,但这种矛盾或不协调应不至于影响到进行合理的推理行为;常识推理还是一种非单调推理,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论;常识推理也是一种可能出错的不精确的推理模式,是在容许有错误知识的情况下进行的推理,简称容错推理。而经典逻辑拒斥任何矛盾,容许从矛盾推出一切命题;并且它是单调的,即承认如下的推理模式:如果p?r,则pùq?r;或者说,任一理论的定理属于该理论之任一扩张的定理集。因此,在处理常识表示和常识推理时,经典逻辑应该受到限制和修正,并发展出某些非经典的逻辑,如次协调逻辑、非单调逻辑、容错推理等。有人指出,常识推理的逻辑是次协调逻辑和非单调逻辑的某种结合物,而后者又可看做是对容错推理的简单且基本的情形的一种形式化。[②]

“次协调逻辑”(ParaconsistentLogic)是由普里斯特、达·科斯塔等人在对悖论的研究中发展出来的,其基本想法是:当在一个理论中发现难以克服的矛盾或悖论时,与其徒劳地想尽各种办法去排除或防范它们,不如干脆让它们留在理论体系内,但把它们“圈禁”起来,不让它们任意扩散,以免使我们所创立或研究的理论成为“不足道”的。于是,在次协调逻辑中,能够容纳有意义、有价值的“真矛盾”,但这些矛盾并不能使系统推出一切,导致自毁。因此,这一新逻辑具有一种次于经典逻辑但又远远高于完全不协调系统的协调性。次协调逻辑家们认为,如果在一理论T中,一语句A及其否定?A都是定理,则T是不协调的;否则,称T是协调的。如果T所使用的逻辑含有从互相否定的两公式可推出一切公式的规则或推理,则不协调的T也是不足道的(trivial)。因此,通常以经典逻辑为基础的理论,如果它是不协调的,那它一定也是不足道的。这一现象表明,经典逻辑虽可用于研究协调的理论,但不适用于研究不协调但又足道的理论。达·科斯塔在20世纪60年代构造了一系列次协调逻辑系统Cn(1≤n≤w),以用作不协调而又足道的理论的逻辑工具。对次协调逻辑系统Cn的特征性描述包括下述命题:(i)矛盾律?(Aù?A)不普遍有效;(ii)从两个相互否定的公式A和?A推不出任意公式;即是说,矛盾不会在系统中任意扩散,矛盾不等于灾难。(iii)应当容纳与(i)和(ii)相容的大多数经典逻辑的推理模式和规则。这里,(i)和(ii)表明了对矛盾的一种相对宽容的态度,(iii)则表明次协调逻辑对于经典逻辑仍有一定的继承性。

在任一次协调逻辑系统Cn(1≤n≤w)中,下述经典逻辑的定理或推理模式都不成立:

?(Aù?A)

Aù?AB

A(?AB)

(A??A)B

(A??A)?B

A??A

(?Aù(AúB))B

(AB)(?B?A)

若以C0为经典逻辑,则系列C0,C1,C2,…Cn,…Cw使得对任正整数i有Ci弱于Ci-1,Cw是这系列中最弱的演算。已经为Cn设计出了合适的语义学,并已经证明Cn相对于此种语义是可靠的和完全的,并且次协调命题逻辑系统Cn还是可判定的。现在,已经有人把次协调逻辑扩展到模态逻辑、时态逻辑、道义逻辑、多值逻辑、集合论等领域的研究中,发展了这些领域内的次协调理论。显然,次协调逻辑将会得到更进一步的发展。[③]

非单调逻辑是关于非单调推理的逻辑,它的研究开始于20世纪80年代。1980年,D·麦克多莫特和J·多伊尔初步尝试着系统发展一种关于非单调推理的逻辑。他们在经典谓词演算中引入一个算子M,表示某种“一致性”断言,并将其看做是模态概念,通过一定程序把模态逻辑系统T、S4和S5翻译成非单调逻辑。B·摩尔的论文《非单调逻辑的语义思考》(1983)据认为在非单调逻辑方面作出了令人注目的贡献。他在“缺省推理”和“自动认知推理”之间做了区分,并把前者看作是在没有任何相反信息和缺少证据的条件下进行推理的过程,这种推理的特征是试探性的:根据新信息,它们很可能会被撤消。自动认知推理则不是这种类型,它是与人们自身的信念或知识相关的推理,可用它模拟一个理想的具有信念的有理性的人的推理。对于在计算机和人工智能中获得成功的应用而言,非单调逻辑尚需进一步发展。

2.归纳以及其他不确定性推理

人类智能的本质特征和最高表现是创造。在人类创造的过程中,具有必然性的演绎推理固然起重要作用,但更为重要的是具有某种不确定性的归纳、类比推理以及模糊推理等。因此,计算机要成功地模拟人的智能,真正体现出人的智能品质,就必须对各种具有不确定性的推理模式进行研究。

首先是对归纳推理和归纳逻辑的研究。这里所说的“归纳推理”是广义的,指一切扩展性推理,它们的结论所断定的超出了其前提所断定的范围,因而前提的真无法保证结论的真,整个推理因此缺乏必然性。具体说来,这种意义的“归纳”包括下述内容:简单枚举法;排除归纳法,指这样一些操作:预先通过观察或实验列出被研究现象的可能的原因,然后有选择地安排某些事例或实验,根据某些标准排除不相干假设,最后得到比较可靠的结论;统计概括:从关于有穷数目样本的构成的知识到关于未知总体分布构成的结论的推理;类比论证和假说演绎法,等等。尽管休谟提出著名的“归纳问题”,对归纳推理的合理性和归纳逻辑的可能性提出了深刻的质疑,但我认为,(1)归纳是在茫茫宇宙中生存的人类必须采取也只能采取的认知策略,对于人类来说具有实践的必然性。(2)人类有理由从经验的重复中建立某种确实性和规律性,其依据就是确信宇宙中存在某种类似于自然齐一律和客观因果律之类的东西。这一确信是合理的,而用纯逻辑的理由去怀疑一个关于世界的事实性断言则是不合理的,除非这个断言是逻辑矛盾。(3)人类有可能建立起局部合理的归纳逻辑和归纳方法论。并且,归纳逻辑的这种可能性正在计算机科学和人工智能的研究推动下慢慢地演变成现实。恩格斯早就指出,“社会一旦有技术上的需要,则这种需要比十所大学更能把科学推向前进。”[④]有人通过指责现有的归纳逻辑不成熟,得出“归纳逻辑不可能”的结论,他们的推理本身与归纳推理一样,不具有演绎的必然性。(4)人类实践的成功在一定程度上证明了相应的经验知识的真理性,也就在一定程度上证明了归纳逻辑和归纳方法论的力量。毋庸否认,归纳逻辑目前还很不成熟。有的学者指出,为了在机器的智能模拟中克服对归纳模拟的困难而有所突破,应该将归纳逻辑等有关的基础理论研究与机器学习、不确定推理和神经网络学习模型与归纳学习中已有的成果结合起来。只有这样,才能在已有的归纳学习成果上,在机器归纳和机器发现上取得新的突破和进展。[⑤]这是一个极有价值且极富挑战性的课题,无疑在21世纪将得到重视并取得进展。

再谈模糊逻辑。现实世界中充满了模糊现象,这些现象反映到人的思维中形成了模糊概念和模糊命题,如“矮个子”、“美人”、“甲地在乙地附近”、“他很年轻”等。研究模糊概念、模糊命题和模糊推理的逻辑理论叫做“模糊逻辑”。对它的研究始于20世纪20年代,其代表性人物是L·A·查德和P·N·马林诺斯。模糊逻辑为精确逻辑(二值逻辑)解决不了的问题提供了解决的可能,它目前在医疗诊断、故障检测、气象预报、自动控制以及人工智能研究中获得重要应用。显然,它在21世纪将继续得到更大的发展。

3.广义内涵逻辑

经典逻辑只是对命题联结词、个体词、谓词、量词和等词进行了研究,但在自然语言中,除了这些语言成分之外,显然还存在许多其他的语言成分,如各种各样的副词,包括模态词“必然”、“可能”和“不可能”、时态词“过去”、“现在”和“未来”、道义词“应该”、“允许”、“禁止”等等,以及各种认知动词,如“思考”、“希望”、“相信”、“判断”、“猜测”、“考虑”、“怀疑”,这些认知动词在逻辑和哲学文献中被叫做“命题态度词”。对这些副词以及命题态度词的逻辑研究可以归类为“广义内涵逻辑”。

大多数副词以及几乎所有命题态度词都是内涵性的,造成内涵语境,后者与外延语境构成对照。外延语境又叫透明语境,是经典逻辑的组合性原则、等值置换规则、同一性替换规则在其中适用的语境;内涵语境又称晦暗语境,是上述规则在其中不适用的语境。相应于外延语境和内涵语境的区别,一切语言表达式(包括自然语言的名词、动词、形容词直至语句)都可以区分为外延性的和内涵性的,前者是提供外延语境的表达式,后者是提供内涵性语境的表达式。例如,杀死、见到、拥抱、吻、砍、踢、打、与…下棋等都是外延性表达式,而知道、相信、认识、必然、可能、允许、禁止、过去、现在、未来等都是内涵性表达式。

在内涵语境中会出现一些复杂的情况。首先,对于个体词项来说,关键性的东西是我们不仅必须考虑它们在现实世界中的外延,而且要考虑它们在其他可能世界中的外延。例如,由于“必然”是内涵性表达式,它提供内涵语境,因而下述推理是非有效的:

晨星必然是晨星,

晨星就是暮星,

所以,晨星必然是暮星。

这是因为:这个推理只考虑到“晨星”和“暮星”在现实世界中的外延,并没有考虑到它们在每一个可能世界中的外延,我们完全可以设想一个可能世界,在其中“晨星”的外延不同于“暮星”的外延。因此,我们就不能利用同一性替换规则,由该推理的前提得出它的结论:“晨星必然是暮星”。其次,在内涵语境中,语言表达式不再以通常是它们的外延的东西作为外延,而以通常是它们的内涵的东西作为外延。以“达尔文相信人是从猿猴进化而来的”这个语句为例。这里,达尔文所相信的是“人是从猿猴进化而来的”所表达的思想,而不是它所指称的真值,于是在这种情况下,“人是从猿猴进化而来的”所表达的思想(命题)就构成它的外延。再次,在内涵语境中,虽然适用于外延的函项性原则不再成立,但并不是非要抛弃不可,可以把它改述为新的形式:一复合表达式的外延是它出现于外延语境中的部分表达式的外延加上出现于内涵语境中的部分表达式的内涵的函项。这个新的组合性或函项性原则在内涵逻辑中成立。

一般而言,一个好的内涵逻辑至少应满足两个条件:(i)它必须能够处理外延逻辑所能处理的问题;(ii)它还必须能够处理外延逻辑所不能处理的难题。这就是说,它既不能与外延逻辑相矛盾,又要克服外延逻辑的局限。这样的内涵逻辑目前正在发展中,并且已有初步轮廓。从术语上说,内涵逻辑除需要真、假、语句真值的同一和不同、集合或类、谓词的同范围或不同范围等外延逻辑的术语之外,还需要同义、内涵的同一和差异、命题、属性或概念这样一些术语。广而言之,可以把内涵逻辑看作是关于象“必然”、“可能”、“知道”、“相信”,“允许”、“禁止”等提供内涵语境的语句算子的一般逻辑。在这种广义之下,模态逻辑、时态逻辑、道义逻辑、认知逻辑、问题逻辑等都是内涵逻辑。不过,还有一种狭义的内涵逻辑,它可以粗略定义如下:一个内涵逻辑是一个形式语言,其中包括(1)谓词逻辑的算子、量词和变元,这里的谓词逻辑不必局限于一阶谓词逻辑,也可以是高阶谓词逻辑;(2)合式的λ—表达式,例如(λx)A,这里A是任一类型的表达式,x是任一类型的变元,(λx)A本身是一函项,它把变元x在其中取值的那种类型的对象映射到A所属的那种类型上;(3)其他需要的模态的或内涵的算子,例如€,ù、ú。而一个内涵逻辑的解释,则由下列要素组成:(1)一个可能世界的非空集W;(2)一个可能个体的非空集D;(3)一个赋值,它给系统内的表达式指派它们在每w∈W中的外延。对于任一的解释Q和任一的世界w∈W,判定内涵逻辑系统中的任一表达式X相对于解释Q在w∈W中的外延总是可能的。这样的内涵逻辑系统有丘奇的LSD系统,R·蒙塔古的IL系统,以及E·N·扎尔塔的FIL系统等。[⑥]

在各种内涵逻辑中,认识论逻辑(epistemiclogic)具有重要意义。它有广义和狭义之分。广义的认识论逻辑研究与感知(perception)、知道、相信、断定、理解、怀疑、问题和回答等相关的逻辑问题,包括问题逻辑、知道逻辑、相信逻辑、断定逻辑等;狭义的认识论逻辑仅指知道和相信的逻辑,简称“认知逻辑”。冯·赖特在1951年提出了对“认知模态”的逻辑分析,这对建立认知逻辑具有极大的启发作用。J·麦金西首先给出了一个关于“知道”的模态逻辑。A·帕普于1957年建立了一个基于6条规则的相信逻辑系统。J·亨迪卡于60年代出版的《知识和信念》一书是认知逻辑史上的重要著作,其中提出了一些认知逻辑的系统,并为其建立了基于“模型集”的语义学,后者是可能世界语义学的先导之一。当今的认知逻辑纷繁复杂,既不成熟也面临许多难题。由于认知逻辑涉及认识论、心理学、语言学、计算机科学和人工智能等诸多领域,并且认知逻辑的应用技术,又称关于知识的推理技术,正在成为计算机科学和人工智能的重要分支之一,因此认知逻辑在20世纪中后期成为国际逻辑学界的一个热门研究方向。这一状况在21世纪将得到继续并进一步强化,在这方面有可能出现突破性的重要结果。

4.对自然语言的逻辑研究

对自然语言的逻辑研究有来自几个不同领域的推动力。首先是计算机和人工智能的研究,人机对话和通讯、计算机的自然语言理解、知识表示和知识推理等课题,都需要对自然语言进行精细的逻辑分析,并且这种分析不能仅停留在句法层面,而且要深入到语义层面。其次是哲学特别是语言哲学,在20世纪哲学家们对语言表达式的意义问题倾注了异乎寻常的精力,发展了各种各样的意义理论,如观念论、指称论、使用论、言语行为理论、真值条件论等等,以致有人说,关注意义成了20世纪哲学家的职业病。再次是语言学自身发展的需要,例如在研究自然语言的意义问题时,不能仅仅停留在脱离语境的抽象研究上面,而要结合使用语言的特定环境去研究,这导致了语义学、语用学、新修辞学等等发展。各个方面发展的成果可以总称为“自然语言逻辑”,它力图综合后期维特根斯坦提倡的使用论,J·L·奥斯汀、J·L·塞尔等人发展的言语行为理论,以及P·格赖斯所创立的会话含义学说等成果,透过自然语言的指谓性和交际性去研究自然语言中的推理。

自然语言具有表达和交际两种职能,其中交际职能是自然语言最重要的职能,是它的生命力之所在。而言语交际总是在一定的语言环境(简称语境)中进行的,语境有广义和狭义之分。狭义的语境仅指一个语词、一个句子出现的上下文。广义的语境除了上下文之外,还包括该语词或语句出现的整个社会历史条件,如该语词或语句出现的时间、地点、条件、讲话的人(作者)、听话的人(读者)以及交际双方所共同具有的背景知识,这里的背景知识包括交际双方共同的信念和心理习惯,以及共同的知识和假定等等。这些语境因素对于自然语言的表达式(语词、语句)的意义有着极其重要的影响,这具体表现在:(i)语境具有消除自然语言语词的多义性、歧义性和模糊性的能力,具有严格规定语言表达式意义的能力。(ii)自然语言的句子常常包含指示代词、人称代词、时间副词等,要弄清楚这些句子的意义和内容,就要弄清楚这句话是谁说的、对谁说的、什么时候说的、什么地点说的、针对什么说的,等等,这只有在一定的语境中才能进行。依赖语境的其他类型的语句还有:包含着象“有些”和“每一个”这类量化表达式的句子的意义取决于依语境而定的论域,包含着象“大的”、“冷的”这类形容词的句子的意义取决于依语境而定的相比较的对象类;模态语句和条件语句的意义取决于因语境而变化的语义决定因素,如此等等。(iii)语言表达式的意义在语境中会出现一些重要的变化,以至偏离它通常所具有的意义(抽象意义),而产生一种新的意义即语用涵义。有人认为,一个语言表达式在它的具体语境中的意义,才是它的完全的真正的意义,一旦脱离开语境,它就只具有抽象的意义。语言的抽象意义和它的具体意义的关系,正象解剖了的死人肢体与活人肢体的关系一样。逻辑应该去研究、理解、把握自然语言的具体意义,当然不是去研究某一个(或一组)特定的语句在某个特定语境中唯一无二的意义,而是专门研究确定自然语言具体意义的普遍原则。[⑦]

美国语言学家保罗·格赖斯把语言表达式在一定的交际语境中产生的一种不同于字面意义的特殊涵义,叫做“语用涵义”、“会话涵义”或“隐涵”(implicature),并于1975年提出了一组“交际合作原则”,包括一个总则和四组准则。总则的内容是:在你参与会话时,你要依据你所参与的谈话交流的公认目的或方向,使你的会话贡献符合这种需要。仿照康德把范畴区分为量、质、关系和方式四类,格赖斯提出了如下四组准则:

(1)数量准则:在交际过程中给出的信息量要适中。

a.给出所要求的信息量;

b.给出的信息量不要多于所要求的信息量。

(2)质量准则:力求讲真话。

a.不说你认为假的东西,。

b.不说你缺少适当证据的东西。

(3)关联准则:说话要与已定的交际目的相关联。

(4)方式准则:说话要意思明确,表达清晰。

a.避免晦涩生僻的表达方式;

b.避免有歧义的表达方式;

c.说话要简洁;

d.说话要有顺序性。[⑧]

后来对这些原则提出了不和补充,例如有人还提出了交际过程中所要遵守的“礼貌原则”。只要把交际双方遵守交际合作原则之类的语用规则作为基本前提,这些原则就可以用来确定和把握自然语言的具体意义(语用涵义)。实际上,一个语句p的语用涵义,就是听话人在具体语境中根据语用规则由p得到的那个或那些语句。更具体地说,从说话人S说的话语p推出语用涵义q的一般过程是:

(i)S说了p;

(ii)没有理由认为S不遵守准则,或至少S会遵守总的合作原则;

(iii)S说了p而又要遵守准则或总的合作原则,S必定想表达q;

(iv)S必然知道,谈话双方都清楚:如果S是合作的,必须假设q;

(v)S无法阻止听话人H考虑q;

(vi)因此,S意图让H考虑q,并在说p时意味着q。

试举二例:

(1)a站在熄火的汽车旁,b向a走来。a说:“我没有汽油了。”b说:“前面拐角处有一个修车铺。”这里a与b谈话的目的是:a想得到汽油。根据关系准则,b说这句话是与a想得到汽油相关的,由此可知:b说这句话时隐涵着:“前面的修车铺还在营业并且卖汽油。”