纳米材料的制备方法范文

时间:2023-12-04 17:58:32

导语:如何才能写好一篇纳米材料的制备方法,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

纳米材料的制备方法

篇1

Abstract: With the characteristics of large surface area, low melting point, nanomaterials has far-reaching significance in materials science. This paper expounds preparation and characteristics of nanomaterials systematically, and makes the prospects for its future application.

关键词: 纳米粒子;纳米材料制备方法

Key words: nanoparticles;nanomaterials;preparation method

中图分类号:TB3 文献标识码:A 文章编号:1006-4311(2012)24-0021-02

0 引言

纳米技术作为一种最具有市场应用潜力的新兴科学技术,其在短短三十年发展迅猛,已引起一场技术革命。纳米技术包括纳米材料学,纳米工程学等,其中纳米材料学是关键。纳米材料是指结构单元尺寸介于1~100nm范围之间,其和普通材料相比,具有许多优良的特性。而纳米材料的制备是纳米材料学的核心,目前,制备纳米材料的方法众多,归纳起来,无外乎两种,即物理方法和化学方法。

1 纳米粒子的特性

纳米粒子是由数目较少的原子或分子形成,在热力学上是不稳定的,所以被视为一种新的物理状态,是介于宏观物质和微观原子、分子之间的一种状态,使其具有许多奇异的特性,除正在探索的性质以外,已经发现有:

1.1 比表面和表面张力较大

平均粒径为10-100nm的纳米粒子的比表面积可达10-70m2/g,纳米粒子内部会产生很高的压力,造成纳米粒子内部原子间距比块材小,所以表面张力较大。

1.2 纳米粒子的熔点降低

例如块状金的熔点为1063℃,但粒径为2nm的纳米时则金熔点降低到300℃左右,所以可在较低温度时发生烧结和熔融。

1.3 磁性的变化

晶粒的纳米化可使一些抗磁性物质变为顺磁性,如金属Sb通常为抗磁性,而纳米Sb则表现出顺磁性,此外,纳米化后还会出现各种显著的磁效应、巨磁阻效应等。

1.4 物理性质变化

金属纳米粉末一般呈黑色,而且粒径越小,颜色越深,即纳米粒子的吸收光能力越强;当其颗粒尺寸小于50nm时,位错源在通常应力下难以起作用,使得金属强度增大[1]。粒径约为5-7nm的纳米粒子制得的铜和钯纳米固体的硬度和弹性强度比常规金属样品高出5倍。

1.5 纳米离子的导电性增加

研究表明,纳米CaF2的离子电导率比多晶粉末CaF2高约一个数量级,比单晶CaF2高约两个数量级。

此外,纳米粒子还具有化学反应性能高、比热容大,在低温下有良好的热导性,作为催化剂效率高、随着粒度减小,超导临界温度逐渐提高等特点。

2 纳米粒子的制备方法

制备纳米粒子的方法归纳起来,无外乎两种方法,即物理制备方法和化学制备方法,两种方法的本质都是将块状的或者较大颗粒的物质变成颗粒更小的纳米级的粒子。

2.1 物理制备方法

根据物理化学原理,物质的分散度越高,即颗粒越小,其表面吉布斯自由能会越高,此时,形成的颗粒会自发聚集变大,也就是说粉碎到一定程度时就不能再被粉碎。我们可以通过一些物理方法,比如表面活性剂、改变温度压强等方法来制备纳米粒子。

2.1.1 低温低压制备方法 对于由固体物质来制备纳米粒子,可以在低温下进行粉碎,可采用液氮或者干冰来进行温度控制,这种方法缺点:在制备过程中容易引入杂质,并且粒子的颗粒大小难以控制,并且生成的粒子容易发生聚集。

对于由液体物质来制备纳米粒子,可以在低温低压下进行,先将溶液雾化冷冻,再在低温低压下干燥,然后将溶剂生化后得到纳米级尺度粒子。这种方法优点是操作简单,可制的10-50nm的微粒;缺点是一旦形成玻璃态,就无法生华溶剂。

2.1.2 表面活性剂作用下制备 由固体物质来制备 用纯度优于99%的粉状石墨和粉状金属按原子比为1:1的混合粉末,在氩气保护下置于容积为120mL的钢罐中,选用WC球(ф12mm),球与粉的质量比为18:1,然后在行星或球磨机上高能球磨,经过110h后得到粒径约为10nm的纳米粒子。加入表面活性剂作为助磨剂,可以获得力度更小的纳米粒子。该法可以制备高熔点金属碳化物TaC,NbC等。再如,可将颗粒较小的粉末状物质装入不锈钢容器内,再加入乙醇作为表面活性剂,用氮气作为保护气体,在45atm下进行超声波进行粉碎,亦可以得到纳米粒子(0.5μm)。这种方法已制备出SiC等超微粉末,操作简单可靠。

由液体物质来制备其操作步骤主要有:将所要制备物质原料和煤油按照1:1体积比混合,然后在高温条件下(不低于170℃)缓缓加入乳化剂,并在搅拌过程中将溶剂蒸发掉,并且进行干燥,最后经分离,对无水盐类物质进行加热分解即得到纳米级粉末。这种方法,目前已制备出橄榄石型超微纳米粉末。

2.2 化学制备方法

篇2

2纳米材料的合成与制备方法

2.1物理制备方法

2.1.1机械法

机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部供给热能,通过球磨让物质使材料之间发生界面反应,使大晶粒变为小晶粒,得到纳米材料。范景莲等采用球磨法制备了钨基合金的纳米粉末。xiao等利用金属羰基粉高能球磨法获得纳米级的Fe-18Cr-9W合金粉末。机械粉碎法是利用各种超微粉机械粉碎和电火花爆炸等方法将原料直接粉碎成超微粉,尤其适用于制备脆性材料的超微粉。超重力技术利用超重力旋转床高速旋转产生的相当于重力加速度上百倍的离心加速度,使相间传质和微观混合得到极大的加强,从而制备纳米材料。刘建伟等以氨气和硝酸锌为原料,应用超重力技术制备粒径20nm—80nm、粒度分布均匀的ZnO纳米颗粒。

2.1.2气相法

气相法包括蒸发冷凝法、溶液蒸发法、深度塑性变形法等。蒸发冷凝法是在真空或惰性气体中通过电阻加热、高频感应、等离子体、激光、电子束、电弧感应等方法使原料气化或形成等离子体并使其达到过饱和状态,然后在气体介质中冷凝形成高纯度的纳米材料。Takaki等在惰性气体保护下,利用气相冷凝法制备了悬浮的纳米银粉。杜芳林等制备出了铜、铬、锰、铁、镍等纳米粉体,粒径在30nm—50nm范围内可控。魏胜用蒸发冷凝法制备了纳米铝粉。溶液蒸发法是将溶剂制成小滴后进行快速蒸发,使组分偏析最小,一般可通过喷雾干燥法、喷雾热分解法或冷冻干燥法加以处理。深度塑性变形法是在准静态压力的作用下,材料极大程度地发生塑性变形,而使尺寸细化到纳米量级。有文献报道,Φ82mm的Ge在6GPa准静压力作用后,再经850℃热处理,纳米结构开始形成,材料由粒径100nm的等轴晶组成,而温度升至900℃时,晶粒尺寸迅速增大至400nm。

2.1.3磁控溅射法与等离子体法

溅射技术是采用高能粒子撞击靶材料表面的原子或分子,交换能量或动量,使得靶材料表面的原子或分子从靶材料表面飞出后沉积到基片上形成纳米材料。在该法中靶材料无相变,化合物的成分不易发生变化。目前,溅射技术已经得到了较大的发展,常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。等离子体法是利用在惰性气氛或反应性气氛中通过直流放电使气体电离产生高温等离子体,从而使原料溶液化合蒸发,蒸汽达到周围冷却形成超微粒。等离子体温度高,能制备难熔的金属或化合物,产物纯度高,在惰性气氛中,等离子法几乎可制备所有的金属纳米材料。

以上介绍了几种常用的纳米材料物理制备方法,这些制备方法基本不涉及复杂的化学反应,因此,在控制合成不同形貌结构的纳米材料时具有一定的局限性。

2.2化学制备方法

2.2.1溶胶—凝胶法

溶胶—凝胶法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶。Stephen等利用高分子加成物(由烷基金属和含N聚合物组成)在溶液中与H2S反应,生成的ZnS颗粒粒度分布窄,且被均匀包覆于聚合物基体中,粒径范围可控制在2nm-5nm之间。MarcusJones等以CdO为原料,通过加入Zn(CH3)2和S[Si(CH3)3]2制得了ZnS包裹的CdSe量子点,颗粒平均粒径为3.3nm,量子产率(quantumyield,QY)为13.8%。

2.2.2离子液法

离子液作为一种特殊的有机溶剂,具有独特的物理化学性质,如粘度较大、离子传导性较高、热稳定性高、低毒、流动性好以及具有较宽的液态温度范围等。即使在较高的温度下,离子液仍具有低挥发性,不易造成环境污染,是一类绿色溶剂。因此,离子液是合成不同形貌纳米结构的一种良好介质。Jiang等以BiCl3和硫代乙酰胺为原料,在室温下于离子液介质中合成出了大小均匀的、尺寸为3μm—5μm的Bi2S3纳米花。他们认为溶液的pH值、反应温度、反应时间等条件对纳米花的形貌和晶相结构有很重要的影响。他们证实,这些纳米花由直径60nm—80nm的纳米线构成,随老化时间的增加,这些纳米线会从母花上坍塌,最终形成单根的纳米线。赵荣祥等采用硝酸铋和硫脲为先驱原料,以离子液为反应介质,合成了单晶Bi2S3纳米棒。

2.2.3溶剂热法

溶剂热法是指在密闭反应器(如高压釜)中,通过对各种溶剂组成相应的反应体系加热,使反应体系形成一个高温高压的环境,从而进行实现纳米材料的可控合成与制备的一种有效方法。Lou等采用单源前驱体Bi[S2P(OC8H17)2]3作反应物,用溶剂热法制得了高度均匀的正交晶系Bi2S3纳米棒,且该方法适于大规模生产。Liu等用Bi(NO3)3•5H2O、NaOH及硫的化合物为原料,甘油和水为溶剂,采用溶剂热法在高压釜中160℃反应24-72h制得了长达数毫米的Bi2S3纳米带。

2.2.4微乳法

微乳液制备纳米粒子是近年发展起来的新兴的研究领域,具有制得的粒子粒径小、粒径接近于单分散体系等优点。1943年Hoar等人首次报道了将水、油、表面活性剂、助表面活性剂混合,可自发地形成一种热力学稳定体系,体系中的分散相由80nm-800nm的球形或圆柱形颗粒组成,并将这种体系定名微乳液。自那以后,微乳理论的应用研究得到了迅速发展。1982年,Boutonnet等人应用微乳法,制备出Pt、Pd等金属纳米粒子。微乳法制备纳米材料,由于它独特的工艺性能和较为简单的实验装置,在实际应用中受到了国内外研究者的广泛关注。

篇3

关键词:纳米材料;奇异物性;纳米颗粒

中图分类号:O59 文献标识码:A

纳米材料是指在纳米量级(1~100nm)内调控物质结构制成的具有特异性能的新材料。纳米材料具有尺寸小、表面积大、表面能高、表面原子比例大的四大特点,并且,具有小尺寸效应、量子尺寸效应、宏观量子隧道效应、表面效应的四大效应。纳米材料特性主要取决于制备方法,当材料颗粒的尺寸进入微米量级(1~100nm)时,由于其尺寸小而表现出一些奇特效应和奇特的物理特性。

一、纳米颗粒基本效应

1.表面与界面效应

纳米微粒尺寸小,表面大,位于表面的原子占相当大的比例。随着粒径减小,表面急剧变大,引起表面原子数迅速增加,缺少近邻配位的表面原子,极不稳定,很容易与其他原子结合,表现出很高的活性。

2.小尺寸效应

随着颗粒尺寸变小,周期性的边界条件将被破坏,在一定条件下会引起颗粒性质的质变,声、光、电磁、热力学等特性均会出现新的尺寸效应。由于颗粒尺寸所引起的宏观物理性质的变化称为小尺寸效应。例如:光吸收显著增加,所有金属失去光泽,变为黑色。

3.量子尺寸效应和宏观量子隧道效应

对介于原子、分子与大块固体之间的超微颗粒而言,大块材料中连续的能带将分裂为分立的能级;能级间的间距随颗粒尺寸减小而增大。当热能、电场能或者磁场能比平均的能级间距还小时,就会呈现一系列与宏观物体截然不同的反常特性,称之为量子尺寸效应。例如,导电的金属在超微颗粒时可以变成绝缘体,光谱线会产生向短波长方向的移动。电子具有粒子性又具有波动性,因此存在隧道效应。量子尺寸效应、宏观量子隧道效应将会是未来微电子、光电子器件的基础。

二、奇异物性

上述四个效应是纳米微粒与纳米团体的基本特性,从而导致纳米微粒的热、磁、光、敏感特性和表面稳定性等不同于正常粒子,出现一些“反常现象”。这就使得它具有许多奇异物性。因而具有广阔的应用前景。

1.奇异的热学性质

(1)熔点降低

由于颗粒小,纳米微粒表面能高、比表面原子数多,这些表面原子近邻配位不全,活性大以及纳米微粒体积远小于大块材料,因此纳米粒子熔化时所增加的内能小得多。这就使得纳米微粒熔点急剧下降。

(2)烧结温度降低(陶瓷材料或难熔金属)

在低于熔点下进行加热烧结,使粉末互相结合成块,使密度接近材料的理论密度的最低加热温度称为烧结温度。

纳米微粒尺寸小,表面能高,在烧结中高的界面能成为原子运动的驱动力,有利于界面中的孔洞收缩,因此,在较低的温度下烧结就能达到致密化的目的,即烧结温度降低,烧结速度加快。

2.特殊的光学性能

光的发射与吸收与原子的状态有关,纳米颗粒大的比表面使处于表面态的原子、电子与处于颗粒内部的原子、电子的行为有很大的差别,甚至使纳米微粒具有同样材质的宏观大块物体不具备的新的光学特性。

(1)宽频带强吸收

大块金属具有不同颜色的光泽,这表明它们对可见光范围.各种颜色(波长)的反射和吸收能力不同。当尺寸减小到纳米级时各种金属纳米微粒几乎都呈黑色,它们对可见光的反射率极低,例如铂金纳米粒子的反射率为1%,金纳米粒子的反射率小于10%。这种对可见光低反射率,强吸收率导致粒子变黑。

(2)蓝移现象

与大块材料相比,纳米微粒的吸收带普遍存在“蓝移”现象,即吸收带移向短波方向。例如,纳米SiC颗粒和大块SiC固体的峰值红外吸收频率分且是814cm-1和794cm-1。由不同粒径的Si纳米微粒吸收光谱看出,随着微粒尺寸的变小而有明显的蓝移。

(3)新的发光光谱

硅是具有良好半导体持性的材料.是微电子的核心材料之一,可美中不足的是硅材料不是好的发光材料.将稀土发光材料加入到纳米氧化物当中,可提高其的发光效率,制得新型的荧光材料。

3.特殊的电学性能

传统的金属是良导体,但纳米金属颗粒却强烈地趋向电中性,如5~15nm纳米铜就不导电了,且电阻随着粒径减小而增大。而原本绝缘的SiO2在20nm时开始导电。

4.特殊的力学性质

(1)陶瓷材料的良好韧性

因为纳米材料具有大的界面,界面的原子排列是相当混乱的,原子在外力的作用下很容易迁移,因此表现出甚佳的韧性与一定的延展性,使陶瓷材料具有新奇的力学性质。

(2)纳米材料的强度、硬度和塑性

纳米晶粒的金属要比传统的粗晶粒金属硬3~5倍。金属-陶瓷的复合纳米材料则可在更大的范围内改变材料的力学性质,其应用前景十分宽广。纳米材料的代表之一:碳纳米管,它的质量是相同体积钢的六分之一,强度却是钢的10倍,是纳米技术研究的热点,它将是未来制造业的首选材料。

5.特殊的磁学性质

(1)磁性材料

所谓磁性材料是指具有可利用的磁学性质的材料。

任何物质在磁场作用下都会处于磁化状态,但各物质的磁化强度却有很大的不同。

(2)纳米材料的特殊磁学性质

纳米微粒的小尺寸效应、量子尺寸效应、表面效应等使得它具有常规粗晶材料不具备的磁特性。纳米微粒的主要磁特性表现在它具有超顺磁性或高的矫顽力上。

A矫顽力提高

矫顽力的大小反映了铁磁物质保留剩磁的能力。

10~25nm的铁磁性金属颗粒的矫顽力比相同的常规材料大1000倍.。利用磁性超微颗粒具有高矫顽力的特性,已制成高贮存密度的磁记录磁粉,大量应用于磁带、磁盘、磁卡以及磁性钥匙等。

B.铁磁性到超顺磁性转变

纳米微粒尺寸小到一定临界值时进入超顺磁状态。

特点:在磁场中极易磁化,但当外加磁场消失时其磁性消失。

原因:由于磁性颗粒尺寸减小到一定值时,各向异性能与热运动能可相比拟.磁化颗粒就不再固定存一个易磁化方向,易磁化方问作无规则的变化。

三、纳米材料的制备技术

制备技术是纳米科技的关键。影响纳米材料的微观结构和宏观性能。通过不同的制备技术可以得到纳米颗粒材料、纳米膜材料、纳米固体材料等等。

很久以前,我国人们用石蜡做成蜡烛,用光滑的陶瓷在蜡烛火焰的上方收集烟雾,经冷凝后变成很细的碳粉,实际上就是纳米粉体。在科学技术高度发展的今天.人工制备纳米材料的方法得到了很大的发展。通常采用两个不同的途径得到纳米材料:

纳米材料需要制备成各种形式以满足各种应用的需要,纳米固体(块体、膜)是重要的形式。它的制备方法是近几年逐渐发展起来的。

由于纳米陶瓷呈现出许多优异的持性,因此引起人们的关注。目前,材料科学工作者正在摸索制备具有高致密度的纳米陶瓷的工艺。

参考文献

[1]钟宁.纳米材料的特性及制备方法[J].湖南有色金属,2000,16(2):28-30.

[2]Rosse tti R.E llison J.L G ibson J.M.et a.l .J.Chem.Phys.1984,80(9):4464.

[3]雷秀娟.纳米材料的力学性能[D].陕西:西北工业大学,2001.

篇4

关键词:LaF3;纳米材料;

中图分类号:TE624.82 文献标识码:A

Survey of Preparation and Lubrication of LaF3 Nanoparticles as Lubricating Oil Additive

YOU Jian-wei, LI Fen-fang, FAN Cheng-kai

(School of Chemistry and Chemical Engineering,Central South University,Changsha 410083,China)

Abstract:LaF3 nanomaterials have shown excellent tribological properties as a kind of new additive in lubricating oil and grease. The preparation method, surface-modification technology, lubricating mechanism and application development of LaF3 nanomaterials are summarized in this paper. It is pointed out that the key problems of LaF3 nanoparticles in lubricant are the dispersity and stability. The future development of LaF3 nanomaterials as lubricating oil additive is presented as well. With the accelerative development of modern industry nowadays, LaF3 nanomaterials will be a young conception in the field of tribology. And the tribological properties and lubricating mechanism will be gotten more and more attention. Key words:LaF3; nanomaterials; lubrication

0 前言

纳米微粒是指颗粒尺度为纳米量级(1~100 nm)的超细微粒。当材料的颗粒缩小到只有几纳米到几十纳米时,材料的性质发生了意想不到的变化。由于组成纳米材料的超微粒尺度,其界面原子数量比例极大,一般占总原子数的40%~50%,使材料本身具有宏观量子隧道、表面和界面等效应,从而具有许多与传统材料不同的物理、化学性质[1]。纳米材料是当前材料学科研究的热点之一。纳米材料的奇异特性和广阔的应用前景,使得材料、凝聚态物理、胶体化学、原子物理、配位化学、化学反应动力学和表面、界面科学等学科领域的科学家纷纷投身于纳米材料的研究工作中[2]。由于纳米材料具有比表面积大、高扩散性、易烧结性、熔点降低等特性,可以预见新型纳米材料应用于摩擦系统中,将以不同于传统添加剂的作用方式,起到减摩抗磨作用[3]。纳米粒子作为油添加剂在国外已研究多年,并有产品投放到中国市场如美国的JB、加拿大的倍力、美国的APOLLO等。这些产品具有降低摩擦、延长设备使用寿命、降低噪音、修补金属表面等优点,主要应用于转动、有摩擦、有燃烧的各种仪器、设备等。而我国的纳米油添加剂还处在研制及如何添加到油的阶段[4]。

镧元素位于元素周期表中第六周期第ⅢB族,原子序数为57。研究发现:LaF3纳米材料作为油添加剂具有优良的抗磨减摩性能,同时,与常用油添加剂的活性元素具有协同效应。由于镧元素是镧系的第一个元素,镧化合物与其他镧系化合物的化学性质相似,因此研究LaF3纳米材料对于研究其他镧系纳米材料具有一定的指导意义。本文综述近年来LaF3纳米材料的制备、相关的摩擦学性能及在油中的作用机制和应用进展,并指出了LaF3作为油添加剂在摩擦学中的研究现状和发展趋势,以及需要解决的技术难题。

1 LaF3纳米材料的制备和稳定分散技术

1.1 LaF3纳米材料的制备方法

纳米微粒制备方法按有无化学反应发生,可分为物理方法和化学方法两大类[5-6]。物理方法是利用低温、超声波、水锤、高能球和冲击波粉碎等方法对较粗物质的颗粒进行粉碎,制成纳米颗粒。化学方法是通过适当的化学反应,从分子、原子出发制备纳米材料的方法,化学方法按分散介质种类可分为液相、固相和气相三种反应方法。LaF3纳米材料通常采用化学方法制备。

1.1.1 液相反应法

液相反应法是目前实验室和工业制备纳米粒子的主要方法,其原理是在溶液中对不同的分子或离子进行反应,控制反应物浓度、温度和搅拌速度,可得到纳米级固体产物。液相法一般分为水热法、微乳液聚合法、沉淀法、溶胶―凝胶法、聚合物基模板法等。而LaF3纳米粒子的制备主要有以下几种方法。

(1)溶剂热法

溶剂热法是制备一维纳米材料的简单方法。张茂峰[7]等通过利用溶剂热法制备的LaF3纳米线,结晶性好,为六方晶系,P3cl空间群。LaF3纳米线直径约80 nm,长度约4~8 μm。并且研究了它的形成机理:刚加入的F-与溶液中的自由La3+以一定的反应速率结合成LaF3晶粒;溶液中离子的扩散运动使晶粒成核长大,当周围离子的扩散速率小于成核速率时,在边缘处开始出现明显的断面从而形成一系列颗粒带;晶体将沿生长速度快的晶面方向生长。并促使周围晶粒发生团聚和定向排列;定向排列的晶粒通过自组装作用粘结在一起并重结晶成棒状颗粒,这些棒状颗粒可能提供生长纳米线的初始模板。使颗粒带中微粒扩散到棒的两端并发生晶体的成核和外延生长,从而形成细纳米线。

(2)醇水法

陈爽等[8]在醇和水(V醇∶V米=1∶1)混合溶剂中合成了表面为油酸修饰的LaF3纳米粒子,所制备的LaF3纳米粒子大小均匀,粒径约为8 nm,其纳米核为六方结构的LaF3。易书理[9]通过相转移将醇水法制备的表面修饰过的纳米LaF3,从水相转移到油相(500SN基础油),得到纳米LaF3含量为10.2%的液体添加剂。

(3)微乳液聚合法

1982年,Boutnone等[10]在微乳液的水核中制备出Pt、Pd、Rh、Ir 等金属团簇微粒,从而开拓了一种新的纳米微粒的制备方法。微乳液是指2种互不相溶液体在表面活性剂作用下形成的热力学稳定的、各向同性、外观透明或半透明、粒径1~100 nm的分散体系;它有水包油型(O/W)、油包水型(W/O)和油水双连续型3种结构[11]。微乳液法制备纳米粒子的特点在于:粒子表面包裹一层表面活性剂分子,使粒子间不易聚结;通过选择不同的表面活性剂分子可对粒子表面进行修饰,并控制微粒的大小[12]。刘翠红等[13]通过考察表面活性剂、助表面活性剂和水相等因素变化对基础油/(Span80+十六烷基三甲基溴化铵)/异丁醇/水体系的影响,确定了该体系形成微乳液的最佳工艺条件。利用该微乳液体系,在一定的反应物浓度下制备了LaF3纳米粒子。

1.1.2 固相反应法

固相反应法的应用较少,但近几年倍受重视,是一种利用金属盐的热分解制备纳米颗粒,或者利用金属有机化合物的热分解制备纳米金属颗粒的方法。韩元山等[14]以La2O3、HCl为原料制备了LaCl3,并直接用双柱法,以LaCl3溶液与NH4HCO3溶液作用合成了粒度较小的La2(CO3)3粉体;以粉体La2(CO3)3为镧源与NH4F混合,在微波作用下经过固相化学反应,合成了LaF3超细粉。

1.1.3 气相反应法

气相反应法是在高能状态(高温或等离子体)下,无规则排列的原子或分子与气体作用,形成并长大成均匀纳米微粒材料的制备方法[15]。

1.2 LaF3纳米材料的稳定分散技术

LaF3纳米粒子同其他纳米粒子一样在油中分散稳定性不够理想,因此必须借助分散技术来改善它与油的相溶性。纳米材料在体系的分散技术主要包括物理分散和化学分散[16]。

1.2.1 物理分散

物理分散又分为机械搅拌分散和超声波分散。机械搅拌分散具体形式有研磨分散、球磨分散、胶体磨分散、砂磨分散、高速搅拌等。超声波分散是降低纳米微粒团聚的有效方法,利用超声空化时产生的局部高温、高压或强冲击波和微射流等,可较大幅度地弱化纳米微粒间的纳米作用能,有效地防止纳米微粒团聚而使之充分分散。同时通过声波的吸收、介质和容器的共振性质引起的二级效应如乳化作用、加热效应等来促进块状材料分散[17-18]。

1.2.2 化学分散

化学分散实质上是利用表面化学方法来实现的一种分散方法,包括表面化学修饰和分散剂分散[19]。分散剂分散主要是通过分散剂吸附改变粒子的表面电荷分布,产生静电稳定和空间位阻稳定作用来达到分散效果,分散剂分散法可用于各种基体纳米复合材料制备过程中的分散。

表面化学修饰是增加LaF3纳米粒子在基础油中的油溶性较为常用的一种方法。通过利用具有两性结构的偶联剂,或采取金属氧化物与醇进行酯化反应,或者利用纳米微粒的表面基团,与有机化合物反应产生化学键进行表面接枝改性,形成纳米有机接枝化合物,通过有机支链化合物在有机介质中的可溶性,增强纳米粒子在介质中的分散。目前文献报道的有采用烷氧基二硫代磷酸盐、磷酸烷基酯、烷基酸二乙醇胺、油酸、聚异丁烯丁二酰亚胺等亲油性基团对LaF3纳米粒子进行表面改性。如余国贤等[20]以不同极性基团为表面修饰剂,在醇-水体系中制备了3种氟化镧纳米粒子,采用离心沉降法考察了纳米粒子在基础油中的分散稳定性,实验表明:表面修饰剂的极性基团具有较长侧链以及与无机纳米核之间强的化学作用更有利于纳米粒子在基础油中分散稳定。陶小军等[21]采用阳离子共沉淀表面修饰法在水醇混合介质中成功地制备了有机化合物表面修饰的LaF3纳米微粒。周晓龙等[22]采用聚异丁烯丁二酰亚胺T152/S280复合表面活性剂(w(Span80)∶w(Tween20)=2∶3(质量比))/异丁醇/500SN基础油/氟化铵水溶液W/O微乳液体系构建微反应器,通过原位表面修饰制备了含纳米LaF3粒子的液体油添加剂,同时,采用洗涤法制备了干粉纳米LaF3。分别将液体和干粉添加剂加入基础油中,采用离心沉降法考察了不同后续分离方法得到的纳米粒子在基础油中的分散稳定性。其结果见表1。

从表1的数据表明:采用超声波分散在基础油的干粉LaF3的分散稳定性远不如表面修饰的液体添加剂LaF3的分散稳定性。原因是液体添加剂中的纳米氟化镧粒子没有经过溶剂洗涤,粒子表面包覆有大量表面活性剂,加上T152的聚异丁烯链的空间稳定作用,使得纳米氟化镧在基础油中分散稳定性大大增。

2 LaF3纳米材料摩擦学性能及与其他添加剂复配

1969年美国宇航局(NASA)刘易斯中心的Harold•E•S报道了稀土氟化物和氧化物作为油添加剂的研究结果,此后将稀土元素应用于摩擦学工程的报道和专利便陆续出现。中国科学院兰州化学物理研究所从上世纪90年代初开始研究LaF3纳米材料用作油添加剂的摩擦学性能。报道表明经过表面修饰的LaF3纳米粒子在基础油中均具有良好的稳定分散性[23-24],其极压(以最大无卡咬负荷PB表征)、抗磨(以磨斑直径D表征)性能的四球摩擦磨损试验机测定结果见表2。

表2的实验数据显示出了LaF3-DDP、纳米LaF3、ZDDP和石蜡油的承载能力和抗磨性能。长时磨损试验条件为:载荷300 N,试验时间30 min,转速1450 r/min。结果表明未修饰的LaF3纳米微粒有一定的抗磨性,对基础油的承载能力无明显影响;ZDDP添加剂有良好的抗磨性,显著地改善了基础油的极压性能。LaF3-DDP磨斑直径有一定程度降低。LaF3-DDP添加剂与商品添加剂ZDDP相比,具有更优越的抗磨和抗极压性能。笔者认为并非是LaF3纳米粒子本身的抗磨性能差,而是纳米粒子不能够有效地分散在基础油中或是分散后在基础油中的稳定性差,容易沉淀从而导致发挥抗磨极压作用的有效成分相对减少,因此样品的磨斑直径和PB值较液体石蜡没有发生明显的改变。

周静芳等[25]进一步说明了经表面修饰过的LaF3纳米粒子的抗磨性能,随着添加剂含量的增加,钢球的磨斑直径下降,与其他文献报道的结果相吻合。当LaF3-DDP纳米粒子的含量1.0%时,其抗磨性能显著优于ZDDP。同样考察了含纳米LaF3和ZDDP液体石蜡摩擦系数随时间的变化关系:随着载荷的逐渐增加,含两种不同添加剂的液体石蜡的磨斑直径也分别在增加,但含LaF3-DDP添加剂的液体石蜡的磨斑直径增加的幅度远小于含ZDDP的磨斑直径,并且在相同的载荷下,前者的磨斑直径同样远小于后者的。在低负荷下,LaF3-DDP具有优异的抗磨性能。张择抚等[26-27]利用微乳液法制备了含氮有机化合物修饰过的纳米LaF3,并研究了其在液体石蜡(LP)中的摩擦学性能。指出含氮有机物修饰的纳米LaF3在液体石蜡中具有良好的减摩、抗磨性能及较高的承载能力,在相同试验条件下,其在液体石蜡中的减摩、抗磨性能优于ZDDP,承载能力略低于ZDDP。

以上文献中,经表面修饰的LaF3纳米材料具有显著优于ZDDP的抗磨减摩能力,这就意味着,以LaF3纳米材料代替目前应用最广泛的抗磨剂ZDDP作为油极压添加剂将可达到有效降低磷危害的效果。

华东理工大学对LaF3纳米材料在中的应用同样进行了大量的研究。如余国贤等[28]利用四球机研究了亲油链长度对纳米氟化镧粒子的摩擦学性能及对基础油感受性的影响。结果表明:随着表面修饰剂烷基链长度的增长,纳米LaF3粒子在500SN基础油中摩擦学性能呈现出逐渐增强的趋势;亲油链越长,纳米粒子在液体石蜡中的摩擦学感受性比500SN基础油中更好。认为亲油基链的长度影响了纳米粒子的界面活性,而且同系有机酸皂类物质,亲油基碳链越长,其减摩作用也越好;基础油的性质影响了纳米粒子的界面活性。纳米粒子在液体石蜡中的摩擦学感受性比基础油中更好。周晓龙等[18]以不同极性基团的十八酸二乙醇胺、双β羟乙基十八胺及二辛基二硫代磷酸二乙醇胺为表面修饰剂,在醇-水体系中制备了3种氟化镧纳米粒子,用四球机考察了它们的摩擦学性能。结果表明:二烷基二硫代磷酸胺盐修饰的纳米粒子粒径更小,更均匀。含牺牲性元素硫和磷的表面修饰剂纳米粒子因极压膜的生成而有更好的极压抗磨性能。表面修饰剂的亲油链越长越有利于发挥纳米粒子的减摩作用。

河南省纳米材料工程技术研究中心研制的DNLa-1型纳米粉体作为抗磨添加剂已经应用于工业。DNLa-1型纳米粉体是采用共沉淀方法制备的表面被饱和烷基所包覆的LaF3纳米微粒集合体,具有良好的物理、化学稳定性,在基础油等多种有机介质中有良好的分散性,作为油脂的极压抗磨添加剂,有良好的减摩抗磨性能。其质量指标如表3。

在实际的应用中,油并不是由某种单一的添加剂和基础油组成,而是由基础油和各种添加剂复配而成。不同的配方,油的效果不同,因此添加剂相互间的协同效应就显得至关重要。包括LaF3纳米粒子在内的稀土氟化物在酯中却得到了广泛的应用,US4507214、US4946607、US4946608公开了氟化稀土在酯中具有良好的性。在CN1032549A,CN1032550A中,稀土氟化物已被成功的应用于铁路成膜膏中,并取得了非常好的效果。专利CN1218104A[29]公开了一种纳米氟化稀土油添加剂及其制备方法,该发明的纳米氟化稀土颗粒的尺寸在10~50 nm,成功地解决了纳米粒子在油中的分散问题,是性能优良的极压、抗磨添加剂。该添加剂配方及摩擦学性能见表4、表5。

从表5中可以看出:含有专利报道的抗磨剂的油极压性能与含有ZDDP的基本一致,但其抗磨性能却优于ZDDP,尤其是当该添加剂质量分数在1%时,PB值较未加任何添加剂的液体石蜡提高了约105%,磨斑直径降低了约42%,明显改善了液体石蜡的性能。

3 LaF3纳米材料的作用机理

镧元素是15种镧系元素的其中一种,镧系元素最外层(6S)的电子数不变,都是2,而镧原子核有57个电荷,从镧到镥,核电荷增至71个,使原子半径和离子半径逐渐收缩,由于镧系收缩,这15种元素的化合物的化学性质有诸多相似之处。研究LaF3纳米粒子油抗磨剂的作用机理,有助于开发性能更加优异的其他镧系元素的纳米材料油添加剂产品,并对深入研究纳米摩擦学理论起到促进和推动作用。目前,对LaF3纳米材料的作用机理研究主要集中在以下几个方面。

(1)形成吸附膜及沉积膜

在摩擦过程中压应力和切应力作用下,经表面修饰的纳米LaF3微粒的表面活性很高,可通过油溶性基团与金属摩擦表面发生强烈的吸附。在摩擦初期,基础油膜和添加剂的吸附膜使摩擦系数保持稳定,随着摩擦过程的继续,摩擦表面温度不断升高,表面修饰LaF3纳米微粒在热的摩擦表面分解,并与摩擦表面反应形成氧化膜,提高了摩擦表面的粘着力,阻止金属对摩擦副之间的接触,从而降低摩擦系数,提高抗磨性能[30];另外,中国科学院兰州化学物理研究所张明等[31]根据接触电阻随时间变化的情况,监测到摩擦副表面的成膜状况,进一步证实LaF3纳米颗粒在摩擦过程中形成了一层较稳定的沉积膜。

(2)复合作用机制

表面修饰的纳米微粒在摩擦过程中,表面修饰剂首先在摩擦表面发生反应,达到改善摩擦学性能的作用,当摩擦反应膜不足以承载时,也即修饰剂与纳米微粒之间的修饰作用遭到破环,此时的纳米微粒与金属发生作用,通过物理或化学作用与摩擦表面形成保护膜[32]。

(3)摩擦表面的自修复机制

修复是指在摩擦条件下由于介质及环境的摩擦物理化学作用,对磨损表面具有一定补偿的现象,修复型添加剂是实现这种补偿作用的关键。其作用机理与传统的活性添加剂不同,不是以牺牲表面物质为条件,而是在摩擦条件下通过在作用表面上沉积、结晶、铺展成膜,使磨损得到一定补偿并有一定抗磨减摩作用[33]。后勤工程学院的孙玉秋等[34]通过每次试验后对钢球进行称重,来计算磨损量,评价了LaF3在脂中的自修复性能,在摩擦开始时,磨损量增大,接着逐渐降低至负磨损,然后磨损量逐渐增加至正磨损。在40 min时出现零磨损,40~100 min内稳定在负磨损,60 min时负磨损量达到最大,而在110 min后,磨损量增加至正磨损。这一结果表明,LaF3微粒在脂中具有较好的自修复功能。

(4)原位摩擦化学原理

纳米微粒具有极高的扩散力和自扩散能力,容易在金属表面形成具有极佳抗磨性能的渗透层而表现出“原位摩擦化学原理”。这种机理认为:在高负荷条件下纳米添加剂的作用不再取决于添加剂中元素对基体是否是化学活性的,而是很大程度上取决于它们是否与基体组分形成扩散层或渗透层和固溶体。这与传统的含硫、磷、氯等活性元素油添加不同,不会对基体金属造成腐蚀和避免了由腐蚀而引发的环境问题,为解决油添加剂从设计上长期依赖硫、磷、氯等活性元素的状况展示了美好前景[35]。

4 展望

大量研究表明,LaF3纳米材料能够明显改善基础油的抗磨减摩性能。但目前来看,LaF3纳米材料在实际应用中面临着以下几个问题:

(1)由于LaF3纳米微粒极易聚集成大颗粒,在油介质中仍有沉淀现象产生;

(2)现有的制备方法只是在实验室中实现,只能制备少量的 LaF3纳米材料;

(3)经表面改性的LaF3纳米材料未实现低成本化。

针对以上问题,可以通过寻求性能更佳的表面修饰剂经表面化学修饰来增加LaF3纳米粒子在基础油中的油溶性;改进现有的制备方法和制备工艺,以提高其稳定分散性、高温性能和环境友好性;加强与工业领域的合作,实现经表面改性的LaF3纳米材料低成本化和规模化。

油是基础油和多种添加剂复配而成,不同添加剂,不同含量,所起到的效果明显不同。由于LaF3纳米材料能够与含硫、磷等活性元素,稀土添加剂复配并显示出良好的协同效应[36-37],因此,与更多添加剂之间的协同复合作用及其作为材料添加剂的用量问题,也将是未来LaF3纳米材料摩擦学研究的热点问题之一。

LaF3纳米材料作为抗磨剂的机理较为复杂,不同摩擦学工作者持有不同的观点,部分学者提出纳米粒子在摩擦表面存在类似于滚珠滚动的机理、超光滑表面作用机制等。因此,在研究LaF3纳米微粒机理的同时,必须注意纳米微粒对摩擦表面材料性质的影响与摩擦学性能的关系。LaF3纳米材料作为一种新型的添加剂在摩擦学领域中具有广阔的应用前景。

参考文献:

[1] 张丽. 纳米技术小尺寸大效应[J]. 高科技与产业化,2007(7):28-29.

[2] Liu Lin,Li Bing,Ding Xingzhao,et al. Preparing Over-High Melting Pointmetal Carbonization Nano Materials By Machine-Alloying[J]. Chinese Science Bulletin,1994(5):41-47.

[3] 温诗铸. 纳米摩擦学[M]. 北京:清华大学出版社,1998.

[4] 张世杰. 纳米抗磨添加剂在石化设备油中的应用[J]. 石油知识,2005(4):20.

[5] 夏延秋,乔玉林. 纳米粒子在摩擦学领域的应用发展现状[ J ]. 沈阳工业大学学报, 2002, 24 (4):279-282.

[6] 朱衍东,秦鹤年. 纳米材料应用与发展现状[J]. 设备管理与维修,2007(5):51-52.

[7] 张茂峰,孟建新,时朝璞,等. LaF3纳米线的低温溶剂热法制备及形成机理[J]. 无机化学学报,2006,22(10):1183-1186.

[8] 陈爽,刘维民.亲油性LaF3纳米粒子的制备及表征[J]. 功能材料,2006,37(3):437-439.

[9] 易书理,余国贤,周晓龙,等. 纳米LaF3在油中的分散稳定性对其摩擦学性能的影响[J]. 华东理工大学学报(自然科学版),2006,32(12):1392-1395.

[10]Boutonnet M,Kizling J,Stenius P,et al. The Preparation of Monodisperse Colloidal Metal Particles from Microemulsions [J]. Colloids and Surfaces,1982,5:209-225.

[11] 陈宗淇,郭荣. 微乳液的微观结构[J]. 化学通报,1994(2):22-25.

[12] 杨锦宗,兰云军. 微乳状液制备技术及其发展状况[J]. 精细化工,1995,12(4):7-10.

[13] 刘翠红,周晓龙. 微乳液法合成纳米氟化镧的研究[J]. 石油炼制与化工,2005,36(6):61-64.

[14] 韩元山,田彦文,王常珍,等. 微波法制备LaF3超细粉[J]. 金属学报,2008,14(8):1426-1430.

[15] 余华梁,黄世震,林伟,等.气相反应法制备纳米WO3气敏材料[J]. 郑州轻工业学院学报(自然科学版),2004,19(4):54.

[16] 董国军,罗云霞,曲建俊. 纳米金属粉在中的应用[J].与密封,2004(6):115-117.

[17] 于庆杰,王祥彬. 超声波在超细粉体分散中的应用[J]. 聚酯工业,2004,17 (3):32-33.

[18] 张喜梅,李琳. 用溶胶-凝胶法制备纳米粉体时聚集现象的探讨[J]. 化学工业与工程,2000,17(3):155-159.

[19] 王九,陈波水,黄维九. 纳米粒子添加剂在剂中的应用与开发[ J ]. 江苏化工,2001,29 (3) :13-17.

[20] 余国贤,周晓龙,李志良,等. 不同极性基团表面修饰剂对纳米氟化镧摩擦学性能的影响[J]. 与密封,2007,32(7):9-12.

[21] 陶小军,周静芳,张治军,等. 表面修饰LaF3纳米微粒的制备及表征[J]. 化学研究,2000,11(3):9-11.

[22] 周晓龙,张志刚,余国贤,等. W/O微乳液法制备表面修饰纳米氟化镧油添加剂[J]. 与密封,2006,31(12):37-40.

[23] 刘维民,薛群基,周静芳,等. 纳米颗粒的抗磨作用及作为磨损修复添加剂的应用研究[J]. 中国表面工程,2001(3):21-23.

[24] Lian Yafeng,Yu Laigui,XueQunji. The Correlation Among the Tribological Characteristic Parameters of Rare Earth Trifluorides and Their Electron Structures,Bond Parameters,and Thermodynamic Parameters[J]. Wear,1995,188:56-60.

[25] Zhou Jingfang,Wu Zhishen,Zhang Zhijun,et al. Study on an Antiwear and Extreme Pressure Additive of Surface CoatedLaF3 Nanoparticles in Liquid Paraffin[J]. Wear,2001,249:333-337.

[26] 张择抚,刘维民,薛群基.含氮有机物修饰的纳米三氟化镧的摩擦学性能研究[ J ]. 摩擦学学报,2000,20(3):217-219.

[27] Zhang Zefu,Liu Weimin,Xue Qunji. The Effect of LaF3 Nanoclustermodified with Succinimide on the Lubricating Performance of Liquid Paraffin for Steel-on-Steel System[ J ]. Tribology International,2001,34:83-88.

[28] 余国贤,周晓龙,李志良,等. 表面修饰剂的亲油链长度对纳米氟化镧摩擦学性能的影响[J]. 与密封,2007,32(6):50-53.

[29] 张择抚,刘维民,薛群基. 纳米氟化稀土油添加剂: 中国,CN1218104A[P].1999.

[30] 梁起,张治军,薛群基,等.LaF3纳米微粒的摩擦学行为研究[J]. 稀土,1999,20(2):33-35.

[31] 张明,王晓波,伏喜,等. 含纳米添加剂的体系在摩擦过程中的接触电阻研究[J]. 摩擦学学报,2007,27(6):504-508.

[32] 乔玉林,徐滨士. 纳米微粒的和自修复技术[M]. 北京:国防工业出版社,2005:309-310.

[33] 姜秉新,陈波水. 铜型添加剂摩擦修复作用的可行性研究[J ]. 与密封,1999(2):50-52.

[34] 孙玉秋,郭小川,陈波水,等. LaF3微粒在脂中的摩擦学及自修复性能研究[J]. 内蒙古大学学报(自然科学版),2005,36(4):437-440.

[35] 薛茂权,熊党生,闫杰. 纳米材料的摩擦学研究[J]. 机械工程材料,2004,28(3):47-49.

[36] 刘仁德,陶德华,曹卫国. 环烷酸稀土化合物的摩擦学性能研究[J]. 摩擦学学报,2003,23(5):394-397.

[37] 高利华,李聚源,付丽芳. 稀土氟化物纳米油添加剂的合成及应用[J]. 西安石油大学学报(自然科学版),2006 ,21(3):83-86.

篇5

纳米科学技术是20世纪80年展起来的一门多学科交叉融合的技术科学,其最终目标是直接以原子、分子及物质在纳米尺度上表现出来的新颖的物理、化学和生物学特性来制造具有特定功能的产品。纳米材料是指具有纳米量级的超微粒构成的固体物质。纳米材料具有三个结构特点:①结构单元或特征维度尺寸在纳米数量级(1~100nm);②存在大量的界面或自由表面;③各纳米单元之间存在一定的相互作用。由于纳米材料结构上的特殊性,使纳米材料具有一些独特的效应,主要表现为小尺寸效应和表面或界面效应,因而在性能上与相同组成的微米材料有非常显著的差异,体现出许多优异的性能和全新的功能。纳米材料在化学、冶金、电子、航天、生物和医学等领域展现出广阔的应用前景。当铁磁材料的粒子处于单畴尺寸时,矫顽力(Hc)将呈现极大值,粒子进入超顺磁性状态。这些特殊性能使各种磁性纳米粒子的制备方法及性质的研究愈来愈受到重视。开始,多以纯铁(a-Fe)纳米粒子为研究对象,制备工艺几乎都是采用化学沉积法。后来,出现了许多新的制备方法,如湿化学法和物理方法,或两种及两种以上相结合的方法制备具有特殊性能的磁性纳米材料。磁性纳米材料具有许多不同于常规材料的独特效应,如量子尺寸效应、表面效应、小尺寸效应及宏观量子隧道效应等,这些效应使磁性纳米粒子具有不同于常规材料的光、电、声、热、磁、敏感特性[2]。当磁性纳米粒子的粒径小于其超顺磁性临界尺寸时,粒子进入超顺磁性状态,无矫顽力和剩磁。众所周知,对于块状磁性材料(如Fe、Co、Ni),其体内往往形成多畴结构以降低体系的退磁场能。纳米粒子尺寸处于单畴临界尺寸时具有高的矫顽力[3]。小尺寸效应和表面效应导致磁性纳米粒子具有较低的居里温度[4]。另外,磁性纳米粒子的饱和磁化强度(Ms)比常规材料低,并且其比饱和磁化强度随粒径的减小而减小。当粒子尺寸降低到纳米量级时,磁性材料甚至会发生磁性相变。磁性纳米材料也具有良好的磁导向性、较好的生物相容性、生物降解性和活性能基团等特点,它可结合各种功能分子,如酶、抗体、细胞、DNA或RNA等,因而在靶向药物、控制释放、酶的固定化、免疫测定、DNA和细胞的分离与分类等领域可望有广泛的应用。

2性纳米材料在生物医学领域的应用

2.1靶向药物载体技术

利用磁性纳米颗粒制造靶向输送医疗药物,是目前医药学研究的热点。通常的靶向纳米药物载体是运用了载体对机体各组织或病变部位亲和力的不同,或将单克隆抗体与载体结合,使药物能够转运到特定的治疗部位,但如果制备的载药颗粒过大,如处于微米量级,可能会引起血栓样血管栓塞,甚至导致死亡,而纳米级的磁性颗粒可以解决这个问题。磁性纳米颗粒的粒径比毛细血管通路还小1-2个数量级,用其作为定向载体,通过磁性导向系统控制,可将药物靶向输送到病变部位释放,以增强疗效。制备出生物相容性和单分散性较好的无机磁性纳米颗粒载体(主要为铁系氧化物),再用生物高分子(氨基酸、多肽、蛋白质、酶等)包覆磁性纳米颗粒载体,再将包覆好的磁性载体与药物分子结合,将这种载有药物分子的磁性纳米粒子注射到生物体内,在外加磁场的作用下,通过纳米颗粒的磁性导向性使药物更准确地移向病变部位,增强其对病变组织的靶向性,有利于提高药效,达到定向治疗的目的,从而降低药物对正常细胞的伤害,改变目前放疗和化疗中正常细胞和癌细胞统统被杀死的状况,减少副作用。动物临床实验证实,载药磁性纳米微粒具有高效、低毒、高滞留性的优点,它在治疗结束后可以通过人体肝脏和脾脏自然排泄。磁性纳米药物载体一般通过下面3种方式结合:(1)药物与高分子先结合成颗粒,磁性颗粒再吸附其表面;(2)磁性颗粒和高分子先结合成颗粒再吸附药物;(3)磁性颗粒、药物、高分子一起混合经均匀化后再颗粒化。磁性高分子颗粒作为药物载体,其中控制释放速率是影响药效的主要因素,骨架材料的选择对控释作用具有一定的影响,而搅拌速度和成型温度对颗粒控释作用也有很大影响。纳米颗粒有的微型水解通道的多少、宽窄及交联程度是决定颗粒能否控释的主要因素,而搅拌速率和成型温度对颗粒中最后形成的微型通道程度起决定作用。早期应用的载体多为葡聚糖磁性毫微粒(DextranMNP),但易被RES系统吞噬,被动靶向于肝脾,难于实现其他组织的靶向给药。后来,有人改变载体的表面的性能,使其具有一定负电性,可更好地应用于主动靶向治疗。

2.2细胞分离和免疫分析

细胞分离是生物细胞学研究中一种十分重要的技术,高效的细胞分离在临床中是首要的、重要的步骤。这种细胞分离技术在医疗临床诊断上有广范的应用,例如治疗癌症需在辐射治疗前将骨髓抽出,且要将癌细胞从骨髓液中分离出来。传统的细胞分离技术主要采用离心法,利用密度梯度原理进行分离,时间长、效果差。随着合成磁性粒子的发展,免疫磁性粒子在分离细胞方面已经获得了快速的发展经动物临床试验已获成功。其中最重要的是选择一种生物活性剂或者其他配体活性物质(如抗体、荧光物质、外源凝结素等),根据细胞表面糖链的差异,使其仅对特定细胞有亲和力,从而达到分离、分类以及对其种类、数量分布进行研究的目的。磁性粒子用于细胞分离需要考虑以下几个因素:不与非特定细胞结合、具有灵敏的磁响应性、在细胞分离介质中不凝结。免疫分析在现代生物分析技术中是一种重要的方法,它对蛋白质、抗原、抗体及细胞的定量分析发挥着巨大的作用。在免疫检测中,经常利用一些具有特殊物理化学性质的标记物如放射性同位素、酶、胶体金和有机荧光染料分子等对抗体(或抗原)进行偶联标记,在抗体与抗原识别后,通过对标记物的定性和定量检测而达到对抗原(或抗体)检测的目的。由于磁性纳米颗粒性能稳定,较易制备,可与多种分子复合使粒子表面功能化,如果磁性颗粒表面引接具有生物活性的专一性抗体,在外加磁场的作用下,利用抗体和细胞的特异性结合,就可以得到免疫磁性颗粒,利用它们可快速有效地将细胞分离或进行免疫分析,具有特异性高、分离快、重现性好等特点,同时磁性纳米颗粒具有超顺磁性,为样品的分离、富集和提纯提供了很大方便,因而磁性纳米颗粒在细胞分离和免疫检测方面受到了广泛关注。

2.3磁性纳米颗粒对蛋白酶的吸附及固定化

生物高分子例如酶等都具有很多官能团,可以通过物理吸附、交联、共价偶合等方式将他们固定在磁性颗粒的表面。用磁性纳米颗粒固定化酶的优点是:易于将酶与底物和产物分离;可提高酶的生物相容性和免疫活性;能提高酶的稳定性,且操作简单、成本较低。制备吸附蛋白酶的磁性高分子颗粒的过程可以概括为:制备磁流体,在对磁流体中的磁性纳米颗粒用大分子包覆或联结,所形成的磁性高分子载体可用作亲和吸附的磁性亲和载体。作为酶的固定化载体,磁性高分子颗粒有利于固定化酶从反应体系中分离和回收,还可以利用外部磁场控制磁性材料固定化酶的运动和方向,从而代替传统的机械搅拌方式,提高固定化酶的催化效率。磁性高分子颗粒作为酶的固定化载体还具有以下优点:固定化酶可重复使用,降低成本;可以提高酶的稳定性,改善酶的生物相容性、免疫活性、亲疏水性;分离及回收酶的操作简单,适合大规模连续化操作。

2.4基因治疗

20世纪70年代,医学领域提出了“基因治疗”这一概念,即将遗传物质导入细胞或组织,进行疾病的治疗即将遗传物质导入组织或细胞进行疾病治疗。目前常用病毒载体和脂质体载体,病毒载体存在制备困难,装载外源DNA大小有限制,能诱导宿主免疫反应及潜在的致瘤性等缺点。多价阳离子聚合物,如目前广泛应用的脂质体,具有病毒载体的优点,而没有病毒载体的缺点。但是聚合物的颗粒大小是影响转染效率的因素之一。磁性纳米粒子的出现克服了它们的缺点。磁性材料直径可达10nm以下,在外磁场作用下具有靶向性。磁性材料外部包裹生物高分子,从而增强了生物相容性,对细胞无毒,而且在血管中循环时间大大延长。目前要控制阳离子聚合物大小的合成方法还不很成熟,且阳离子聚合物的细胞毒性是影响转染的突出问题。磁性四氧化三铁生物纳米颗粒的制作简单,直径可达10nm以下,具有比表面积效应和磁效应。在纳米颗粒的表面可吸附大量DNA。在外加磁场的作用下,可具有靶向性。且四氧化三铁的晶体对细胞无毒。为达到生物相容性,在磁性四氧化三铁的晶体表面可很容易地包埋生物高分子,如多聚糖,蛋白质等形成核壳式结构。由于纳米颗粒有巨大表面能,有多个结合位点,因而携带能力优于其他载体,且转染效率高于目前使用的载体,因此磁性生物纳米颗粒可成为较好的基因载体。

3磁性纳米材料应用于生物医学领域的局限性

纳米材料科学技术的发展为纳米材料的制备提供了许多新的工艺,在此基础上人们已经能够合成出单分散性比较好、形状和尺寸可控的磁性纳米材料,但磁性纳米材料目前处于研究实验阶段,有些问题还需要进一步研究解决,但目前尚处于实验阶段,有众多的问题亟待进一步研究解决:

(1)磁性纳米颗粒的特性与颗粒的尺寸、颗粒尺寸的分布、颗粒的形状和晶体结构密切相关,因而深入研究这些因素与磁性纳米颗粒性能(尤其是磁学性能)的关系,以便找到最佳的合成工艺,最终达到对材料性能剪裁的目的。从热力学和动力学两方面深入探索纳米尺度范围内材料合成机理对磁性纳米颗粒的尺寸、形状和晶体结构的影响,发展和完善单分散磁性纳米颗粒的制备方法;

(2)着重研究生物大分子在磁性纳米颗粒的组装结合机理,以提高组装的结合力和结合量,发展面向不同应用要求的组装形式和组装方法;深入分析生物大分子在磁性纳米颗粒载体上组装后对其生物功能的影响,进一步研究磁性纳米颗粒及生物高分子组装体中无机成分和有机成分对磁性的贡献以及无机成分与有机成分的磁相互作用,以期将功能设计与组装方法有机地结合起来。

(3)目前的磁性纳米材料在生物医学领域的应用研究才刚刚起步,但随着磁性纳米材料的产业化和商业化的推进,如何大批量的生产质量可靠稳定的磁性纳米材料,如何在生产过程中简化生产步骤,降低成本,以期大规模临床应用。

篇6

摘要:本文首先介绍了机械合金化技术的概念和技术原理,并讲述了机械合金化技术在材料科学与工程中的应用。并结合材料科学与工程专业课程的教学内容,探讨了机械合金化技术在材料科学与工程专业的教学实践中的研究和应用,并为合理利用机械合金化技术在材料科学与工程专业教学实践中发挥更大的作用提出了建议和意见。

关键词:机械合金化技术 材料科学与工程 教学实践

对于材料科学与工程专业的本科生来说,到了大三和大四就要学习许多专业课程和专业选修课程。其中有些课程属于材料合成与制备方法方面的内容。在材料合成与制备方法的课程教学中就需要涉及到材料的某些制备工艺,例如某些金属合金的制备工艺方法。对于金属合金的制备方法,很多教科书都详细地讲述铸造技术、焊接技术、粉末冶金技术、金属熔炼技术等,但也会涉及到机械合金化技术。机械合金化技术是近年来发展起来的一种制备高性能合金的新技术。这种技术主要是利用机械球磨工艺把不同种金属粉末通过机械球磨方式通过一定时间的球磨,最终使这些金属元素粉末通过机械球磨工艺形成金属合金,所以最终能够得到需要的新型金属合金材料。由于机械合金化工艺可以在常温下进行,不像金属熔炼技术那样需要较高的温度才能熔化金属,因此机械合金化技术更为实用,成本较低,而且材料的制备工艺简单。所以机械合金化技术近些年来发展较快,机械合金化技术所能够制备的金属合金材料的范围和种类也在不断地扩大,所制备的材料的性能也逐渐得到提高。由于机械合金化技术制备金属合金粉末的制备工艺简单,成本较低,使用的金属元素种类较多,而且可以用于实验室进行教学实验,所以机械合金化技术也逐渐应用到了材料科学与工程专业的课程教学与实践教学中。采用机械合金化技术制备金属合金粉末可以作为本科生实验课程的教学实验,也可以作为本科生的课程设计和毕业设计的教学内容。所以机械合金化技术将在材料科学与工程专业的教学实验中具有非常广泛的用途。

一、机械合金化技术的原理和应用

在机械合金化过程中,粉末受到磨球强烈的碰撞和挤压。极平的、纯净的金属表面在常温下加压可焊接在一起,这就是冷焊,也称为压力焊。塑性较好的金属粉末,在磨球的碾压、冲击下发生形变并以十分纯净的表面彼此接近到原子作用力的距离,同样可以冷焊在一起,形成相互交叠的层片组织,而脆性粉末或塑性粉末加工硬化变脆后,在冲击下直接破碎,所以球磨过程因体系不同而不同。在延性的金属-金属混合粉末中,粉末的变化分为三个阶段:颗粒粗化-破碎-粉末粒度的稳态分布,相应的称为初期、中期和后期。在机械合金化过程的初期,主要是冷焊过程,塑性粉末含量越多,粗化越明显,颗粒直径可到数毫米,同时颗粒表面也相当平滑;在机械合金化中期,冷焊和破碎交替进行,层片状较大颗粒与细小颗粒共存,细小颗粒是从大颗粒上脱落下来的,这一阶段各层内积蓄了能使原子充分扩散所需的空位、位错等缺陷,不同组元的扩散距离也接近原子级水平,合金化过程开始。在机械合金化过程的后期,基本上只有粉末颗粒破碎的过程,颗粒粒度趋向于最小值,因此也比较均匀。延性的金属与脆性的非金属或化合物组成的体系,脆性组元首先发生破碎,延性组元则首先发生变形,细小的脆性粒子处于延性颗粒之间。随后延性组元逐渐加工硬化,发生断裂和脆性组元一样尺寸不断减小。

机械合金化(MA)方法(塑性-塑性混合粉末)原理是:将金属粉末在磨球的碾压和冲击下发生形变,并以十分纯净的表面彼此之间接近到原子作用力的距离,实现冷焊,最终形成相互交叠的层片状组织。这个过程一般要经历颗粒粗化、破碎、粉末粒度的稳态分布三个阶段,其中初期以冷焊过程为主,粉末明显粗化,中间过程冷焊与破碎交替进行,层片大颗粒与细小颗粒共存,各层内积蓄了能使原子充分扩散所需要的空位和位错等的缺陷,使不同组元的扩散距离接近于原子级水平,合金化过程开始;在后期只有破碎过程,颗粒趋向于最小。机械合金化工艺可获得纳米颗粒,能使固溶、沉淀、弥散三种强化结合于一体,从而制备出性能优异的高温合金。

二、机械合金化技术在材料科学专业的课程教学与实践教学中的应用

在材料科学与工程专业的一些专业课程,例如材料合成与制备方法、纳米材料、功能材料等课程都讲述了机械合金化技术。例如在材料合成与制备方法这门课程中,有讲述金属合金材料的制备方法,除了传统的铸造工艺、焊接工艺、粉末冶金工艺以及金属熔炼技术之外,重点讲述机械合金化技术,因为机械合金化技术可以制备很多种金属合金材料,而且制备工艺简单,可以在常温下进行。由于机械合金化技术可以在实验室中进行,所以可以很方便开设实验课程。在纳米材料这门课程中讲述了纳米粉末的制备工艺,其中主要讲述了机械合金化工艺。因为机械合金化工艺制备纳米粉末的种类最多,涉及到很多种金属材料以及金属基复合材料的制备与合成等。还可以利用机械合金化技术制备复合材料,例如用机械合金化工艺球磨不同种元素粉末,使不同种金属元素通过机械球磨工艺形成金属合金粉末,所以通过机械球磨工艺原位合成金属基复合材料。在功能材料这门课程中,讲述利用机械合金化工艺制备纳米粉末颗粒和功能材料,例如制备贮氢合金Mg-Ni合金等。或者利用机械合金化技术制备铁磁合金材料、非晶态材料、纳米功能材料等各种先进功能材料。

利用机械合金化技术可以制备具有纳米尺寸量级的金属合金粉末。采用机械合金化技术制备的金属合金有很多种,例如采用机械合金化技术可以制备Fe-Al金属间化合物粉末、Ni-Al金属间化合物粉末,Ti-Al金属间化合物粉末,以及Ni-Fe合金、Fe-Si合金、Cu-Al合金等多种金属合金材料。以上讲述的都是利用机械合金化工艺制备二元合金材料。也可以利用机械合金化技术制备三元合金、四元合金以及多种成分的金属合金材料。例如利用机械合金化工艺制备Fe-Ni-Cr合金、Fe-Al-Ni合金,以及利用机械合金化技术制备具有多种成分的非晶态合金等。还可以利用机械合金技术制备贮氢材料,例如采用机械合金化工艺制备Mg-Ni合金等。采用机械合金化工艺制备的金属合金材料有很多种,有些金属合金材料的机械合金化制备工艺可以作为材料专业的教学实验,可以为学生演示如何利用机械合金化工艺制备高性能金属合金材料。例如采用机械合金化工艺制备Fe-Al金属间化合物粉末材料。采用机械合金化工艺可将固溶、沉淀和弥散三种强化方式结合与一体,制备一系列具有优异性能的高温合金。对Fc-Al合金的机械球磨或Fe-Al元素混合粉末的机械合金化已开展了一定的研究。Fe,Al纯元素混合粉末在球磨过程中,粉末受到强烈的碰撞、挤压,冷焊和破碎的相互作用使粉末细化,并在一定阶段形成金属合金。经过机械合金化工艺后就得到了粉末粒度极细的Fe-Al金属间化合物粉末。同时还可以采用机械合金化技术制备Ni-Al合金粉末、Ti-Al合金粉末等。

通过机械合金化工艺可以制备多种新型的金属合金粉末,而且成本较低,实验过程简单,可以作为本科生的实验教学课程内容。例如可以开设纳米材料的制备工艺的实验课程,使本科学生通过机械合金化工艺制备多种具有纳米结构的金属合金粉末,并对所制备的金属合金粉末进行性能表征,使学生通过实验课程认识和了解纳米材料的整个制备工艺以及表征方法。还有使学生通过机械合金化工艺制备先进的金属功能材料,如贮氢材料、纳米材料、铁磁性材料等,通过制备工艺结合性能表征使得学生对新型功能材料有了一定的认识和了解。

通过实验教学使学生认识和了解到机械合金化技术在材料科学与工程中的研究发展与应用,使学生加深课程教学知识内容的认识和掌握,使学生在课程学习的过程中既增加课本知识又锻炼了实践能力。所以在材料专业的实验教学中应该增加一些材料制备技术的教学实验,例如使学生利用机械合金化工艺球磨得到新型金属合金粉末材料,并研究机械合金化工艺球磨过程对金属合金粉末的物相组成和显微结构的变化,使学生通过实验课程对材料的制备和检测方法有了较深的认识,从而为材料科学与工程专业课程的学习打下了坚实的基础。

三、机械合金化技术在材料科学中的发展趋势与应用

机械合金化技术由于制备工艺简单,成本较低,材料合成温度较低,所以被广泛地应用到材料的合成与制备中。利用机械合金化技术可以开发新型的金属合金材料以及复合材料等。采用机械合金化技术可以开发出很多种类型的金属合金粉末,也可以开发金属基复合材料等,而且现在有越来越多的研究者从事机械合金化工艺制备金属合金材料和金属基复合材料以及功能材料的研究和开发,所研究和开发的材料种类也逐渐增多,应用范围也越来越广泛。机械合金化技术在材料科学与工程教学与实践中也得到广泛的推广和应用,已经成为材料科学与工程专业实践教学课程必须进行的实验内容。所以本文作者认为应该在材料科学专业的教学实践中增加机械合金化技术的实验课程,使得学生通过课程学习和实践学习来加深材料科学与工程专业课程知识和内容的认识和掌握。

综上所述,本文首先介绍机械合金化技术的概念和技术原理,讲述机械合金化技术在材料科学与工程中的应用,并结合材料科学与工程专业课程教学研究和探讨了机械合金化技术在材料科学与工程专业的教学实践中的研究和应用。采用机械合金化技术可以制备多种材料,这为材料科学与工程专业实验课程的教学实践提供了丰富的教学内容,可以在材料科学与工程专业的实验课程中开设一些关于机械合金化工艺制备新型金属合金材料的实验课程。

参考文献

[1]李青虹,晋芳伟,机械专业实验课程教学改革的研究[J].机电技术,2011(1):149—151

[2]刘宏达,马忠丽.高校实验课程教学质量评价体系的构建[J].中国现代教育装备,2009(3):60-63

[3]罗乐,张春早,黄英等.加强实验课程教学质量管理的探索[J].合肥工业大学学报(社会科学版),2005,19(1):16-18

[4]谢秀红,贾天钰.大学实验课程教学改革新探[J].航海教育研究,2007(2):74-76

篇7

关键词:水性聚氨酯;耐生物附着性;纳米二氧化钛

中图分类号:TQ323文献标识码: A

引言

在天然海域中选用生长的海洋硅藻和细菌为主要测试样品,来评价水性聚氨酯的海洋防污性能,并通过用扫描电镜观察以及平板计数法计数来测定水性聚氨酯涂料的防污性能。使用扫描电镜观察时,经过喷金处理后的浸泡试样再用扫描电镜观察形貌。海洋防污涂料对于涂层的表面性能和粗糙度影响的结论这时就能得到,并确定水性聚氨酯和改性粉体的最佳配比值,得到具有最佳综合性能和防污性能水性聚氨酯防污涂料。若观察海洋防污涂层表面舟形藻的附着情况以舟形藻作为目标生物,能够测定海洋生物量的是叶绿素测定试验方法。所以结果表明,测定海洋涂料防污性能通过测定航洋生物量的方法是科学有效的。

一、水性聚氨酯

聚氨酯(PU)是软硬段结构交替构成的嵌段式分子聚合物。聚氨酯的生产过程是,进行加成反应低聚物多元醇(例如聚醚和聚酯)与异氰酸酯得到预聚体,再在预聚体中加入扩链剂,进行扩链反应获得最终产物聚氨酯。聚氨酯的硬段部分主要是由扩链剂(主要是醇和胺)和异氰酸酯反应形成,为软段部分的变形和伸长提供可变节点是硬段部分的作用。软段部分是由聚酯多元醇或聚酸形成的,在室温下软段部分能够处于高弹状态,产生较大拉伸变形。

聚氨酯具有的化学结构是独特的嵌段式,使得聚氨酯存在以好的耐化学品、耐热耐磨、高强度、高弹性等性能。聚氨酯被广泛应用于胶黏剂、橡胶、合成革、泡沫塑料、汽车、建筑等领域。在材料产业中聚氨酯材料占据十分重要的地位,聚氨酯产品品种逐年增加,世界各大公司都在积极的发展聚氨酯产业链。

水性聚氨酯(WPU)是将聚氨酯预聚体通过机械搅拌分散或溶解于水中,形成聚氨酯体系,也叫做水系聚氨酯或水基聚氨酯。水性聚氨酯一般是由双官能团或者多官能团的异氰酸酯与含有两个或两个以上活泼氢的低聚物反应所合成的高分子聚合物。

相较于溶剂型聚氨酯,水性聚氨酯具有高硬度、高强度、并且具有良好的柔韧性和优异的耐疲劳性能等。同时水性聚氨酯相比溶剂型聚氨酯还具备不同的优点。环保无刺激性气味、方便的操作使用性能、易被改性且不燃等。这些性能于许多领域使得水性聚氨酯可以比较成功地应用,广泛的替代溶剂型聚氨酯,如胶黏剂、建筑材料、油墨涂料、纺织印刷、皮革加工等行业。

二、水性聚氨酯的一般制备方法

一般制备方法中,水性聚氨酯是不能从水性乙烯合成树脂,得到树脂自由基的乳液聚合法。这是由于具有特殊性有异氰酸酯参与的反应,所以一般制备水性聚氨酯的方法是将水性聚氨酯与多元醇水性化之前充分反应,使得多元醇进入聚氨酯分子中。

要得到性能良好稳定的水性聚氨酯,制备原理以及制备方法则必须充分掌握。在水性聚氨酯合成过程中水性聚氨酯的配方及其乳化条件十分重要。否则,在放置的过程制备的水性聚氨酯会产生分层和沉降的现象,产生具有弹性颗粒的大粒径,导致无法较稳定存放水性聚氨酯,不能乳化而发生凝胶。

水性聚氨酯合成一般的过程分为两个步骤:首先,在低聚物(例如聚二醇)反应下,合成预聚体。然后,在水溶液条件下将其分散,进行剪切。

三、纳米改性水性聚氨酯

(一)、纳米改性水性聚氨酯的意义

由上文提到的,水性聚氨酯在性能上有一些缺陷,希望通过对于水性聚氨酯的改性达到更加良好的性能。而纳米粒子所特有的小尺寸粒子效应、轨道量子效应以及表面效应等特性,很大程度上可以使水性聚氨酯的耐热性、机械力学性以及耐水性能得到的弥补。同时与宏观粒子表现出的电磁、光和化学性质与纳米粒子不同,能够赋予水性聚氨酯一些特殊性能。复合材料的性能由于纳米材料的加入使得实现质的飞跃,同时,开辟了复合多功能材料的全新领域。得到很多高效经济的纳米材料根据前人的研究能够与水性聚氨酯制得复合材料,例如碳纳米管、纳米氧化锌、纳米碳酸钙、二氧化硅和二氧化铁,得到了十分显著的效果。

(二)、常用纳米改性水性聚氧酯方法

水性聚氨酯通过纳米材料改性得到的性能复合材料。其处理方法在水性聚氨酯的纳米增强改性中,主要有插层法、原位生成法、溶胶凝胶法和直接混合法。

(三)、原位生成法

将四乙氧基硅烷或者四丁基钛酸等前驱体加入到水性聚氨酯的基体上,并在合适的反应条件下,在聚氨酯基体上采用原位缩合法,与SiO2、TiO2等反应得到纳米粒子,这就是原位生成法。

纳米改性水性聚氨酯采用原位生成法能够实现,从而获得纳米改性水性聚氨酯复合材料。原位生成法的优点是首先反应条件方面,条件较易控制且十分温和;其次是生成的纳米粒子方面,得到的纳米粒子保持了较好的纳米特性且没有聚集分散均匀;最后是产物产率方面,原位生成法得到的产物产率较高,这是因为只进行一次聚合反应,副反应的发生有效的防止而导致的聚合物不纯或者降解消耗,复合材料的性能稳定性充分的保障。

但是原位聚合法有局限性的适用范围。这是由于这种方法只适用于含有特定物质的胶体粒子溶液(例如硫化物和氧氧化物),在这些溶液中只有才能够使单体分子发生原位聚合得到纳米复合涂料。

(四)、插层法

有机单体不发生原位聚合,聚合物直接进入层式结构的层间,得到插层式复合纳米材料,这就是插层法;或者进入到无机物层结构的层间中,并发生原位聚合。采用插层法得到的无机夹层的有机改性,能够获得间距增加几到几十的纳米无机插层结构。

另外,在片层之间单体进一步发生聚合,由于进一步的聚合,层间间距进一步加大,分子量进一步增加,无机物的整个层片结构进而破坏,这样就将得到经过剥离的复合纳米材料,此时的复合纳米材料分离开无机物的夹层。取适量与水性聚氨酯混合,将采用插层法得到的复合纳米材料,适当的经过反应处理后,制得杂化的无机水性聚氨酯复合材料。这种复合材料具有优良的硬度、分散性、耐热性,这是由于在聚合物水性聚氨酯的有机相中片层结构的纳米无机物均匀分布,从而有效提高提高复合材料的综合性能。但是复合材料本身的弹性会受到影响。

(五)、直接混合法

在聚氨酯基体中直接混合法是指直接加入纳米粒子,并采用超声分散和机械搅拌的方法,得到水性聚氨酯纳米复合材料。由于纳米粒子的表面积大,颗粒直径较小,导致纳米粒子间的二次聚合粒子易聚合构成。与此同时,高分子聚合物具有极性的水性聚氨酯,与纳米粒子引起其不易相容,形成两个独立的分散相。所以,通常使用加入增稠剂以改变乳液的粘度,或者加入分散剂或者偶联剂等表面改性纳米粒子的方法。在水性聚氨酯得到纳米粒子均匀分散,且不成为独立的两相,制得稳定分散均匀的复合乳液。

四、纳米改性水性聚氧酯材料的展望与应用

由于纳米材料原料来源较广泛、制备工艺方便、经济节约、成本不高,以其自身固有的独特功能和优异特性,注入了新的希望为涂料的发展,并提供了条件为绿色涂料的发展,同时世界范围促进了涂料产品日新月异。虽然在水性聚氨酯中将纳米材料添加使得复合材料的综合性能可以提高,但对于纳米改性水性聚氨酯材料并不能提高所有性能。目前,研究纳米改性水性聚氨酯的方向主要包括了以下几个方面:

研发高活性基团的分散剂,纳米材料表面改性剂种类和用量进一步研究探索对涂料综合性的影响机理,提供有力的理论为纳米粒子分散剂及分散性能的选择。

优化纳米改性水性聚氨酯的合成工艺科学指导,从而使纳米粒子在聚合物中能够均匀稳定的分散。

结束语

总之,人类的发展和生存与生态环境关系密切,但是由于人类活动对环境的影响,对人类的生活环境和健康由于细菌、霉菌的快速繁殖产生了严重的威胁。因此21世纪涂料业的发展方向之一是研究抗菌的环保绿色型建材。光催化纳米抗菌涂料顺应了涂料产业发展的新趋势和新方向,不但符合涂料安全、环保和健康的要求,而且具有良好的性能。

参考文献

篇8

关键词 蒙脱石;纳米复合材料;非金属粘土矿物

中图分类号:TQ327.7 文献标识码:A 文章编号:1671-7597(2013)15-0017-01

纳米是长度单位(Nanometer,nm),原称“毫微米”,1 nm=10-9 m,即十亿分之一米,一只乒乓球放在地球上就相当于将一纳米直径的小球放在一只乒乓球上。纳米粒子通常是指尺寸在1 nm~100 nm之间的粒子。纳米效应为实际应用开拓了广泛的新领域。利用纳米粒子的熔点低,可采取粉末冶金的新工艺。调节颗粒的尺寸,可制造具有一定频宽的微波吸收纳米材料,用于电磁波屏蔽、隐形飞机等。纳米银与普通银的性质完全不同,普通银为导体,而粒径小于20 nm的纳米银却是绝缘体。金属铂是银白色金属,俗称白金;而纳米级金属铂是黑色的,俗称为铂黑。纳米粒子具有很高的活性,例如木屑、面粉、纤维等粒子若小到纳米级的范围时,一遇火种极易引起爆炸。纳米粒子是热力学不稳定系统,易于自发地凝聚以降低其表面能,因此对已制备好的纳米粒子,如果久置则需设法保护,例如保存在惰性空气中或其他稳定的介质中以防止凝聚。

纳米材料是物质以纳米结构按一定方式组装成的体系。它是纳米科技发展的重要基础,也是纳米科技最为重要的研究对象。纳米技术被公认为21世纪最具有发展前途的科学之一,纳米材料也被人们誉为21世纪最有前途的材料。由于纳米材料本身所具有的特殊性能,使其能够广泛应用于化工、纺织、军事、医学等各个领域。本文阐述了蒙脱石/高聚物纳米复合材料的研究进展,并对其发展前景加以展望,期望对其深层次的加工应用有所帮助。

1 纳米材料的分类

纳米材料有多种分类方式,按其维数可分为:零维的纳米颗粒和原子团簇,一维的纳米线、纳米棒和纳米管,二维的纳米膜、纳米涂层和超晶格等;按化学成分可分为:纳米金属,纳米晶体,纳米陶瓷,纳米玻璃以及纳米高分子等;按材料物性可分为:纳米半导体材料,纳米磁性材料,纳米非线性光学材料,纳米铁磁体材料,纳米超导体材料,以及纳米热电材料等;按应用可分为:纳米电子材料,纳米光电子材料,纳米生物医用材料,纳米敏感材料,以及纳米储能材料等;按照材料的几何形状特征,可以把纳米材料分为:①纳米颗粒与粉体;②碳纳米管与一维纳米线;③纳米带材;④纳米薄膜;⑤中孔材料(如多孔碳、分子筛);⑥纳米结构材料;⑦有机分子材料。

2 纳米矿物资源的研究意义

纳米矿物材料具有优良的物理性能和化学性能,这是一般矿物材料所无法比拟的。如聚合物/粘土矿物纳米复合材料具有独特的分子结构特征和表观协同效应,既表现出粘土矿物优良的力学性能又体现了聚合物优异的阻隔性能。非金属纳米矿物材料的科学研究价值和应用前景主要体现在以下几方面。

1)非金属纳米矿物是替代人工合成纳米材料的绝佳资源。

2)非金属纳米矿物成因的研究成果可为人工合成纳米材料提供有益的借鉴。

3)非金属纳米矿物资源的研究有助于深化人们对纳米材料的认识。

4)非金属纳米矿物资源的研究具有重要的地质学和经济学意义。

3 蒙脱石/聚合物纳米复合材料发展现状

3.1 聚合物基纳米复合材料

把纳米材料用于添加改性塑料,可以开发出各种新型的功能复合材料。聚合物基纳米复合材料通常可分为3类:有机/有机型纳米复合材料、有机/无机混杂物型纳米复合材料、有机/无机粒子型纳米复合材料。

3.2 蒙脱石/聚合物纳米复合材料的制备

能够在纳米复合材料中得到应用的蒙脱石属于层状硅酸盐矿物,它是非金属粘土矿物膨润土的主要成分。用蒙脱石填充高聚物可以制得蒙脱石/聚合物纳米复合材料,其合成方法——插层复合法根据复合方式的不同可以分为插层聚合法和聚合物插层法两大类。按照聚合反应类型的不同,插层聚合又可以分为插层缩聚和插层加聚两种类型;聚合物插层法也可以分为溶液插层和熔融插层两种。

此外,聚合物基纳米复合材料的其它制备方法还有直接分散法、溶胶-凝胶法、原位生成法等等。这些方法的综合运用为新型纳米复合材料的开发及应用开辟了广阔的前景。

4 蒙脱石/聚苯乙烯纳米复合材料开发前景

陈燕丹等用含双键的酰胺-胺化合物作为插层剂制得改性的有机蒙脱石,与苯乙烯具有较好的相容性,使得二者界面相互作用大大提高。在此基础上聚苯乙烯于熔融状态下可以插层进入有机蒙脱石,形成蒙脱石/聚苯乙烯纳米复合材料,其力学性能和热性能与纯聚苯乙烯及常规填充聚苯乙烯相比都有提高。林蔚等以十六烷基三甲基溴化铵改性钠基蒙脱石与聚苯乙烯熔融插层,制备了无机-有机纳米复合材料,通过分析得到其力学性能、耐热性、阻燃性及抗溶性均匀所提高。黎华明等将间规聚苯乙烯和尼龙6/改性蒙脱石纳米复合物共混制得的复合材料经DSC、DMA、WAXD等测试可知蒙脱石对聚合物基体的增强效果明显。

说明蒙脱石的加入能引入氢键和强极性作用,使分子链的柔性降低,聚合物分子堆砌密度增大,玻璃化转变温度升高,材料断面形貌得到改善,提高了复合材料的综合性能,达到增强增韧的目的,从而显示出对聚合物基粘土纳米复合材料研究的重要科学意义。今后期望能够继续提高复合材料的抗冲击性和耐热性能,制得高性能的蒙脱石/聚苯乙烯纳米复合材料,进一步开拓其应用领域。

参考文献

[1]李青山.乙烯基共聚物/蒙脱石纳米复合材料研究[D].东华大学,2004:1-9.

[2]曹明礼,等.非金属纳米矿物材料[M].北京:化学工业出版社,2006:40-46.

[3]漆宗能,等.聚合物/层状硅酸盐纳米复合材料理论与实践[M].北京:化学工业出版社,2002:5-12.

[4]陈燕丹,等.新型嵌入改性膨润土/聚苯乙烯杂化纳米材料[J].福建师范大学学报,2000,16(3):60-64.

[5]李同年,等.聚苯乙烯-蒙脱土插层复合材料的制备与性能[J].塑料工业,2000,28(2):33-35.

篇9

[关键词]分子印迹技术;分子印迹聚合物;应用

[中图分类号]O658.9[文献标识码]A[文章编号]1005-6432(2012)49-0053-02

自然界和生物体内分子识别在活性发挥方面起到了重要作用,大多数生物分离技术都依赖于分子识别作用,但是生物识别分子的分离和制备十分困难,而且在操作中对环境要求比较高,人们一直希望合成具有分子识别功能的介质。近年来得到快速发展的分子印迹技术,由于其卓越的分子识别性能和独特的物理、化学、机械特性等优点,已经成为一个热门的研究方向。

1分子印迹技术的原理及特点

分子印迹技术是指将模板分子与选择好的功能单体通过一定作用形成主—客体复合物,然后加入一定量的交联剂和功能单体共同聚合成高分子聚合物。除去模板分子后,刚性聚合物中的空穴记录有模板分子的构型,且功能基团在空穴中的精确排列与模板分子互补,从而对特定的模板分子具有较高的识别能力,而达到分离混旋物的目的。分子印迹分离技术是一种有着特殊专一选择性的新型分离技术。与天然抗体相比,具有高选择性、高强度(即耐热、耐有机溶剂、耐酸碱)、制备简单而且模板分子可回收和重复使用的特点。

分子印迹技术一般包括以下几个步骤:①在一定溶剂中,具有适当功能基团的功能单体通过与模板分子间的相互作用聚集在模板分子周围,形成稳定的复合物。②加入交联剂后,过量的交联剂使得功能单体上的功能基团在特定的空间取向上固定。③将聚合物中的印迹分子洗脱或解离出来得到分子印迹聚合物(见下图)。

2分子印迹聚合物及其制备

分子印迹聚合物是分子印迹技术的核心。简单地说,它是一种人工合成的利用分子印迹技术制备的高分子聚合物。该聚合物拥有与模板分子大小和形状相匹配的立体孔穴,同时孔穴中包含了精确排列的与特定结构的模板分子官能团互补的活性基团。所以分子印迹聚合物具有特异“记忆”功能基团。MIP的制备方法通常有本体聚合、沉淀聚合、表面印迹、溶胶凝胶、两步溶胀等方法。

分子印迹聚合物是近年发展起来的新型重要分子识别材料,功能单体与模板分子形成稳定的复合物,以使交联聚合后把模板分子的结构固定在聚合物的母体中,产生识别位点。此外,功能单体的用量对聚合物的识别性能有较大的影响,但功能单体—模板分子比例过高时,所制备的聚合物具有更紧密的结构和更好的耐溶胀性能。因此,模板分子与功能单体的选择对于分子印迹聚合物的制备至关重要。

2.1模板分子的选择

印迹过程可以形成与模板分子形状及功能基排列互补的孔穴有关,因此研究模板的分子结构对MIP分子识别性能的影响具有重要意义。用小分子芳香族化合物,部分羟基数目及羟基位置不同的羟基苯甲酸化合物为模板分子,采用非共价印迹技术制备了相应的MIP,通过对比研究,探讨了模板分子中作用基团的数目及位置对非共价MIP分子识别能力影响的规律。模板分子中含有较多作用基团有利于得到对模板分子具有高印迹亲和力的印迹聚合物,即得到高印迹效率的MIP。当模板分子中作用基团间能形成分子内氢键时,印迹效率降低。这是由于印迹过程中模板分子的分子内氢键削弱了其与氢键型功能单体丙烯酰胺的结合,从而降低了模板分子的印迹效率。

孙宝维等就模板结构与分子印迹效果间关系提出:大多只有一个极性基团的化合物,与功能单体作用的数目较少,不易产生印迹效应;一般含多个极性基团,少数含一个极性基团并具有一个大的疏水结构的化合物在印迹过程中表现出协同效应;具有多个极性基团,而且同时具备部分刚性和柔性结构的化合物,可更好地与功能单体作用。

2.2功能单体的选择

在制备分子印迹聚合物过程中,选择合适功能单体种类及与模板分子的配比至关重要,下面是几种筛选功能单体的方法。

(1)紫外光谱法

根据紫外光谱原理,当价电子与氢原子形成氢键后,电子的能量会发生变化。同时张力或偶极作用迫使分子轨道发生扭曲变形,电子跃迁概率发生变化,导致吸光度发生变化。因此,根据紫外光谱的变化,可推测模板分子与功能单体间相互作用强度和复合比例等有关信息。

(2)核磁共振法

核磁共振光谱法(NMR)可以提供有关确切作用位点和作用强度的大量信息,是一种更具潜力且准确的筛选方法。模板分子与功能单体相互作用,分子间氢键对模板分子的活泼氢产生强烈束缚作用并使其屏蔽作用变小。通过核磁共振技术测定溶液中功能单体对活泼氢化学位移的影响,从而找出最佳的功能单体和最佳的配比。

(3)荧光光谱法

对于具有荧光性质的模板分子,荧光光谱法是选择功能单体的比较好的方法。荧光供体分子(模板分子)与荧光猝灭剂分子(功能单体)之间借助分子间力,彼此结合形成具有一定结构的不发荧光的基态复合物,而导致荧光强度减弱。即静态荧光猝灭现象。

(4)计算机模拟计算

随着计算机和量子化理论的发展,计算机模拟技术已经应用到分子印迹体系中。这种方法可以大大减少摸索实验的次数,也可以减少不必要的药品浪费。计算机模拟计算最常用半经验计算方法,大致过程为,第1步,用软件优化各种可能的模板分子、功能单体及其复合物的构象,选出最小能量构象。第2步,功能单体与模板分子的相互作用能利用下式计算:ΔE=E(模板分子和功能单体的复合物)-E(模板分子)-E(功能单体)。ΔE越大,说明模板分子与功能单体的作用越易形成氢键,且形成的氢键越牢固。

3分子印迹技术的膜和材料制备方面的应用

3.1新的膜制备技术

(1)多层自组装膜

通过化合物分子之间不同的作用力结合而成。这种作用力主要包括共价或配位作用、氢键、静电力、疏水作用力、π2π堆积作用以及阳离子π吸附作用。多层自组装印迹膜是在印迹聚合物表面通过不同的作用力结合形成膜,然后反复在聚合物混合溶液中进行自组装,形成多层膜结构,将印迹分子洗脱,得到多层自组装印迹膜。自组装方法包括共价(或配位)自组装、氢键自组装、静电自组装。张希等 报道了用光交联法和多层膜自组装方法制备的以5、10、15、202四甲基氨基苯21H、23H 卟啉为印迹分子的多层自组装印迹膜,与其他方法制备的印迹膜相比具有较高的识别能力。

(2)纳米管印迹膜

一种印迹孔穴具有纳米管形状的分子印迹聚合物膜。纳米管印迹膜的出现标志着分子印迹技术又有了新的突破。这种膜的制备是由王小如研究组首先提出的,他们将表面引发原子转移自由基聚合(ATRP)和分子印迹技术原理相结合,使用多孔阳极氧化铝薄膜(AAO)为载体膜并用32氨基丙基三甲氧硅烷进行表面硅烷化处理,将ATRP 引发剂22溴222甲基丙酰溴接枝到AAO 的表面,然后与金属有机催化剂1、4、8、112四氮杂萘并苯铜、功能单体42乙烯吡啶、印迹分子β2雌二醇或孕酮和交联剂的乙腈溶液混合,在N2 保护下进行热聚合得到聚合物膜,除去印迹分子后形成纳米管印迹膜。结果表明,这种结合位点具有纳米级的孔径和几纳米管壁厚度的印迹膜对目标分子具有高选择性、高亲和性、高容量和快速的结合能力。

3.2新的材料制备技术

(1)分子印迹磁性材料

磁性材料从材质上可以分为金属及合金磁性材料和铁氧体磁性材料两大类。铁氧体磁性材料又可以分为多晶结构和单晶结构材料。从应用的功能上来分,磁性材料又可以分为软磁材料、永磁材料、磁记录2矩磁材料、旋磁材料等。结合磁性材料的分子印迹技术制备的MIPs称为磁性分子印迹聚合物,表面修饰过的磁性微球在聚合过程中嵌入MIPs母体中,从而使MIPs具有一定的磁性。MIPs在再识别吸附过程完成后,分离传统MIPs和溶液需要离心或过滤等烦琐的步骤。磁性分子印迹聚合物则只需外加一个磁场即可以实现与溶液分离,其操作简单且分离时间短。在磁性分子印迹技术所应用的磁性粒子主要为Fe3O4。Fe3O4为无机化合物,不能和有机体系相容,因此磁性微球先由聚乙二醇4000/6000等活性组分进行活化得到有机相容性磁性复合微球,磁性复合微球在聚合过程中包埋于MIPs中。也有通过溶胶2凝胶使硅包裹磁性离子。

(2)分子印迹纳米材料

纳米材料是指三维尺度中有一维以上处于纳米量级(1~100nm),即由尺寸介于原子、分子和宏观体系之间的纳米粒子所组成的新一代材料。纳米材料与传统材料相比有较低的熔点、较小的体积、巨大的比表面积、强化学活性和催化活性,此外其还有特殊的比热、光学、电学、磁学、力学等一系列优良的性能。

分子印迹技术利用纳米材料巨大的比表面积制备印迹聚合物,可以充分地暴露印迹识别位点,大大减少吸附过程当中的传质阻力,增强吸附过程的动力学特征,进而提高吸附量。纳米分子印迹聚合物的形式主要为纳米粒子、纳米管和纳米膜。张忠平等以硅为基质通过溶胶凝胶反应分别制得了对TNT有特异性识别的纳米粒子。其制得的纳米粒印迹材料的印迹位点密度大约为普通印迹材料的5倍。其动力学研究表面,纳米印迹粒子达到平衡所用的时间也只为普通印迹材料的1/3。

(3)分子印迹复合材料

多种材料相互补充使复合材料的性能更为优越。除了单一的膜材料、磁性材料和纳米材料外,出现了复合材料如纳米膜材料、磁性纳米材料等。这些复合材料已经应用于分子印迹技术中。王小如等合成了纳米管膜应用于化学分离,并用多孔性氧化铝为模具合成了磁性分子印迹纳米线。复合材料为分子印迹的发展提供了新的动力。

4结论

自20 世纪90 年代以来,MIT 以其高亲和性、高选择性等独特优点迅速吸引了各国研究人员的注意并蓬勃发展,至今已被应用于化学、生物、医学、环境等各大学科及其分支领域之中。MIPs 的合成与应用方法已日趋成熟,但目前的MIT 仍存在着一些问题。如其尚不能将某些类似物完全分离。随着计算化学与计算机模拟技术的发展,建立完整的单体交联剂库,利用虚拟反应来指导MIPs 的合成已成为新的发展趋势。此外,大力发展水相中制备方法,减少对有机溶剂的依赖,不仅能模拟生物体的识别模式,而且会极大地扩展其使用范围。

参考文献:

[1]金红华,王娟,张兰,等.分子印迹技术在环境科学领域中的应用[J].化工环保,2006,26(4):295-298.

[2]周勤,袁笑一.分子印迹技术及其在环境领域的应用[J].科技通报,2005,21(1):110-114.

[3]Ramstrom O,Ansell R.Molecular imp rinting technol2ogy:challenges and p rospects for the future[J].J Chirality,1998,10(3):195-209.

[4]GVlatakis,L I Anderss on,R Muller et al.[J].Nature,1993:361,645-647.

[5]姚伟,高志贤,房彦军,等.沉淀聚合法制备咖啡因分子印迹聚合物微球[J].化工进展,2007,26(6):869-877.

篇10

关键词:ZnO;Er/Yb;上转换发光;空心球

中图分类号:O482.3 文献标识码:A

自从1973年 Auzal 提出稀土掺杂的能量上转换发光以来\[1\],上转换材料被广泛研究.近年来,低维纳米材料掺杂稀土的制备和性质研究也成为热点.制造激光器是上转换材料的重要应用之一\[2\],因此制备高效的上转换发光材料是当今研究重点.稀土元素具有丰富的能级,同时具有很高的上转换效率,可作为上转换材料中的激活剂.

稀土元素 Er 掺杂激光材料的研究越来越受到人们重视.Er 具有丰富的蓝绿光能级,而且部分能级具有较长的寿命\[3\],有很高的上转换效率,是目前研究较多的上转换材料的激活剂.稀土元素 Yb 的激发光谱刚好与 980 nm光相匹配,在吸收能量之后可传递给 Er,是一种极其有效的敏化剂\[4\].一般在加入 Yb 后,可大幅度提高 Er 的发光效率.

上转换发光材料纳米颗粒的制备方法很多,较常见的为共沉淀法.该方法对粒径控制较差,制备出的纳米颗粒一般为粒径较大的实心球颗粒.近年来,出现一些新的方法可以制备纳米空心球颗粒,比较典型的是模板法\[5\].传统的模板法主要是利用各种可控性模板,本文中采用碳球作为核制备空心球.主要过程为:首先得到核—壳型复合结构粒子,然后通过加热、煅烧除去核,进而得到空心球.中国科学院上海硅酸盐所高濂研究员带领的课题组发展了一种简单通用的方法\[6\],即在简便的反应条件下通过控制实验条件获得了空心球结构,他们对空心球结构的形成机理进行了探讨,提出了一种反应机理 “碱腐蚀机制”,认为反应后期中过量的碱的腐蚀作用是形成空心球结构的重要原因.相对于实心球颗粒,空心球颗粒具有更大的比表面积,同时也更接近于晶体结构,从而可以增加粒子的发光强度.相关文献中已有关于空心纳米球发光效果增强的报道,但鲜有不同种空心纳米球之间光学性能比较的报道,而该研究有助于进一步深入研究空心纳米球发光性质.本文采用沉淀法、碱腐蚀法和模板法制备ZnO : Er / Yb纳米粒子,得到不同形貌的颗粒,并对其上转换发光性能进行系统的研究.

1实验方法

为了研究不同形貌纳米颗粒的发光性质,实验中制备了3份相同配比的药品混合物.按摩尔百分比 94(ZnO)∶1(Er2O3)∶5(Yb2O3) 称取总质量为 1 g 的混合物,均匀混合后往其中加入过量硝酸和去离子水,放在磁力加热搅拌器上搅拌 30 min,使溶液混合均匀且反应充分,并蒸发掉过量的硝酸,用以上相同的方法得到3份相同的试剂 1,2,3.

待试剂 1 冷却后,加入过量的氨水,使溶液充分沉淀,最后将沉淀物过滤,多次用高纯度水和无水乙醇洗涤,然后放在真空干燥箱里120 ℃干燥 2 h,最后在马弗炉内高温 800 ℃ 煅烧 3 h,得到样品 1.

待试剂 2 冷却后,加入过量的氨水,使溶液充分沉淀,混入过量无水乙醇,搅拌均匀后放入高压反应釜中.高压反应釜在 180 ℃ 保持 12 h后,自然冷却到室温,得到白色沉淀物用蒸馏水和无水乙醇洗涤,最后产物经离心过滤,并在 120 ℃ 干燥 2 h,得到样品 2.

模板法需先制备胶体碳球,将 1 mol / L 的葡萄糖溶液 20 mL装入 25 mL 不锈钢高压釜内,拧紧后将高压釜在 180 ℃ 的烘箱内放置 12 h,得到胶体碳球.按试剂 3 与乙醇的摩尔比为 1∶20 进行配制前驱物,用盐酸调 pH 值至 2,磁力搅拌 30 min,加入 0.2 g 胶体碳球,继续搅拌 24 h.然后在 40 ℃ 烘箱干燥,最后在 450 ℃ 下进行煅烧,保温 4 h,得到样品 3.

2结果与分析

采用SIEMENS D-5000 X 射线衍射仪对样品进行 X 射线衍射分析(XRD),研究粉末的相成分及其晶粒大小,衍射靶为Cu靶K线辐射,管电流30 mA.

采用JSM 6700F型扫描电子显微镜观察粉末的形貌,并估算颗粒尺寸.

采用发射波长为 978 nm的半导体激光器和F-4500荧光分析仪测量以上几种样品的上转换发光性能.

利用 Scherrer 公式: