土壤修复技术范文

时间:2023-12-04 17:57:03

导语:如何才能写好一篇土壤修复技术,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

土壤修复技术

篇1

    关键词:壤污染;危害;植物修复;修复机理

    1 土壤污染的含义以及危害

    土壤污染是指通过多种途径进入土壤的有毒有害污染物的数量和速度超过了土壤的容纳能力和净化速度, 造成土壤的物理、化学和生物学性质、组成及性状等发生变化, 破坏土壤的自然动态平衡, 从而导致土壤自然功能失调、土壤质量恶化、作物的生长发育受到影响、产品的产量和质量下降, 产生一定的环境效应 , 并可通过食物链对生物和人类构成危害。

    土壤污染的危害包括隐蔽性和滞后性、累积性和不可逆性、不易治理性和后果严重性。

    2 植物修复的研究和机理

    2.1 植物修复的研究 植物修复是利用植物修复有毒重金属、有机物、放射性核素污染土壤、沉积物、地表水、地下水的一项绿色技术,它是一项利用太阳能动力的处理系统。石油烃类作为早期有机污染植物修复的研究对象, 其修复机理已有较清楚的认识。

    2.2 植物修复机理 植物修复技术是一种绿色的修复技术,引起人们极大兴趣和关注,是污染土壤修复技术中发展最快的领域。土壤污染的植物修复机理包括植物提取作用、根际降解作用、植物挥发等作用。

    2.3 植物修复技术的局限性 植物修复不仅是一条绿色的,生态的净化途径,一种符合公众心理需求的新技术 ,而且也是一种经济有效的净化的方案。对环境扰动少,可谓是真正意义上的“绿色修复技术 ”。植物修复技术也具有其局限性, 主要表现在。

    1)目前发现的超富集植物所能累积的元素大多较单一,而土壤污染通常是多元素的复合污染。2)超富集植物生产缓慢,生物量低,而且生长周期长,因此从土壤中提取的污染物的总量有限。3)目前发现的超富集植物几乎都是野生植物,人们对其农艺性状、病虫害防治、育种潜力以及生理学等方面的了解有限,难以优化栽培和培育。4)超富集植物的根系比较浅,只能吸收浅层土壤中的污染物,对较深层土壤中的污染物则无能为力。5)异地引种对生物多样性的威胁 , 也是一个不容忽视的问题。6)植物器官往往会通过腐烂、落叶等途径使重金属污染物重返土壤, 因此富集重金属的超富集植物需收割并作为废弃物妥善处理。

    3 植物修复技术发展前景

    1)植物修复涉及一系列技术,包括不同的植被类型,其作用对象、修复机理和能力各不相同。2)利用放射性同位素标记技术,加强植物体内各种生理生化代谢途径对污染物胁迫下的适应性反应的研究,如光合反应、呼吸代谢、激素应激对污染物胁迫是如何做出适应性改变的,通过这种改变的机制,研究污染物胁迫下植物次生代谢途径反应以及逆境信号传导途径也是理解植物污染物耐性机理的一个重要方面。3)从分子生物水平加强对植物解毒机理等基础理论的研究。植物吸收污染物首先要经过根系, 因此, 应重点围绕根系来探索解毒机制和污染物在植物体内的运输机制, 了解植物、土壤、微生物整个体系下各物质之间的相互作用。4) 植物-微生物联合修复技术可以成为一种很有发展前途的新型生物修复技术, 但由于降解微生物的群落组成和变化动态的了解甚少, 为降解机理的阐明带来了困难, 所以其理论体系、修复机制和修复技术需进一步完善。5)在基础研究方面, 除了筛选耐受性高的植物和高效微生物以外, 如何通过遗传学、分子生物学、基因工程等手段进一步提高生物的活性和环境适应性, 也是今后研究的重点。

    4 结论

    综上所述土壤污染的植物修复技术发展前景十分宽广,并且与其他修复技术相比有许多优点,根据我国国情,也是十分适用于中国的一项值得开发的新技术。随着全球经济的快速发展, 有毒有害污染物通过各种途径进入土壤, 持久性污染物的危害开始显现, 土壤污染面积扩大。土壤污染不但影响农产品产量与品质, 而且涉及大气和水环境质量, 并可通过食物链危害动物和人类的健康, 影响环境安全和社会稳定。发展植物修复技术能有效解决我国目前和未来面临的严峻的环境保护问题, 对我国经济发展和环境保护都有着重大意义。

篇2

关键词:重金属;污染;土壤;修复技术

近几年,土壤污染问题得到社会的关注,社会提高了对重金属污染土壤的重视度,全面调金属在土壤中的污染问题,以免影响人类的健康。重金属对土壤的污染,采取修复技术进行处理,控制重金属对土壤的污染,保障土壤的清洁性。土壤重金属污染中,落实监测修复技术,全方位优化土壤环境。

一、重金属污染土壤的修复技术

重金属土壤污染中,修复技术主要分为3类,分别是化学修复、物理修复和生物修复,对其做如下分析。

1、化学修复

化学淋洗,通过清水、化学试剂的方法,将重金属污染物在土壤中淋洗出来,或者采用气体淋洗。化学淋洗方法中,利用沉淀、吸附的方法,把土壤中的重金属,转换成液相状态,进一步处理重金属,淋洗液是可以重复使用的,所以重点向土壤重金属污染的区域注入化学剂,提高重金属在土壤中的溶解度[1]。化学淋洗方法中,常用的淋洗剂有表面活性剂、螯合剂以及无机淋洗剂,无机酸类型的物质,对土壤中的重金属污染有很明显的作用,例如:土壤中的重金属污染砒,其可采用磷酸清洗,大约清洗6个小时,就可以达到99.9%的去除率。

化学固定,在重金属土壤污染中,加入化学试剂、化学材料,促使重金属之间对土壤的有效性降低,避免重金属迁移到土壤介质内,修复被污染的土壤。化学固定的核心是固定重金属在土壤中的状态,改良土壤状态,研究化学固定在土壤重金属污染中的作用,逐步修复土壤,采取研究试验的方法,在土壤修复中落实化学固定方法。化学固定方法常用在低重金属污染的土壤修复中,重金属很容易根据外界的环境变化而发生变动,所以要灵活的选择修复剂,在改变土壤结构的同时,修复土壤中的重金属污染。

电动修复,此类化学修复方法,是一类新型的手段,其在重金属污染土壤的两侧,增加电压,形成具有电场梯度的电场,重金属污染物会在电迁移、电渗流的作用下,分散到两极处理室内,进而修复土壤结构。电动修复常用于低渗透的土壤内,成本相对比较低,不会对土壤造成任何破坏,体现了电动修复在土壤中的作用[2]。电动修复技术在重金属土壤污染中,最大程度的保护土壤环境,在处理效率方面稍微偏低。

玻璃化技术,利用1400~2000℃的高温环境,熔化土壤中的重金属污染元素,熔化的过程中,重金属有机物会逐渐分解,经热解后,尾气处理系统会收集热解的产物。玻璃熔化物在冷却的过程中,能够包裹重金属污染物,限制重金属迁移,玻璃体的强度比混凝土高10倍,异位玻璃化处理时,配置多种热能,选择直接加热、燃料燃烧的方法,同时配合电浆、电弧的方式,完成导热的过程,原位处理后,将电击棒插入到重金属污染区域,解决重金属污染的问题。玻璃化技术在处理土壤重金属方面的效果非常快,需要大量的能量,增加了重金属污染处理的成本。

2、物理修复

换土法,是物理修复的典型代表,利用清洁土壤,替换有重金属污染的土壤,以便稀释重金属污染的浓度,适当的增加土壤的环境容量,进而达到土壤修复的标准[3]。换土法又可以划分为:换土、客土、翻土等,分析如:(1)换土需要更换有重金属污染的土壤,置换成新土,此类方法可以置换小面积的土壤污染,保护好被替换的土壤,避免出现二次污染;(2)客土,此类方法需要向重金属污染土壤中增加清洁的土壤,覆盖或者混入到污染土壤内,提高土壤自我修复的能力。(3)翻土是针对深层次的土壤进行替换,促使重金属污染物可以分散到深层次,稀释重金属在土壤中的浓度,体现出自然修复的作用。换土法需要将有重金属污染的土壤,与生态系统隔离,避免造成更大的土壤污染。

热脱附法,利用了重金属的物理挥发特性,通过微波、红外线辐射、蒸汽的介质,加热重金属的污染土壤,促使土壤的污染物能够挥发,配置真空负压的方式,收集土壤中挥发出的重金属物质,完成土壤修复。土壤热脱附的过程中,运用不同的温度,如:90~320℃、320~560℃,落实热处理技术,采取预处理、旋转炉热处理、出口气体的三个阶段,实现土壤的修复。

3、生物修复

植物修复,借助植物的吸收、固定、清除等功能,修复土壤,去除土壤中的重金属污染。植物能够降低土壤中重金属的含量,降低重金属在土壤中的毒性。植物修复方面,分为植物稳定、植物提取、植物挥发的方式。例如:植物稳定修复,植物的根部可以吸收、还原土壤中的重金属污染物,植物根部能够减缓重金属的移动能力,提高植物根部的利用效率,避免重金属参与到生态食物链内。植物修复不仅能处理土壤中的重金属,还能保障土壤的稳定与稳固。

微生物修复,其在重金属土壤污染中,虽然不会降解、破坏重金属元素,但是可以改变重金属的性质,避免其在土壤中发生转化、迁移。微生物修复的核心是,利用微生物沉淀、氧化等反应,清除土壤内的重金属污染物。例如:微生物菌根,连接着土壤和重金属,其可改变植物对重金属的吸收,促使植物可以快速将土壤中的重金属转移。

动物修复,土壤中的一些动物,如:蚯蚓,可以吸收重金属污染物。重金属土壤污染区域,可以采取人工干预的方式,向污染区域中投放高富集的动物,促进重金属的吸收,降低重金属在土壤中的毒性[4]。动物修复的研究历史很长,为重金属污染提供了较好的处理条件,根据重金属在土壤中的污染浓度,规划动物修复。动物修复已经可以应用到工业污染土壤处理上,专门处理工业造成的重金属土壤污染,提高土壤的质量水平。

二、重金属污染土壤修复技术建议

针对重金属污染土壤修复技术的应用,提出几点建议,用于提高土壤的修复能力。首先重金属污染土壤修复方面,根据污染的状态,筛选并培育出油量的植物,如:超富集植物,促使植物能够满足重金属污染土壤修复的需求,在重金属污染土壤修复方面,研究超富集植物,要更为高效的采取筛选并培育修复生物,提高土壤修复的经济效益;然后是微生物对土壤修复的建议,菌类对重金属处理的能力很强,培育出富集重金属能力强的菌株,处理好土壤中的重金属元素;第三是研究重金属土壤污染的技术性修复方法,如纳米材料中的纳米磷石灰、零价铁,以此来提高土壤的pH值,改变土壤内重金属的价态表现,逐步降低重金属在土壤中的活性,抑制土壤修复重金属,最大程度的保护土壤环境。土壤重金属污染方面,还要注重修复技术的研究,优化土壤的环境。

结束语:

重金属在土壤环境中,属于比较明显的一类污染源,根据重金属污染土壤的状态,落实土壤修复技术,保护好土壤环境,消除土壤中的重金属污染源。土壤环境中,要按照重金属污染的分析,采用修复技术,不能破坏土壤的结构,还要发挥修复技术的作用,恢复土壤的能力。

参考文献:

[1]罗战祥,揭春生,毛旭东.重金属污染土壤修复技术应用[J].江西化工,2010,02:100-103.

[2]秦樊鑫,魏朝富,李红梅.重金属污染土壤修复技术综述与展望[J].环境科学与技术,2015,S2:199-208.

篇3

Abstract: Soil pollution is one of the important environmental problems. This paper outlines the current physical remediation, chemical remediation and bioremediation Technique as well as their research in soil pollution treatment at home and abroad. Because each one has its good points and limitations, therefore, in order to overcome the disadvantages of a single method, play the strengths of different remediation technology, this paper puts forward several suggestions to comprehensive remediation technology of strengthening the research and development of contaminated soil.

关键词: 土壤污染;重金属;石油烃;持久性有机物(POPs);土壤修复技术

Key words: soil pollution;heavy metal;petroleum hydrocarbon;persistent organic pollutants (POPs);soil remediation technology

中图分类号:X53 文献标识码:A 文章编号:1006-4311(2013)14-0313-02

0 引言

土壤是人类赖以生存的主要自然资源之一,也是人类生态环境的重要组成部分。土壤是由矿物质、动植物残体腐解产生的有机物质、土壤生物、水分和空气等固、液、气三相组成的。土壤介质是非均质的集合体,结构复杂,大量有机、无机胶体和氧化物相互交错、混杂,介质表面上的存在电场和剩余力场,具有巨大的表面能,能与土壤液、气相中的离子、质子、分子相互作用。与此同时,土壤中的生物体系非常丰富,包括微生物区系、微动物区系和动物区系,其中尤以微生物最为活跃。土壤生物使土壤具有生物活性,是土壤形成、养分转化、物质迁移、污染物迁移转化的重要参与者。此外,土壤中的有机和无机的氧化性和还原性物质构成了一个复杂的氧化还原混合体系,土壤在这些物质的共同作用下表现出一定的氧化-还原特性。土壤的这些性质,使土壤具备了一定的自净能力。

虽然土壤自身的净化作用可以减少土壤中污染物的污染程度,但是如果进入土壤中的污染物含量在数量和速度上超过土壤的自净能力,即超过土壤的环境容量,终将会导致土壤的污染。土壤污染在中国已成为一个日益严重的问题。这些污染场地的存在带来了双重问题:一方面是环境和健康风险;另一方面是阻碍了城市建设和地方经济的发展。解决此问题最直接方法是场地修复[1]。

1 土壤修复技术

1.1 几种典型的土壤污染问题

1.1.1 重金属污染 采矿、冶金和化工等工业排放的三废、汽车尾气以及农药和化肥的使用都是土壤重金属的重要来源。按生物化学性质土壤中的重金属可以分为两类:第一类,对作物以及人体有害的元素,如汞、镉、铅及类金属砷等,因此,必须减少这些元素的含量使其不超过环境的容量;第二类,常量下对作物和人体有益而过量时出现危险的元素,如铜、锌、铬、锰及类金属硒等,应控制其含量,使其有益作物生长和人体健康。

1.1.2 石油污染 石油污染是指在石油的开采、炼制、贮运、使用过程中原油和各种石油制品进入环境而造成的污染,土壤中的石油污染物多集中在20cm左右的表层。石油开采过程中产生的落地油和油田的接转站、联合站的油罐、沉降罐、污水罐、隔油池的底泥,炼油厂含油污水处理设施产生的油泥,也是我国油田土壤石油污染的主要来源。污染土壤中石油主要成分为C15-C36的烷烃、多环芳香烃、烯烃、苯系物、酚类等,其中环境优先控制污染物多达30种。

1.1.3 化肥污染 化学肥料在现代化的农业生产中不仅是粮食增产的物质基础,更是农业生产资料的主体。在粮食增产中花费的贡献率在40%-60%,稳定在50%左右,但是化肥中的有毒重金属、有机物以及无机酸类等是造成土壤污染的主要来源。

1.1.4 农药污染 据初步统计,我国至少有l300-1600万hm2耕地受到农药污染。造成土壤农药污染的主要是有机磷和有机氯农药。据2000年国家质检总局数据,全国47.5%的蔬菜农药残留超标,因农残超标被退回的出口农产品金额达74亿美元。

1.2 污染土壤的修复技术 现有污染土壤的修复途径包括:第一,降低污染物在土壤中的浓度;第二,通过固化或钝化作用改变污染物的形态从而降低在环境中的迁移性;第三;从土壤中去除[2]。下面介绍几种土壤的修复技术:

1.2.1 物理修复 治理污染土壤的方法在20世纪80年代以前仅仅限于物理法和化学法。如早期的焚烧法、换土法以及隔离法等都要求高温、人力以及机械设备等,不仅成本很高,最主要的是没有从根本上解决污染问题,这些处理方法仅仅是使污染物发生了转移,对这些污染物还需要进一步的处理,目前这些方法仅仅应用于处理一些突发的紧急事件。而现在出现的一些经济可行的新技术、新工艺等逐渐成为了研究的热点,如:电修复法、土壤气相抽提法及CSP法、热解析法等。

电修复法:将电极插入到受污染的地下水或土壤区域,在直流电的作用下形成直流电场,则土壤中的离子和颗粒物质会沿着电场方向发生定向的电渗析、电泳运动以及电迁移,使土壤空隙中的荷电离子或粒子发生迁移运动;热解析法主要用于修复有机物,它是通过加热升温土壤,收集挥发性污染物进行集中处理;土壤气相抽提法是一种原位修复技术,主要是去除石油污染土壤中挥发性或半挥发性的石油组分;CSP法是用煤和焦炭等含碳的物料当作吸附物,在90℃和强烈搅拌下通过煤表面强力吸附烃基污染物,然后用重选或浮选法将干净的土壤和吸附有烃基化合物的煤分开。

电修复法与传统的土壤修复技术相比具有经济效益高、不破坏现场生态环境以及接触毒物少的优点,更加适用于治理渗透系数低的密质土壤。而热解析法需要消耗大量的能力并且容易破坏土壤中的有机质和结构水,同时还会向空气会发有害蒸汽而造成二次污染。土壤土壤气相抽提法具有可操作性强、处理污染物的范围宽、可由标准设备操作、不破坏土壤结构及可回收利用废物等优点。

1.2.2 生物修复 在减少土壤中有毒有害物质浓度的时候利用生命的代谢活动使污染的土壤恢复到健康状态,这种修复土壤的方式为生物修复。目前有以下三类:

①微生物修复。土壤中的某些微生物对一种或多种污染物具有沉淀、吸收、氧化和还原的作用,微生物修复就是利用这种作用来降低土壤重金属的吸收、修复被污染的土壤和降解复杂的有机物。

影响微生物修复土壤的因素有很多,如温度、水分、pH以及氧气等。每种微生物对生物因子都会有一定的耐受范围,在同一个环境中,多种微生物就比一种微生物的耐受范围宽。如果环境的条件超过了所有定居微生物的耐受范围则微生物的修复作用就会停止。

②植物修复。利用能够富集重金属的植物清除土壤重金属污染的设想是美国科学家Chaney在1983年首次提出的,这就是植物修复技术。污染土的植物修复技术根据植物修复的机理和作用过程可以分为4种基本类型:植物提取、植物挥发、植物稳定和植物降解。

植物提取主要是靠植物吸收土壤中的污染物,这些污染物运输并储存在植物体的地上部分,通过种植和收割植物而达到去除土壤中污染物的目的;植物挥发净化土壤可以分为两种方式:一是土壤中的污染物在植物根系分泌的特殊物质的作用下转化为挥发态,其二是植物将土壤中的污染物吸收到体内在转换为气态物质释放到大气中;植物稳定是指植物通过某种生化过程使污染基质中污染物的流动性降低,生物可利用性下降;植物降解是通过植物根系分泌物与根际微生物联合作用而达到降解污染物的生物化学过程,这种主要是处理复杂的有机物。

以上几种方式中植物提取修复是目前应用最多、最有发展前景的技术;而植物挥发修复技术仅仅限于挥发性物质,将这些污染物转移到大气中有没有环境风险还不确定,因此应当谨慎采用;植物稳定修复仅仅是暂时固定污染物,当土壤环境发生变化时污染物可能将重新被激活而恢复毒性;因此,没有彻底解决土壤污染问题。

③动物修复。动物修复技术主要是通过土壤动物群来修复受污染的土壤,分为直接作用:吸收、转化和分解;间接作用:改善土壤理化性质,提高土壤肥力,促进植物和微生物的生长。动物修复技术包括两方面内容:第一,生长在污染土壤上的植物体和粮食等饲喂动物,通过研究动物的生化变异来研究土壤的污染状况;第二,直接将蚯蚓、线虫类等饲养在污染土壤中进行研究。目前这项技术较多的应用在石油类污染中。

1.2.3 化学修复 化学修复是通过土壤中的吸附、溶解、氧化还原、拮抗、络合螯合或沉淀作用,以降低土壤中污染物的迁移性或生物有效性。常用的有以下几种:

第一,固化:为了控制污染物在土壤中的迁移,一般是将含有重金属的污染土壤与固化剂按照一定的比例进行混合,熟化后形成渗透性较低的固体混合物,从而隔离了污染土壤与外界环境的影响将污染物固封在固化物中;第二,稳定化:将污染物转化为不易溶解、迁移能力小以及毒性小的形式或状态,主要是通过在土壤中加入化学物质改变重金属的形态或价态实现的;第三,萃取法:使用有机溶剂对石油污染的土壤中的原油进行萃取主要是根据相似相溶原理进行的,萃取后对有机相进行分离,回收油用于回炼,而分离的溶剂循环使用。第四,淋洗法:受到污染的土壤经过清水淋洗液或含有化学助剂的水溶液淋洗出污染物。

以上几种方式各有自己的优势和适用范围,因此在处理污染土壤时应当根据实际情况选择适宜的处理方式以达到预期的处理效果。如:固化适用于面积小但是污染严重的土壤;萃取法仅仅适用于受油污浓度较高的土壤;而化学氧化法虽然操作比较复杂但是可以灵活的应用于不同类型污染物的处理中[3]。

2 结语

土壤修复技术是一项涵盖地质学、化学、物理学、材料学、生物学和环境学的多学科综合技术。近年来,对石油污染土壤治理的研究很多,世界各国纷纷制定石油污染土壤的修复与治理计划,并取得很大进展目前土壤重金属污染物修复技术在探索中发展。物理修复、化学修复、生物修复技术本身都有明显的局限性。物理修复技术能量消耗高、需要专门设备、处理成本高、工作量大,只能处理小面积的污染土壤;化学法处理易破坏土壤团粒结构、处理成本高、存在二次污染的风险;生物修复存在过程缓慢、污染物降解的有些中间产物毒性甚至超过其自身,场地条件和环境因素对修复效率的影响大,修复效果不稳定。为克服单一方法的缺点,发挥不同修复技术的长处,研究开发土壤污染综合修复技术尤显重要。重点在不同生物技术的综合利用和开发物理、化学和生物联合修复工艺。

土壤修复技术是一项多学科的综合技术,涵盖了化学、材料学、地质学、物理学、环境学以及生物学等。通过本文我们知道物理修复技术能力消耗高、处理成本大而且需要专门的设备,它只能处理小面积的土壤污染;化学法处理成本高而且存在二次污染的风险;生物修复过程缓慢,场地条件和环境因素对修复效率影响较大,因此修复效果不稳定。为了发挥不同修复技术的长处而克服单一方法的缺点,必须研究和开发综合修复污染土壤技术,其重点是在不同生物技术的综合利用和开发物理、化学和生物联合修复工艺。

参考文献:

[1]谢剑,李发生.中国污染场地的修复与再开发的现状分析.世界银行,美国,2010,9.

篇4

关键词:土壤污染、生物修复、研究进展

前言

土壤重金属污染是指由于人类活动将金属加入到土壤中,致使土壤中重金属明显高于原生含量、并造成生态环境质量恶化的现象。加之重金属离子难移动性,长期滞留性和不可分解性的特点,对土壤生态环境造成了极大破坏,同时食物通过食物链最终进入人体,严重危害人体健康,已成为不可忽视的环境问题。随着我国人民生活水平的提高,生态环境保护日趋受到重视,国家对污染土壤治理和修复的人力,物力的投入逐年增加,土壤污染物的去除以及修复问题,已成为土壤环境研究领域的重要课题。而生物修复技术是近20年发展起来的一项用于污染土壤治理的新技术,同传统处理技术相比具有明显优势,例如其处理成本低,只为焚烧法的1/2-1/3,处理效果好,生化处理后污染物残留量可达到很低水平;对环境影响小,无二次污染,最终产物CO2、H2O和脂肪酸对人体无害,可以就地处理,避免了集输过程的二次污染,节省了处理费用,因而该技术成为最有发展潜力和市场前景的修复技术。

1.污染土壤生物修复的基本原理和特点

土壤生物修复的基本原理是利用土壤中天然的微生物资源或人为投加目的菌株,甚至用构建的特异降解功能菌投加到各污染土壤中,将滞留的污染物快速降解和转化成无害的物质,使土壤恢复其天然功能。由于自然的生物修复过程一般较慢,难于实际应用,因而生物修复技术是工程化在人为促进条件下的生物修复,利用微生物的降解作用,去除土壤中石油烃类及各种有毒有害的有机污染物,降解过程可以通过改变土壤理化条件(温度、湿度、pH值、通气及营养添加等)来完成,也可接种经特殊驯化与构建的工程微生物提高降解速率。

2.污染土壤生物修复技术的种类

目前,微生物修复技术方法主要有3种:原位修复技术、异位修复技术和原位-异位修复技术。

2.1原位修复技术:

原位修复技术是在不破坏土壤基本结构的情况下的微生物修复技术。有投菌法、生物培养法和生物通气法等,主要用于被有机污染物污染的土壤修复。投菌法是直接向受到污染的土壤中接入外源污染物降解菌,同时投加微生物生长所需的营养物质,通过微生物对污染物的降解和代谢达到去除污染物的目的。生物培养法是定期向土壤中投加过氧化氢和营养物,过氧化氢则在代谢过程中作为电子受体,以满足土壤微生物代谢,将污染物彻底分解为CO2和H2O。生物通气法是一种加压氧化的生物降解方法,它是在污染的土壤上打上几眼深井,安装鼓风机和抽真空机,将空气强行排入土壤中,然后抽出,土壤中的挥发性有机物也随之去除。在通入空气时,加入一定量的氨气,可为土壤中的降解菌提供所需要的氮源,提高微生物的活性,增加去除效率。

2.2异位修复技术:

异位修复处理污染土壤时,需要对污染的土壤进行大范围的扰动,主要技术包括预制床技术、生物反应器技术、厌氧处理和常规的堆肥法。预制床技术是在平台上铺上砂子和石子,再铺上15-30cm厚的污染土壤,加入营养液和水,必要时加入表面活性剂,定期翻动充氧,以满足土壤微生物对氧的需要,处理过程中流出的渗滤液,即时回灌于土层,以彻底清除污染物。生物反应器技术是把污染的土壤移到生物反应器,加水混合成泥浆,调节适宣的pH值,同时加入一定量的营养物质和表面活性剂,底部鼓入空气充氧,满足微生物所需氧气的同时,使微生物与污染物充分接触,加速污染物的降解,降解完成后,过滤脱水这种方法处理效果好、速度快,但仅仅适宜于小范围的污染治理。厌氧处理技术适于高浓度有机污染的土壤处理,但处理条件难于控制。常规堆肥法是传统堆肥和生物治理技术的结合,向土壤中掺入枯枝落叶或粪肥,加入石灰调节pH值,人工充氧,依靠其自然存在的微生物使有机物向稳定的腐殖质转化,是一种有机物高温降解的固相过程。上述方法要想获得高的污染去除效率,关键是菌种的驯化和筛选。由于几乎每一种有机污染物或重金属都能找到多种有益的降解微生物。因此,寻找高效污染物降解菌是生物修复技术研究的热点。

3.影响污染土壤生物修复的主要因子

3.1污染物的性质:

重金属污染物在土壤中常以多种形态贮存,不同的化学形态对植物的有效性不同。某种生物可能对某种单一重金属具有较强的修复作用。此外,重金属污染的方式(单一污染或复合污染),污染物浓度的高低也是影响修复效果的重要因素。有机污染物的结构不同,其在土壤中的降解差异也较大。

3.2环境因子:

了解和掌握土壤的水分、营养等供给状况,拟订合适的施肥、灌水、通气等管理方案,补充微生物和植物在对污染物修复过程中的养分和水分消耗,可提高生物修复的效率。一般来说土壤盐度、酸碱度和氧化还原条件与重金属化学形态、生物可利用性及生物活性有密切关系,也是影响生物对重金属污染土壤修复效率的重要环境条件。

3.3生物体本身:

微生物的种类和活性直接影响修复的效果。由于微生物的生物体很小,吸收的金属量较少,难以后续处理,限制了利用微生物进行大面积现场修复的应用,

植物体由于生物量大且易于后续处理,利用植物对金属污染位点进行修复成为解决环境中重金属污染问题的一个很有前景的选择。但由于超积累重金属植物一般生长缓慢,且对重金属存在选择作用,不适于多种重金属复合污染土壤的修复。因此,在选择修复技术时,应根据污染物性质、土壤条件、污染程度、预期修复目标、时间限制、成本及修复技术的适用范围等因素加以综合考虑。

4.发展中存在的问题:

生物修复技术作为近20年发展起来的一项用于污染土壤治理的新技术,虽取得很大进步和成功,但处于实验室或模拟实验阶段的研究结果较多,商业性应用还待开发。此外,由于生物修复效果受到如共存的有毒物质(Co-toxicants)(如重金属)对生物降解作用的抑制;电子受体(营养物)释放的物理;物理因子(如低温)引起的低反应速率;污染物的生物不可利用性;污染物被转化成有毒的代谢产物;污染物分布的不均一性;缺乏具有降解污染物生物化学能力的微生物等因素制约。因此,目前经生物修复处理的污染土壤,其污染物含量还不能完全达到指标的浓度要求。

5.应用前景及建议:

随着生物技术和基因工程技术的发展,土壤生物修复技术研究与应用将不断深入并走向成熟,特别是微生物修复技术、植物生物修复技术和菌根技术的综合运用将为有毒、难降解、有机物污染土壤的修复带来希望。为此,建议今后在生物修复技术的研究和开发方面加强做好以下几项工作:

(1)进一步深入研究植物超积累重金属的机理,超积累效率与土壤中重金属元素的价态、形态及环境因素的关系。(2)加强微生物分解污染物的代谢过程、植物-微生物共存体系的研究以及植物-微生物联合修复对污染物的修复作用与植物种类具有密切关系。

(3)应用现代分子生物学与基因工程技术,使超积累植物的生物学性状(个体大小、生物量、生长速率、生长周期等)进一步改善与提高,培养筛选专一或广谱性的微生物种群(类),并构建高效降解污染物的微生物基因工程菌,提高植物与微生物对污染土壤生物修复的效率。

(4)创造良好的土壤环境,协调土著微生物和外来微生物的关系,使微生物的修复效果达到最佳,并充分发挥生物修复与其他修复技术(如化学修复)的联合修复作用。

(5)尽快建立生物修复过程中污染物的生态化学过程量化数学模型、生态风险及安全评价、监测和管理指标体系。

结论

综上所述,我们不难发现由于土壤重金属来源复杂,土壤中重金属不同形态、不同重金属之间及与其它污染物的相互作用产生各种复合污染物的复杂性增加了对土壤重金属治理和修复难度,且重金属对动植物和人体的危害具有长期性、潜在性和不可逆性,同时进一步恶化了土壤条件,严重制约了我国农业生产的加速发展,所以要更好的防治土壤重金属污染还需要广大科研工作者不懈的努力,研发出更好的效率更高的修复治理技术,同时我们还不应该忘记必须加强企业自身的环保意识,提高企业自我约束能力,始终将防治污染积极治理作为企业工作的头等大事来抓,把企业对环境的污染程度降到最低限度,形成全社会都来重视土壤污染问题的良好环保氛围,逐步改善我们的土壤生态环境。

参考文献:

[1]钱暑强,刘铮.污染土壤修复技术介绍[J].化工进展,2000(4):10-12,20.

[2]陈玉成.土壤污染的生物修复[J].环境科学动态,

1999,(2):7-11.

[3]李凯峰,温青,石汕.污染土壤的生物修复[J].化学工程师,2002,93(6):52-53.

[4]杨国栋.污染土壤微生物修复技术主要研究内容和方法

[5]张春桂,许华夏,姜晴楠.污染土壤生物恢复技术[J].生态学杂志,1997,18(4):52-58.

[6]李法云,臧树良,罗义.污染土壤生物修复枝木研究[J].生态学杂志,2003,22(1):35-39.

[7]滕应,黄昌勇.重金属污染土壤的微生物生态效应及修复研究进展[J].土壤与环境,2002,11(1):85-89.

[8]沈德中.污染环境的生物修复(第一版)[M].北京:化学工业出版社,2001:14,311.

篇5

关键词 土壤;重金属污染;现状;修复技术

中图分类号 X53 文献标识码 A 文章编号 1007-5739(2013)09-0229-03

重金属是指比重大于5.0 g/cm3的金属元素,包括Cu、Zn、Ni、Pb、Cr、Cd、Hg、As、Fe、Mn、Mo、Co等。通常自然界中重金属元素的背景值很低,其暴露不会对周围环境造成影响。但由于工业生产规模扩大,城镇化迅速发展,在农业生产中,污水灌溉和化肥、农药的使用量加大,导致土壤系统中重金属不断累积,明显高于其背景值,从而恶化了生态环境的质量,并通过食物链直接危害人体健康。据统计,全世界平均每年排放Hg约1.5万t,Cu 340万t,Pb 500万t,Mn 1500万t,Ni 100万t[1]。随着重金属污染问题的日益突出,土壤污染防治工作已在“十一五”期间被提上中国环境保护工作的重要议程,并成为第1个“十二五”国家规划。针对上述情况,笔者结合我国土壤重金属污染的现状,对当前土壤重金属污染的修复技术及其作用机理进行分析,并总结其各自的优势与不足,以期为综合治理土壤重金属污染提供参考依据。

1 我国土壤重金属污染现状

我国面临着相当严峻的土壤重金属污染问题。农业部调查数据显示[2],我国约140万hm2的农业用地采用污水灌溉,受到重金属污染的土地面积占污染总面积的64.8%。据有关资料表明,我国重金属污染的农业土地面积为2 500 hm2左右,导致粮食减产逾1 000万t,并造成1 200万t以上的粮食被重金属污染,将各项经济损失进行合计,至少高于200亿元[3]。污染土地中,严重污染面积占8.4%,中度污染面积占9.7%,轻度污染面积占46.7%。Hg 和Cd 的污染面积最大。如上海农田耕层土壤Hg、Cd含量增加了50%,江西大余县污灌引起的Cd污染面积达5 500 hm2,沈阳张士灌区Cd污染面积达2 533 hm2。我国农田土壤污染除Cd、Hg污染外,Pb、As、Cr和Cu的污染也比较严重。以保定市污水灌区为例,其Zn、Cu、Pb、Cd的检出超标率分别达到100.0%、27.5%、50.0%、87.5%[4]。此外,我国菜地土壤重金属污染也较为严重[5-7]。广州市蔬菜地Pb污染最为普遍,As污染次之;重庆近郊蔬菜基地土壤重金属Hg和Cd出现超标,超标率分别为6.7%和36.7%;珠三角地区近40%菜地重金属污染超标,其中10%属严重超标。近年来,由于工业“三废”、机动车废气和生活垃圾等污染物的排放,我国城市土壤普遍受到不同程度的重金属污染,主要污染元素为Pb、Cd、Hg。且城市土壤中大部分重金属污染含量普遍高于郊区农村土壤,并具有明显的人为富集特点[8]。

2 土壤重金属污染修复技术

2.1 物理修复

物理修复是指通过各种物理过程将污染物从土壤中去除或分离的技术,主要包括土壤淋洗法、工程措施法、电热修复法等。

2.1.1 土壤淋洗法。该方法是应用最多、应用最早、技术最成熟的物理修复方法。采用淋洗液(包括无机溶液清洗剂、复合清洗剂、清水、表面活性剂、有机酸及其盐清洗剂、螯合剂等)对土壤进行淋洗,使固相重金属转化为液相,重金属从土壤中转移到废水,再通过对废水进行回收处理,从而实现土壤的修复。Wasay et al[9]研究发现,EDTA和DTPA能有效地去除土壤中Hg以外的重金属元素,同时也提取出大量土壤营养元素。土壤淋洗法简便、成本低、处理量大、见效快,适用于大面积重度污染土壤治理,尤其是轻质土和砂质土。但这种方法在去除重金属的同时,易造成地下水污染及土壤养分流失。因此,既能提取各种形态重金属又不破坏土壤结构的淋洗液,将为该方法修复重金属污染土壤提供广阔的应用前景。

2.1.2 工程措施法。该方法是较为经典和传统的土壤重金属污染修复方法,包括深耕翻土、换土、客土等。深耕翻土与污土混合,或者通过换土和客土等手段,可以使土壤中重金属的含量有效降低,从而降低其对植物的毒害。不同的方式适宜于不同污染程度的土壤,重污染区的土壤宜使用换土和客土方法改良,而轻度污染的土壤则适宜于采用深耕翻土的方法进行修复。工程措施法的优势在于效果稳定和彻底,但是也存在一定的不足,如费用高、工程量大、易降低土壤肥力和破坏土壤结构,还有换出的污染土壤也存在二次污染的隐患,应妥善处理。据报道,对1 hm2面积的污染土壤进行客土治理,每1 m深土体需耗费高达800万~2 400万美元[10]。因此,工程措施不是一种理想的污染土壤修复方法。

2.1.3 电热修复法。该方法利用高频电压产生电磁波,再通过电磁波作用而产生热能,从而促使土壤中挥发性重金属得以分离,实现土壤的修复和改良。目前,该方法适用于修复受Hg或Se等可挥发性重金属污染的土壤。有研究表明,采用该法可使砂性土、黏土、壤土中Hg含量分别从15 000、900、225 mg/kg降至107、112、115 μg/kg,回收的Hg蒸气纯度达99%[11-12]。这种方法虽然操作简单、技术成熟,但能耗大、操作费用高,也会影响土壤有机质和水分含量,引起土壤肥力下降,同时重金属蒸气回收时易对大气造成二次污染。

2.2 化学修复

化学修复也是一种原位修复技术,即通过向重金属污染土壤中添加改良剂,以调节和改变土壤的理化性质,使重金属发生沉淀、吸附、拮抗、离子交换、腐殖化和氧化还原等一系列化学反应,降低其在土壤中的迁移性和被植物所吸收的可能性,从而达到治理和修复污染土壤的目的。常用的改良剂有石灰性物质[13-15]、磷酸盐化合物[16-17]、硅酸盐化合物[18]、金属及其氧化物[19-20]、黏土矿物[21-23]、有机质[24-26]等,其作用机理见表1。这种方法虽然简单易行,但其不足在于它只是改变了重金属在土壤中的存在形态,却没有把重金属从土壤中真正分离出来,如果土壤环境发生变化,容易造成其再度活化,引起“二次污染”。

2.3 生物修复

生物修复是利用生物(主要是微生物、植物和动物)的新陈代谢作用吸收去除土壤中的重金属或使重金属形态转化,降低毒性,净化土壤。该方法是运用生物技术治理污染土壤的一种新方法,具体包括微生物修复法、植物修复法、动物修复法等。由于该方法效果好、易于操作,日益受到人们的重视,已成为污染土壤修复研究的热点。

2.3.1 微生物修复。该方法是通过微生物进行作用,将土壤中重金属元素进行沉淀、转移、吸收、氧化还原等,从而对污染土壤进行修复。如柠檬酸菌能够与Cd形成CdHPO4沉淀;无色杆菌、假单胞菌能够使亚砷酸盐氧化成砷酸盐,从而降低As的转移和毒性;还有些微生物能够把剧毒的甲基汞降解为毒性小、可挥发的单质Hg[3]。尽管微生物修复引起极大重视,但大多数技术仍局限在科研和实验室水平,很少有实例报道。但随着分子生物学的发展,一些如细菌表面展示技术、噬菌体抗体库技术、酵母表面展示技术等[27],有望在治理土壤重金属污染中发挥重要作用。

2.3.2 植物修复。植物修复广义上是指利用植物提取、吸收、分解、转化、固定土壤、沉积物、污泥或地表、地下水中有毒有害污染物技术的总称;狭义上是指利用耐性和超富集植物将污染土壤中的重金属浓度降低到可接受的水平。根据其修复过程和机理,植物修复法可分为以下4种:①根部过滤[28],即通过耐性植物根系对重金属的吸收并保持在根部。常用的植物有水生植物、半水生植物以及个别陆生植物,如向日葵、耐盐野草、宽叶香蒲等。该法多应用于修复水体的重金属污染。②植物稳定[29],即利用植物根际的一些特殊物质,使土壤中污染物转化为相对无害物质的方法。常用的植物有印度芥菜、油菜、杨树、苎麻等。该法多应用于治理废弃矿场和重金属污染严重地区。③植物挥发[30],即利用植物吸收土壤中的重金属,并将其转化为可挥发状态,通过植物叶片等部位挥发出去,以降低土壤中重金属的含量。常用的植物有印度芥菜以及湿地上的一些植物。该法多应用于修复污染土壤中含有挥发性的重金属(如Hg、Se等),但易造成大气污染。④植物提取[31],即利用超富集植物从土壤中吸取重金属,并将其转移、贮存到地上部,然后通过收获,从而达到去除污染土壤中重金属的目的。目前,已发现超富集植物有700种以上,且广泛分布于约50科中,并主要集中在十字花科。该法适用面广,对于修复多种重金属污染土壤均有效。

植物修复法成本低,对环境扰动小,能绿化环境,具有良好的社会、经济、环境综合效益,适用于大规模污染土壤的修复,属于真正意义上的绿色修复技术。但该方法也有一定的缺点:一是超富集植物生长缓慢,常受土壤类型、气候、水分、营养等环境条件限制,导致修复污染较严重土壤的周期长;二是修复过程局限在超富集植物根系所能伸展的范围内;三是超富集植物只能积累某一种重金属,而土壤污染大多是重金属的复合污染;四是超富集植物需收割并作为废弃物妥善处置,将对生物多样性存在一定的威胁。

2.3.3 动物修复。动物修复是利用土壤中的某些低等动物(如蚯蚓等)吸收重金属的特性,在一定程度上降低受污染土壤的重金属比例,以达到修复重金属污染土壤的目的。有研究表明[32],蚯蚓在其耐受浓度范围内,对重金属的富集量随着重金属浓度的增加而增加,同时对重金属的选择性受其体内酶的影响。但这种修复方法不足在于低等动物吸收重金属后可能再次释放到土壤中,造成二次污染。

2.4 农业生态修复

农业生态修复是近几年新兴的修复技术,它是通过改变耕作制度、调整作物品种、调控土壤化学环境(包括土壤pH值、水分、氧化还原电位等)、改变土地利用类型、增施有机肥(堆肥、厩肥、植物秸秆等)、控施化肥等措施,以减轻重金属对土壤的危害[33]。我国在这一方面研究较多[34-36],并取得了一定的成效。这种方法具有投资少、无副作用等特点,适用于中轻度污染土壤,但也存在修复周期较长、效果不太显著等不利因素。

3 结语

综上所述,目前重金属污染土壤的修复技术很多,但就单一技术来看,任何一种修复技术都有其局限性,难以达到预期效果,进而无法大力推广。而且土壤重金属污染修复作为一项系统工程,不仅需要土壤学、植物生理学、遗传学、环境工程学、分子生物学等多个学科的共同努力,还需要多种修复技术的综合应用,即将物理修复、化学修复、生物修复科学地结合起来,取长补短,才能达到更好的效果。

4 参考文献

[1] 李俊莉,宋华明.土壤理化性质对重金属行为的影响分析[J].环境科学动态,2003(1):24-26.

[2] 崔德杰,张玉龙.土壤重金属污染现状与修复技术研究[J].土壤通报,2004,35(3):366-370.

[3] 骆永明,滕应.我国土壤污染退化状况及防治对策[J].土壤,2006,38(5):505-508.

[4] 谢建治,刘树庆,王立敏,等.保定市郊土壤重金属污染现状调查及其评价[J].河北农业大学学报,2002,25(1):38-41.

[5] 茹淑华,孙世友,王凌,等.蔬菜重金属污染现状、污染来源及防治措施[J].河北农业科学,2006,10(3):88-91.

[6] 唐书源,李传义,张鹏程,等.重庆蔬菜的重金属污染调查[J].安全与环境学报,2003,3(6):74- 75.

[7] 魏秀国,何江华,陈俊坚,等.广州市蔬菜地土壤重金属污染状况调查及评价[J].土壤与环境,2002,11(3):252-254.

[8] 和莉莉,李冬梅,吴钢.我国城市土壤重金属污染研究现状和展望[J].土壤通报,2008,39(5):1210-1216.

[9] WASAY S A,BARRINGTON S,TOKUNAGA anic acids for the in situ remediation of soils polluted by heavy metals:Soil flushing in columns[J].Water,Air,and Soil Pollution,2001(3):301- 314.

[10] CHANEY R L,LI Y M,ANGLE J S,et al.Phytoremediation of soil metals[J].Current Opinion in Biotechnology,1997(8):279-284.

[11] KAWACHI T,KUBO H.Model experimental study on the migration behavior of heavy metals in electric to kinetic remediation process for contaminated soil[J].Soil Sci Plant Nutr,1999,45(2):259-268.

[12] 刘磊,肖艳波.土壤重金属污染治理与修复方法研究进展[J].长春工程学院学报:自然科学版,2009,10(1):73-78.

[13] CHEN Z S,LEE G J,LIU J C.The effects of chemical remediation treatments on the extractability and speciation of cadmium and lead in contaminated soils[J].Chemosphere,2000,41(1-2):235-242.

[14] 廖敏,黄昌勇,谢正苗.施加石灰降低不同母质土壤中镉毒性机理研究[J].农业环境保护,1998,17(3):101-103.

[15] 陈宏,陈玉成,杨学春.石灰对土壤中Hg、Cd、Pb的植物可利用性的调控研究[J].农业环境科学学报,2003,22(5):549-552.

[16] SEAMAN J C,AREY J S,BERTSCH P M.Immobilization of nickel and other metals in contaminated sediments by hydroxyapatite addition[J].J Environ Qual,2001,30(2):460-469.

[17] 周世伟,徐明岗.磷酸盐修复重金属污染土壤的研究进展[J].生态学报,2007,27(7):3043- 3050.

[18] DA CUNHA K P V,DO NASCIMENTO C W A,DA SILVA A J.Silicon alleviates the toxicity of cadmium and zinc for maize(Zea mays L)grown on a contaminated soil[J].Journal of Plant Nutrition and Soil Science,2008,171(6):849-853.

[19] GRAFE M,NACHTEGAAL M,SPARKS D L.Formation of metal-arsenate precipitates at the goethite-water interface[J].Environmental Science and Technology,2004,38(24):6561-6570.

[20] KUMPIENE J,ORE S,RENELLA G,et al.Assessment of zerovalent iron for stabilization of chromium,copper,and arsenic in soil[J].Environ-mental Pollution,2006,144(1):62-69.

[21] 娄燕宏,诸葛玉平,顾继光,等.粘土矿物修复土壤重金属污染的研究进展[J].山东农业科学,2008(2):68-72.

[22] 柯家骏,陈淑民,胡向福,等.膨润土粘土矿物吸附重金属的研究[J].重庆环境科学,1993,15(1):4-6.

[23] MAHABADI A A,HAJABBASI M A,KHADEMI H,et al.Soil cadmium stabilization using an Iranian natural zeolite[J].Geoderma,2007(137):388-393.

[24] VACA-PAULIN R,ESTELLER-ALBERICH MV,LUGO-DE LA FUENTE J,et al.Effect of sewage sludge or compost on the sorption and distribution of copper and cadmium in soil[J].Waste Management,2006, 26(1):71-81.

[25] 陈世俭,胡霭堂.有机物质种类对污染土壤铜形态及活性的影响[J].土壤通报,2001,32(1):38-40.

[26] 华珞,陈世宝,白玲玉,等.有机肥对镉锌污染土壤的改良效应[J].农业环境保护,1998,17(2):55-59,62.

[27] 李宏,江澜.土壤重金属污染的微生物修复研究进展[J].贵州农业科学,2009,37(7):72-74.

[28] DUSHENKOV S,VASUDEV D,KAPULNIK Y,et al.Removal of uranium from water using terrestrial plants[J].Environ Sci Technol,1997, 31(12):3468-3474.

[29] 敖子强,熊继海,王顺发,等.植物稳定技术在金属矿山废弃地修复中的利用[J].广东农业科学,2011(20):139-141,147.

[30] MITCH L,NICOLE P,DEBORAH D,et al.Zinc phytoextraction in Thlaspi caerulescens[J].International Journal of Phytoremediation,2001, 3(1):129-144.

[31] 丁华,吴景贵.土壤重金属污染及修复研究现状[J].安徽农业科学,2011,39(13):7665-7666,7756.

[32] 伏小勇,秦赏,杨柳,等.蚯蚓对土壤中重金属的富集作用研究[J].农业环境科学学报,2009,28(1):78-83.

[33] 刘候俊,韩晓日,李军,等.土壤重金属污染现状与修复[J].环境保护与循环经济,2012(7):4-8.

[34] 蒋玉根.农艺措施对降低污染土壤重金属活性的影响[J].土壤,2002, 34(3):145-147.

篇6

[关键字]:污染土壤;修复技术;研究现状;发展趋势

土壤污染指由于人类活动产生的有害、有毒物质进入土壤,积累到一定程度,超过土壤本身的自净能力,导致土壤形状和质量变化,构成对农作物和人体的影响和危害的现象。

近年来,随着我国经济的迅猛发展,国民生活水平得到普遍提高,但同时也给环境带来了巨大的灾难。工业废水、废渣的随意排放,企业长期生产和运输等过程中不可避免的会发生跑、冒、滴、漏等现象以及农业活动中化肥和农药的过量或不合理施用、污水灌溉等过程,都可能给场地带来严重的污染。

随着城市化进程的加速,许多原来位于城区的污染企业从城市中心迁出,许多原本属于农用地的土地需要再开发利用,大量的污染场地需要进行修复。这就要求我们要积极寻找切实、有效的土壤污染修复方法,提高土壤污染修复技术水平。

2016年5月国务院出台的《土壤污染防治行动计划》也将土壤修妥魑一项大事件,保护好土壤环境,加强污染防治,推动生态文明建设,这对于人类的健康和社会的可持续发展具有重要意义。

1、土壤中的主要污染物

1.1重金属

有些工业企业随意的排放未经处理的废水、废渣,使其中含有的不易在土壤中降解的重金属如铅、汞、镉、锡等在土壤中沉降、扩散,严重破坏了土壤的环境。再加上农民对农作物喷洒的超浓度的农药和使用的化肥,使我国土壤遭受了严重的迫害。

1.2有机化合物

在农作物的种植过程中,农民经常喷洒农药来杀死啃食农作物的害虫,但是超浓度的农药含有对土壤危害的有机化合物,造成土壤有机化合物污染,我国在早期曾广泛使用过的滴滴涕、六氯苯、氯丹等,这些农药均含有高残留的不易降解的有机化合物。除此之外,一些工厂如化工厂、涂料厂等的日常运行产生的废水废渣中由于含有很多有害的有机污染物无法自动降解也会污染土地,破坏土层结构。

有机化合物具有难溶解、毒性大的特点,它一旦进入土壤之后,就逐渐在土壤中积累、沉降下来,长期污染土壤和地下水,对农作物及人体造成严重危害。

2、污染土壤修复技术研究现状分析

环境保护部和国土资源部联合《全国土壤污染状况调查公报》,调查结果显示,全国土壤总的点位超标率为16.1%,土壤环境状况总体不容乐观,部分地区土壤污染较重。南方土壤污染重于北方,长三角、珠三角、东北老工业基地等部分区域土壤污染问题较为突出。

由于受地形及产业分布的影响,我国各地土壤污染的程度、污染源也不完全相同。有些工业集聚区,土壤污染较为严重,且污染地块密集,多为重金属污染或者有机物污染,也有些无机有机复合污染;有些农用地受污染情况较轻,但污染地块面积较大,多为重金属、有机氯农药、有机磷农药污染,也有重金属和有机物的复合污染。因此,这就要求我们要对具体地区的土壤污染现状进行具体分析,选择较为合适的修复方法以便更好地改善土壤质量。

在现阶段,常用的污染土壤修复技术如下:

2.1物理-化学修复技术。

这种修复技术包括热处理技术、土壤淋洗技术、土壤氧化-还原技术、电动力学法技术等。

2.1.1热处理技术。

这种技术操作比较简单,主要是通过热交换,对污染物质和介质一同加热,根据混合组分的熔点不同,通过挥发作用达到分离有机污染物的目的。这种技术包括两种,一种是低温操作,一种是高温操作。这种技术是一种简单的修复技术,目前,在工厂附近的土壤污染修复中被广泛使用。这种热处理技术对于土壤中那些易挥发组分和残留的农业以及半挥发的污染成分效果较好,但是对于土壤中一些重金属的污染则不适用。

2.1.2土壤淋洗技术。

土壤淋洗技术能够有效地促进土壤中污染物的溶解,它的原理是利用水压将清洗液有效地注入到被污染的土壤中,并根据自身特性,提取土壤中含有的污染液体,对其进行分离处理,从而达到修复的目的。这种技术主要采用一些化学剂如络合剂、氧化剂等为淋洗剂,由于不同淋洗剂的性质不同,对土壤中污染成分的作用也不同,因此,选择合适的淋洗剂对土壤的修复至关重要。在进行淋洗剂的选择时,不仅要考虑淋洗剂和污染物的作用,还要充分考虑到淋洗剂对土壤结构的作用,避免对土壤结构造成破坏,以免引起二次污染。

2.1.3土壤氧化-还原技术。

顾名思义,这种技术需要氧化剂或者还原剂,并将其投入到所要修复的土壤中,将其与土壤中的污染成分发生氧化还原作用,从而分解其中的污染物,达到净化的目的,这种方法还有稳定和改良土壤的作用。常见的氧化剂包括高锰酸盐、过氧化氢、芬顿试剂、过硫酸盐和臭氧。常见的还原剂包括硫化氢、连二亚硫酸钠、亚硫酸氢钠、硫酸亚铁、多硫化钙、二价铁、零价铁等。现阶段,对于这种氧化还原修复主要是针对对氧化或者还原比较敏感的污染物。

2.1.4电动力学法技术。

这种技术主要利用的是电化学原理,在待修复的土壤中插入电极,通过电极导入低强度的直流电,从而将土壤中的污染物清除。在通电后,处在阳极附近的酸物质会在毛细孔里移动,将土壤中的污染物释放在毛细孔中的液体里,毛细孔中的水会通过电渗透的方式移动到土壤表层进而被吸收,从而被消除。这种方法能够打破土壤中金属和土壤之间的化学键,通电时间越长,去除效果越好。但是对于导电性不好的土壤不宜采用此法进行土壤修复。

2.2生物修复技术。

生物修复技术是一种新兴技术,主要是采用现代的先进生物技术将土壤中的污染物进行去除分解,从而净化土壤的技术。这种技术根据主体的不同,主要包括三方面:微生物修复技术、植物修复技术和动物修复技术。其中动物修复技术在国外已经研究多年,国内研究还处于起步阶段。生物修复技术具有高效、快速、费用低的特点,但是由于生物技术的研究还处于起步阶段,目前主要用于衍生物及烃类的有机分解和去除。

2.2.1微生物修复技术。

微生物修复技术是采用微生物为主体,利用微生物的代谢活动将其中的污染物分解为水、二氧化碳以及其他无害的小分子物质。目前,这种修复技术主要用于石油泄漏以及其他有机污染物的污染处理中。但是由于微生物代谢活动有限,并不能很好地将所有污染物都分解掉,因而还需要进一步的研究完善。

2.2.2植物修复技术。

植物修复技术主要是利用植物的吸收和转化功能,在污染土地上繁殖非食用的种子、种植经济作物,实现对残留农药或者重金属等的吸收处理,从而净化土壤。土壤植物修复技术成本低,在修复污染土壤的同r还能净化周围空气,但是土壤植物修复过程相比其他方法过程缓慢、周期长,土壤植物修复技术对土壤肥力、气候、水分、盐度等自然条件有一定的要求。该技术理论体系、修复机理和修复工艺还需要在不断的实践中完善、优化。

3、污染土壤修复技术未来发展趋势

由于土壤污染问题日益得到重视,对土壤修复技术的需求也越来越大,目前我国土壤污染修复技术正在多元化稳步发展并取得多项研究成果。然而有的方法虽然在土壤污染修复方面大有成效,却不宜大范围推广实施。比如物理化学修复技术,它的推广实施不仅会消耗巨大的资金,还可能会导致土壤结构破坏、土壤肥力流失甚至产生土壤二次污染。相较于物理化学修复技术,微生物修复技术和植物修复技术更符合经济效益,且适合大范围污染地块使用。微生物几乎可以降解所有的有机物,且对土壤无害,是一项具有前景发展的土壤污染修复技术。植物修复技术不仅绿色廉价,且新型高效。该技术的推广,在修复有机物污染方面将发挥重要作用,《土壤污染防治行动计划》中也对农田修复,提出“对于轻度及中度污染耕地,采用农艺调控、替代种植等措施,降低农产品超标风险;对于重度污染耕地,采用退耕还林还草或种植结构调整”。未来,在污染土壤修复技术方面的发展趋势如下:

3.1发展综合型的土壤修复技术。在上文中,我们提及到很多土壤修复技术,但是每种技术都是双面性,有其自身的局限性,在推广的过程中受到限制。在修复技术研究过程中,我们可以将单一的修复方法综合使用,采取每一方法的可用之处,相互之间取长补短,将会收到不一样的效果。

3.2充分考虑经济效益与生态效益。现在我们提倡经济又好又快发展,走科学发展之路。但是,在大力发展经济的同时,我们还要兼顾生态环境的发展,经济的发展不应以牺牲生态文明为代价。因此,在研究土壤修复技术过程中,我们要多考虑危害较小的微生物修复技术和植物修复技术,加快生物修复技术的研究与实践,现实经济效益与生态效益双赢。

3.3借鉴、改进其他行业先进技术。目前水、大气治理技术日趋成熟,土壤修复技术可以借鉴其他行业的修复技术,在此基础上,实现自我创新。现在基因工程发展趋于优势,我们可以有效地利用基因重组技术寻找、驯化更多的抗逆性强、降解能力强的重金属富集植物,来修复土壤中的重金属的污染。

3.4异位修复向原位修复转型。异位修复分为异位原地与异位异地修复,无论哪种方式均可能在挖掘、转运、堆放、净化过程中带来二次污染。异位修复不仅处理成本高,而且许多无法开挖的地块很难推广异位修复方法。因而,发展多种原位修复技术以满足不同污染场地修复的需求是未来场地修复的发展方向。

“纸上得来终觉浅,绝知此事要躬行”,实践是检验真理的途径。土壤污染修复技术的方法多样,具体哪一样适合推广,哪一样符合实际,需要我们深入实践中去检验。只有采用绿色的、科学的、有效的修复技术,才能提高经济效益,促进生态环境的健康发展。

[参考文献]:

[1]谌伟艳,沈柱华,赵洁丽.污染场地土壤修复与管理研究.资源节约与环保,2015(5):152-152.

篇7

摘 要:一直以来,治理土壤中的重金属污染都是全球各国亟待解决的一项难题。当前我国土壤重金属污染问题相对较为严峻,且引发这一问题的因素相对也比较复杂。而此种污染问题的出现,不仅会对生物的生长带来极大的危害,还会降低作物的总产量,并对人的生命健康造成极大的威胁。对此,本文以土壤的重金属污染为立足点,通过对我国土壤污染现状和危害的分析,从而就缓解和解决土壤污染问题的策略展开研究。

关键词:土壤重金属污染;危害;修复技术

中图分类号:X53 文献标识码:A DOI:10.11974/nyyjs.20170230224

就土壤本身来看,其之所以会产生重金属污染,主要是因为人类在活动期间将重金属物质带入到土壤内部,使得土壤内的重金属含量增多,破坏生态环境。随着农村人口数量的增长和农业生产过程中对化肥和农药使用量的增加,导致土壤中有害物含量增多,自身生态结构和环境质量被破坏。其中,重金属是对土壤生态结构影响最大的一种元素。为了重塑土壤生态结构,提高土壤内部环境质量,解决土壤存在的重金属污染问题势在必行。

1 土壤污染现状和危害

1.1 重金属污染现状

在2005年到2013年的12月,我国土地管理局第一次开展了有关全国土壤污染情况的调查研究。按照我国在2014年由国土资源部和环保部共同的有关《全国土壤污染状况调查公报》所公示的调查结果看:当前我国土壤生态环境的状况整体来讲十分严峻,特别是重金属污染问题,更是极为严重。在我国一些废弃工矿所在区域的周边位置,土壤的重金属污染问题十分的突出。其中,我国有16.1%的土壤,重金属污染总超标率相对较重,11.2%超标率属于轻微范围;而轻度超标率和中度以上的超标率分别达到了2.3%和2.6%。

1.2 重金属污染的危害

同其他土壤污染类型相比,重金属污染本身的隐匿性、长期性、不可逆性较强,且这种污染问题一旦出现,则很难消逝。一旦重金属污染存在于土壤中,不仅很难被移动,还会长时间滞留在其产生区域,不断污染周边土壤。与此同时,重金属污染物不仅无法被微生物有效降解,还会借助植物、水等介质,被动植物所吸收,而后进入到人类食物链之中,对人体健康a生威胁。从具体的情况来看,重金属污染主要存在以下几种危害类型:对作物生产造成不利影响。因为重金属污染物在土壤与作物系统迁移的过程中,会对作物正常的生长发育和生理生化产生直接影响,从而降低作物的品质与产量。例如,镉属于对植物生长危害性较大的重金属,如果土壤镉含量较高,植物叶片上的叶绿素结构就会被破坏,根系生长被抑制,阻碍根系吸收土壤中的养分与水分,降低产量;会对人体生命健康带去影响。土壤中存在的重金属污染物可以借助食物链对人体健康造成危害。例如,汞进入人体后被直接沉入到肝脏中,破坏大脑的视神经。

2 解决重金属污染问题的方法

2.1 工程治理法

所谓的工程治理法,是通过利用化学或者是物理学中的相关原理,对土壤中的重金属污染问题展开有效治理的一种方法。现阶段,工程治理法主要包括了热处理法、淋洗法与电解法等[1]。在众多重金属污染处理方法中的处理效果更好、处理工艺的稳定性更高。但该项方法处理过程和处理工艺复杂,需要花费的成本高,且经过该方法处理后的土壤,其本身的肥力会有所降低。

2.2 生物治理法

该方法指的是借助生物在生长过程中的一些习性,来达到改良、抑制、适应重金属污染的目的。在该项治理方法中最为常见的就是微生物、植物和动物治理法。生物治理是利用鼠类和蚯蚓等动物能够吸收重金属的特性;植物治理则是利用植物积累到一定程度可以清除重金属污染,对重金属具有忍耐力的特质。工程治理法相比,生物治理方式投资相对较小、管理便利、对环境破坏性小等优势,但治理时间较长[2]。

2.3 化学治理法

化学治理法是通过向已经被重金属污染的土壤中投入适量的抑制剂和改良剂等其他化学物质的方式,增加有机质、阳离子等在土壤中代换量和粘粒含量,来改变被污染土壤电导、Eh、pH等其他理化性质,使重金属可以通过还原、氧化、拮抗、吸附、沉淀、抑制等化学作用被有效消除[3]。

3 结束语

在社会经济发展水平不断提升,重金属对土壤污染程度逐渐加深的今天,对重金属污染现状,以及其可能会造成的危害等问题展开细致的分析与研究,并利用工程、生物、化学等方式来有效的缓解和治理土壤当前存在的重金属严重污染问题,能够对我国土壤的生态环境和内部结构进行重构,为我国城市发展和社会建设提供充足的土壤资源。

参考文献

[1]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展[J].土壤通报,2004(3):366-370.

篇8

湖北省大冶市土壤重金属污染整体水平较高,特别是镍、铜、砷等的污染,超标范围较大,污染程度较高,且污染主要集中在冶炼及开采活动较多的区域。在箕铺镇东角山村、金牛镇下边村选取具有代表性的两块修复示范用地,对解决大冶市重金属污染问题,探索经济、合理、绿色的修复技术和方法有重要意义。

本研究针对大冶市存在的大范围重金属污染农田,选取位于大箕铺镇东角山村、金牛镇下边村两块具有代表意义的农田共400亩,进行修复示范工程,拟找到一条适合当地社会经济水平的修复重金属污染农田技术。调查发现,大箕铺镇东角山村重金属污染地块中铜、镍的含量超出土壤环境质量三级标准(GB15618-1995),分别为589.00mg/kg、204.30 mg/kg,金牛镇下边村重金属污染地块中砷、镍的含量超出土壤环境质量三级标准(GB15618-1995),分别为36.93mg/kg、259.00 mg/kg。

本示范工程拟采取植物-化学联合修复方法,重点对大箕铺镇东角山村地块的铜、镍和金牛镇下边村地块的砷、镍进行修复,土壤修复深度为0.5m。

1、工程示范目标

将被重金属污染的区域恢复农田功能,土壤重金属的浓度修复到标准限值,保证农产品安全生产;通过此修复示范工程,探索得到一种适合当地社会经济水平及实际状况的并可用于大面积重金属污染土壤修复的理念和方法。

综合考虑各目标污染物国家标准、风险计算结果和土壤背景值之间的差异及我国目前土壤修复技术和经济的发展水平现状,本项目的农田土壤修复的标准建议采用土壤环境质量三级标准(GB15618-1995),镍、砷、铜的修复标准分别为200mg/kg、30mg/kg、400mg/kg。

1.1 示范目标

被重金属污染的农用地通过连续种植超富集植物对重金属提取,将其修复到土壤环境质量三级标准(GB15618-1995)的水平。在最短的时间内最大程度地去除土壤中的重金属(铜,砷和镍),对于修复过程中田地上是否能够产出经济作物以及经济作物的用途则作为第二优先级考虑。

1.2修复措施

选择和种植各种适合当地生长的重金属超富集植物,将土壤中的重金属富集到植物内。然后通过植物的收割,将重金属从土壤中去除。收割的生物质进入后续处理过程。辅助措施包括改良土壤的营养结构、pH、氧化还原电位等,通过在土壤中加入温和的螯合化学添加剂等方法,来促进重金属超富集植物对土壤中重金属的吸收。

1.3 种植计划

种植面积:400亩;

主要针对提取重金属:砷、镍、铜;

超富集植物:甘薯高山薯Ipooea douarrei;

种植方式:单种,块茎繁殖;

种植密度:2000株/亩;

土壤改良的方法:配合灌溉,亩施磷灰石100公斤和EDTA+CA混合螯合剂500升;;

收获方式:人工+机械收割。

1.4修复目标:土壤环境质量三级标准(GB15618-1995)

1.5目标可达性分析

目前有效的土壤重金属污染修复主要有两种途径。一种是使重金属在土壤中产生沉淀、吸附等一系列反应,改变重金属在土壤中的存在状态,降低其生物有效性,使其钝化,脱离食物链,减小其毒性;另一种是找寻重金属超累积植物,利用植物吸收,降低土壤中重金属含量并辅以一些物理化学手段,例如添加浸提剂将土壤中大部分重金属提取出来再进行集中处理,从而达到修复土壤重金属污染的目的。重金属污染土壤的植物修复技术是一种新兴的绿色生物技术,其在一定意义上是污水生物净化和土地处理工程技术的延伸,代表了重金属污染土壤修复技术创新方向。

植物提取利用植物根系对目标污染重金属元素的吸收,并经过植物体内一系列复杂的生理生化过程,将重金属元素从根部转运至植物地上部分,再进行收割处理,从而把重金属从污染土壤中去除。该技术适用于大面积推广修复重金属污染场地,而且具有成本低廉,不造成二次污染和美化环境的多重效益。

2、示范工程内容

2. 1 植物修复工程前期工程建设

(1)土地平整和覆土

对土壤进行整平和覆土。覆土所用土壤包括心土和表土,心土直接采集于周边山地,表土则来源于水源地被剥离的上层土壤。

(2)修复示范工程种植区的水土保持和边坡处理

对于不能覆盖植被的基础设施,如田埂路,需要人工压实,以防降雨冲刷,对于不同种植分区之间的主干路和支干路不能覆盖植被,可考虑使用压实机对其进行压实硬化,并在其表面铺设碎沙石。对于地势较低且不远处有地势较高尾矿库的修复区域 ,因此需要对修复区域周边进行边坡围墙处理。

(3)修复示范工程种植区的排灌系统

对于地势较低,且周边水塘存在污染隐患,优先考虑喷灌技术。项目示范用地附近没有高位水源的自然落差,喷灌用水需要经水泵增压,需要考虑配套的设备包括:动力机、水泵、输水管道和喷头等。

(4)修复示范工程种植区的建筑和附属设施

拟采用向当地农民租用的方式租赁办公、居住类房屋,科研等活动转移至金湖示范区进行。并购置科研、办公和实验设备,配套的附属机械设备和设施以租用为主,专用型农用机械如收割机以购置为主。

(5)供电系统

供电电源用附近村庄的变电站或工厂引线接电,电缆长度、位置及配电设备需要根据实际情况确定,由当地供电部门实施接入。

2.2 植物修复

针对此示范区域耕地及其污染特点,对面积为400亩的示范区主要种植超富集植物,配合化学药剂,使土壤中重金属尽快释放,并被超富集植物提取出来,达到修复目标。

3、工程效益分析

3.1 环境效益

通过对土壤修复示范区内重金属污染土壤的修复,可清除土壤中的重金属污染,大箕铺镇东角山村土壤中镍、铜消减量为4.30mg/kg和189mg/kg,金牛镇下边村土壤中镍、砷的消减量为59mg/kg和6.93mg/kg。同时可阻断土壤重金属对周边环境的影响,如地下水、地表水、大气环境污染等,使整个示范区环境质量改善。本次修复过程采用绿色修复的原则,保持全过程的环境友好,减少修复过程的二次污染,且节能、安全、可循环和具有可持续性。修复中确定的超富集植物适合大冶当地的气候环境,不会对当地的自然生态环境造成负面影响。植物修复过程也能够增加土壤中有机质含量和土壤肥力,增加农产品的产量和品质。

3.2 经济效益

通过项目建设,修复区可以改善农田面积400亩,土壤质量达到土壤环境质量三级标准(GB15618-1995)。修复前的农田撂为荒地,修复后可正常种植农作物,亩效益和粮食效应的增加率为100%,农业总产值增加42万斤,每斤按国家规定的最低收购价0.95元计算,每年纯收入增加到39.9万元。另外,在工程修复期间田地上生长的超富集植物可卖给当地提炼厂提炼金属,按每亩2000公斤,每斤0.05元计算,每年400亩地纯收入增加8.00万元。植物产品也可提供给当地的生物能源企业提炼生物柴油或生物乙醇用作清洁能源,每年纯收入至少增加2万元。玉米、高粱等经济作物虽然是低累积作物,总体上也能吸收一部分目标重金属,其秸秆可以收集碾碎后产生燃气或用于秸秆发电,减少当地电耗压力。工程进行的过程中采取边修复边生产相结合的方式,保证当地农民具有一定的经济收入。

篇9

关键词:矿区;重金属污染;修复;土壤

中图分类号:F124.5 文献标志码:A 文章编号:1673-291X(2013)18-0286-02

引言

中国是世界上重要的重金属矿区之一,分布着大量的优质重金属矿,丰富的重金属资源为中国国民经济的健康稳定发展提供了资源保障。然而,长期以来在重金属矿区开采的过程中,由于开采技术、资金缺乏及管理方面等原因,对矿区周围的土壤与环境造成了严重影响,从而引发了大量的生态环境问题。

矿业废弃地一般都含有大量的重金属,这些废弃地以尾矿和废弃的低品位矿石的重金属含量最高。重金属通过地表生物地球化学作用释放和迁移到土壤及河流中,而这些受重金属污染的水又通过灌溉方式进入农田,并通过食物链进入人体,从而对矿区附近居民的健康和生存环境构成严重威胁 [1]。通常情况下,有色金属矿区附近的土壤中,铅、铜、锌含量分别为正常土壤中含量的 10~40倍、5~200倍、5~10 倍 [2]。

一、矿区土壤重金属污染现状

铅锌矿区重金属污染现状越来越严重,已经损害了人民的群众健康。如在20世纪60年代,日本曾发生的第二公害病―骨痛病,便是由于食用被镉废水污染了土壤生产的“镉米”所致。王新等对辽宁省铁岭柴河Pb―Zn矿区的土壤一岩石界面的重金属行为特性进行了研究,结果表明该矿区土壤Cd、Pb、Zn元素含量分别是当地背景含量的11倍、4.5倍、3倍,大大超过了当地背景含量水平;Cd作为制约当地农业用地的限制性元素,超过国家土壤环境质量标准5.8倍;矿区附近玉米中Pb、Cd含量分别是国家食品卫生标准16~21倍、5.7~9.7倍[3]。湖南省由于有色金属矿山开采引起的Pb、Cd、Hg、As等重金属污染,受污染面积达2.8万km2,占全省总面积的13%。部分地区土壤中Pb、Cd、Hg、As高出正常值数倍至数百倍,从而出现了地方病。王莹以上虞某废弃铅锌尾矿山为研究对象,研究了土壤中重金属含量及污染状况,结果表明:尾矿山周边各采样点土壤 As、Zn、Pb 和 Cu 平均含量为 328 mg.kg-1、1 760 mg.kg-1、2 708 mg.kg-1和 287 mg.kg-1,均超过土壤环境背景值,各元素含量变异强度为:As>Pb>Cu>Zn[4]。

二、矿区土壤重金属修复技术

重金属是农业环境和农产品的一个重要污染物质。对土壤重金属污染的修复技术常用的有物理修复和化学修复。物理修复主要包括客土、换土和深耕翻土等措施。通过客土、换土和深耕翻土与污土混合,可以降低土壤中重金属的含量,减少重金属对土壤―植物系统产生的毒害。化学修复就是向土壤投入改良剂,通过对重金属的吸附、氧化还原、沉淀作用,以降低重金属的生物有效性。但由于重金属元素在环境中具有相对稳定性和难降解性,至今仍未找到可供大面积应用的重金属污染治理方法。

近年来出现的植物修复,具有投资和维护成本低、操作简便、不造成二次污染、具有潜在或显在经济效益等优点,并且其更适应环境保护的要求,因此越来越受到高度重视。植物修复是一种经济、有效且非破坏性的修复技术,主要利用自然生长或遗传培育植物对土壤中的污染物进行固定和吸收。通常包括:植物提取,即植物对重金属的吸收。目前已发现有400 多种植物能够超积累各种重金属,一些超积累植物能同时积累多种重金属,如羊蕨属植物和具有富重金属性的苋科植物对土壤中重金属的吸收率达到 100%。蒋先军等的研究发现,印度芥菜对Cu、Zn、Pb 等中等污染土壤具有良好的修复效果[5]。有证据表明,柳树和白杨能从土壤中去除一定量的重金属,净化低污染的土壤;植物挥发,即通过植物使土壤中的某些重金属(如Hg2+)转化成气态(HgO)而挥发出来;根际过滤,即利用植物根系过滤积淀水体中的重金属;植物稳定,即利用植物根际的一些特殊物质使土壤中的污染物转化为相对无害的物质。有研究发现,树木可以存活并生长于含有较高浓度的多种重金属污染的土壤上。经监测,桦树和柳树的一些树种可以耐受铅和锌[6]。

结论与展望

矿区土壤的重金属污染是矿区所面临的重大生态环境问题,具有自己独有的特征,在治理的过程中应因地制宜地选择恰当的治理方式。

物理、化学等方法对于矿山土壤的修复存在耗能、耗钱、对土壤结构损害较大等缺点,从保护生态环境出发,这些方法均对矿山生态环境的恢复作用不明显,而植物修复成本较低,可以稳定土壤、控制污染、改善景观、减轻污染对人类的健康威胁,所以在修复矿山土壤重金属污染的过程中,越来越多的国家选择使用植物修复技术。近年来,中国金属矿业迅速发展,所造成的重金属污染日益加剧,植物修复技术的研究更具有广阔的市场,并逐步走向商业化,同时中国有广袤的国土、丰富的资源、复杂多样的地理条件,蕴藏着大量超富集植物,为中国开展有关植物修复技术的研究提供了良好的基础。

参考文献:

[1] 郑奎,李林.中国铅锌矿区的重金属污染现状及治理[J].安徽农业科学,2009,(30).

[2] 薛强,梁冰,刘晓丽.有机污染物在土壤中迁移转化的研究进展[J].土壤与环境,2002,(1):90-93.

[3] 王新,周启星,任丽萍.矿区农产品质量及土壤─岩石界面重金属行为特性的研究[J].农业环境科学学报,2004,(3):459-463.

[4] 王莹,赵全利,胡莹,等.上虞某铅锌矿区周边土壤植物重金属含量及其污染评价[J].环境化学,2011,(7).

篇10

2006年环保部和国土资源部斥资10亿元联合启动了“全国首次土壤污染状况调查调查报告”。历时6年,通过调查,基本查明了全国土壤环境质量现状、变化趋势,主要类型污染场地及周边土壤环境特征及其风险程度,建立了全国各种土地利用类型的土壤样品库和调查数据库。目前,由环保部牵头制定的《土壤环保“十二五”规划》已进入国务院审批程序。

修复现状

调查结果显示,目前全国受污染的土壤面积已占耕地面积的1/5左右,总面积超过2000万公顷。从国内土壤修复产业化发展的趋势来看,未来土壤修复的重点领域将集中在城市污染土地开发及污染农田两大板块。

城市污染土壤修复主要分历史遗留和新开发污染土地两大领域,治理责任主体单位通过治理工程招标,中标修复公司通过土壤置换进行异地修复,修复经评估达标后从开发商获得收益。这也成为城市土壤修复的主流运营模式,项目投资收益率一般可达10%-20%。目前,城市污染土地土壤修复主要集中在上海、北京等一线城市。

目前全国范围内处于实验室中试阶段的土壤修复技术储备时间已逾10年,技术种类达近百种,除传统的物理化学治理方法外,生物治理已渐渐成为未来适应国内土壤污染治理需求的主流。

土壤修复市场包括污染场地修复,矿山土地修复和耕地修复。由于中国城市化进程加快,以前的化工矿产企业逐渐从城市中心搬迁至郊区,目前对城市中的污染场地修复需求最高。由中国环境修复网的统计得出,目前全国风险场地有42处,其中已修复13处,待修复11处,已搬迁16处。全国待搬迁场地约200处。平均一个场地修复项目的资金规模在一到两个亿。据中信建投研报,假设只考虑已知的污染场地,对待修复和已搬迁场地的修复能够在未来2年内完成,对待搬迁场地的修复能够在未来3到5年内完成,并且平均修复场地资金为1.5亿,则未来两年我国场地修复的市场规模在40亿左右,未来3到5年的市场规模在300亿左右。

中国农田污染源主要是来自化肥、农药、生活垃圾、农村家畜粪便等,城市“毒地”的污染源头是化工、农药、焦化等类企业。

换土是目前国内最常见的一种土壤修复技术。就是一种异位土壤修复技术,它包括异地填埋和异地水泥窑焚烧等。这种技术通过大规模挖土换土,可以在短时间内解决表面的污染问题,但是并不彻底。而植物修复效果彻底、绿色环保,成本相对较小。但植物修复所需时间与土壤污染的重金属浓度直接相关,重金属超标不高的土壤,3年到5年可见效;如果超标严重,修复的时间则需翻倍。

我国采用异位土壤修复技术原因有三。一是我国房地产开发商普遍面临开发周期短的压力,通常能分配给修复土壤的时间只有三个月,因此只能动用土方工程将污染土壤挖出。二是目前大部分原位修复技术还停留在技术研发阶段,较少能够满足工程应用的要求。三是我国相关法律尚不完善,没有专门的污染土壤修复法在约束土壤修复的后续污染问题,因此企业大多会选择异地填埋焚烧这种造成二次污染但周期较短的方式。

千亿市场

就在土壤修复市场逐渐热闹喧嚣之时,嗅觉灵敏的产业资本和金融资本都开始纷纷进军土壤修复这个正在快速扩张的新产业,但是由于土壤修复市场门槛较低,甚至一些简单的土木转移填埋也可以成为企业的支撑。土壤环境修复产业同样又是一个技术密集型和资金密集型产业,一些缺少技术实力的企业仅仅将修复工程变成土方工程,污染场地的土拉出后,只是进行异地堆积而非处理,造成土壤污染的异地扩散。政府应制定明确的技术标准及市场监管系统,引导产业规范健康发展。

随着近几年土壤修复产业的发展,如今已经初步形成一条产业链。产业链既包括调查评估、咨询和修复工程,也包括第三方检测等行业。目前形成了以环保部门的监测机构为主、商业检测机构为辅的市场格局。

一些比较成熟的污水治理企业,也开始延伸自身的产业链条,涉足水体或土壤及地下水修复领域。因此,它们可能会成为潜在土壤和地下水修复企业,凭借自身的资本、技术、人才优势,都正在向土壤及地下水修复行业渗透。

最保守的测算,“十二五”期间国内土壤修复产业也将达到千亿规模的市场,据知情人士则透露,“十二五”期间,国家用于防治土壤污染的全部财政资金将达数千亿元,其中,仅仅是国家治理重金属污染的投入就达595亿元。

缺乏监管

污染土壤修复作为新兴环保行业,技术的研发或应用还处在试验阶段,还没有形成比较成熟的技术,暂时没有技术壁垒;而且国家的行业标准和准入制度也都在制订过程中,因此,在环境修复市场逐渐成熟后,将会有越来越多从事其他环保产业的企业涌入到环境修复行业。

在今年五月末举办的2012重金属污染土壤治理与生态修复论坛上,陈同斌研究员指出:国内土壤修复产业处于发展初期,理论探索十分活跃,技术发展不断完善,规范的工程实例和产业发展经验尚少。我国土壤污染修复产业发展战略不明确,市场混乱;土壤修复技术水平参差不齐,产业链合作亟待解决,这些因素很大程度限制了行业的发展。

现在房地产开发商基本都是将“毒地修复”流程简化成两个程序——挖干净“毒土”,然后转移至别处,而一些承包修复场地的企业也不需要申请资质,有几台挖掘机就可以成立一个土壤修复公司,“只要能找到工程,就可以盈利”。

发达国家的环境修复产业起步较早,发展较快。土壤污染修复技术研究起步于上世纪70年代后期。在过去的30多年中,美、日、澳等国纷纷制定了土壤修复计划,投巨资用于土壤修复技术与设备的研发,积累了丰富的现场修复技术与工程实践经验。

美国、日本等国家的土壤修复产业可以占到本国环保产业市场份额的30%~50%,产业相当成熟。

而我国土壤修复市场缺乏一批具有自主研发能力的大中型修复企业,尚未构成以修复企业为主的场地调查、风险评估、修复设计、修复工程、规划开发的良性产业链条,无法形成规模效应。