培养学生的逻辑推理能力范文

时间:2023-12-01 17:41:47

导语:如何才能写好一篇培养学生的逻辑推理能力,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

培养学生的逻辑推理能力

篇1

【关键词】初中数学;逻辑推理能力;数学教学;教育形式;教育理念

引言

在初中数学的教育中,在教师的指导下进行数学学习已经是传统教育理念的一种必要的模式,但是,我们根据传统的教育形式的研究发现,针对学生们的学习状况,教师很难让学生们提升起学习的兴趣,在学习中也很难将学习的形式和学习的理念进行相应的提升,学生们在数学课堂中,主体性的地位得不到真正的体现,很容易产生消极懈怠的情绪,也不能将学生们的学习和核心素养进行进一步的发展。因此,教师在本文中就要不断的研究培养学生逻辑推理能力的形成,帮助初中的学生们能在充满兴趣的数学课堂内探索数学的知识,并且能更好的促进学生们的创新思维和创造能力的发展,最终提升学生们的数学学习能力。

1.培养学生数学逻辑推理能力的意义

1.1提升学生们的数学核心素养的形成

在现阶段的教育环节中,要想更好地培养学生们的学习兴趣,在学生们的中间产生相应的影响,就要不断的将初中学生们的数学推理能力提升上来,更好的发挥学生们的实力,展示学生们的学习素养,促进学生们在学习过程中的提升和能力的开发。数学本身就是一门比较具有逻辑性和逻辑思维能力的学科,在数学复杂的知识的背后,逻辑推理能力显得尤为重要,是学生们核心素养展示的形式之一,也是学生们在学习的过程中,不断的传授数学的知识基础,促进数学能力的一个关键阶段,因此,培养初中生的数学逻辑推理能力,能更好的帮助学生们将学生们的数学抽象、逻辑推理、数学建模等数学核心素养培养起来,给学生们指引道路,在学生们的发展过程中,能更好的指引学生们在知识和技能的层面上,有一定的观察实践过程,促进学生们更好的将核心素养展示出来。

1.2展示学生们的学习积极性和主动性

在现阶段的初中数学课堂中,进行相应的数学体验,教师要不断的形成良好的教育形式,才能帮助学生们积极主动的参与到初中的数学课堂中来。如果能在初中的数学课堂中,进一步展示数学的逻辑推理能力,能更好的帮助教师们形成良好的核心价值能力,促进学生们的能力探究,帮助学生们形成探究的积极性和主动性,在积极地环节内进行相应的研究,促进学生们能主动的融入到初中的数学课堂中来,帮助初中的学生能更好的获得数学课堂的主动探究能力,促进初中生在良好的学习过程中,能面对数学教育的知识,展示出自身的逻辑能力,帮助数学展示获得良好的推理体验。

1.3能帮助数学课堂形成良好的氛围

在现阶段的数学教育课堂中,教师要想更好地帮助学生们通过逻辑推理能力的提升,展示学生们的主动性,教师自身就要不断地掌握更多的逻辑推理的方式,帮助学生们也能熟练地掌握数学中的逻辑推理方式,通过挖掘教材内部的形成,更好的促进融合,发展教材的特点,掌握教材的元素,更好的将数学课堂的浓厚氛围展示出来。利用当前的教育形式,一定要不断的将学生们的学习活力展示出来,做到学习氛围的形成,将数学课堂变成学生们逻辑推理大展台的过程,更好的活跃教师的教学氛围,将数学课堂变成生机勃勃,并且具有活力的课堂,帮助初中的学生能在数学课堂中获得更多的知识体验,促进学生们能更好的发展和进步。

1.4能更好的提升学生们的思维能力,促进其创新能力的开发

在现阶段的教学中,我们会发展,学生们学习能力的提升和学生们思维的展示和进步密切相关的,在传统的教育模式中,教师不能更好的帮助学生们形成良好的学习体验,学生们往往是跟着教师的步骤进行按部就班的学习,在思维活力的展示和动态的形成方面不能更好的进行相应的把握。但是,在现阶段的教学中,教师将学生们的逻辑推理能力在教学中逐渐的展示出来,能更好的帮助学生们形成良好的思维能力,促进学生们创新创造能力的展示,将学生们的创新创造能力更好的融合在当前的教育中,最终发展学生们的创新思维,落实学生们的学习动力,形成学生们的学习能力的开发和体验。

2.初中数学教学中学生逻辑推理能力的培养措施

2.1加深学生对基本概念的理解

初中数学在教学的环节中,针对每一章节的内容都有着不同的概念,在數学教学的环节中,也注重对数学概念的形成以及对数学概念形式上的学习,只有让学生们学会理解概念,掌握概念的相关内容,才能更好的帮助学生们理解数学背后的知识,才能将数学的知识的逻辑性和数学中所需要掌握的规律,更好的牢记心中,帮助学生们形成良好的逻辑推理能力,促进学生们在逻辑推理能力展示的过程中,更好的形成良好的学习依据,在学习中帮助学生们更好的体验逻辑顺序感,促进学生们能在理解深入的基础上,更好的准确分析相应的内容,促进学生们获得相应的知识体验。

例如,在人教版初中数学七年级下册第五章《相交线与平行线》这部分的内容学习中,涉及到的概念就比较多,在概念的驱使中,需要学生们理解的内容也是比较多的,要想更好的帮助学生们形成良好的学习态势,在学习中更好的形成良好的学习动力,并且在今后的学习之中能建立相应的逻辑推理能力,将相关的概念和内容进行相应的理解,教师首先就要将课本上所需要理解的概念进行汇总。比如,在“相交线”的概念中,其中有相交线、垂线、及其产生的同位角、内错角、同旁内角等,这些概念都是相互关联的,学生们能通过对概念的解读和推理,更好的判定什么是平行线,相交线和平行线是相对的概念,因此,教师要在基础的概念上下功夫,让学生们进行钻研,更好的利用线和角的关系,把握数学的知识,掌握推理的形式,促进数学知识能循序渐进的消化和进步。在此基础上,学生们根据学习的内容,能更好的形成良好的学习优势,并且在概念的分析上能有自己的逻辑性,在今后的数学教学中,教师能讲解一部分的概念,剩下的让学生们融会贯通的学习,帮助学生们形成良好的认知能力,促进学生们能更好的发展自己的技能,帮助学生们能更上一层楼。

2.2运用趣味性逻辑推理激发学生兴趣

学生们的学习兴趣在数学的学习过程中是非常关键的,能帮助学生们形成良好的认知态度,并且将丰富的课堂形式和课堂展示能力更好的利用教学的氛围展示出来,促进学生们的情感体验,展示学生们的学习兴趣,这是培养学生们逻辑推理能力的关键步骤。学生们一旦发现在数学课堂中的乐趣,就能深入的体会和研究,发现其中的乐趣,并且能更加深入的发挥数学的知识内涵,将数学的逻辑推理性更好的展示在当前的数学课堂中,发挥数学课堂的事例,展示逻辑推理的魅力,更好的发展学生们的探求欲望。

例如,在人教版八年級上册第十三章中“等腰三角形”这部分的教学中,教师能以趣味动手性的题目向学生们进行展示,促进学生们能产生学习的兴趣,教师可以给学生准备若干个如图所示的三角形,让学生们进行思考,如何只剪一刀就能把一个三角形纸片变成两个等腰三角形呢?教师一定要鼓励学生们动手剪一剪,试一试,让学生们探求成功的方式和剪法,然后把成功的剪法画下来,呈现在作业本上。

在此之后,教师能让学生们再剪出一些任意三角形,只剪一刀便将其分成两个等腰三角形,并且总结怎样的三角形剪一刀一定可以把其分成两个等腰三角形,让学生们自主的总结规律,这样不仅能将学生们推理的能力展示出来,还能通过动手能力的开发,帮助学生们建立学习数学的恶性去,并且展示学生们的逻辑探究能力。学生们最后能通过自己的逻辑推理,总结出三角形中只要有一个角是另一个的两倍或是三倍,就可以将它分成两个等腰三角形这样的规律,但是在此期间,也会有的学生会根据自己的经验提出疑问,我们要鼓励学生们提出疑问的过程,因为学生们只有能有问题,才能更好的通过自己的思考去解决问题。有的学生们会说一个三角形的三个内角分别为50°、100°、30°,这个三角形也满足一个角100°是另一个角50°的两倍,但是,它不能一刀剪得到两个等腰三角形。学生们会根据这个特殊的例子进行思考并且讨论,最终明白,如果一个角是另一角的两倍时,这个角不能是钝角,这个过程中,学生的数学逻辑推理素养不断的提高。

2.3开展逻辑推理专项训练

逻辑推理能力作为初中学生数学重要核心素养之一,对学生的提升很大,但其逻辑推理能力的提高需要长时间的练习及题感的累计,因此,初中的数学教师应开展逻辑推理的专项训练,使学生在解题过程中逐渐熟悉逻辑推理的运用。初中的数学教师应结合学生具体学习状况,精心设计一些题目或是一些题组,将其组织整合并争取一个月抽出一、两节课的时间进行训练。在训练结束后,要让学生提出问题并通过合作交流一起解决问题,进一步让学生的数学逻辑推理能力得到锻炼和提升,最终发展学生们的数学逻辑推理素养。

2.4开展各类数学活动渗透数学逻辑推理

数学的知识比较复杂,因此,学生们在进行学习的过程中,以及提升学生们的逻辑推理能力的过程中,教师能渗透不同的活动,帮助学生们积累学习的经验,掌握学习的方式。同时,在开展数学活动的过程中,要不断地让学生们进行交流和互动,让初中的学生们学生在相互交流的过程中能获取他人对逻辑推理的心得与体会,有利于自身经验的积累。

2.5创设教学情境,进行合乎情理的逻辑推理教学

情境教学的魅力是我们不容忽视的,在情境教学的基础上,教师要想更好的实现教育的目标,展示教育的活力,促进教育形式的发展,就要将新型的情景教学的形式更好的融合在当前的数学教学中,帮助学生们在合乎情理的情境推断中,促进学生们推理学习的形成,帮助学生们形成良好的学习体验,展示良好的学习节奏,借助一些道具或者是情境的手段,让学生们更好的融入到教学的情境中,营造一个良好的、轻松的学习氛围,在学习中更快的进入到当前的状态中,能真是的理解情境教学的形态,促进学生们对数学展示进行生动的转化,帮助初中的学生能在枯燥的数学课堂中寻找乐趣,并且能引导初中的学生们结合具体的情境展开学习的体验,通过合乎情理的教学形式和手段,锻炼学生的逻辑推理能力和逻辑的感知能力,促进学生们的发展。

例如,初中的数学教师可以在比较抽象的题目中创设问题的情境,让学生们通过问题情境的融入,更好的获得知识的体验,在知识的感知力度和知识的感知能力方面具有更大的发展。若,,且a+b-c=30,求a的值。这道题目学生们看到以后一定是非常迷茫的,没有思路,也没有想法,很多学生看到这类问题便犯愁,不知道问题的切入点在哪里,也不知道问题该从哪里开始入手。此时,教师应引导学生观察等式,让学生们根据等式的形式和内容进行分析,通过分析a,b,c有什么联系,让学生们自主的思考并且自主的推理,有的学生会想到:令=k,则可得a=7k,b=5k,c=2k。所以会出现下面的等式,a+b-c=7k+5k-2k=10k=30,k=3。又因为a=7k,所以a=21。在初中数学教师的引导下,学生在观察代数式的过程中,能逐渐的发现其中的等量关系,并利用一个字母表示,从而找到解决这一问题的关键。这是学生们逻辑推理能力形成和塑造的过程,也是在学生们的发展过程中更好的培养学生们的逻辑推理能力的形式和展现,能不断的促进学生们的发展。在解题的整个过程之中,能更好的提升学生们的观察能力和题目的解毒能力,将推理的合理性通过学生们的自助验证得出,帮助学生们有效的培养自身的逻辑能力。

2.6在运用知识的过程中,培养学生的逻辑推理能力

在初中数学的教学中,知识的运用能力是非常重要的,能更好的帮助学生们将数学知识和技能通过数学实践的形式更好的展示出来,并且能在数学解题以及今后的数学生活中,建立良好的数学应用能力,促进学生们逻辑推理能力的形成,将学生们的思维规律和思维的敏捷度更好的建立起来,更好的将数学的知识通过学生们的大脑展示出来,培养学生的逻辑推理能力。

例如,在人教版初中数学九年级下册第二十九章《投影与视图》这部分的教学中,针对投影的形式和三视图的直观概念,学生们在没有学习以前对概念以及内容都是比较陌生的,这时,教师能采用多媒体的形式,将不同物体不同方位的投影和三视图展示给学生们,让学生们能从其中找到相应的规律,并且在规律的体验中,更好的形成相应的内容,促进学生们的知识内化于心的过程,接下来,学生们就要针对这种空间的想象能力进行相应的逻辑推理,更好的将学生们的学习过程变成由特殊到一般的思维过程,加深初中学生对知识的理解,同时,也培养出初中学生的逻辑推理能力,更好的发展初中学生们的实力。

篇2

摘要:本文针对河北外国语职业学院2013 级小学数学教育专业学生的综合能力,结合小学数学专业的课程设置,经过对学生进行问卷调查后,总结出学生在逻辑推理能力方面存在的问题。为了培养出专业素质高、专业能力强的师范类小学数学教师后备军,针对存在的问题进行剖析,设计解决问题的方法和策略、完善教学内容、调整教学方法和训练方式等。通过课堂教学改革探索,使理论与实践有机结合在一起,以适应当前培养学生逻辑推理能力发展的要求。

关键词 :数学课堂逻辑推理能力素质培养

1 逻辑思维能力的含义

一般定义下的逻辑推理能力是以敏锐的思考分析、快捷的反应、迅速地掌握问题的核心,在最短时间内作出合理正确的选择。对于逻辑推理来说,通常情况下包括归纳推理、演绎推理和类比推理。其中,归纳推理是根据事物所体现的某种性质,对这类事物的所有对象具有的这种性质进行相应的推理。简言之,归纳推理就是从个别性知识推出一般性结论的推理。所谓演绎推理主要是以一般性为前提,通过推导,在一定程度上得出具体或个别的结论。对于演绎推理来说,其逻辑形式对理性的意义是,在严密性、一贯性方面,对人的思维具有不可替代的作用。对于类比推理来说,通常根据两个或两类对象具有的部分属性,进一步对它们的其他属性进行推理,简称类推、类比。这种推理方式是以两个事物的某些相同属性进行判断为前提,同时对两个事物的其他相同属性进行推理。而数学中的逻辑推理能力是指正确地运用思维规律和形式对数学对象的属性或数学问题进行分析综合,推理证明的能力。在课堂上数学老师通过启发式引导、结合实际,灵活运用板书和多媒体课件展示,激发学生的学习积极性和创造力,让学生亲历归纳推理、演绎推理和类比推理的确切含义。

2 该院数学教育专业学生逻辑思维能力现状分析

本次问卷调查的对象是2013 级预报小学数学专业的48 名学生进行的问卷调查,回收有效问卷40 份。问卷结果反映出该院学生现阶段在逻辑思维推理方面存在如下问题:

①逻辑推理定义的含义不明确,容易混淆。

②概念和定理掌握不牢,综合逻辑推理分析、判断思维能力弱。

③不擅长准确尺规作图,不能规范正确书写。

④学生学习数学的兴趣不浓。

⑤学生没有适合自己的学习方法和策略。

数学这一科目具有逻辑严谨性特点,逻辑推理能力应该是小学数学专业学生必须具有的基本能力之一。数学专业学生的逻辑推理能力培养极为重要,也是将来作为数学教师的核心能力。针对该院学生面临以上的问题,笔者所在团队在讲授专业课程时进行了相应的教学改革,希望在培养学生逻辑推理能力培养方面能发挥大家的智慧和力量。

3 如何在数学课堂中培养学生逻辑推理能力

数学被看作是一门论证科学,逻辑推理的重要性是不言而喻的。著名数学家G.波利亚教授说过:“一个认真想把数学作为他终身事业的学生必须学习论证推理,这是他的专业也是他那门科学的特殊标志。”

数学在提高学生的推理能力和创造力等方面有着独特的作用,数学课堂是培养学生逻辑推理能力的主要阵地。那教学中应如何培养学生数学逻辑推理能力呢?应从以下几方面入手。

3.1 重视基本概念和原理教学

数学知识中的基本概念、基本原理和基本方法是数学教学中的核心内容。基本概念、基本原理一旦为学生所掌握,就成为进一步认识新对象,解决新问题的逻辑思维工具。例如在《线性代数》课程中行列式和矩阵的定义的区别和联系:

①从形式上看行列式是一个数,矩阵是一个数表,二者不能混淆;而且行列式的记号为“|*|”,矩阵记号为“(*)”也是不一样的,不能用错。

②从内容上行列式的行数与列数必须相等,而矩阵的行数与列数未必相等。

③在计算过程中行列式用“=”,而矩阵用“”,书写格式也不同,更不能混用。

④在加法运算时,行列式相加与矩阵相加有本质区别,行列式与矩阵不仅有明显的区别也有内在的联系,当且仅当A=(aij)为n 阶方阵时,才可取行列式D=|A|=|aij|n,对于不是方阵的矩阵是不可以取行列式的。

在实际的授课过程中,没有扎实掌握行列式和矩阵定义的学生在学习《线性代数》第四章特征值和特征向量这一章节的时候就把书写格式写错,更严重者竟然把行列式和矩阵弄混了。为了解决这样的问题只能进行先学知识的综合复习,然后再讲授新课程。由此可见学好基础知识的重要性,如果没有科学的概念和原理,在这种情况下,难以进行综合分析、判断、推理等思维活动。

3.2 有计划、按步骤地进行逻辑推理训练

对于数学推理来说,一方面具有推理的一般性,另一方面具有其特殊性。通常情况下,这种特殊性主要表现为:其一,数学表达式、图形中的元素符号、逻辑符号等抽象事物是数学推理的对象,而不是选择日常生活经验作为推理对象;其二,数学推理过程需要保持连贯性,下一个推理需要以前一个推理的结论为前提,并且推理的依据需要从众多的公理、定理、条件、已证结论中进行提取。在推理论证方面,数学推理的这些特性会增加学生学习的难度。因此,在授课过程中要从学生熟知的知识为出发点,有计划、有步骤地进行归纳推理、类比推理、归纳推理等,这样学生能够逐渐地学习并掌握新知识。在讲授《线性代数》中矩阵和向量时,为了加强学生推理训练,任课教师在课堂中将矩阵与向量的定义、相等和运算律等分别进行类比,学生分组讨论总结。在实际教学中要有目的、有计划、有步骤、潜移默化地进行逻辑推理的训练和引导,学生一定会逐渐理解并掌握这些推理方法,并在学习掌握知识的过程中使他们的推理能力不断得到提高,使自己解决问题的能力有新的突破和创新。

3.3 利用多媒体设备增强学生的空间想象能力

在认识现实世界空间形式方面,空间想象是一种重要的能力因素,同时也是帮助学生发展创造力的基础。因此在数学教学过程中,需要将空间想象能力作为基本的数学能力来培养。在几何数学教学过程中,在制作模型、画图、识图时,让学生进一步对图像进行描述,同时对图形进行分类、整理等,在现实世界中,通过认识、理解几何空间,进而在一定程度上帮助学生形成空间观念,从逻辑的角度进一步帮助学生弄清几何空间的现实意义。

随着科学技术的不断发展,当前社会已进入信息化时代,社会对数学的要求呈现出多元化、深层化的趋势,在这种情况下,数学技术被广泛地应用到社会各层次、各领域。因此,在教学过程中,对于解析几何,需要注重培养学生的代数———几何关系,同时需要在几何和代数之间实现相互转换,进而在一定程度上对学生的数学素质进行培养。当前,教学的功能就是培养学生的创新能力,因此需要不断创新教学教学手段,通过数学软件直观再现解析几何中的复杂图形,进一步体现解析几何的主体性、过程性、合作性等特征。为此,在解析几何教学过程中,引入数学软件具有重要的意义,同时也是实现数学专业基础课程实践教学环节的重要组成部分。

4 总结

综上所述,在数学教学过程中,培养和发展学生的逻辑推理能力,这是组织开展数学教学的一个重要方面。它需要教师长期的付出,深挖教材内涵,要求学生在平时多观察,多思考,借助多种教学手段,不断激发、培养学生的学习兴趣,进而在一定程度上增强学生学习逻辑推理的积极性。同时,由于个体学生学习情况的个体差异,还要根据学生自身特点进行私人定制学习方法。希望在师生共同努力,共同合作的情况下,实现逐步提高学生的分析、综合、归纳、推理等方面的能力。

参考文献:

[1]吴建生,周优军.基于MATLAB 计算机辅助解析几何课程的数学实验[J].柳州师专学报,2010-02-15.

[2]侯卫民.教学中如何培养学生数学逻辑推理能力[J].数学大世界(教师适用),2010-09-15.

篇3

关键词:小学数学;思维能力;逻辑推理;生活经验;规律性

中图分类号:G421;G623.5 文献标志码:A 文章编号:1008-3561(2015)36-0044-01

要培养学生的思维能力,就要使教师的“教”很好地扩展到学生的学,教师这个“教”的关键是要能引起学生的兴趣,这是教学成败的一个重要因素。怎样才能激发学生的学习兴趣呢?除了加强对学生思想教育、明确学习目的性、教学内容安排得当外,还要根据学生活泼、爱动等特点,在教学上新颖、多样、生动形象,同时还要创设情境,激发学生积极展开思维活动。小学生学习新知联系旧知就构成了思维发展的动力。这时候,教师要抓住时机促进学生的正迁移。小学生不善于观察,又由于他们受到已有知识经验的限制,对许多事物获得的认识往往是不清楚的,他们的感知比较笼统,这就需要引导得法和经常训练。

一、从生活经验出发推理

新教材中有这样一道题:谁盘里的水果剩下的多?为什么?(如图1)教学中,我首先出示例题,告诉学生这道题说的是吃苹果的事,引起的学生注意,然后启发学生从两方面仔细观察:(1)小红和小华原来各有几个苹果?(2)吃过后(箭头表示吃的过程),小红和小华各剩下了几个?学生通过观察得出小红和小华原来有同样多的苹果,吃过后,他俩的苹果变得不一样多了。我再提问:谁盘里的水果剩下的多?为什么?学生在观察的基础上进行比较,很快得出结论:小红剩下2个,小华剩下3个,3比2多1,所以小华剩下的多。进而再补充一问让大家讨论,谁吃得多?为什么?这一问中存在着间接因素,增大了思维的难度。学生们一下子便热闹地议论开了,有的是从剩下的多少来考虑的,即逆向思考,认为因为小红剩下的比小华剩下的少,所以小红吃掉的比小华吃掉的多;有的则是从空间上来考虑的,即空间想象,原来两人同样多,吃过后,小红盘上空间大些,而小华盘上的空间相对小些,显然小红吃得多。这样,解答下面“谁的杯里的水喝掉的少?为什么?”就容易多了。题目一出现,很多学生马上就判断出正确的结果。上面两道题的观察、分析、判断或多或少存在一些生活经验因素,我把它们称为第一层次的逻辑推理思维训练。

二、从比较中找规律

第二个层次的训练,仍然必须是先观察、分析,继而对相互有关联的事物进行比较,再概括出规律。如教学下面这道题(如图2):接下去怎么画?问:图上画的是什么?每幅图中有几个圆?(共同点:整体不变) 接着引导比较第一幅图、第二幅图的异同,再比较第二幅图、第三幅图,第三幅图、第四幅图的异同,从中让他们自己概括出规律:整体为6不变,白圆每次减少1,黑圆相应地增加1,然后要求学生根据规律推断下面三幅图应该怎么画。最后人人动手画,画图的准确率为l00%。

在逻辑推理训练中,我突出抓看、比、想。看就是细致地观察;比就是将物体的轻重、长短、高低或数字的大小、多少进行比较,加以分析;想就是通过看比,进行综合概括。出于着眼于逻辑推理能力的培养,这就使学生的有序思考能力、有条理的表达能力和分析解答应用题的能力都随之得到了提高,大大促进了学生良好的认知结构的建构。

三、注意三段论推理的萌发

第三个层次的训练,较之前面抽象一些,间接一些。例如,数列中的填数推理就是抽象的,而演绎三段论的推理则是间接的。

逻辑推理能力反映出学生思维的发展水平。一般来说,逻辑推理中抽象性越强,说明思维水平越高。因此,为使学生的思维得到有效的充分发展,逐步达到较高水平,我们从小学一年级起就要抓思维的核心问题――逻辑推理能力的培养。而这种能力的培养,一方面学生要有求知欲和牢固的双基,另一方面教师要能正确引导。由于我加强了对学生思维能力的培养和兴趣的激发,学生不但勤于思维,而且善于思维,并从逆向思维发展到多向思维,培养了他们思维的深刻性、灵活性、敏捷性和创造性,提高了计算能力和解决问题的能力。

四、结束语

综上所述,数学教学是促进学生思维发展的最初的主要途径。只要我们从学生的认知规律入手,由表及里、由浅入深,从具体到抽象、从个别到一般,循序渐进地进行教学,就能使学生产生更多的新的需要(这是思维发展的前提),获得牢固的基础知识和基本技能(这是思维发展的必要条件)。有了这样的前提和条件(即主观因素),再通过教师有意识地正确引导和经常性的训练(即外因作用),学生的思维能力就一定能得到较大的提高和较快的发展。

参考文献:

篇4

根据我们对多届学生的分析,我们发现学生在进入高一时,物理学习是比较困难的,究其原因是因为此时的物理学习与初中时相比,无论是在知识上,还是在思维方法上均有较大的区别,因此学生需要一个适应的过程.而此后学生一般会有三种发展可能:一是物理彻底差下去,原因是物理学习始终不得其道;二是不温不火,原因是复杂的物理知识与一般的学习能力之间形成了一种平衡;三是物理成绩好了起来,原因是物理思维能力契合了物理知识的学习.对于第三种可能而言,逻辑思维能力的作用功不可没.掘作即以“动能定理”为例,谈谈逻辑思维能力的培养.

1动能定理知识中的逻辑关系梳理

动能定理上承动能概念以及动力学的相关知识,其中动力学知识(以牛顿第二运动定律为主)构成了逻辑推理的重要基础;而动能及能量概念在初中已有涉猎,但不涉核心,在高中阶段建立的动能概念尤其是能量概念,其已经与“功是能量转化的量度”衔接在了一起,使得在知识体系上第一次明确地将功与能联系在了一起.动能定理则是建立在这一联系之上,将学生对功与能的关系拓展到一个新的高度,使得物体所受的合外力所做的功,与物体的动能变化联系在了一起.同时我们也应当发现,在此前研究得出的功与速度变化的关系,也为动能定理的得出打下了坚实的基础,而推理动能定理所需要的数学知识在学生的数学学习中已经成型,因此可以充当逻辑思维的重要工具.

但同时我们应当注意到,这些关系又不是显性的,换句话说不是学生一眼所能看出来的,而推理动能定理所需要的逻辑推理能力也不是自然出现的,因此在动能定理出现的过程中还需要教师的指导与指引,而指引的重要方式就是问题的设计与适时提出.

2动能定理教学中的逻辑能力培养

在动能定理的形成过程中,我们有这样两个关系需要明确培养.

一是情境创设中的逻辑关系.无论具体的情境如何,其总离不开让学生思考动能与影响因素的关系,比如说有老师设计扔出篮球与铅球让学生去接,通过让学生比较接球的感受来判断影响动能大小的因素.在这一过程中,逻辑关系存在于接球感受(实质上是动能的大小)与影响因素之间,ΔEk与W之间是什么关系成为下一步探究的主题.

二是探究中的逻辑关系.这是逻辑思维能力培养的核心,其中包括两个主要需要探究的问题:第一个问题是动能及其变化如何定量描述?第二个问题是动能的变化与物体受到的力的做功之间是什么定量关系?对于这两个问题的解决,我们可以引导学生进行如下的推理:其一,对于一个质量一定的物体,其动能的变化决定于哪个物理量的变化(答案:速度)?其二,速度的变化用哪个物理量来衡量(答案:加速度)?其三,对于一个质量一定的物体,其加速度决定于什么(答案:合外力)?当顺利解决了这三个问题之后,我们就可以乘热打铁:合外力正是与功相关的一个物理量!――如果注意分析,我们发现这是一个严密的逻辑推理过程!

如果说刚才进行的是从定性角度进行的逻辑推理的话,那更为精确的从定量角度进行的逻辑推进可以顺势进行:

根据牛顿第二运动定律F合=ma,又因为对于匀加速直线运动,有v2t-v20=2as,变形后可得a=v2t-v202s,代入牛顿第二运动定律表达式,即可得F合=m(v2t-v202s),将右边分母上的s移至左边即可得F合s=m(v2t-v202),此时继续引导学生去研究等号左边的F合s,即可发现其即为“功”,那是什么力做的功呢?由下标可知为合外力做的功!

此时遇到的问题在于学生对等号右边认识,首先要将其变形成12mv2t-12mv20,这样有助于学生认识到这是相同形式但不同状态的两个物理量的差!那这是什么物理量呢?一般情况下学生并不能直接反应出来,即使说出动能概念的,也往往说不清理由.这个时候仍然需要教师引导学生进行推理:等号的左边是功,那右边就应当是功或者能(因为功是能量转化的量度),从形式上来看显然不是功,那只可能是能!又可以发现其中每一个因式都与质量和速度有关,因此此能应当是动能!也因此,合外力做功与动能变化的关系就浮出出来!

3教学反思

篇5

一、培养创新思维能力的关键

在高中数学教学中,培养创新能力的关键就是要具有创新意识。首先,教师必须具有创新意识。在高中阶段,教师对于学生的影响十分重要,教师是什么样的人,就会把学生也塑造成一个什么样的人,因此,教师要注重自身能力的培养,以给学生更多的正能量,所以,教师在教学过程中要具有创新意识。在教学方式上要改变传统的灌输式教学,结合教学实践要大胆地创新,这样教师的创新思维能力才会潜移默化地影响学生,使学生更好地进行创新意识的培养。其次,学生也要增强自身的主体意识,便于更好地进行创新意识的培养。(主体意识就是学生自身的一种自觉意识,就是能够主动地发挥自己创造性和能动性的观念表现)如果学生连主体意识都没有,对待问题没有充分的主动性和能动性,那么,就很难进行创新能力的培养。教师在教学过程中,要积极地培养学生的主体意识,引导学生进行探究,激发学生的创新思维,进而更好地培养学生的创新能力。

二、培养创新思维能力的基础

在高中教学中,培养学生创新思维能力的基础,就是要注重学生各种能力的培养,只有学生具备了各种能力,才能使学生深入其中,走得更高,看得更远,才能更好地培养学生自身的创新思维能力。首先,要注重逻辑推理能力的培养,高中数学是一门逻辑性特别强的学科,学生只有掌握了概念和理论之后,并进行一定程度的分析和综合,这样才能认识到数学内所蕴含的一些规律,并运用规律更好地解题。在这个过程中,学生较多地运用到逻辑推理能力,因此,教师在教学过程中要注意概念和原理的教学,培养学生的逻辑推理能力,从而更好地激发学生的创新思维。然后自己进行推理论证,或者是学生与学生一起进行推理,在这个推理过程中,就容易使学生进行多样性思维,从而更好地激发出创新思维。再者,培养学生举一反三的能力,使学生能够多角度地考虑问题,这样也有利于发散思维能力的培养,教师可以列举一些比较开放的题目,比如,教师可以就同一个问题,让学生推理出不同的证明过程。因此,在学生的验证过程中,对学生的发散思维也进行了培养和训练,这有利于学生创新思维能力的培养。

三、培养创新思维的有效途径

1.建立和谐的师生关系

在高中数学教学过程中,教师与学生建立和谐的师生关系,不仅有利于教学效果的呈现,激发学生的学习兴趣,而且还可以使学生的思维不受到限制,有利于学生创新思维的培养。教师和学生关系和谐融洽,学生就会对教师的课堂感兴趣,认真听取教师讲课,课堂效率就会很高;反之,学生与教师关系僵硬,就会排斥老师,并且会排斥教师的课堂,因此,教师和学生要和谐相处。在课堂上,教师平等地对待每一位学生,对于学生提问的问题,教师要耐心地讲解。教师和学生之间还要多一些沟通,使学生与教师之间能够畅所欲言,这样能够鼓励学生对问题提出自己的疑问,教师可以更好地引导学生进行积极的思考,使学生在愉悦的环境下进行学习,促进学生学习效率的提高,更好地培养学生的创新思维能力。

2.丰富课堂内容

篇6

“先猜后证”──这是大多数数学方法、规律、法则、定理、公理等的发现之道。解决问题时的合情推理的特征是不按逻辑程序去思考,但实际上是学生把自己的经验与逻辑推理的方法有机地整合进来的一种跳跃性的表现形式。因此在数学教学中,既要强调思维的严密性,结果的正确性,也要重视思维的直觉探索性和发现性,即应重视数学合情推理能力的培养。那么数学教师在课堂教学中如何培养学生的合情推理能力呢?

一、在“数与代数”教学中培养学生的合情推理能力

在“数与代数”的教学中,对于代数运算不仅要求会运算,而且要求明白算理,能说出运算中每一步依据所涉及的概念运算律和法则,代数不能只重视会熟练地正确地运算和解题,而应充分挖掘其推理的素材,以促进思维的发展和提高。如:有理数加法法则是以学生有实际经验的向东向西问题用不完全归纳推理得到的,教学时不能只重视法则记忆和运用,而对产生法则的思维一带而过,又如,对于加乘法各运算律也都是采用不完全归纳推理形式提出的,重视这样的推理过程(尽管不充分)既能解释算律的合理性,又能加强对算律的感性认识和理解。

在备课时,教材的每一个知识点在提出之前都进行该知识的合理性或产生必然性的思维准备,在教学中要充分展现推理和推理过程,并在黑板上演示出来,让学生一起模仿,加强师生互动,逐步培养学生合情推理能力。

二、在“空间与图形”教学中培养学生的合情推理能力

在“空间与图形”的教学中.既要重视演绎推理,又要重视合情推理。数学新课程标准关于《空间与图形》的教学中指出:“降低空间与图形的知识内在要求,力求遵循学生的心理发展和学习规律,着眼于直观感知与操作确认,多从学生熟悉的实际出发,让学生动手做一做,试一试,想一想,认识图形的主要特征与图形变换的基本性质,学会识别不同图形;同时又辅以适当的教学说明,培养学生一定的合情的推理能力。”

这为学生“利用直观进行思考”提供了较多的机会。学生在实际的操作过程中,要不断地观察、比较、分析、推理,才能得到正确的答案。如:在圆的教学中,结合圆的轴对称性,发现垂径定理及其推论;利用圆的旋转对称性,发现圆中弧、弦、圆心角之间的关系;通过观察、度量,发现圆心角与圆周角之间的数量关系;利用直观操作,发现点与圆、直线与圆、圆与圆之间的位置关系等等。在学生通过观察、操作、变换探究出图形的性质后,还要求学生对发现的性质进行证明,使直观操作和逻辑推理有机地整合在一起,使推理论证成为学生观察、实验、探究得出结论的自然延续,这个过程中就发展了学生的合情推理能力。同时也有助于学生空间观念的形成,合情推理的方法为学生的探索提供努力的向。

三、在“统计与概率”教学中培养学生的合情推理能力

统计中的推理是合情推理,是一种可能性的推理,与其它推理不同的是,由统计推理得到的结论无法用逻辑推理的方法去检验,只有靠实践来证实。因此,“统计与概率”的教学要重视学生经历收集数据、整理数据、分析数据、作出推断和决策的全过程。如:为筹备新年联欢晚会,准备什么样的水果才能最受欢迎?首先应由学生对全班同学喜欢什么样的水果进行调查,然后把调查所得到的结果整理成数据,并进行比较,再根据处理后的数据作出决策,确定应该准备什么水果。这个过程是合情推理,其结果只能使绝大多数同学满意。

概率是研究随机现象规律的学科,在教学中学生将结合具体实例,通过掷硬币、转动转盘、摸球、计算器(机)模拟等大量的实验学习概率的某些基本性质和简单的概率模型,加深对其合理性的理解。

四、在学生熟悉的生活环境中培养学生的合情推理能力

篇7

[关键词]初中数学教学 合情推理能力 培养

合情推理所得的结果具有偶然性,但也不是完全凭空想象,它是根据一定的知识和方法做出的探索性的判断,因而在平时的课堂教学中如何教会学生合情推理,是一个值得探讨的课题。当今,教育领域正在全面推进,旨在培养学生创新能力的教学改革。长期以来,中学数学教学十分强调推理的严谨性,过分渲染逻辑推理的重要性而忽视了生动活泼的合情推理,使人们误认为数学就是一门纯粹的演绎科学。

一、在“数与代数”中培养合情推理能力

在“数与代数”的教学中,计算要依据一定的“规则”――公式、法则、推理律等。因而计算中有推理,现实世界中的数量关系往往有其自身的规律。对于代数运算不仅要求会运算,而且要求明白算理,能说出运算中每一步依据所涉及的概念运算律和法则,代数不能只重视会熟练地正确地运算和解题,而应充分挖掘其推理的素材,以促进思维的发展和提高。如:有理数加法法则是以学生有实际经验的向东向西问题用不完全归纳推理得到的,教学时不能只重视法则记忆和运用,而对产生法则的思维一带而过,又如,对于加乘法各运算律也都是采用不完全归纳推理形式提出的,重视这样的推理过程(尽管不充分)既能解释算律的合理性,又能加强对算律的感性认识和理解。再如,初中教材是用温度计经过形象类比和推理引入数学数轴知识的。在教学中,教材的每一个知识点在提出之前都进行该知识的合理性或产生必然性的思维准备,要充分展现推理和推理过程,逐步培养学生合情推理能力。

二、在“空间与图形”中培养合情推理能力

在“空间与图形”的教学中,既要重视演绎推理.又要重视合情推理。初中数学新课程标准关于《空间与图形》的教学中指出:“降低空间与图形的知识内在要求,力求遵循学生的心理发展和学习规律,着眼于直观感知与操作确认,多从学生熟悉的实际出发,让学生动手做一做,试一试,想一想,认别图形的主要特征与图形变换的基本性质,学会识别不同图形;同时又辅以适当的教学说明,培养学生一定的合情的推理能力。”并为学生“利用直观进行思考”提供了较多的机会。学生在实际的操作过程中.要不断地观察、比较、分析、推理,才能得到正确的答案。如:在圆的教学中,结合圆的轴对称性,发现垂径定理及其推论;利用圆的旋转对称性,发现圆中弧、弦、圆心角之间的关系;通过观察、度量,发现圆心角与圆周角之间的数量关系;利用直观操作,发现点与圆、直线与圆、圆与圆之间的位置关系;等等。在学生通过观察、操作、变换探究出图形的性质后,还要求学生对发现的性质进行证明,使直观操作和逻辑推理有机地整合在一起,使推理论证成为学生观察、实验、探究得出结论的自然延续,这个过程中就发展了学生的合情推理能力.注意突出图形性质的探索过程,重视直观操作和逻辑推理的有机结合,通过多种手段,如观察度量、实验操作、图形变换、逻辑推理等来探索图形的性质。同时也有助于学生空间观念的形成,合情推理的方法为学生的探索提供努力的方向。

教师要善于激发学生的“数形结合”兴趣,熏陶学生的“数形结合”意识。“兴趣是最好的老师”,学习数学尤其如此。怎样使一个初中一年级的学生带着浓厚的兴趣步入“数形结合”的圈子呢?首先,展现数学美本身所蕴涵的数形美感。比如,不妨考虑用新学期的第一节课,重点地去向学生介绍一下数学史方面的知识。你可以从欧几里得的古代《几何原本》,说到诸多数学发现再到近代数学的发展,关键是要举出那些有关数学美的经典事例,如勾股定理、黄金分割等,相信这样的启蒙课对于渴望求知的初中生而言是很必要的,其实在今后的课堂中,我们也可以适当地穿插一些类似的内容,让学生经常领悟到数与形结合的客观美感,激发其学习兴趣。其次,重视“数形结合”基础阶段的引导。其实有关数形结合思想的内容几乎贯彻于初中数学的始终,但我个人认为,“数轴”的学习对于处于“数形结合”萌芽时期的初中生而言是决定性的。因为它在初中生的数形结合能力培养过程中起到一个根基性的作用。一方面,它可以与有理数、无理数的学习联系起来,让初中生开始感受什么是数形结合;另一方面,它通过方程、不等式的应用让学生真正体验到数形结合的思想气息,而恰恰是这种体验令学生见证了数与形的和谐统一,并在潜移默化中最终形成运用数形结合的思想意识。

三、在“统计与概率”中培养合情推理能力

统计中的推理是合情推理,是一种可能性的推理,与其它推理不同的是,由统计推理得到的结论无法用逻辑推理的方法去检验,只有靠实践来证实。因此,“统计与概率”的教学要重视学生经历收集数据、整理数据、分析数据、作出推断和决策的全过程。如:为筹备新年联欢晚会,准备什么样的水果才能最受欢迎?首先应由学生对全班同学喜欢什么样的水果进行调查,然后把调查所得到的结果整理成数据,并进行比较,再根据处理后的数据作出决策,确定应该准备什么水果。这个过程是合情推理,其结果只能使绝大多数同学满意。

概率是研究随机现象规律的学科,在教学中学生将结合具体实例,通过掷硬币、转动转盘、摸球、计算器(机)模拟等大量的实验学习概率的某些基本性质和简单的概率模型,加深对其合理性的理解。

四、在学生熟悉的生活环境中培养合情推理能力

篇8

逻辑思维指人们在认识过程中借助于概念、判断、推理等思维形式能动地反映客观现实的理性认识过程,所以逻辑思维又称理性思维或理论思维。只有经过逻辑思维,人们才能达到对具体对象本质规律的把握,进而认识客观世界,它是人认知能力的高级阶段。

培养学生的逻辑思维能力,数学教学具有优越的条件。现代教学论认为:数学教学是数学思维活动的教学,而不仅是数学活动的结果,数学教育的任务是形成那些具有数学思维特点的智力活动结构。数学的这些特点,使得数学教学在培养学生数学逻辑思维能力方面,较之其它学科占有更重要的地位。现行初中数学课程标准中也明确指出:"数学教学中,发展思维能力是培养能力的核心",所以在初中数学教学中培养学生的思维能力,是数学教师的一项重要任务。数学在提高人的推理能力、抽象能力、想象力和创造力等方面有着独特的作用。本文就数学教学中逻辑思维的培养谈谈自己的看法。

1.老师要有意识的去引导学生正确的思维方式

逻辑思维能力的培养直接体现在推理论证能力上,要教会学生分析问题解决问题的基本方法,比如在代数教学中,数、式、方程的运算是重点,其中在运算过程中要求步步有理、有据,否则就无法进行,每一步的依据是什么呢?无非就是已知的定义、定理、性质、法则、公式等。整个运算过程就是一个逻辑推理的过程。如列方程解应用题这个知识点,学生往往掌握不好用代数方法分析问题的思路,习惯用小学的算术解法,找不出等量关系,列不出方程。因此,我在教列代数式时有意识地为列方程的教学作一些准备工作,启发同学从错综复杂的数量关系中去寻找已知与未知之间的内在联系。通过画草图列表,配以一定数量的例题和习题,使同学们能逐步寻找出等量关系并列出方程。

课本中不少法则、性质的推导也是培养逻辑推理的极好材料。教师在处理教材时,要注意引导学生在引入定理之前的猜想,要求学生遇到问题时应当先试探猜测后证明。一些教学工具如"几何画板"、也可用于启发引导学生思考及猜想。如在进行"直角三角形的性质"一节的教学时,对于定理"直角三角形斜边上的中线等于斜边的一半",可利用"几何画板"软件设计引入,引导学生猜想,并最后证明自己的猜想。

又如:同底数幂的乘法性质的推导,可以先从底数、指数都是具体的数,根据幂的意义和乘法计算法则,让学生自然得出结论;联想到这是底数是一般的字母的情况;然后再到底数和指数都是字母,引导学生用类比推理的方法证明,再让学生观察这个式子,归纳得出结论,并要求学生正确的用语言表述性质:"同底数幂相乘,底数不变,指数相加。"最后再把推广到三个或三个以上的同底数幂乘法或者底数是单项式或多项式的情形。这个过程的推导过程是一个从特殊到一般,从具体到抽象,有层次地逐步进行概括、归纳、抽象的过程。是培养学生抽象概括能力和逻辑推理能力的过程。

2.培养学生良好的思维品质,鼓励学生独立思维

加强学生思维能力的训练及思维品质的培养,要训练学生思维清晰,条理清楚,遇到问题能按逻辑分析并思考解决。

教师要善于启发、引导、点拨、解疑,使学生变学为思。例题教学是培养学生的逻辑思维能力的有效方法,波利亚说:"中学数学教学的首要任务就是加强解题训练","掌握数学就意味着解题"。能否正确的解题,逻辑思维能力起着关键的作用。在习题课中要把解题思路的发现过程作为重要的教学环节,不仅要学生知道该怎样做,还要让学生知道为什么要这样做。这个发现过程可由教师引导学生完成,或由教师讲出自己的寻找过程。首先要让学生学会认真审题,要能判断它是属于哪个范围的题目,涉及到哪些概念、定理或公式,然后对解题起关键作用的隐含条件要有挖掘的能力,解题思路可以运用从条件到结论或从结论到条件的正逆两种逻辑推理方法。

培养学生思维逻辑性的同时要兼顾注意培养思维的严密性和灵活性。每个公式,法则、定理都有它的来龙去脉,都有使它成立的前提条件,都有它特定的使用范围。选择一些习题让学生先做,再针对学生思维中的漏洞进行分析。例:学习 "一元二次方程"的一个题目:t是什么数时,方程tx2-(2t+1)x+t=0有两个不相等的实数根?很多同学只注意由=[-(2t+1)]2-4t?t=4t2+4t+1-4t2=4t+1>0,推得t>-14。而如果把t>-14作为本题答案那就错了,因为当t=0时,原方程不是二次方程,所以在t>-14还得把t=0这个值排除。正确的答案应是-14

例题教学可以精选有代表性的习题从各种不同角度寻求 "一题多解",也可改变条件进行 "一题多变"的训练,让学生发散思维,这是学会运用数学方法的重要措施。

学生受经验思维的影响,思维有一定的依赖性,缺乏探索精神。因而要多鼓励学生敢于发表不同的见解。例如比较大小,用"

3.在教学过程中,要培养学生思考的兴趣

篇9

一、在“数与代数”中培养合情推理能力

在“数与代数”的教学中.计算要依据一定的“规则”— — 公式、法则、推理律等.因而计算中有推理,现实世界中的数量关系往往有其自身的规律。对于代数运算不仅要求会运算,而且要求明白算理,能说出运算中每一步依据所涉及的概念运算律和法则,代数不能只重视会熟练地正确地运算和解题,而应充分挖掘其推理的素材,以促进思维的发展和提高。如:有理数加法法则是以学生有实际经验的向东向西问题用不完全归纳推理得到的,教学时不能只重视法则记忆和运用,而对产生法则的思维一带而过,又如,对于加乘法各运算律也都是采用不完全归纳推理形式提出的,重视这样的推理过程(尽管不充分)既能解释算律的合理性,又能加强对算律的感性认识和理解。

在教学中,教材的每一个知识点在提出之前都进行该知识的合理性或产生必然性的思维准备,要充分展现推理和推理过程,逐步培养学生合情推理能力。

二、在“空间与图形”中培养合情推理能力

在“空间与图形”的教学中.既要重视演绎推理.又要重视合情推理。初中数学新课程标准关于《空间与图形》的教学中指出:“降低空间与图形的知识内在要求,力求遵循学生的心理发展和学习规律,着眼于直观感知与操作确认,多从学生熟悉的实际出发,让学生动手做一做,试一试,想一想,认别图形的主要特征与图形变换的基本性质,学会识别不同图形;同时又辅以适当的教学说明,培养学生一定的合情的推理能力。”并为学生“利用直观进行思考”提供了较多的机会。学生在实际的操作过程中.要不断地观察、比较、分析、推理,才能得到正确的答案。如:在圆的教学中,结合圆的轴对称性,发现垂径定理及其推论;利用圆的旋转对称性,发现圆中弧、弦、圆心角之间的关系;通过观察、度量,发现圆心角与圆周角之间的数量关系;利用直观操作,发现点与圆、直线与圆、圆与圆之间的位置关系;等等。在学生通过观察、操作、变换探究出图形的性质后,还要求学生对发现的性质进行证明,使直观操作和逻辑推理有机地整合在一起,使推理论证成为学生观察、实验、探究得出结论的自然延续,这个过程中就发展了学生的合情推理能力.注意突出图形性质的探索过程,重视直观操作和逻辑推理的有机结合,通过多种手段,如观察度量、实验操作、图形变换、逻辑推理等来探索图形的性质。同时也有助于学生空间观念的形成,合情推理的方法为学生的探索提供努力的方向。

三、在“统计与概率”中培养合情推理能力

统计中的推理是合情推理,是一种可能性的推理,与其它推理不同的是,由统计推理得到的结论无法用逻辑推理的方法去检验,只有靠实践来证实。因此,“统计与概率”的教学要重视学生经历收集数据、整理数据、分析数据、作出推断和决策的全过程。如:为筹备新年联欢晚会,准备什么样的水果才能最受欢迎?首先应由学生对全班同学喜欢什么样的水果进行调查,然后把调查所得到的结果整理成数据,并进行比较,再根据处理后的数据作出决策,确定应该准备什么水果。这个过程是合情推理,其结果只能使绝大多数同学满意。

概率是研究随机现象规律的学科,在教学中学生将结合具体实例,通过掷硬币、转动转盘、摸球、计算器(机)模拟等大量的实验学习概率的某些基本性质和简单的概率模型,加深对其合理性的理解。

四、在学生熟悉的生活环境中培养合情推理能力

篇10

关键词:思维能力;小学数学;素质教育;逻辑思维

在小学数学的教学过程中,教师不仅仅需要传授学生相应的知识,同时还要将数学学习方法传授给学生,培养学生的数学思维能力。在教学过程中,教师需要注重培养学生的逻辑思维,培养学生思维灵活性和创造性,并且提高学生的学习兴趣。在小学阶段,学生已经开始接受较为系统化的数学教学,但是小学生的思维能力、学习方式和知识结构都具有较强的可塑性,因此,如果教师可以抓住这一特点,并且加以利用,则可以有效提高学生的数学学习能力,同时培养学生的逻辑思维能力。

一、小学数学思维能力概述

在数学学习的过程中,学生的学习行为既反映了人类的学习共性,同时又反映了小学阶段学生的学习特性。在小学阶段,大多数学生的逻辑思维能力和学习习惯都处于塑造阶段,随着对知识的不断学习,学生的思维能力逐渐在形成并且逐渐发展,并且其抽象思维能力和具象思维能力是相互发展,相互促进的。一般情况下,数学思维属于抽象思维能力,属于学生在数学学习中的特定思维能力。在小学阶段的数学思维主要指的是以数字、图形及其相关内容为主要知识点,以此开展的对数学知识学习的一种思维。通过对数学思维能力的培养,学生能够在日后的数学学习中以数学观点去思考问题或者解决问题,同时展现自身良好的数学素养,同时培养数学学科的核心素养。

二、小学阶段培养学生数学思维能力的重要性

在小学阶段的数学学习过程中,由于学生自身个体因素差异以及外在因素的影响,学生的学习情况和学习水平会存在一定的差异,部分学生的理解能力和思维能力较强,可以在短时间内完成对新知识的学习和内化,但是大部分学生需要一定的时间来完成对知识的内化。此外,还有一部分学生的理解能力和学习能力较差,需要较长时间对知识进行学习。基于此,教师有必要帮助学生培养良好的数学思维能力。通过数学思维能力的培养,学生可以养成良好的学习习惯,同时提高自身的学习能力。例如,学生可以将所学习的新的知识内容与原有的知识内容进行结合,从而形成对新知识内容的独特理解。在学习的过程中,如果学生具备良好的思维能力,则可以对数学问题进行有效的分析,并且形成准确的判断。此外,当养成良好的数学思维能力之后,学生可以对所学知识以及所解答的问题进行举一反三,并且逐步提出自己的观点和建议,从而加深对所学习内容的理解和应用,有效提高自身的数学思维能力和数学学习效率。

三、小学阶段数学思维能力培养分析

(一)小学阶段抽象思维能力的培养在小学阶段的数学教学中,抽象思维能力又称为抽象概括能力,是数学思维能力的基础。抽象思维能力的本质是剥开事物的表象从而实现对事物本质的观察和分析。最经典的例题之一就是“比较一斤铁和一斤棉花的重量”,实际上,两者重量是相同的,但是,如果被两者形态所迷惑,就会导致主观判断错误。此时,培养学生的抽象概括能力是非常重要的,因此教师需要引导学生将重量这一概念抽象出来,并且让学生对此形成深刻的理解。在教学过程中,教师首先需要帮助学生对课堂内容进行预习,进而在课堂结束之前对本节课所学内容进行统一地复习、概括和归纳。在小学阶段要想培养学生的抽象思维能力,首先需要培养学生对于知识的概括能力,因此,教师需要在教学过程中不断培养学生的概括习惯。在教学过程中,教师需要注意自身的引导作用和引导角色,不能让学生进行漫无目的地进行盲目概括,同时也要避免出现代替学生进行概括的情况。在教学过程中,教师可以先让全体学生对学习内容进行概括,进而选出部分学生对此进行概括发言,让学生敢于提出自身的意见和观点,从而帮助学生从实际出发,培养学生学会对课堂内容的概括。在此过程中,教师需要注意因材施教的重要性,针对不同学生采取不同的授课技巧。

(二)小学阶段判断思维能力的培养判断思维能力是小学阶段的数学思维能力的重要组成部分。在数学学习的过程中,学生必须养成良好的判断能力,只有拥有了良好的判断能力之后,才能对题目和问题的内容进行分析,进而才能进行选择,决定如何运用所学知识去解决问题。在小学阶段,由于学生的知识面相对较窄,并且所接触的数学知识相对较少,因此在逻辑思维上存在一定的局限性,并且不能对数学问题进行准确的判断,有的时候甚至会对数学问题进行猜测。在小学数学的学习过程中,当学生具备了完善的判断思维能力之后,不仅可以对基础知识及其解题技巧和应用方法进行分析与判断,同时可以对数学解题思路、解题过程以及计算步骤进行合理的选择,与此同时,可以有效排除解题过程中遇到的外界因素所造成的干扰,从而提高判断准确率。在小学阶段的判断思维能力的培养过程中,教师首先需要帮助学生夯实知识基础,进而在此基础上教会学生根据所学知识对问题进行分析和判断。教师需要帮助学生学会正确地获取知识,同时在获取知识的过程中培养自身的判断思维能力,并且引导学生在巩固知识的基础上寻找最佳的解题方法,使其学会判断如何确定最佳的解题方法,在此过程中不断培养学生的判断思维能力。

(三)小学阶段逻辑推理能力的培养在任何阶段的数学学习过程中,数学学习者都需要具备相应的逻辑推理能力。数学学习过程中的逻辑推理能力使得数学学习者的思维灵活性、敏捷性和创造性得到了有效体现。在数学学习过程中,不论是学习知识还是解决问题,如数学计算、命题论证、数学判断以及结论证明等数学学习活动都离不开数学推理能力。在数学教学的过程中,教师需要利用合适的教学方法引导学生对数学问题进行推理,从而在有充足依据的情况下对数学问题进行抽丝剥茧。在小学阶段的数学教学过程中,由于小学生对于数学知识的了解程度较浅,具有较强的可塑性,而数学科目本身就具有较强的逻辑性,因此教师可以利用数学科目培养学生的逻辑推理能力,让学生在掌握牢固的基础知识的基础上逐渐接受新的知识点,同时对问题进行解答。此外,教师需要帮助学生对已学知识进行巩固,并且加强新旧知识之间的联系,构建合理的知识体系,帮助学生在学习过程中做到举一反三。

(四)小学阶段探索思维能力的培养在数学学习的过程中,学习者的探索思维能力直接决定了学生在数学领域的学习高度,因此,探索思维能力是数学学习过程中最富有创造力的思维因素,同时也是最难以养成的思维因素。而小学生在数学领域的学习过程中,其学习思维类似于一张白纸,具有较强的可塑性,教师需要抓住这一点,在教学过程中利用创造性的问题激发学生的学习欲望和学习兴趣,同时鼓励学生对数学知识和数学问题进行自主探索,掌握相关的知识内容,并养成良好的自主学习习惯。此外,除了单纯的知识教学之外,教师还需要进行实践教学,并且在实践教学的过程中提出与课本知识相关的问题,让学生在学习的过程中对知识进行探索,并且得出相应的最优解。为了进一步培养学生的探索思维,教师需要在教学过程中尽可能地多设置相应的开放性问题,从而让学生充分发挥自身的主观能动性和探索精神。

四、推动学生数学思维能力培养的有效措施

(一)激发学生兴趣在教学的过程中,教师首先需要认识到兴趣的重要性。小学阶段的学生的理解能力和知识接受能力较弱,但是具有较强的好奇心和探索兴趣,因此,教师需要认识到这一点,抓住小学生的好奇心并且加以利用,在学生掌握基础的知识之后鼓励学生对更深层次的知识进行学习,同时提高学生的数学学习能力。在激发学生学习兴趣的过程中,教师需要注意利用多样化、趣味化的教学方法进行引导,同时对学生进行适当激励,以此帮助学生建立对数学学习的兴趣和信心。在此过程中,教师可以帮助学生养成良好的数学思维,同时提高自身的教学水平并积累自身的教学经验。

(二)鼓励学生独立思考人类区别于其他动物的本质就在于能够独立思考,因此,在教学的过程中,教师需要认识到独立思考对培养学生数学思维能力的重要性,并在教学过程中鼓励学生进行思考,同时帮助学生养成举一反三的思维方式。教师需要注意的一点是,独立思考的前提是掌握牢固和丰富的知识,因此,教师首先需要帮助学生掌握并且巩固自身所学习的知识,同时在此基础上培养学生的独立学习能力,发展学生的数学思维能力。

(三)鼓励学生合作学习并培养其实践能力在任何科目的学习中,都是“纸上得来终觉浅,绝知此事要躬行”。因此,为了培养学生的数学思维能力,教师需要引导学生在实践中学会不断应用和检验自身所学习的数学知识和数学理论,从而获得更为深刻的理解。随着社会的发展,在任何领域的学习过程中,都必须认识到合作学习的重要性,因此,教师在进行数学教学的过程中,需要引导学生养成良好的合作学习的习惯,并且在小组内部的合作学习期间,鼓励学生进行充分交流,从而取长补短,学会尊重对方、学习对方。