材料化学范文
时间:2023-03-31 05:59:37
导语:如何才能写好一篇材料化学,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
教学内容的调整优化
1结合地方实际,调整优化课程内容《材料化学》涉及的内容很繁杂,新材料广泛用于通讯、交通、能源、生物医用以及建筑等各种领域。作为一门选修课,只有36学时,不可能每个章节都能讲得非常细致全面,这就要求老师讲授内容要精心组织,贯彻少而精,求实效的原则,结合地方实际的需求来安排教学内容。并且,课堂教学的目标不是将所有的知识传授给学生,而是将学生引入一个新领域。于是,我们根据教学大纲和教学目标,结合广东省尤其是惠州市企业的实际情况,对《材料化学》的教学内容进行了调整优化,对于特种陶瓷材料、光学材料、功能高分子材料以及半导体材料等进行重点讲解。例如,惠州市是全国应用LED的试点城市之一,有强大的照明和显示产业。我们结合2008北京奥运会以及上海世博会应用了大量的LED灯作为实例,对LED的原理、优点、国内外现状、存在的问题以及发展趋势进行详细的讲解,使学生对LED有了一个初步的认识和了解。
2介绍学科前沿,拓宽学生知识面材料的发展突飞猛进使教材有一些滞后性,所以老师在阐明经典分析理论和方法的同时,要随时关注相关材料的发展动态,及时更新教学内容,引入各个领域中材料化学的新进展、新成果。通过在教学中不断渗透前沿科学,不仅使材料化学教育富有生命力、感染力和时代感,而且也培养了学生的科学素质,激发了学生的学习热情,同时在介绍前沿科技时,教师表现出的崇尚科学的情感和求真求实的价值观也会对学生产生深远的影响。教学的同时,我们也向学生介绍相关的老师的研究方向、研究成果,让他们知道一些高新技术、前沿科学并不是遥不可及,而是就在我们身边,激发他们的研究热情,帮助他们选择老师做毕业论文,这对于学生的就业甚至求学深造、走向科研之路都是有利的。
教学方法和手段的改进
根据不同的教学内容,改革教学方法和手段,是提高教学效果的重要环节。《材料化学》涉及的化学基础知识很多,包括无机化学、有机化学、物理化学、分析化学,甚至包括工程技术专业课程化工原理的相关知识。很多学生就不擅于综合应用化学化工的基础理论来理解材料科学,反映《材料化学》比较难学。针对这些问题,我们对教学方法和手段主要做了如下的改进:
(1)理论教学上,讲清难点,突出重点。在讲解材料的组成、结构、性能与加工工艺关系的时候,结合实例,把相关的无机化学、有机化学、物理化学、分析化学、化工原理基础知识提出来,让学生回忆所学的知识,活学活用,既加深了对基础知识的理解,又提高了知识的应用能力,明白理论与实践有时只有一步之遥。在介绍高新技术和前沿科学的同时,强调它们所应用的经典基础理论知识,通过点面结合,让学生注重在扎实的理论知识上创新思维的培养。
(2)组织好课堂教学。在设计一堂课的时候,根据讲授内容,以不同的方法进行教学。例如,讲超导材料一章时,我们以3D电影《阿凡达》为例,让学生讨论地球人与纳威人为什么而战,名叫“Unobtanium”的矿石有什么用等等,从而引出超导材料,这样就大大激发了学生的学习兴趣。讲功能高分子材料一章时,先让学生做几个生活中常见的功能高分子材料的选择题,让他们带着问题听讲,起到事半功倍的教学效果。在教学过程中,老师不但要授之于鱼,而且要授之于渔,因此一般采用设疑或质疑的方式,引导学生独立思考,并分析讨论得出正确的结论,充分发挥学生学习的主观能动性,把被动学习变为主动学习,将他们的求知、就业、成才联系起来[2]。(3)恰当使用多媒体教学。材料化学的发展,不外乎深化和融合。深化,即是从宏观的反应动力学到微观的反应动力学,从平衡态到非平衡态,从研究个体发展到研究相之间联系、渗透以及不同层次的整体统一。融合,即是采用多学科渗透、融合来解决各种问题。如果单靠语言和文字描述来讲解材料化学,学生难以理解。而多媒体教学具有直观、形象、生动、信息量大、交互性强、人性化和科学性的特点,对于增加课堂容量,促进教学过程的优化和个性化,调动学生的积极性,提高教学的质量和效益起到了巨大的作用。但是多媒体教学容易削弱课堂上老师与学生之间的情感交流。因此课堂上应恰当地运用多媒体、挂图、模型、板书,传统和现代的教学手段相结合,创造良好的学习氛围,帮助学生理解知识,让学生记忆深刻。
考核方式多种多样,注重培养学生的综合素质
大学生综合素质的培养是社会发展的需要,也是高等教育改革的目标[3]。而学生课程成绩的考核,既是提高学生综合素质,考查学生掌握知识、运用知识的重要手段,也是检验教师教学的一种方法。作为一门重要的专业课,材料化学要培养大学生实事求是、严格要求的科学态度,培养大学生实现某个目标具有的科学思路、创新精神,应该采取多种多样的考核方式,激发学生的学习热情,提高教师的教学水平。本课程强调平时成绩的重要性,占40%,期末成绩占60%。平时成绩主要靠以下三个方面进行打分:一是根据学生的出勤情况;二是根据课堂表现,例如老师提问,学生参与讨论的积极性,发表自己的见解;或者是让学生自学、独立思考,提出自己的问题让大家参与讨论;三是平时布置一些小题目,考查学生课外查阅文献、主动获取知识的能力以及自学能力。
篇2
该公司领导班子十分重视安全生产工作,深知企业安全生产工作的重要性和必要性。确立了“抓生产从安全入手,抓安全从生产出发”的工作指导思想,视安全生产工作为一切工作的头等大事,重中之重。公司成立安全生产管理机构,由总经理王坚先生直接担任组长,对企业安全生产负全面责任,各部门主管为安全管理机构成员,配备专职安全生产管理员(注册安全主任),协助企业领导,做好安全生产工作,做到安全管理制度落实有人抓,安全生产工作有人管。
该公司不断建立和完善一套行之有效的安全生产管理制度,如安全教育培训制度、安全生产检查制度、安全考核与奖惩制度、安全生产工作档案与档案管理制度和制定设备安全技术规程和工种(岗位)的安全操作规程等共计编写制定了44个安全管理的规章制度,覆盖各个生产车间的每一个岗位。安全生产制度化,保障安全生产工作有章可循,以制度管人,规范员工安全生产行为。
该公司根据《公司安全生产责任制》的要求和安全生产管理方面的责、权、利统一原则,层层签订了责任书,把安全生产责任层级分解,将责任和指标明确到部门、班组、个人,做到一级抓一级,一级对一级负责。
二、真抓实干突出安全制度落实
一是落实安全教育培训制度。第一,狠抓班组长的安全教育,班组长是兵头将尾,作用不容忽视,他们管理水平的高低直接关系到安全生产管理工作的顺利实施。第二,狠抓岗位员工的安全教育。我们从强化员工的安全意识入手,坚持经常性的安全教育。今年上半年共举办了18期培训班,共600人次接受安全培训教育。第三,加强管理人员培训。现有7人持有安全管理人员资格证,1人持有中级安全主任证,4人持有初级安全主任证,2人持有安全标准化证,3人持有危化品登记证,7人持有特殊工种作业证。通过教育培训等手段,加强全体职工的安全生产意识,提高安全生产管理及操作水平,增强自我防护能力,保证生产的顺利进行。
二是落实安全生产检查和安全隐患整改制度。该公司实行“周检查、月考评”的形式,检查和评比的主要内容有:消防设备、安全教育、安全制度的落实、现场管理、机械设备及劳动保护等。公司的各级领导、安全管理人员坚持每天到各生产场所进行安全检查,并且还实施了领导夜间巡查制度。发现违章违纪行为及时纠正,并将检查工作与考核工作有机地结合起来,实行安全检查制度化、经常化,最大限度消除事故隐患的发生。
三是落实安全奖惩制度。该公司从在册职工月工资提取20元/人月,作为职工安全保证金,由安全管理部按月考核、当月结算,当月无“三违”、无事故,保证金全额返回。班组出现“三违”行为,取消该班组当月全部保证金的发还。部门月累计出现两次“三违”现象,加扣部门经理当月50%的保证金;部门月累计出现三次以上“三违”现象,取消该部门经理当月全部保证金的返还。公司还设立安全生产奖励基金10万元。
三、探索创新追求最佳安全管理水平
该公司在厂区管理方面,实施了《人员进入厂区的安全管理规定》。
在现场管理方面,采取安全教育方式及同员工签订《岗位责任状》和《工作环境告知书》,按《设备日常保养计划》定期进行维护保养。车间实行划线管理,物品按区域分类存放,禁止通道上摆放物品;在各作业场悬挂了安全技术说明及岗位操作规格,设置了明显醒目的安全警示标志。
在对重大危险源的管理方面,溶剂贮罐区非工作人员未经许可不准进入,进入溶剂贮罐区的工作人员必须严格操作规程,方可入内。剧毒仓库实行“五双”制度管理,安装了洗眼器、喷淋装置。
在消防设施方面,制定《消防设施检查维护计划》,认真落实日常检查及维护并做好相关的记录。
在安全投入方面,今年上半年该公司投入的安全费用共计50余万元。成立义务消防队,每月给予了相应的补助,每月训练一次,每年组织两次事故应急演练。生产车间、仓库安装可燃气体报警装置114个,按规定设置防静电装置。为操作人员配备符合国家标准和行业标准的劳动保护用品,配备了工作鞋、工作服、手套和口罩。此外还建起iso14000的环境管理体系。
篇3
一、无机材料化学的学科特色
材料是人类文明的物质基础和先导,是直接推动社会发展的动力。基于材料对社会发展的作用,人们将信息、能源和材料并列为现代文明和生活的三大支柱。在三大支柱中,材料又是能源和信息的基础。新材料既是当代高新技术的重要组成部分,又是发展高新技术的重要支柱和突破口。伴随着信息时代的来临和材料设计、制备及加工的信息化处理,世界各国都将目光转向具有“高、精、细”特征的新材料万面,我国也将新材料作为重点发展的行业之一。鉴于此,国家中长期科学和技术发展纲要(2006年-2020年)将新材料技术列为前沿技术,提出新材料技术将向材料的结构功能复合化、功能材料智能化、材料与器件集成化、制备和使用过程绿色化发展;要突破现代材料设计、评价、表征与先进制备加工技术,在纳米科学研究的基础上发展纳米材料与器件,开发超导材料、智能材料、能源材料等特种功能材料,开发超级结构材料、新一代光电信息材料等新材料。这一切都预示着材料科学正经历着一次重大的变革。因此,加强材料科学领域创新人才的培养是时代的要求。
无机材料化学是材料化学家从材料科学、材料工艺和技术的角度出发,把固体物理、固体化学相关理论和工程方面有关无机材料研究的化学内容集中起来,加以分析、综合和提高而形成的一门独立学科。[2]无机材料化学研究的范围非常广泛,包括材料相关的基本概念和理论、制备原理、结构表征、重要的材料类型及其相关性能等多方面的内容,涉及了固体物理、固体化学、材料科学等学科的相关理论,是一门典型的交叉性学科。进入20世纪90年代以来,材料科学技术的发展异常迅猛,材料科学与生命科学、信息科学、环境科学等共同构成了当代科学技术的前沿。展望21世纪,材料科学技术研究开发的前沿有微电子材料、新型光电子材料、稀土功能材料、先进陶瓷材料、高温超导材料、纳米材料等,[3]这些都属于无机材料化学的研究范畴。因此,无机材料化学又是一门具有前沿性的学科。基于学科背景和课程特点,我们在大连理工大学教改项目的支持下,以提高教学质量、培养学生的创新能力为主线,以建设精品课程为目标,进行了一系列教学改革和研究。
二、教学内容的选取
高等学校教学中教材内容的陈旧是影响创新型人才培养的突出问题,也是高校课程改革的重点。目前,高校教材内容不能适应现代化人才培养的需要,内容的先进性方面不能适应科学技术飞速发展的要求,不能适应知识经济时代创造型人才培养的要求。[4]特别是面对具有前沿性特点的材料化学,教材的内容相比速增长和更新的新材料来说,严重滞后。而要培养创新型人才,掌握最新的科研成果对于激发学生的创新思维非常重要。[5]向学生讲授科学前沿知识可以激发学生们的求知欲,为他们提供一个创新的空间,使学生能够近距离地感受创新的价值和创新带来的激情。因此,挑选合适的教材是非常重要的。我们挑选了北京大学林建华、荆西平编写的《无机材料化学》。该书将无机材料化学中重要的基础问题做了全面的讨论,这本教材最大的特点在于它介绍了无机材料化学领域的最新进展,并附有近期发表在国际主流期刊上的相关文献,整本教材体现着材料科学、化学和物理等学科交叉与渗透的特点。如果学生对教材中的某些前沿内容感兴趣,可以在教材中找到相应的参考文献,在图书馆下载后仔细阅读。
课堂上仅传授知识是远远不够的,教学内容还要有一定的探索性,能让学生有一定的思考空间。教学中,我们发现学生对来自科研一线的事例非常感兴趣。因此在课堂上,我们以自身科研成果丰富教学内容,结合自身科研经历令课堂生动有趣,深化了教学效果。我们经常把自己在科研工作中的体会、最新科研成果转化为教学内容,设计一些开放式的问题与学生探讨,自觉地把创新意识、创新能力的培养融入课堂教学之中。我们还结合相关的教学内容,穿插讲解一些科学方法论的知识,培养学生的科学精神。例如,在讲到固溶体合金的形成规律时,我们向学生讲述了现代物理冶金学重要创始人William Hume Rothery在听力完全丧失、健康状况非常不佳的情况下,凭借坚强的毅力和非凡的生活热情,在异常简陋的工作条件下,开创性地提出了著名的Hume Rothery准则。这位杰出的科学家一生始终以乐观向上的生活态度,坚持不懈地勤奋工作着。学生们纷纷为Hume Rothery的人格魅力而倾倒,希望自己也能投身科学,在某一领域取得杰出成就。我们经常把本学科碰到的难题以及学科前沿的问题向学生进行适当的介绍,激发学生的民族自豪感,培养学生的创新思维和探究精神。例如,在讲到第八章电介质材料时,我们将著名纳米科学家王中林发表在《科学》上的氧化锌“纳米发电机”一文介绍给学生。在讲到第九章超导材料时,我们向学生们介绍了我国在超导材料的研制上一直处于国际领先水平,特别是2008年我国在高温超导研究上取得重大突破,发现了一类新的高温超导材料———铁基超导材料,在全球范围内掀起了超导材料研究的新热潮,并介绍了铁基超导材料的结构和性能。在讲到第十二章发光材料时,我们向学生介绍了大连路明集团开发的“水立方幔态LED”在研发、制造、安装中创造的7项“世界第一”。这些事例大大激发了学生学习相关章节内容的兴趣,同时也培养了学生的民族自豪感和投身科学的信心与决心。实践表明,将科研引入教学过程,有力地促进了学生对知识的掌握和能力的提高,促使学生形成了正确的科学精神和科学态度,大大提高了教学的实际效果。
三、教学方法的改革
教学手段和方法是提高教育质量非常重要的一个方面。传统的教学方法以教师为主导,以传授知识为目的,往往采取灌输式教学方法,在很大程度上忽略了学生的主体地位和创造性,学生被动地接受知识,学习积极性不高,教学效果不理想。要改变过去那种单纯传授专业知识的教学方法,把培养学生的创新能力和创新意识作为教学工作的重点,我们必须对原有教学方法进行改革,采取多样化的教学手段激发学生的学习兴趣。
本课程的特点是知识点多而且分散,学生容易只见树木、不见森林。为此,我们理出了一条课程主线,向学生清晰地展示各章节的作用以及章节之间的联系(如图1)。我们力争做到讲课内容少而精,重点突出,主次分明,出现在不同章节但内容相关的部分放在一起讲解。例如,与Fermi面附近的能态密度相关的性质有金属材料的电子热容和Pauli顺磁性(第四章)、金属材料的电导率(第九章)、超导材料的临界温度(第九章)等,将这些知识点放在一起进行对比和总结,学生对Fermi能级的概念就会有非常清晰和深刻的认识。课程教学的重点在于使学生掌握该学科的思维方式和研究方法,给学生留有思考的足够空间,能从多角度理解基本原理。古人云“授人以鱼不如授人以渔”,这里强调的就是教授学生学习方法的重要性。[6]材料的组成和结构决定了其物理性质,这是材料化学的核心和基础。将钙钛矿材料的结构(第三章)和其铁电性质(第八章)结合起来讲解,学生不仅对该类材料的结构和特殊的物理性质有了深刻的认识,更深化了对结构-性能关系的理解,掌握了该课程的学习方法。
在实践中,我们采取了传统教学与多媒体教学结合、自主学习与协作学习结合,基于问题学习、基于案例学习、研究型学习等多种形式的教学策略,提高了学生学习和思考问题的效率。实践表明,适度使用多媒体教学,将材料实际应用的照片、材料加工制作过程的视频等图片影视资料生动地展示给学生,能为教学过程提供丰富的感性材料,丰富课堂教学内容。鉴于新材料的发展日新月异,每天新概念、新构想、新方法都在不断涌现,我们在课堂上及时地将与课程内容相关的最新文献介绍给学生,课堂教学结束前提出下次课程内容的前沿课题,让学生在课前完成对这一前沿课题的研究报告。这样一方面可以使这些学有余力的学生接触到材料化学领域的最新研究进展,培养他们对教材内容的兴趣并找到自己的科研兴趣,另一方面可以让学生看到自己知识结构的不足,在学习中自觉地去完善自己。与此同时,这也锻炼了他们查阅文献和英文阅读的能力,为将来进行专业科学研究奠定了一定的基础。通过一个学期的尝试,我们感到教学效果非常好,学生经常在下课后围着教师交流,提出各种材料学领域的前沿问题与教师探讨。有几个表现突出的学生已经进入到某些课题组,开展创新实验了。另外,在课堂上,我们结合自己的科研实践,提出开放式的与课程内容相关的问题,让学生思考和回答。我们鼓励学生提出不同的见解,这样就增加了师生互动,活跃了课堂气氛,提高了学生的学习兴趣。我们将本课程教学方法作一总结列于表1中。
四、实验教学方案设计
篇4
在《材料化学》绪论课的教学过程中,采用启发引导教学方式,以“材料、材料与化学、材料化学”为主线进行教学设计,通过讲解材料发展中的化学,引入材料科学与化学的区别与联系,重点从材料结构、制备、性能和应用四个方面讲授了材料研究中的化学问题,使学生对本课程的内容有了清晰的认识,激发了学生学习本课程的信心和兴趣,并取得了满意的教学效果。
关键词:
材料化学;绪论课;教学设计
材料化学是材料科学与化学的交叉学科,伴随着材料科学的发展而诞生和成长,即是材料科学的重要部分,又是化学学科的一个分支[1]。目前,很多高等学校的化学和材料类专业开设了《材料化学》这门课程。《材料化学》是南阳师范学院材料化学专业的核心基础课程,对于培养学生的材料科学基础知识,分析和解决材料制备和应用中的化学问题的能力起到了关键作用。但是该课程涉及的知识面广泛,内容庞杂、概念甚多、加上课程改革,理论课时数减小,学生在学习《材料化学》课程过程中,普遍存在概念混淆、重点难以掌握等问题。绪论是一门课程的开场白和宣言书,是师生之间学习和交流的起始点,能为学生建立起一门课程的知识轮廓。通过对绪论进行学习,学生可以了解课程在所学专业中所处的地位和作用,以及该课程的教学内容、学习方法和考核方式等问题[2]。如何激发学生学习该课程的兴趣,提高课程的教学质量,绪论课在整个课程教学中有着举足轻重的地位。结合近年来的教学实践,就如何讲好《材料化学》绪论课谈一些心得。
1首先明确课程性质、特点及地位
教学之初,首先明确该课程作为专业核心课程的重要地位,是学习后面材料专业课程的基础课程,同时明确考核方式,加强学生对本课程的重视程度。材料化学是材料科学和化学学科的交叉学科,课程内容既涉及工程材料应用中的实际问题,又包括材料结构及制备中的化学问题。作为一门交叉学科,很多知识点与材料学和化学课程中的相关内容重复,很多学生以为学过相关知识,就会从思想上松懈。然而,相关知识点虽然出现重复,但在不同学科中讲授的重点是不同的。在讲授材料化学课程的过程中,要着重培养学生利用化学的思维解决材料科学中的问题,使学生深刻领会化学与材料科学交叉的重要意义。通过一些实例,讲解本课程与化学和材料相关课程的区别和联系,使学生更加深入了本课程的性质和地位。材料科学是偏实际应用的工科课程,化学是偏理论的理科课程,材料化学则是利用化学的理论解决材料应用中的实际问题。
2材料
以材料的实际应用为引子,如材料在航天航空、交通运输、电子信息、生物医药等领域的应用,带领学生进入学习状态,引导学生回想什么是材料?材料的种类?提出材料是对人类有用的物质,是人类赖以生存和发展,征服自然和改造自然的物质基础;是人类进步的里程碑。然后介绍材料的发展历史,说明人们对材料的使用,是从最早的天然材料,依次经历了陶瓷、青铜、铁、钢、有色金属、高分子材料以及新型功能材料。根据材料的发展史,启发学生思考材料研究和发展过程中的规律和特点。人们对材料的使用经历了从天然材料到合成材料,从传统材料到新兴材料。传统的材料主要以经验,技艺为基础,材料靠配方筛选和性能测试,通过宏观现象建立的唯象理论对材料宏观性能定性解释,不能预示性能和指明新材料开发方向,而新型材料则以基础理论为指导。材料科学的历史表明,当一种全新的材料在原子或分子水平上合成后真正巨大的进展就常常随之而来。化学的发展往往导致材料技术的实质性进步。在新材料的研发和材料工艺的发展中,化学一直担当着关键的角色[3]。任何新材料的获得都离不开化学,以石墨烯为例,物理学家主要关注其电子结构及输运理论,材料学家主要测试材料的电磁、光电、传感和催化等性能,而化学家的任务则是利用化学气相沉积和插层剥离等方法制备该材料。只有通过化学气相沉积法制备出高质量大尺寸的石墨烯,才能推动石墨烯在电子信息领域走向实用化。
3材料与化学
材料化学是材料科学与化学学科的交叉,很多学生容易混淆材料科学和化学的研究范畴。在本课程的第一节课,一项重要的任务是使学生明确材料科学和化学的研究内容和范畴,这对于后续相关概念的讲解至关重要。材料科学的研究对象是材料,材料是对人类有用的物质,指的是人类用于制造物品、器件、构件、机器或其他产品的那些物质。而化学的研究对象是物质,物质是构成人类物质世界的基础。材料是物质,但不是所有物质都可以称为材料;材料科学是一门研究材料的成分、组织结构、制备工艺与材料性能及应用之间相互关系的科学;而化学则是从原子和分子角度研究物质的组成,结构、性质及相互转变规律的科学。因此,化学研究的尺度范围是原子、分子、分子纳米聚集体。材料科学最早研究的尺度范围在微米以上,如钢和陶瓷的组织结构。随着一些新兴材料的出现和发展,人们对材料的研究甚至小到电子结构。如近些年发现的拓扑绝缘体,其表面导电,体内不导电的性质由其拓扑的能带结构决定,而该拓扑结构则与电子的自旋运动有关,研究拓扑绝缘体必须从电子自旋角度认识其结构。因此,材料科学的研究范畴不断拓展,并于其它学科交叉。
4材料化学
通过学习材料的发展历程、材料科学与化学之间的区别和联系,学生已经对材料化学有了一定的认识,引导学生给材料化学下一个定义。材料化学是关于材料结构、制备、性能和应用的化学。本校材料化学专业选用曾兆华、杨建文编著第二版《材料化学》作为教材,教材的章节也是按照材料结构、制备、性能和应用进行安排的[4]。在这部分内容讲授过程中,可以让学生以教材目录为参照,讲到相关内容可以与教材相关章节进行对应。
4.1材料的结构
从三个层次讲解材料的结构,分别是电子原子结构、晶体学结构和组织结构。电子原子结构在很大程度上影响材料的电、磁、热和光的行为,并可能影响到原子键合的方式,因而决定材料的类型。在这个层次上研究的化学问题主要涉及原子序数、相对原子量、电离势、电子亲核势、电负性、原子及离子半径等。原子序数决定了材料的化学组成,电负性决定材料内部原子之间的键合方式,从而影响材料的导电性、强度和热膨胀系数等。晶体学结构主要指原子或分子在空间排列的方式,根据原子排列的有序性,将材料分为晶体和非晶体。晶体中出现局部无序,或对理想晶体的产生偏离,则出现缺陷。缺陷的存在影响材料的力学性能和电学性能等。如在本征硅内部掺杂磷元素,磷原子替代硅原子的位置,形成杂质原子缺陷,增加本征硅的导电性,形成N型半导体。组织结构主要指材料的物相组成及结构、晶粒的大小和取向等。在大多数金属、某些陶瓷以及个别聚合物材料内部,晶粒之间原子排列的变化,可以改变它们之间的取向,从而影响材料的性能。一般来说,减小金属的晶粒可以降低其熔点。在这一结构层次上,颗粒的大小和形状起着关键作用。大多数材料是多相组成的,控制材料内部物相的类型、大小、分布和数量可以调控材料的性能。
4.2材料制备
材料合成与制备就是将原子、分子聚集在一起,并转变为有用产品的一系列过程。材料制备的方法和工艺影响材料的结构,从而影响材料的性能。根据制备原理的不同,材料制备方法可以分为物理法和化学法。物理法指在材料制备过程中,仅改变材料内部原子或分子的聚集状态,不涉及化学反应的方法。如真空镀膜、溅射镀膜、脉冲激光沉积法等。化学法则在材料制备过程中,涉及化学反应,并且有新物质的生成。如固相反应法、有机合成法、水热法、沉淀法、化学气相沉积法等。以石墨烯材料为例讲解材料的制备方法。石墨烯作为二维单原子层材料,既可以采用物理法制备,也可以采用化学法制备。2004年发现石墨烯的报道,便是采用简单的胶带对撕方法制备,该方法依靠外力使石墨片层克服层间范德华力,使层与层之间分离,从而获得单层石墨,该方法也称为物理机械剥离法。利用甲烷、乙烯等烃类气体作为碳源,镍、铜、金等金属作为基片,采用化学气相沉积法则可以制备高质量大尺寸的石墨烯。另外,以石墨为原料,利用化学插层剥离的方法也可以用来制备石墨烯[5]。但不同方法制备获得石墨烯的尺寸及性能差别较大,在不同的应用领域采用的石墨烯制备方法是不同的。
4.3材料性能
材料的性能由其结构决定,与材料制备的工艺和方法有关。性能是指材料固有的物理、化学特性,材料性能决定了其应用。广义地说,性能是材料在一定的条件下对外部作用的反应的定量表述,例如力学性能是材料对外力的响应、电学性能是对电场的响应、光学性能是对光的响应等。因此,材料的性能可分为力学性能和特殊的物理性能。常见的力学性能包括材料的强度、硬度、塑性、韧性等。力学性能决定着材料工作的好坏,同时也决定着是否易于将材料加工成使用的形状。锻造成型的部件必须能够经受快速加载而不破坏,并且还要有足够的延性才能加工变形成适用的形状。微小的结构变化往往对材料的力学性能产生很大的影响。材料特殊的物理性能包括电、磁、光、热等行为。物理性能由材料的结构和制造工艺决定。对于许多半导体金属和陶瓷材料来说,即使成分稍有变化,也会引起导电性很大变化。过高的加热温度有可能显著地降低耐火砖的绝热特性。少量的杂质会改变玻璃或聚合物的颜色。
4.4材料应用
材料化学已经渗透到现代科学技术的众多领域,如电子信息、环境能源、生物医药和航天航空等领域。例如,在电子信息领域,现代芯片制造离不开化学。光刻过程使用的光刻胶和显影液,镀膜过程中的化学气相沉积和原子层沉积,刻蚀过程中的反应离子刻蚀,这些工艺过程都离不开化学的作用。在环境能源领域,新型光催化材料和太阳能电池材料的研究和开发,离不开化学法制备材料和对材料进行化学掺杂改性。在生物医药领域,对传感材料进行化学改性提高其传感特性,对仿生材料进行表面改性可以提高其生物相容性。在航天航空领域,各种轻质、耐高温、耐摩擦等结构材料和功能化智能材料的研发都离不开化学。
5结语
通过对“材料化学”绪论课的精心设计,使学生明确了该课程的性质和重要地位,大量的实例激发了学生学习的兴趣和求知欲,树立了学生学好该课程的信心,为课程的深入学习起到了奠基石的作用。以“材料、材料与化学、材料化学”为主线进行讲授,使学生对本课程的内容有了更加清晰和深入的认识,取得了良好的教学效果。
参考文献
[1]禹筱元,罗颖,董先明.材料化学专业人才培养模式的改革与实践[J].高教论坛,2010,1(1):23-25.
[2]杨卓娟,杨晓东.关于高校课程绪论教学的思考[J].中国大学教学,2011(12):39-41.
[3]唐小真,杨宏秀,丁马太.材料化学导论[M].北京:高等教育出版社,1997.
[4]曾兆华,杨建文.材料化学.2版[M].北京:化学工业出版社,2013.
篇5
关键字:纳米材料;一维钼氧化物;化学锂化;电活性
近年以来,人们对于物质世界研究已经深入到原子、分子等微观领域,纳米技术被研发于上个世纪八十年代末,它指的是人类在纳米单位即0.1至100毫米间对物质特及互相作用进行研究,同时利用它的特性的多学科的技术,目前已经成为主流研究领域。
一、纳米材料概述
(一)纳米材料主要分为:零维纳米材料。即在空间的三维尺度都受到约束,如纳米颗粒、团簇等。一维纳米材料。即在空间中有二维处在纳米的尺度内,包括纳米管、金属、棒和半导体线、纳米带等。二维纳米材料。即在三维空间里有一维处在纳米的尺度内,如超薄膜、超品格等。三维纳米材料。它主要由纳米晶体构成的材料。
在这之中,一维纳米材料具有特殊物理化学性能与可作量子器件的优势而被人们所重视,一维纳米材料之中,电子于两个维度或者两个方向的运动受到约束,只可以在一个方向自动运动,进而为研究在量子的限域之下电子运输、力学、光学等特性均提供了效果极佳的模型系统。
二、纳米带锂化改性
实验的原料:溶胶,纯氧化锂为锂源,分子量42.39。
间接水热法。量取0.2克使用离子交换方法经水热合成的纳米带,放入装30毫升去离子水烧杯中,经超声分散半小时,然后把0.29克纯氧化锂放入已分散好的纳米带中,同时搅拌48小时后,把淡蓝色流变相液体转移到容量50毫升的聚四氟乙烯的内衬不锈钢的反应釜里,反应釜经180摄氏度、24小时的水热后,自然冷却至与室温相当,将所得到的沉淀物分别使用乙醇与去离子水进行数次洗涤,最终在80摄氏度条件下经12小时干燥后得到最终产品。
由相关XRD图谱显示可以得出,锂化并没有对纳米带的晶体结构进行破坏,但是锂离子嵌入已使晶面距稍微扩大,其表现为衍射峰朝角度低处偏移。在锂化前后,纳米带依旧保持着一维纳米的结构,相比之锂化之前,锂化以后纳米带在二次水热的过程中部分断裂,其长度缩短至2至6μm,产生了较多的200至400nm小尺寸纳米片,其表面更为粗糙。
锂化前后的纳米带晶面距均为0.2nm,对纳米带实施选区电子衍射就能清楚看到衍射的斑点,而且锂化前后的纳米带花样一致,也从另一方面说明纳米带结构仍然是单品正交相。
直接水热法。为将实验流程简化,以利用更为简便与直接的方法对纳米带锂化,对间接锂化加以改进。
首先使用双氧水的氧化法制备过氧钼酸溶胶,然后把纯氧化锂直接加入溶胶里,并对其搅拌48小时以后,把溶胶转移容量为50毫升,内衬为聚四氟乙烯制不锈钢反应釜里,后续的工艺和间接锂化方法相同,同样能获得淡蓝色产物。
该产物的XRD图谱峰位一致,表明锂盐的存在对于溶胶产生正交相并没有影响,且与二次水热后得到的锂化纳米带比较,其衍射峰并无明显偏移,说明可能因为层间的锂离子嵌入相较间接锂化的纳米带更少,因此其层间距并没有产生明显变化。
纳米材料与电活性
间接锂化改性。就本文二中所提到锂化改性的纳米带的电化学性能如下:通过得到锂化前后的纳米带初次放电曲线图可知,锂后的纳米带正极材料放电电压的平台仍然是2.75V。引较于纯纳米带的初次放电量301mAh/g来说,锂化后纳米带降低至240mAh/g,主要是因为在锂化的过程中,锂离子嵌入故占据了一定数量的嵌理位置,使初次放电的电量明显减小,随着循环的持续进行,锂化纳米带便体现出其相当稳定的优势,经15次的循环以后,比容量仍然保持220mAh/g,同时容量的保持率达92%。
对纯纳米带循环15次以后180mAh/g的比容量进行相对比,容量保持率达60%与3.48的δ数值,可直观发现经锂化后纳米带具备更好的循环稳定性,得益于锂离子嵌入对其层结构起到支撑作用,使得充放电的比容量始终维持于平稳的数值范围之内。
(二)纳米器材。采用静电纺丝的技术制备具备“线中棒”的分级结构钒氧化物超长型纳米线,发现该线作为锂离子的电池正极材料具备较高比容量与优良循环性能。相比于常规的纳米材料,这类新颖的分级结构可有效防止纳米材料因高比表面能而发生自团聚的现象,从而提升电池性能,为排除纳米材料的团聚从而对性能造成影响,设计单根纳米线电化学器材,通过原位的表征,建立该纳米线电输运、结构、电极充放电等状态间的直接联系,发现容量的衰减和电导率降低有着关联。为进一步研究出化学锂化后对纳米材料的本征电活性的影响,把锂化前后的单根纳米带装成纳米器件,并对其电输运性能进行测试。
测试结果表明,锂化之前I-V特性显示纳米带的两端不对称的肖特基势垒,这是半导体氧化钼与金/铂电极间产生的,在大约2V的时候,传输的电流约300pA。锂化之后,I-V的曲线显示欧姆特性,在大约2V的时候,传输的电流约10nA,根据测定电阻、有效长与横截面积的计算,纳米带在锂化前后电导率大致分别是10-4与10-2S・cm-1。通过锂化后,电导率相应增加了数量级两个。因为纳米的带沿面生长,所以纳米带的导电性也增加,这意味着八面体层里载流子的浓度增加,表明锂离子被作为填隙的离子而被引入的。
在电化学的循环过程之中,纳米带层间距随锂离子嵌入或脱离而持续扩大或缩小,相比于未锂化的样品,具较宽层距的锂化后纳米带,在其充放电的过程中显示出更小的体积变化。因此锂化能够提高电极在锂离子的嵌入与脱离的过程中结构稳定性,第一次锂化所导入的锂离子始终保留于晶格之中,进而提升导电性,有利于在未来充放电的过程中锂离子嵌入与脱离。
深入研究纳米材料的化学特性,对合理及应用纳米材料有着相关重要的影响,也为我国在各行业、领域推广使用纳米材料打下良好理论基础。
参考文献:
篇6
【关键词】材料化学 教学大纲 教材 教学方法
培养既具有材料专业知识又具备化学专业知识的复合型人才,对满足社会发展需要具有重要意义。为此结合我校学科建设的需要和人才培养的需求,我校于2009年成立材料化学专业,下设于稀土学院,并于2010年9月招收了第一批新生。为满足复合型人才的培养需求就依赖于材料化学专业的定位,基于此,我院材料化学专业设置了两个方向:一是工业催化;二是能源材料。而专业定位的落实直接依赖于课程体系的设置。基于学分制实施的要求和学校关于专业课程结构设置的总体思路, 以“重基础、宽口径和强能力”为指导原则, 我院在课程设置上力求反映材料化学专业的培养目标、专业特点和培养要求, 注意改变知识简单任意拼凑、课程之间相互脱节状况, 整个课程以通识必修课程、学科基础课程、专业必修课、专业选修课和实践教学环节构成,理论课程和实验体系课程都进行了模块化设置。另外,为了解决目前教学内容多与课时少之间的矛盾,对于一些在不同课程中的重复内容需要删减,这就需要把教学内容进行严格的限制和有效的对接,因此,对于刚成立不久的材料化学专业,制定服务于专业方向的合适的课程体系和精简的教学内容,就依赖于教学大纲的编定。
一、教学大纲的编写
课程教学大纲是落实人才培养目标和实施教学计划最基本的教学文件。它既是一门课程或某一实践教学环节的教学指导性文件,也是选用教材、制订授课计划、实施教学和教学检查的依据。制定和编写规范、科学的教学大纲,是提高教学质量、实现规范化教学的重要措施。
各门课程的教学大纲都要服从课程体系的设置和教学计划的整体要求,课程内容与体系的安排,既要考虑课程的纵向联系,又要照顾到横向联系。对于通识必修课程和部分学科基础课程的教学大纲由相关学院的基础教学部负责,部分学科基础课程、专业必修课和专业选修课类的专业课程的教学大纲由我们本院或本系负责。在有限学时的控制下,专业理论课内容的选取、深度与广度要以“必需、够用”为度,以“能充分反映本学科的最新成果,避免与已学课程或后续课程的不必要重复”为原则,以“激发学生自主学习、独立思考”为目标。
在此思路的指导下,我们理顺相关课程开课顺序,重新编写所负责课程的教学大纲,并进行了严格把关审核。实践课程体系中专业实验、生产实习、毕业实习及毕业论文的教学大纲由我们负责,其大纲的编写以“理论课程”为基础,以“专业培养目标”为导向,以“专业方向”为特色,以“综合能力提高”为目标,课程的内容进行系统的设置,避免实验的重复开设,将实习与毕业进行有效的连接。
二、教材的优选
教材是体现教学内容和教学方法的知识载体,是教学的基本工具。教材的选用是高校教材建设的一项基础性工作,它对提高教育质量和教学水平、稳定教学秩序、实现高等学校人才培养具有重要意义。优秀、适用的教材是提高教育质量、深化教育教学改革、全面推进素质教育、培养创新人才的重要保证。我们依据审核后的教学大纲进行了教材的选择,尽量选用公认水平较高、已获得国家奖、教育部奖、省级优秀教材奖、十五规划教材、21 世纪教材。但是大多数课程一本书并不能完全满足我们的培养目标、专业特色,往往需要将几本优选书的内容进行筛选整合才能满足教学大纲的要求。所以经过几轮讲解之后,可能需要进行自编教材。
三、教学方法的改进
随着高科技的发展,在教学过程中,教学方法和手段也应该充分利用高科技,帮助学生更好地学习,从而提高教学质量。首先,教学方式不应该仅仅是简单的PPT讲述和黑板板书,而是应该充分利用多媒体技术,丰富教学课件,做到图文并茂、有声有色、生动形象,调动学生的主动性和积极性。其次,教学过程中应该多采用启发式教学,引导学生自己去学习、思考和探索,培养学生自我学习和思考的能力。要做到“授之以渔”,而非“授之以鱼”,才能更好地培养学生的创新能力,真正达到素质教育的目的。最后,应为学生创造自我表现的机会,比如为了巩固课堂的理论知识,要安排相应的习题课,让学生自己做并在课堂上给同学讲解。对于前沿性的成果,可以让学生自己去查找、总结,然后在课堂上为自己同学展示。对于学生感兴趣的课题,可以让学生自己去设计实验方案,我们提供实验条件,学生自己动手做实验。这样就会使学生自我学习和思考的能力落到实处。
本文依据课程体系的设置从教学大纲的编写、教材的优选及教学方法的改进方面进行了探索与思考,并提出了相关的改革思路。相信在此改革思路的指导下,材料化学专业将会培养出“厚基础、宽专业、强能力”的复合型人才。
【参考文献】
[1]宋金玲,蔡颖,董忠平,吴楠楠,胡锋. 材料化学专业课程体系改革的研究与实践[J]. 科教文汇,2013(33).
篇7
关键词:铝电解槽;防渗材料;改进
当前,铝电解已经呈现出高效节能的发展趋势。随着铝电解的发展,铝电解用的化学防渗材料也成为人们研究的关键。一般来说,被人们一致认可的防渗材料不但是能够很好的实现防渗阻挡,而且这种防渗材料和所形成的阻挡层不会随着时间的发展而产生任何的变质和消退。用化学防渗材料来砌筑铝电解槽的阴极炭块下的部分,就能够很好的降低电解槽的用料,减少建设的投资额。
1.铝电解炉底的防渗原理
通常情况下,确定一种材料是不是具有渗透性主要参考的是这种材料的空隙度和孔径的大小。同时,气体或液体的表面张力、粘度也对材料的渗透性产生一定的影响。在电解槽的炉底里,由于防渗材料所使用的环境基本上是一样的,因此,判断电解槽炉底材料的防渗性能,主要从材料本身来确定。通过对电解槽里的筑炉材料和电解质的反应进行分析,我们得出铝电解炉底的防渗原理。即渗透速度和反应速度(最好是零)非常小的时候,筑炉材料便不会与电解质产生反应,也就没有产生渗漏,这也是最好的一种防渗材料。但是当反应速度非常小,而渗透的速度比较大的时候,虽然电解质不会或较少的同筑炉材料发生反应或溶解,但是电解质依然能够渗入到筑炉材料里,渗入的数量和速度决定于筑炉材料孔径的大小和空隙度。当环境温度在液体的凝固点以下的时候,液体会自动的凝结,渗透现象也就不会发生了。
2.铝电解用化学防渗材料的组成及其质量评价
当前,随着人们对化学防渗材料研究的深入,SiO2、Al2O3、Fe2O3、CaO、MgO以及TiO2等化学成分被广泛的运用到防渗材料中来,而且成分多在95%以上。现在,我国市场上的化学防渗材料多是以SiO2和Al2O3这两种成分为主的。此外,在防渗材料中使用钙能够将其生成物的熔点提高,这对于减低防渗材料的耗损是非常有帮助的。如何评价某种化学防渗材料的质量对于提高化学防渗材料的应用有着非常大的意义。通过对上文化学防渗材料的原理的分析,我们可以得出,铝电解用的化学防渗材料的质量评价标准主要有以下几点:
首先,铝电解用化学防渗材料首先是作为一种耐火材料而存在的,因此,其耐火度应当高于1500℃,具有高耐火性。
其次,铝电解用化学防渗材料应当不和电解槽里的电解质以及其他的化学防渗材料接触的保温材料、耐火材料发生反应。
再次,铝电解用化学防渗材料还应当具备合适的膨胀系数和适宜的保温功效。
此外,关于化学防渗材料的膨胀系数、耐火度以及保温功效的测量方法在《冶金炉设计手册》中有详细的说明,本文暂不详细介绍。
3.铝电解用化学防渗材料的功能与改进措施
铝电解用化学防渗材料的功能主要在于化学防渗材料能够同渗漏进筑炉材料中的电解质在瞬间发生反应,进而形成化学阻挡层,防止电解质的继续渗入。其功能主要体现在以下几个方面:首先,在高温的环境下,当防渗材料和电解质接触的时候,防渗材料可以阻挡电解质渗透到防渗材料里的功能。而且,当反应条件相同的时候,电解质同防渗材料的反应量和反应速度是越小越好。其次,当化学防渗材料的原料相同的时候,防渗材料的所占比例也是越大,防渗效果也越好。因此,通过提高防渗材料的振实的容量,能够很好的提高化学材料的防渗效果。再次,化学防渗材料和电解质反应而形成的阻挡层的熔点与防渗材料也有一定的联系。通过有效的提高阻挡层的熔点能够有效的降低防渗材料的损耗。最后,化学防渗材料还具有易于振实的优点,而且振实以后的防渗材料的承载能力有了很大的提高。
总之,铝电解化学防渗材料很好阻止了电解质的渗入,而且降低了防渗材料的损耗。但是,化学防渗材料在应用的时候还存在着易于烧结缺点。针对这一问题,我们对铝电解的化学防渗材料做出了改进。
通过对化学防渗材料在有电解质和没有电解质的环境下进行实验,我们发现,在没有电解质的环境里,即使温度再高,实验的时间多久,防渗材料都没有出现烧结的现象。也就是说明,防渗材料的烧结是受到电解质的影响的。因此,针对这一现象,我们认为,改善化学防渗材料烧结现象的主要措施在于三个方面。一方面,严格控制化学防渗材料的成分的纯度,降低原料里所含杂质的数量;另一方面,提高化学防渗材料同电解质之间的反应水平,提高防渗材料和电解质所形成的阻挡层的致密性;最后,从电解质和阻挡层所产生的共晶物的熔点来看,应当尽可能的提高共晶物的熔点。根据这三个方面,我们对现有的化学防渗材料进行了改良。经过实践证明,改良后的防渗材料和电解质的反应率明显的提高了,高温烧结的情况也明显的降低了,基本上已经达到了国际水平。
结语:
综述所述,本文主要从铝电解炉底的防渗原理开始分析,具体的介绍了铝电解用的化学防渗材料的组成及其质量评价的标准,最后针对铝电解用化学防渗材料的主要功能及其存在的不足提出了个人的改进意见。通过实践证明,经过改进的化学防渗材料达到了国际化的标准,具有不烧结、反应率低以及易振实等优势,适合相关领域的应用,值得推广。
参考文献:
[1] 姚巍,姚贵海,张瑞忠.再论干式防渗料在铝电解槽上的应用[A].提高铝电解槽使用寿命学术研讨会,2013(05).
[2] 张宏,干益人.铝电解槽用干式防渗保温料的研制和应用[A].中国金属学会.第三届国际耐火材料学术会议,2011(02).
[3] 刘凤琴,邱仕麟,柴登鹏,等.铝电解槽用干式防渗料行业标准编制说明[J].郑州轻金属研究院,2010(12).
[4] 成庚,吕增旭.进口干式防渗料在75kA预焙槽上的工业应用试验研[J].轻金属,2011(10).
篇8
国务院学位委员会于1998年修订研究生专业目录时,特别设立了材料物理和化学专业。材料物理和材料化学是材料科学的重要基础。现代材料科学的发展已经由过去的宏观研究和发展进入到微观分析和研究,用电子、原子、分子的尺度来研究改变物质的性质,发展新兴的材料。特别是当今以服务于高科技,现代工业和国防为主的现代材料或新材料的需求量越来越大,新材料的研制与开发速度也越来越快,因而涌现出的新概念、新理论、新技术、新方法、新工艺、新产品和新问题越来越需要材料学家和物理学家等共同努力来归纳、整理、总结及创新。由此产生的材料化学新专业无疑是多学科知识交叉、渗透的结果。它给现代材料的研究、开发和应用以及相关科学的发展带来了新的空间,为新材料的可持续发展提供完善而系统的理论指导和技术保障。因为材料化学专业是技能性、实践性极强的学科领域。如何通过材料化学各实验课程的改革,深化学生对课堂知识的理解,培养学生的科学思维方式和实践能力,从而提高学生创新能力和综合能力,是我们面临的一个重要问题。如何通过实验培养学生多层次、多方向的掌握材料物理性能与材料的制备、工艺和测试手段的关系。并且通过独立操作和控制实验进程,培养学生的研究精神和创造能力是我们材料化学专业需要迫切解决的问题。我们通过分层次实验教学,取得了良好的教学效果。
分层次实验教学法研究
通过分层次开设实验,培养学生的合理的思维方式和实践能力,从而提高学生研究精神和创造性能力。具体过程分为以下三个步骤:
1.加强有关材料化学专业基础性实验
在材料化学专业本科生具有了初步的化学和物理实验能力的基础上,首先将材料化学专业实验课程从相关理论课程剥离,综合成材料化学专业专门的基础实验课程,集中训练学生的材料制备和材料性能检测技能,并以此为实验室的开发重点,使学生的实验基本技能得以巩固和提高。
2.开展综合性实验并结合本专业开展远程网络虚拟实验教学
在材料化学专业本科生已经具有初步的材料制备和性能检测的实验技能基础上,第二步开设综合性实验并结合远程网络虚拟实验教学。综合性实验的开设是为了适应社会的发展和需求,在综合实验新体系中,要求开设的综合性实验尽可能反映材料、生命、环境、信息等学科的内容;了解和学习材料化学研究方法与现代实验技术在高新科技学科中的应用成为我们新的建设目标。因此,不仅要打破专业的界限,还要打破学科的界限,使综合性实验成为跨学科、多技能的综合训练。在我们材料化学专业开设的综合性实验中,与材料、信息相关的实验有新型能源材料的合成,SDC(固体氧化物燃料电池电解质材料)的合成和表征,压电陶瓷的制备和表征等等;与生物相关的实验是天然物或中草药物的提取及指纹图谱等。这样可以使学生掌握无机非金属材料的制备方法和相关性能测试方法,掌握天然生成物质的提取方法和结构确定的手段,从而有效地提高学生的专业知识并扩展了知识面。为今后学生进行主导型研究性实验奠定基础。
目前,网络建设日益完善,网络速度和宽带不再成为制约网络虚拟实验教学的瓶颈。计算机软、硬件的飞速发展无疑使得虚拟实验环境更加逼真、智能。当然,虚拟实验在培养学生的动手能力、培养学生的误差分析能力等方面还不可能取代传统的实物实验教学方式。但是开设远程网络虚拟实验教学可以使接受远程教育的学生获得与在校生一样的从感知到理解的过程。有利于培养学生网络学习的能力,为终身学习打下良好基础。对我们专业来说,因为是新开的专业,很多实验还缺乏必要的实验器材,很多综合性实验课程无法开出。但借助远程教育平台,可以与兄弟院校和我校其他院系的实验教学资源实现共享,从而使相关实验得以进行,实现了学生对相关实验的认知。
3.开展学生主导型研究性实验的模式
学生主导型研究性实验是在综合性实验的基础上由学生自己选题、查阅文献和设计实验,在教师指导下完成研究性实验论文并进行论文答辩。该模式的主要目的是全方位地锻炼学生实验研究的能力,充分调动学生的主动性和积极性,激发他们从事材料科学研究的兴趣和热情,为其今后的毕业设计和将来从事科研工作打下良好的基础。同时这种新的实验模式也提高了实验室在学生学习中所占的地位,建立了进实验室学习的意识。设计性实验对开发学生智力和创新能力有着重要作用。但在具体实施时,对学生的培养要有一个由浅入深的过程,我们材料化学专业的主导型研究性实验采取在大学中后期开设,在学生已经完成材料化学基础性实验和综合性实验的基础上结合指导教师的课题或相关专业后开设(可参考材料化学实验教程中的设计性实验)。具体过程一般为以下几个步骤:(1)选题; (2)查阅文献收集资料; (3)研究方案。学生设计实验原理,方法和步骤,拟定实验所需药品、仪器,探讨实验时可能产生的现象和容易发生的失误以及安全等应注意的问题,最后独立设计实验方案。实验方案包括:实验题目、仪器、药品、操作步骤和实验表征仪器等。然后将审阅实验设计方案交给教师,教师在尊重学生创造精神的原则下选出几种最佳方法,同时纠正某些实验方案的错误指出某些实验方案的缺陷,再将设计方案反馈给学生,将教师选中的方案交由全班同学讨论、完善。然后采取论文答辩的方式检验实验效果。在整个形式上基本是本科生毕业设计的模型,通过这样的实验为学生的毕业设计和将来的进一步深造奠定基础。
最后,在整个分层次法实验教学中,我们的实验室采取的是开放式实验管理模式,在时间方面,我们安排了中午、晚上和双休日对学生开放,让学生对实验结果进行一些探索,对实验基本技能进行巩固和掌握。同时,有2~3周开展专门的实验时间。在人员配备方面,采用专业课教师和实验室教师结合的方式,使每个实验都有专业教师进行指导,以保证实验的顺利进行。
篇9
近二十年来,绿色环保锂离子电池为便携式电子产品和通讯工具的发展做出了重要贡献,并作为下一代新型能源的代表,将进一步应用于交通动力系统.作为未来电动汽车(EV)和混合电动汽车(HEV)的动力电源,锂离子电池电极材料特别是正极材料的性能至关重要.自从Padhi等[1]首次报道LiFePO4正极材料以来,LiFePO4因其具有安全、稳定、环境友好、成本低、平台平稳及循环性能好等优良特性,成为下一代锂离子电池正极材料最具潜力的竞争者.LiFePO4的合成方法多种多样,如固相合成法[1-2]、溶胶–凝胶法[3-4]、共沉淀法[5]、水热法[6]、碳热还原法[7-8]、流变相法[9-10]以及仿生法[11-12].但这些方法中大多数都需要通过烧结工艺才能获得结晶良好的LiFePO4正极材料,烧结对LiFePO4材料的纯度、结晶度、颗粒大小有明显的影响.已有研究显示,适当提高烧结温度有利于LiFePO4晶体形成,但温度过高会导致晶粒持续长大并影响LiFePO4化学稳定性,而烧结时间过长则会使材料产生明显的团聚现象[13-15].然而烧结方式对合成材料性能的影响的报道则较少.本工作分别采用静态气氛烧结(SA)、动态气氛烧结(DA)和静态真空烧结(SV)三种方式对LiFePO4/C前驱体进行烧结得到LiFePO4/C复合正极材料,着重探讨了不同烧结方式对材料结构、形貌及电化学性能的影响.
1实验部分
1.1LiFePO4/C复合材料的制备以酒精为介质按化学计量比混合Li2CO3和FePO4,再加入5wt%葡萄糖,行星球磨6h,喷雾干燥得到LiFePO4/C前驱体(PRE).将装有前驱体的氧化铝料舟置于石英管式炉(OTF-1200X,合肥科晶)中,在氮气气氛下预烧(350℃,5h)后,分别在550、600、650、700和750℃烧结10h.随炉冷却后,在玛瑙研钵中研磨、过筛,得到的LiFePO4/C复合材料分别标记为SA550、SA600、SA650、SA700和SA750.真空烧结在自制真空炉(残压<50Pa)中进行,不同温度烧结所得复合材料分别标记为SV600、SV650、SV700和SV750.动态气氛烧结在回转炉(HB-In8•30,咸阳蓝光)中进行(转速2.5r/min),不同温度所得复合材料分别标记为DA400、DA500、DA550、DA600、DA650、DA700和DA750.
1.2复合材料物相及形貌表征用χ’PertPROX射线衍射仪(PANalyticalB.V,荷兰)分析复合材料的物相组成,铜靶,CuKα射线(λ=0.15406nm),扫描范围为10°~80°,加速电压为40kV,管电流为40mA.数据采用Jade5软件分析.复合材料的微观形貌用扫描电子显微镜(JSM-6700F,日本)进行观察.1.3复合材料电极制备及电化学性能测试将复合材料与乙炔黑(DENKA,日本)混合后,加入含有聚偏二氟乙烯(PVdF,KYNAR-HSV900)的N-甲基吡咯烷酮(NMP)溶液(0.02g/mL),复合材料、乙炔黑和PVdF的质量比为75:15:10.得到的浆料借助于自动涂膜器(AFA-Ⅱ,上海现代环境)涂布于铝箔上,经红外干燥后冲成φ14mm的电极片并压片(压力6MPa),然后在120℃下真空干燥8h.将复合材料电极转移到充满氩气的手套箱(MIKROUNA,<1×106H2O,<1×106O2)中,然后以金属锂为对电极和参考电极,Celgard2400为隔膜组装成2025型扣式电池,电解液为1mol/L的LiPF6/(EC+DMC)溶液(LB-301,国泰华荣).充放电性能测试在电池测试系统(LANDCT2001A,武汉金诺)上进行,电压范围为2.5~4.2V.采用电化学工作站CHI614C进行CV测试,扫描电压范围为3.0~4.0V,扫描速度为0.1~0.5mV/s.
2结果与讨论
2.1材料物相及形貌分析图1(a)为650℃下采用静态气氛烧结、动态气氛烧结和真空烧结得到各种样品的XRD图谱,从图中可以看出,各样品的衍射峰峰位相同.与LiFePO4标准谱图(PDF81-1173)对照,合成材料衍射峰与LiFePO4标准谱图谱完全吻合,且没有出现杂质峰,表明由该前驱体采用三种不同烧结方式获得的样品均具有橄榄石型纯相结构.衍射峰峰形及强度是材料结晶性的一个指标[16].图1(b)比较了前驱体以及不同LiFePO4/C材料的XRD衍射峰与前驱体同角度衍射峰峰强度差(Δ),从中可以发现,不同烧结方式得到材料结晶度略有差别,真空烧结得到材料的衍射峰强度最大,这是由于在真空条件下发生碳热还原时产生的CO2和CO可以迅速排出,反应平衡正移,有利于LiFePO4颗粒生长[17].图2为在不同温度下采用三种烧结方式制得样品的SEM照片.从图中可以看出静态真空烧结制得材料的粒径在300~500nm之间,而静态气氛与动态气氛烧结制得材料的粒径都在200~300nm之间.晶粒大小差别既与真空条件下碳热反应平衡移动有关,又与颗粒表面包覆碳对晶粒生长的阻碍作用有关.碳热反应过程中碳对三价铁的还原由以下三个反应构成。系统温度低于650℃时发生反应(1),生成CO2,而温度高于650℃时发生反应(2),生成CO[18-19].在真空条件下烧结,产物CO会被迅速排出,在带走热量的同时也消耗了大量的热解炭,使得晶粒表面剩余碳量减少,晶粒生长阻力减小.而在气氛下烧结,CO在反应体系中滞留时间较长.由于CO的还原性大于热解炭,所以会继续发生反应(3),生成CO2,热解炭因还原消耗减少而附着于晶粒表面阻碍晶粒的长大.此外,与真空烧结相比,动态气氛烧结所得材料的颗粒大小和形貌均匀性更好,这是由于烧结时粉体物料随炉管旋转而被反复搅拌,受热更加均匀,并且动态烧结还可以有效阻碍长时间烧结导致的颗粒之间相互粘结与长大[20].采用文献[21]报道的碳含量测定方法,对不同烧结工艺所得材料进行碳含量测试,DA650、SA650和SV650的含碳量分别为2.23%、1.91%和1.77%.SV650材料含碳量最低,说明在真空下碳易以CO的形式被排出而损失.除烧结方式外,烧结温度对材料形貌也有显著影响.对比图2(d)~(g)可以看出.将动态气氛烧结温度由400℃逐渐提高到700℃,材料颗粒团聚现象越来越明显.700℃时已有大量颗粒融合为块状.
2.2复合材料的电化学性能分析图3为不同温度下采用三种烧结方式所得材料在0.5C倍率下的充放电循环性能.动态气氛烧结最佳温度为500℃,静态气氛烧结和真空烧结最佳烧结温度均为650℃,所得材料的首次放电比容量分别为163.4、141.5和143.3mAh/g,经历50次循环后动态气氛烧结材料容量保持率高达99.02%,静态气氛烧结和真空烧结材料容量则出现了缓慢上升的趋势.动态烧结温度低说明烧结过程中进行扰动利于热量传递,得到形貌及性能均匀的粉体物料,静态气氛烧结和真空烧结所得材料的容量上升现象则与材料在循环过程中的活化有关[22-23].锂离子电池能为电子设备提供稳定工作电压是因为其具有理想的电压平台.因此,平台放电比容量占总放电比容量的百分比(即平台率)才能真实反映材料的可利用率.如图4所示,放电起始和终止段曲线的切线与平台延长线相交于A、B两点,将A、B两点间的比容量定义为平台比容量,平台比容量与相应循环满比容量的比值则为平台率[24].据此计算650℃下真空烧结、静态气氛烧结和动态气氛烧结样品在0.5C倍率下放电平台率分别为92.76%、95.66%和95.21%.真空烧结材料平台率较低与所得材料晶粒尺寸增大有关,活性物质颗粒越大,Li+散的距离越长,这与SEM观察结果(图2)一致.图5(a)为650℃下动态气氛烧结材料电极在不同扫描速度下的系列循环伏安曲线.在0.1mV/s扫描速度下于3.59V和3.32V得到一组氧化还原峰,分别代表了Li+的脱出和嵌入反应.随着扫描速度的增大,氧化还原峰强度和峰面积都增大,同时氧化峰和还原峰分别向高电位和低电位移动,这说明电极极化加剧.但是即使在0.5mV/s的高扫描速度下,该材料仍具有非常好的循环可逆性.式中Ip为不同扫描速度下的峰电流,A为电极表面积,C为锂离子浓度,n为转移电荷数,γ为扫描速度.图5(b)即Ip–γ1/2关系图.通过线形拟合得到的斜率与等式(1)结合得到650℃动态气氛烧结样品脱锂和嵌锂过程的锂离子扩散系数Dc和Da分别为1.24×108和7.68×109cm2/s,远大于文献报道值[7,25-26].表1比较了650℃下真空烧结、静态气氛烧结和动态气氛烧结样品的Dc和Da计算结果.动态气氛烧结样品的锂离子扩散系数远大于另外两种烧结方式所得样品的锂离子扩散系数,这与材料烧结过程中因扰动而引入的晶格缺陷有关,缺陷可为锂离子扩散提供额外通道.扩散系数的提高对于LiFePO4正极材料在大功率放电(如HEV等)设备中的应用与发展具有重要意义.
篇10
【关键词】纳米材料;化学化工领域;应用
纳米材料是基于现代科学技术不断进步的基础上所形成的一种新型材料,性质独特,基于特殊结构层次的影响下,纳米材料具有一定的表面效应、小尺寸效应以及宏观量子隧道效应等。纳米材料在化学化工领域内具有良好的应用价值,以下开展具体分析。
1 纳米材料及其特性
纳米材料是一种新型材料,三维空间中至少有一维处于纳米尺度,或者以纳米尺度作为基本结构,该材料的尺寸结构特殊,相当于10-100个原子紧密排列在一起。纳米科技将成为21世纪科学技术发展的主流,它不仅是信息技术、生物技术等新兴领域发展的推动力,而且因其具有独特的物理、化学、生物特性为涂料等领域的发展提供了新的机遇。
纳米材料主要由纳米晶粒和晶粒界面两部分组成,其晶粒中原子的长程有序排列和无序界面成分的组成后有大量的界面(6×1025m3/10nm晶粒尺寸),晶界原子达15%~50%,且原子排列互不相同,界面周围的晶格原子结构互不相关,使得纳米材料成为介于晶态与非晶态之间的一种新的结构状态。纳米材料主要有四方面特性,分别是表面效应、小尺寸效应以及宏观两字隧道效应,以下分别进行具体分析:
一是表面效应,纳米材料的表面效应是指纳米粒子表面原子数与总原子数的比例值随着粒径变小而急剧增长后所导致的性质改变。根据相关研究表示,伴随着粒子直径的缩短,避免原子个数的增长速度迅猛,而表面原子由于周围缺乏相邻原子,呈现不饱和性状态,强化了纳米粒子的化学活性,从而使得纳米材料能够在吸附、催化等作用上明显的优势。
二是小尺寸效应。小尺寸效应即为纳米粒子的粒径小于或等于超导态的相干波长时,其周期性的边界条件将被损害,从而使得纳米材料的化学性质、催化性质相对于其他材料来说有着明显的区别。小尺寸效应不单单显著扩展了纳米材料的物理与化学特性范围,并且大大拓展了其应用领域。
三是宏观量子隧道效应。该效应主要是指纳米粒子能穿越宏观系统的壁垒而出现变化的一种特征。这一效应对纳米材料的基础研究与实际应用都有着十分关键的作用。宏观量子隧道效应限制了磁盘对信息存储量的限制,明确了现代微电子元件微型化的极限。
四是量子尺寸效应。该效应主要是指纳米粒子尺寸持续减少到某一数值时,纳米能级周边的电子能级可以转变为分离能级粒。这一效应使得纳米粒子拥有高水平的光学非线性、光催化性等特征。
总的来说,纳米材料与其他材料不同,拥有众多与众不同的特性,这使得其在力学、磁学、热学等各个领域都拥有十分重要的应用价值,并给资源利用拓展了更大的空间。
2 纳米材料在化学化工领域内的应用
2.1在环境保护方面的应用
纳米材料以其自身基本特性在环境保护领域内发挥着重要的作用,为空气污染与水体污染治理等提供了可靠的技术支持,改善了空气与水体质量,满足可持续发展理念下环境保护的基本要求。
就纳米材料在空气净化方面的作用来看,其具有细微的颗粒尺寸,并且纳米微粒表面形态特殊,粒径大小各不相同,对着粒径的减少纳米微粒表面粗糙状态加剧,最终形成凹凸不平的原子台阶,从而对空气污染进行科学化治理,提高空气净化效果。纳米材料与技术在汽车尾气超标报警器与净化设备中也具有良好的应用效果,能够有效提高设备性能,从而切实减少汽车排放尾气中所含的有毒物质,降低空气污染指数,从而为社会群体的工作与生活提供优质的环境。除此之外,纳米材料与技术在石油提炼工业中也具有良好的应用价值,能够优化脱硫环节,从而提高石油炼化工业的生产效率。
就纳米材料在污水治理方面的作用来看,其能够有效提取污水中的贵金属,去除污水中的有害物质、污染物质和细菌等,从而改善水质,并能够实现循环利用,对于社会生态的稳定平衡发展具有重要意义。水体中的污染物均可以基于纳米材料与技术来进行治理,在有机污染物与无机污染物上并没有明显差异,尤其是纳米为例光催化作用,能够将水体中的污染物制造为矿化物,从而促进改善水质,去除有害污染物的目标得以顺利实现。
2.2在涂料领域内的应用
纳米材料及技术在涂料领域内也发挥着重要的作用,由于纳米材料存在一定表面效应,其结构层次特殊,与其他材料相比纳米材料的性质比较特殊,并具有一定优势与活力。纳米材料在化学化工领域内的应用主要体现在表面涂层方面,并且受到社会群体的高度灌注。纳米材料及其技术的合理应用,推进了涂料领域内表面涂层技术的不断发展,为化学化工领域各项活动的规范进行提供可靠的技术支持。基于传统涂层技术的基础上,纳米复合体系涂层得以实现,并促进了表面涂层技术的不断发展进步。由于纳米材料具有表面效应、体积效应、量子尺寸效应、宏观量子隧道效应和一些奇异的光、电、磁等性能,将其用于涂料中后,除了可以改性传统涂料外,更为重要的是可以制备各种功能涂料,如具有抗辐射、耐老化、抗菌杀菌、隐身等特殊功能的涂料。
基于纳米材料与技术的纳米复合体系涂层的出现和应用,改善了涂料的防护能力,并使得涂料具备防紫外线等作用,使得涂料的使用价值得到明显改善。在汽车装饰喷涂行业中对纳米材料与技术加以合理应用,能够海山汽车漆面的色彩效果;将纳米材料应用于建筑材料涂料中,能够改善热传递效果,并减少透光性,从而优化涂料性能,满足实际使用需求。
2.3纳米材料材料在催化领域中的应用
催化剂在众多化工领域中都占据着十分重要的地位,其能够控制反应时间、提升反应速度与效率,显著提升经济效益,减少对生态环境的污染。首先,光催化反应。纳米粒子作为光催化剂拥有粒径细、催化效率高等优势,十分容易利用光学手段来对界面的电荷转移进行等特点进行研究。例如,利用纳米TiO2应用在高速公路照明装置的玻璃罩面中,由于其拥有较高水平的光催化活性,能够对其表面的油污进行分解处理,从而保证其良好的透视性。又例如,在火箭发射所使用的固体燃料推进器中,如添加大约为1wt%的超细铝或镍颗粒,可以使得其燃烧使用率增加100%。将表面为180m2/g的碳纳米管直接应用在NO的催化还原中,从而可以增加NO的转化率。
3 结束语
总而言之,随着现代科学技术的不断进步,纳米技术得以形成,并在能源、环境保护等方面发挥着重要的作用,纳米技术在化工领域中的合理应用,一定程度上改善了社会群体的生活状态,为新产品的研发与设计以及产品质量的提升提供可靠的技术支持,对于现代社会经济的发展也具有重要意义。在未来发展中,纳米技术也具有广阔的发展空间。
参考文献:
[1] 张晓蕾 纳米材料在化学化工领域中的应用研究[J]. 《山东工业技术》,2016(16):21-21