人工智能教育的概念范文
时间:2023-11-24 17:16:32
导语:如何才能写好一篇人工智能教育的概念,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
从本质上讲,人工智能技术是信息技术革命的集大成者。自从托夫勒1970年写出《未来的冲击》,信息技术革命越来越快,概念越来越多,没有停止的迹象。仅从近五年来看:大数据、数据科学、生命信息、工业4.0、物联网、新硬件时代、机器人、互联网+、人工智能,表面上概念你方唱罢我登场,但内在逻辑一直没有变:从单项技术走向全面融合,从局部应用走向全面工具化,而人工智能至少在目前看来是集大成者。硬件上物联网的成熟、软件上高可用性和动态数据库的成熟、生物学上神经科技的进展、数学上网络算法的应用、材料科技上纳米和感知材料的进展、信息科技上芯片和云技术的快速进步。从物理世界到混合世界,再到比特世界,人工智能技术刚刚开始,但人们基于过去工业革命的经验,明确感到这是临界点的来临。
STEM 成为后人工智能教育的不动点:应对科技的变化,教育的变革一直都在进行且与科技的发展互为因果。从彼得・蒂尔对教育的质疑,到创客热潮在美国教育中的掀起,事实上,STEM教育是美国对过去概念化的“实用主义”教育和“通识教育”百年争论的落锤之音。起源于杜威和哈钦斯的那场争论,恰恰是工业革命已经明确成型后的两种教育理念的争论。之所以今天的美国已经很少争论到底是实用主义还是通识教育,是因为美国的科技已经进入到一个新的阶段。教育是一个组织行为,一个围绕未来10年不变的知识、20年不变的技能、30年留存的体验的稳定的复杂社会经济形态,因此不那么容易被颠覆。恰恰是科学、技术、工程、数学(STEM)构成了工业时代(数理化)和后工业时代(文科、理工科)中的不动点,在物理学和几何学中,不动点对于系统的稳定和概念的一致性非常重要,而目前的STEM教育,不仅仅是一个概念的东西,而是旧技术时代向新技术时代过渡的“不动点”。在这个不动点体系中,新的侧重开始后,原有的教师和学科体系以及支撑可以平稳切换,不至于导致教学秩序的混乱。
元学科、应用学科和副科发生结构性的变化。由于人工智能的出现,使得复杂计算和系统计算以及简单的人机交互计算工具化全面超越人类,对技术基础这个原有概念的教育的分歧越来越大。人工智能视野下学科概念如果表述成元学科、应用学科与素质学科,那么教育学科的概念的持续性还能以最大公约数继续运行:以数学、物理、化学等元学科为代表的学科,在今后的教育中更加重要并将作为筛选人的条件。而应用科学:(生物、地理、信息、劳动)学科,将着重项目制学习、体验学习,成为培养人的目标;社会科学(历史、哲学、思想品德)将来的重点在于综合应用,批判性思维学习,更加侧重学科的来源和发展;而综合素质类(音乐、体育、美术)将从副科走向前台。@样,围绕STEM的教育,人工智能下的教育体系还是一贯的科学(元学科)、技术(应用学科)、工程(素质学科、社会学科、管理学科)、数学(逻辑、数学学科)。
人工智能技术对学科的影响:越理性,越感性
数学:传统的工业时代的数学,其训练方法是数值计算,其指向是力学计算,这种侧重至今还非常浓厚。随着知识库的普及和共享以及计算工具的进化,越来越少的人将来从事传统的工程计算行业,而正宗的工科专业越来越向着专业化和高端化演化(如学材料的将来的进入门槛很可能是博士)。但是,人工智能今后用到的大量的数学以及人与人打交道用到的计算机数学,统计学基础的数学,这方面中国数学还停留在工业时代。美国学生从高中就开始问卷处理和微积分的学习,大学数学更加有用的是方程组、统计学等。数学是一个典型的年龄相关性学科,一定要从小学,而且转向数值和算法类的学习,从偏向材料计算的高等数学方向,转向偏向矩阵计算的统计数学方向,逻辑学、几何学和统计学成为三个数学学习的支柱。
物理:有一位著名的物理学家回顾过去物理百年,发现一个有趣的现象:“力”这个概念,在物理学上看,已经不是一个原始的变量了,能量和质量才是,为什么我们的老师还在使用这个概念呢?那是因为在机械时代,“力”是最容易理解的组合概念。在工业革命前后的几百年直到今天,物理学教育的重点还是偏向传统力学计算方向,从中小学来说就是牛顿力学。然而随着工业时代的结束,人们更容易见到的力学概念不再是机械和天体,而是转向社交网络、计算机图像、信息变量、生物体和电子学以及更容易接受的能量、时间维度。数学老师们转向统计学的同时,物理老师应该考虑从牛顿力学转向量子力学和热力学甚至时空维度,这些对于孩子未来的人生更是基础,而通过物理学进行基础的科学实证的训练以及科学观测和数据处理,才是物理学最基础的作用和价值体现。不然,人生什么年龄都可以去学物理而不必非要从未成年时代去学。
元科学化学:中美物理学和化学都是选择性的,但比较中美化学教育,却发现有很大的不同。美国高中化学就允许且必须使用带有功能性计算的计算器,而中国大学生都没有这方面的训练。也就是说,随着化学和生物化学要求越来越高、知识点越来越多,设法绕过烦人的记忆而走向逻辑,是美国学习化学的方向,这点也值得我们注意。另外,化学的侧重由从偏向无机化学方向的基础化学,转向偏向生物和有机化学方向甚至与物理相结合的量子规律,是化学学科的重点。例如,很多美国的大学录取要看高中生在化学创新方面的实践,能创新的往往是生物化学。
外语:工具性的外语逐渐失去市场,形式节奏上的美学、逻辑学角度的词源学、社会学角度的语言学、心理学角度的语义学成为外语复兴的落脚点。另外,似乎从来没有人将计算机程序当作外语来教,事实上,随着工具性的外语被人工智能取代,计算机程序语言很可能成为一种外语,而很多软件人才是学外语出身的,也不断印证这个结论。
语文:可以预料的是,随着工具性的人工智能的出现,原先学习语文的工具性的方法(如语法),逐渐将退出语言学习(包括外语),而作为母语的语文之所以在工具化人工智能时代还得到重视,最重要的理由也许是仪式感的表达:回到经典、回到表达、回到应用、回到美学。
除了以上学科教育的重点随着技术经济必然发生变化外,学科学习的醒悟和内在逻辑将更加重要,学科历史、学科逻辑、学科故事将替代题库训练,因为作为计算的精确性除了特殊人才的培养外,将让位于工具和人工智能,而人要考虑体验和持续学习的兴趣和逻辑。学科学习之间还将朝着融合的方向发展,应用学科和元学科的分离意味着应用学科更加朝着整合的方向发展:地理、生物、科技等融合课程,朝着综合应用发展。
人工智能技术对教育技术的改变:从工具到空间
随着人工智能的发展,也许目前花里胡哨的信息技术将隐身后台。课堂上也许看不见信息化了,师生在课堂层面体验将会越来越好,越来越贴近自然:看不见计算机的信息化,距离教育更近而不是技术更近。
学校之所以存在是因为学校为学生模拟了一个高度抽象的比真实世界还真实的教育世界。因此,未来的校园从改变世界的信息模版角度,将更加强调与客观世界的互动、映射和高度抽象。
美国的大学录取是更接近人工智能手段的个性化录取,而学生选拔是更接近大数据角度的GPA(平均成绩点)。从培养角度,学生画像比GPA更加个性化地从个体角度描述学生的个性特征,学生的学习行为、实践行为、创新行为,在全地域、全信息、全自动、全过程的记录下,将更加全面地反映学生的全貌。智能实验室和智能校园的方向,将来是基于个体的专业学习和评价。
与学生相对应的教育行为画像,将侧重于联系社会、联系科技、联系家庭、联系团队,从重复性劳动变为创造性劳动。
而学校的管理行为将演变成支撑技术:支撑数据、支撑品牌、支撑环境。今后的教育将出现越来越专业和自由的教师,越来越职业的校长。
在教育政策上,由于全国性的数据和人工智能的使用,教育测评将更加专业化、教育本体化(而不是被测评机构和排名所左右),教育选拔将更加科学化和长期化,短视模式随着计算方法和智能评估的进展而迅速被迭代掉,衡水模式将逐渐退出历史舞台,未来应该筛选更应该上清华大学的人和更应该培养好每一个想学习的人。即使仅从功利教育目标来看,教师个体经验也逐渐让位于人工智能和大数据,教育重心从教育哲学属性逐渐走入教育科学属性;而被恐惧绑架的教育所强调的教育的筛选功能,逐渐将重心转向教育培养功能,个体成功的培养目标,逐渐转变成为未来视角的社会价值角度;教育回归人与人的本质关系和专业培育孵化的社会职能,功利性和工具性减弱,过程幸福成为教育者追求的目标。教育者由工匠逐渐转型为艺人,教师由于工具化的替代,将会越来越有尊严和个性,而不是越来越像工具。
“人创造”的价值逐渐凸显,教育的价值在于“创造人”
柯洁在被人工智能的计算机打败之后,接连战胜外国围棋高手,刷了一下存在感并表示:“与机器下棋没意思”。同样,在工具制造时代,如果从质量和精度考虑,无疑机器越来越超过人,然而手工的红木家具、手工的艺术品、手工的食品、甚至手工的衣服和汽车,比起无论从什么角度来看的机器人制造的东西,都越来越贵,人也越来越愿意采购。“人创造”的价值凸显,是体验经济产业升级的一个标志,人工智能时代也不能例外。因为,“有意思和不可复制”才是人消费的高级时代。
不同于机器代替人的重复劳动的趋势,教育与学校会替代机械的班级成为人与人关系的场所,在这个场所中,机器越来越像人来代替人的高级状态,而人越来越摆脱工具性、摆脱重复性,更具艺术性和创造性。研究教育的历史会发现一个普遍的现象,就是随着工具性的增强,反而是班级规模的缩小和师生比的扩大,这也印证了:人毕竟要与人打交道,教育是一个个性化的活动。C器代替人意味着更多的时间人会回到家庭陪同孩子,这在美国已经持续发生了50年,几乎多数的女性甚至男性在孩子成长过程回到家庭(如果他们算教师的话,教师比例更大)。在学校里未来的师生比会持续增加,教育更加不再计较投入产出,而将演变成一种创造性的职业。
杜威在研究工业化革命后的教育中,提出教育的目标更加集中地体现在教育本身之中,教育即生长(教育的目标就是让教育继续下去)。随着工具化的人工智能代替越来越多的教师的重复性劳动,教师的幸福指数越来越高,更多的和更合适的师生比使得学生得到更加专业的呵护和培养,幸福指数也得到提升。教育让生活更美好将逐渐实现,教育即生活的前提条件是教师不再是指标的工具,学生不再是考核的工具。
篇2
关键词:航天类专业 人工智能 教学探索
中图分类号:G64 文献标识码:A 文章编号:1674-098X(2014)10(b)-0155-02
面对航天科技迅猛发展,现代军备技术快速提升,培养具有专业性的高素质航天类人才,是我国航天科技发展的战略选择,也是航天重点高校面向并有效服务航天事业的历史责任。航天类本科生的教育形式也需要突破传统的方式,着重多样性、前沿性、工程性,因此,该专业的各门课程教育都应该结合专业特点,探索新的教学模式。
人工智能自1956年诞生50多年以来,引起众多科研机构、政府和企业的空前关注,已成为一门具有日臻完善的理论基础、日益广泛的应用领域和广泛交叉的前沿学科。由于航天领域的特殊要求,人工智能在其发展中发挥着不可替代的重要作用,各发达国家都相继开展了人工智能与航天技术相结合的研究,致力于实现可重构的、具有容错能力的、智能的飞行系统和管理系统。因此,“人工智能”作为航天类专业的一门特色选修课,应结合专业特点展开更具有实用性和创新性的教学。
1 人工智能课程特点
一方面,“人工智能”是一门多学科交叉的综合学科,它涉及计算机科学、数学、心理学、认知科学等众多领域,具有知识点多、涉及面广、内容抽象、不易理解、理论性强等特点,使得该课程的教学具有较大的灵活度和较高的难度。另一方面,“人工智能”是一门正在发展中的学科,具有较强的前沿性,计算机科学、信息科学、生物科学等相关学科的发展不断的提出了许多新的研究目标和研究课题,使得人工智能的技术和算法也需要不断更新,这在很大程度上增加了“人工智能”课程的教学难度。
2 航天类专业特点
首先,航天类专业具有较强的工程性。在专业的教学改革中有统一的特点,即强调要体现航天工程技术的综合性、系统性, 注重培养复合型人才。其次,航天类专业具有一定的前沿性。因为航天飞行器作为现代高科技和多种学科技术综合应用的结晶,应及时把现代先进科技融入到了专业基础和专业类的课程教学中, 专业知识更新快成为又一特点;另外,航天类专业应注重实践性教育。尊重个性和兴趣,强调动手能力,实验室对学生开放,要求学生自主地设计完成实验,强调对学生设计理念和创造能力的培养。最后,航天类专业应重视产学合作。产学合作的目的在于推动学校与航天产业的持续全面合作,造就一支科学技术研究和工程实践兼备的教师队伍。
3 教学模式的探索
3.1 教材的选择
人工智能作为一门新兴的学科,其理论与方法都还在不断的发展与完善中。就目前来看,关于人工智能的定义和范围都没有一个统一的标准,不同的教材所介绍的内容也不尽相同。在教材选用方面,需要综合考虑专业特点和学生的知识背景。本课程主要针对航天类专业高年级本科生,该类学生具有一定的数学、计算机、信息论、通信理论等基础知识,对航天应用的基本需求有初步的了解,因此,“人工智能”课程难度应该控制在中级,可以较深入的介绍人工智能的基础算法和应用案例。
中南大学蔡自兴教授积累了多年的教学与科研经验,借鉴了国内外其他专家和作者的最新研究成果,吸取了国内和国外人工智能领域学术书籍的长处,于1987年编写了“人工智能及其应用”一书,该书根据人工智能学科的新发展不断修订,推出四个版本。本课程采用“人工智能及其应用(第4版)”,其中大部分内容适合本科生学习。另外,本课程还给学生提供其他一些参考书目,如N.J.Nilsson 的“Artificial Intelligence:A New Synthesis.Morgan Kanfmann”等经典教材。
3.2 课堂教学形式的探索
“人工智能”课程内容较抽象,概念较为繁多,若采用单一的课堂讲授的方式,学生容易概念混淆、理解不透,逐渐产生厌倦情绪,导致教学效果差。本文探索不同的课堂教学手段,根据不同内容采用不同的教学手段,有利于学生对课程内容的理解与吸收。另外,考虑到航天类的专业特点,突出课程内容的工程应用,增加研究性质的教学内容与形式,有利于培养学生的创新能力和实践能力。
(1)课件采用图文并茂的PPT。综合利用文字、图像、声音、视频等多种媒体表示方法,在介绍原理和概念时采用精辟的文字,介绍算法流程时采用图像,介绍算法应用时采用视频。在PPT中适当利用不同的字体、颜色或动画来突出重点,细化流程,引导学生的思路,便于集中注意力接受重点内容。
(2)适当增加课堂讨论与练习。对于人工智能的一些基本问题,可以引导学生进行调研和讨论,来深化课程内容的了解,并提高学生的学习兴趣;对于重要的算法和理论,可以增加课堂练习,让学生实际动手进行公式的推导或演算,并在练习中分析学生对问题的理解程度,有针对性的增加讲解或指导。
(3)适当采用类比的讲解方式。对人工智能的不同学派,不同方方法,以及方法的不同应用,广泛的采用类比的形式进行讲解,不仅可以复习已学习的内容,也利于对新内容的理解。并且,通过对不同内容的比较总结相似点、区分不同点,可以避免概念的混淆,清晰的掌握课程内容。
(4)增加研究性教学。研究性教学强调通过问题来进行学习,有必要将实际应用案例或者授课教师的科研项目融入日常的教学工作中去,用“启发式”、“案例式”教学激发学生“自主学习”能力。
3.3 课程内容的探索
一方面,鉴于本科生知识结构还不够完善,“人工智能”课程的内容要控制在适应本科生学科基础的中等难度;另一方面,鉴于航天类专业的特点,课程内容应更注重与航天应用相结合的内容,并且在课程中增加具体应用的介绍。具体的课程内容如表1所示。
3.4 考核形式的改革
“人工智能”课程注重学生创新能力和实践能力的培养,传统的试卷形式不能全面的反应学生的学习效果,因此,应采用课堂表现和课程报告相结合的方式进行综合考核。
一方面,重视学生提出问题、分析问题和解决问题的能力,对学生课堂讨论与练习的表现进行考核评分,作为总成绩的参考;另一方面,注重学生课题调研和实践的能力,采取提交课程论文的形式进行考核。正确引导学生根据个人兴趣、课程内容、可行性、实践难度进行合理选题,并根据所选题目进行文献查阅和总结,完成调研报告或算法实现报告。结合者两个方面进行最终成绩的评定,综合衡量学生问题分析能力、论文写作能力和创新实践能力。
4 结语
航天类专业的本科生教学需针对专业特点有的放矢,该专业的课程教育都应该趋向于前沿性、专业性和实用性。本文的“人工智能”课程教学改革方案不仅考虑到该课程属于前沿叉学科的特点,也综合考虑了航天类专业的特点。为了使课程教学更好地服务于学生,本文提出的改革方案打破传统的教学模式,将课堂理论讲解、课堂讨论、课后调研、项目实践等相结合,充分调动学生的学习兴趣和积极性,提高学生的创新能力,有利于培养真正符合航天领域所需要的综合型高级人才。
参考文献
[1] 王甲海,印鉴,凌应标.创新型人工智能教学改革与实践[J].计算机教育,2010(15):136-138,148.
[2] 刘兴林.大学本科人工智能教学改革与实践[J].福建电脑,2010(8):198-199.
[3] 怀丽波.32课时《人工智能基础》课程教学的几点思考[J].华章,2013(34):193-194.
[4] 纪霞,李龙澍.本科人工智能教学研究[J].科教文汇(上旬刊),2013(6):91-92.
[5] 肖春景,李建伏,杨慧.《人工智能》课程教学方法改革的探索与实践[J].现代计算机(专业版),2013(26):32-34.
[6] 熊德兰,李梅莲,鄢靖丰.人工智能中实践教学的探讨[J].宿州学院学报,2008(1):146-148.
[7] 张伟峰.本科高年级人工智能教学的几点思考[J].计算机教育,2009(11):139-141.
篇3
关键词:人工智能;计算机网络技术;应用
中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2015)29-0151-02
在当前的社会当中,人工智能是一项应用前景十分广阔的技术,在社会各个领域中,都得到了极为广泛的应用。在人们的日常娱乐、工作、生活当中,人工智能发挥了很大的作用,例如专家系统、智能电器等。智能化科技的出现和应用,使得人们的生活得到了极大的丰富。同时,人工智能的出现,还为我国科技领域的发展进步提供了良好的方向,尤其是在计算机网络技术领域,更是得到了极大的发展和应用。
1 人工智能技术的概念
人工智能指的是对计算机进行应用,以此模仿人类的智能行为和思维过程,从而形成的一门综合性学科。在人工智能当中,涉及了哲学、语言学、心理学、计算机科学等。通过人工智能,对人类的听觉、感觉、视觉、触觉、思维等进行模拟,从而实现人工智能化的机器,帮助人们解决生活和工作中的问题,从而确保人们的安全、提高人们的效率。作为一种新型的智能技术,人工智能目前的发展速度很快[1]。利用计算机系统进行相应的编程,模拟人们的工作和生活环境,从而完成智能化、自动化的系统操作。在产生和应用人工智能的过程中,涉及很多其他的学科,其中,计算机网络技术十分重要,对人工智能的发展方向有着很大的影响。
从某一种意义上来说,计算机网络技术的发展,也是以人工智能技术为基础的。从简单的词义解释、数据运算,转变为智能化人机操作,体现出了人工智能的核心地位。在对不确定信息进行处理的过程中,人工智能具有很大的优势,它能够对系统局部的整体和局部资源状态进行详细的理解,并且对提取的信息进行及时处理,将相关信息提供给用户。此外,在人工智能当中,协作能力也比较强,通过有效的整合资源,在不同用户之间,能够交换信息和资源。在人工智能中,连接了网络管理,从而使网络管理环境得到优化,从而实现降低成本、提升效率等作用。
2 人工智能技术的优势
在计算机网络的应用中,具有实时性、瞬变性、高速性、动态性等特点,因此,应当不断提高管理技术的灵活性和多样性,从而更好地确保计算机网络的稳定性、安全性和高效性。而人工智能技术具有很多方面的优势,因而能够在计算机网络中发挥重要的作用。特别是在对不可知性、不确定性等问题中,人工智能具有较强的处理能力。
人工智能技术,例如模糊逻辑等,对于系统数学模型,无需进行详细的描述,因此,可以将模糊逻辑引入到智能化网络管理中,从而使网络管理具备模糊信息处理能力[2]。这样,能够更加良好的控制和管理这些不可知性、不确定性信息,提高网络系统的效率。协作能力也是人工智能技术中的一个重要优势,随着网络结构、网络规模的不断扩大,在网络管理中,逐渐发生了层次化的转变。上层管理者功过轮询的方式监测中层管理者,而中层管理者也通过同样的形式监测下层人员,因而带来了协作的问题。人工智能中,多的协作分布思维,能够更好的协作各个层次之间的管理。
人工智能的推理、解释、学习能力很强,能够对低层信息进行解释和学习,从而对高层概念和信息进行推理。对于推理的得出的高层概念和信息,进行网络控制和网络管理。对于非线性问题,人工智能能够进行良好的处理,通过对人类智能的模拟,从而解决这些问题。此外,在人工智能技术的应用中,不会占用很大的计算机资源。在人工智能当中,模糊控制法等算法的运算速度十分迅速,能够一次性搜索得到最优解,从而提高了计算机网络技术的处理技术。
3 人工智能技术的应用
1)网络安全管理
在计算机网络技术当中,人工智能具有很多方面的应用,尤其是在网络安全管理当中,应用更为广泛。对于计算机网络技术的安全管理来说,入侵检测具有重要的意义,对于网络安全来说有着十分重要的影响。在防火墙技术当中,入侵检测也是作为核心的部分[3]。通过人工智能技术的应用,计算机网络系统能够更好地发挥出入侵检测功能的作用,从而提高系统资源的保密性、可用性、安全性、完整性。在入侵检测技术的应用当中,主要是通过分类处理数据和筛选采集数据,形成最终的报告,并且将网络信息的安全状态向用户进行实时反馈。在当前的人工神经网络、模糊识别系统、专家系统当中,基于人工智能的入侵检测应用最为广泛。
基于人工智能对传统的防火墙进行改造,形成了智能化防火墙系统。相比于其他的防御系统,智能防火墙应用了很多智能识别技术,例如统计、决策、概率、记忆等方法来处理和识别数据,从而在计算机的运行当中,匹配检查所占用的资源更小,避免对网络有害行为的发现效率降低。这样,能够对有害信息进行更加有效的限制和拦截[4]。相比于传统的防御软件,智能防火墙的效率和作用都要更为良好,能够解决传统防御软件带来的拒绝服务共计的问题,对于病毒的入侵和传播,发挥了良好的抑制作用。
此外,智能型反垃圾邮件系统也是人工智能在计算机网络技术中的另一大应用。通过这种方式,能够有效的屏蔽垃圾邮件,不会对客户信息安全造成影响。通过有效的监测用户邮件,开启式的扫描邮箱当中的垃圾邮件。同时,将垃圾邮件分类信息提供给用户,提醒用户及早进行处理,从而更好地确保邮箱系统的整体安全性。
2)网络管理和系统评价
电信技术、人工智能等方面的发展,推动了网络管理的智能化转变,除了在计算机网络安全管理中的应用之外,人工智能当中的问题求解技术、专家知识库等也得到了充分的应用,从而实现了良好的综合性网络管理。在网络管理当中,由于网络的瞬变性、动态性等特点,产生了很大的工作难题。因此,在现代化的网络管理当中,也逐渐朝着智能化的方形发展。基于人工智能,产生了专家级决策和支持方法,在信息系统管理当中,应用十分广泛[5]。在计算机程序当中,专家系统具有较高的智能性,在某一个领域当中,积累了大量专家的经验和知识,基于此进行归纳和总结,从而形成了资源录入相关系统。通过这种方式,在某个领域当中,汇集了大量专家的经验,从而对该领域当中的相关问题进行处理。因此,在计算机网络管理和系统评价当中,运用人工智能,综合大量专家的知识和经验,建立相应的专家系统,从而在遇到相关问题的时候,能够调用其中的知识,更好地进行网络管理和系统评价工作。
4 结论
人工智能是当前一项十分先进的科学技术,这一技术的产生和应用,极大地改变了人们的娱乐、工作和生活方式。而随着人工智能的不断发展和完善,其在计算机网络技术中的应用需求越来越多,因而实际应用也将越来越广泛。运用人工智能,能够在网络安全、网络管理、系统评价等方面发挥重要作用,从而推动计算机网络技术的更大进步。
参考文献:
[1] 马义华. 人工智能在计算机网络技术中的运用分析――评《计算机网络技术及应用研究》[J]. 当代教育科学,2015(20):9.
[2] 刘健. 人工智能在网络教育中的应用探讨[J]. 计算机光盘软件与应用,2014(6):244-246.
[3] 黄丽萍. 人工智能技术在计算机网络教育中的应用[J]. 计算机光盘软件与应用,2014(10):236-237.
篇4
关键词:人工智能;学习兴趣;教学方法
1956年,在美国Dartmouth大学,由数学家J.McCarthy和他的三位朋友M.Minsky、N.Lochester和C.Shannon共同发起一个历时两个月的夏季学术讨论班,他们在此讨论班上第一次正式使用了人工智能(Artificial Intelligence)这一术语。人工智能是一门多学科交叉的课程,涉及计算机科学、数学、控制论、信息论、神经生理学、心理学、哲学及语言学等多个学科,是新理论和新技术不断出现的综合性学科。当前,人工智能领域加强了从人类智能与生命现象中汲取养分的趋势,加快了向分布式系统与复杂系统靠拢的步伐,智能化的应用更为深入,影响更为广泛,其发展已对人类的经济、社会、文化等方面产生了深远影响[1]。
1人工智能导论课程特点
人工智能导论是人工智能领域的引导性课程,介绍人工智能的基本理论、方法和技术,目的是使学生了解和掌握人工智能的基本概念和方法,为进一步学习奠定基础。人工智能是计算机科学与技术学科一门重要的基础课程,需要相关课程作支撑。离散数学、概率论与数理统计等课程是其数学基础,数据结构、程序设计基础、算法分析与设计等课程则为人工智能中知识表示、逻辑推理和问题求解提供了设计与实现手段。与其他软件课程相比,人工智能课程有鲜明的特点,主要表现在思想方法上强调启发性、算法上强调不确定性。同时,由于人工智能是一个新思想和新技术层出不穷的开拓性领域,因此其对学生的训练是鼓励创新的,具有其他课程不可替代的作用。
人工智能导论是计算机相关专业的必修课,在许多信息类相关的本科教学中也有开设,一般开设在第六或者第七学期。我国目前本科教育的定位是专才教育,培养某方面的专业人才。完成公共基础课程和部分专业基础课程的学习之后,本科高年级学生应该了解本专业的应用领域和发展前景,因此在教学过程中要注意内容的专业性和应用性。由于本科阶段学生缺乏科研意识,初步的科研训练设置在第八学期,即所有课程学习完毕之后的毕业设计,而人工智能课程强调科研性,因此教学难度较大,由此带来的最直接后果就是学生学习兴趣不高。同时,对有志于读研的学生而言,本科阶段的学业也是研究生教育的起点,在教学过程中要适时的进行科研引导,提升学生对科学研究的兴趣,为研究生阶段打下基础。可见,圆满完成人工智能导论课程这一教学任务是重要且极具挑战性的。
2教学内容安排
人工智能的研究和应用领域非常广泛,包括问题求解、机器学习、自然语言理解、专家系统、模式识别、计算机视觉、机器人学、搏弈、计算智能、人工生命自动定理证明、自动程序设计、智能控制、智能检索、智能调度与指挥、智能决策支持系统、人工神经网络、数据挖掘和知识发现等。人工智能导论旨在为这些具体领域的研究提供引导和基础保障。
人工智能导论课程涵盖内容较多,因此需要明确“精讲”和“泛讲”的内容,以使教师和学生在教学活动中都有所侧重。当然,首先应和学生说明,泛讲并不代表内容不重要,只是由于课程性质和课时的关系,暂时不作深入探讨。日后如有需要,可在此基础上进一步学习和研究。结合当前人工智能学科的发展状况,根据教学大纲和作者的教学经验,对人工智能导论课程教学内容的精讲和泛讲安排如表1所示。
3提升学生学习兴趣的教学方法
3.1穿插背景故事
为激发学习积极性,针对学生喜欢听奇闻轶事、想象力丰富的心理特点,通过讲述一些与教学内容有关的故事或者趣事来吸引其注意力,辅助思维并丰富联想,使学生在愉悦中完成学习[2]。下面列举几个我们在课程教学中用到的背景故事,通过这些故事,不但传授了知识,也活跃了课堂气氛。
1) 人类智能的计算机模拟与人机大战。
讲授人类智能的计算机模拟时,可以给学生简述一下IBM公司的超级电脑和国际象棋世界冠军卡斯帕罗夫之间的人机大战,以促进学生对人类智能和人工智能的进一步思考。北京时间1997年5月12日凌晨4点50分,在美国纽约公平大厦,当IBM公司的“深蓝”超级电脑将棋盘上的一个兵走到C4的位置上时,国际象棋世界冠军卡斯帕罗夫对“深蓝”的人机大战落下帷幕,“深蓝” 以3.5U2.5的总比分战胜卡斯帕罗夫。2003年1月26日至2月7日,卡斯帕罗夫与深蓝的升级版“小深”又进行了一场人机大战,先后进行了6局比赛,最终卡斯帕罗夫以1胜1负4平的结果和“小深”握手言和。这也表明了人工智能和人类智能之间的较量还将持续下去。
2) 问题规约法与老和尚说教。
问题规约法是从要解决的问题出发逆向推理,建立子问题以及子问题的子问题,直到最后把初始问题归约为一个本原问题集合。本原问题指不能再分解或变换且直接可解的子问题。可见,问题规约的本质是递归的思想。此时,可以给学生简述我们小时候就听说过的老和尚说教的故事,即“从前有座山,山上有座庙,庙里有个老和尚,老和尚对小和尚说,从前有座山……”。
3) 模糊理论与秃头悖论。
模糊推理是一种重要的不确定性推理方式,是指基于模糊理论进行的推理。讲授模糊理论时,可以先讲一下秃头悖论让学生讨论。一个人有10万根头发,肯定不能算秃头,不是秃头的人,掉了一头发,仍然不是秃头,按照这个道理,让一个不是秃头的人一根一根地减少头发,就得出一条结论,即没有一根头发的光头也不是秃头!秃头悖论的出现源于在严格的逻辑推理中使用了“秃头”这一模糊概念,因此需要以模糊逻辑代替传统的二值逻辑解决该问题。
3.2课堂辩论和多媒体教学
人工智能从其诞生之日起就充满争议,各种学派的争论使得人工智能的发展更趋完善,加快了其纵深发展。目前,人工智能的争论主要有两方面,即研究方法的争论和技术路线的争论。前者争论的主要问题有人工智能是否得模拟人的智能;对结构模拟和行为模拟是否可以分离研究;对感知、思维和行为是否可分离研究;对认知与学习以及逻辑思维和形象思维等问题是否可以分离研究;是否有必要建立人工智能的统一理论体系。后者争论的主要问题是沿着什么样的技术路线和策略来发展人工智能。
在课堂教学中,可以充分利用人工智能中存在的争论较多这一特点,针对相关议题组织课堂辩论,如可用议题“机器的反叛――机器的智能会超越人类吗?”。让学生在图书馆或者从网上查阅相关资料,明确自己的论点并准备证据材料,并在课堂上进行辩论。这类辩论无所谓输赢,旨在通过这种活动,增进学生思考[3]。教学中,还可以充分利用多媒体教学的特点,如让学生观摩电影《终结者》系列、《人工智能》、《黑客帝国》等,增强学生对人工智能的直观感受,提高课堂教学效果[4]。
3.3应用实例分析
普遍而言,本科学生对单纯的理论讲解不太感兴趣,因此在教学过程中,适当增加一些实验和设计,提高学生分析问题的能力和实际动手能力。比如,讲解知识的产生式表示法时,给出产生式的概念和基本表示形式之后,可以通过“野人与传教士过河”问题来说明产生式表示法的具体应用过程;讲解计算智能的进化计算部分时,给出进化算法的几种具体形式和算法流程之后,可以通过中国旅行商问题(CTSP)来说明算法求解问题的过程。教师在教学过程中,可以根据需要,选择一些合适的应用实例进行分析。通过这些实例,既能加深学生对知识的理解,又能增加学习的兴趣。下面给出两个实例的简单描述。
1) 产生式表示法求解“野人与传教士过河”问题。
问题:传教士和野人各N人过河,现只有一条船,传教士和野人都会划船,船一次只能载k人,船上野人多于传教士时野人就会吃掉传教士,问如何安全过河?(不失一般性,以N=3,k=2为例求解)。
求解简述:设综合数据库中状态用三元组(m, c, b)表示,其中m、c、b分别表示传教士、野人和船的数目,则有:
0≤m, c≤3, b ∈{0, 1}
以左岸为参照点,则初始状态和目标状态分别为(3,3,1)和(0,0,0)。据此,可以给出一条产生式规则如下:
IF (m, c, 1) THEN (m-1, c, 0)
以此类推,把所有可行的规则都求出之后,就可按照规则集和控制策略得到问题的解。
2) 遗传算法求解31个城市的CTSP问题[5]。
问题:给定有限个城市的集合C={c1,c2, …,cm}及每两个城市之间的距离矩阵D=[dij]m×m,其中m∈N,dij=d(ci, cj)∈Z+,ci、 cj∈C,1≤i、j≤m,求出满足的城市序列cπ(1)、cπ(2)、…、cπ(m),其中π(1),π(2),…,π(m)是1、2、…、m的一个全排列。我们以CTSP问题为例,即求解中国31个城市之间最短巡回路线的问题。
求解简述:路径表示直接使用城市在路径中的相对位置,如有编号分别为1、2、3、4、5的5个城市的一条路径4-1-2-5-3,用路径表示方法直接可写为(4 1 2 5 3)。适应度函数值用路径的实际长度表示。交叉算子采用次序杂交,即选择父体的两杂交点,交换相应的段,其它城市则保持在父体中的相应次序。变异算子采用倒位算子,即随机选择两个位置,然后将它们之间的城市反序。通过运用遗传算法求解,可得最优解为15 404 km,对应的巡回路线为“北京―呼和浩特―太原―石家庄―郑州―西安―银川―兰州―西宁―乌鲁木齐―拉萨―成都―昆明―贵阳―南宁―海口―广州―长沙―武汉―南昌―福州―台北―杭州―上海―南京―合肥―济南―天津―沈阳―长春―哈尔滨―北京”。实例讲解完成后,可要求学生采用相同或者不同的方案自己去实现一下问题的求解过程。
4结语
人工智能是计算机科学与技术专业的一门核心课程,同时也是一门交叉学科,涉及面广,理论性强,教学难度较大,学生的学习兴趣有待提高。本文作者根据自己在人工智能导论课程中的教学实践和课程特点,明确了教学中的精讲内容和泛讲内容,总结了三种提高学生学习兴趣的教学方法,并给出相应的实例说明,旨在为本门课程的教师提供教学参考。
参考文献:
[1] 蔡自兴,徐光v. 人工智能及其应用(本科生用书)[M]. 北京:清华大学出版社,2003:288-296.
[2] 薛占熬,齐歌,杜浩翠,等. 离散数学的课堂导入法研究[J]. 计算机教育,2010(8):95-99.
[3] 徐新黎,王万良,杨旭华. “人工智能导论”课程的教学与实践改革探索[J]. 计算机教育,2009(11):129-132.
[4] 李春贵,王萌,何春华. 基于案例教学的“人工智能”教学的实践与探索[J]. 计算机教育,2008(9):53-54.
[5] 杨利英,覃征,贺升平,等. 改进的演化近似算法求解TSP问题[J]. 微电子学与计算机,2004,21(6):126-128.
Teaching Methods for Promoting Learning Interests in Introduction to Artificial Intelligence
YANG Liying
(School of Computer Science, Xidian University, Xi’An 710071, China)
Abstract: This paper presents three teaching methods for promoting learning interests based on the characteristics of Introduction to Artificial Intelligence and our teaching experience. These methods have been used in practice. The teaching practice shows that the methods proposed in this paper can promote learning interests effectively.
篇5
关键词:人工智能 计算机技术
一、人工智能的定义
“人工智能”(Artificial Intelligence)一词最初是在1956年Dartmouth学会上提出的。人工智能是指研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。
人工智能理论进入21世纪,正酝酿着新的突破,人工智能的研究成果将能够创造出更多更高级的智能“制品”,并使之在越来越多的领域超越人类智能,人工智能将为发展国民经济和改善人类生活做出更大贡献。
二、人工智能的应用领域
1.在管理系统中的应用
(1)人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。在《谈谈人工智能在企业管理中的应用》一文中刘玉然指出把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。换句话说,就是将企业各部门的数据进行统一集成管理,搭建人工智能的应用平台,使之成为企业管理与决策中的关键因子。
(2)智能教学系统(ITS)是人工智能与教育结合的主要形式,也是今后教学系统的发展方向。信息技术的飞速发展以及新的教学系统开发模式的提出和不断完善,推动人们综合运用超媒体技术、网络基础和人工智能技术区开发新的教学系统,计算机智能教学系统就是其中的典型代表。计算机智能教学系统包含学生模块、教师模块,体现了教学系统开发的全部内容,拥有着不可比拟的优势和极大的吸引力。
2.在工程领域的应用
(1)医学专家系统是人工智能和专家系统理论和技术在医学领域的重要应用,具有极大的科研和应用价值,它可以帮助医生解决复杂的医学问题,作为医生诊断、治疗的辅助工具。事实上,早在1982年,美国匹兹堡大学的Miller就发表了著名的作为内科医生咨询的Internist 2Ⅰ内科计算机辅助诊断系统的研究成果,由此,掀起了医学智能系统开发与应用的。目前,医学智能系统已通过其在医学影像方面的重要作用,从而应用于内科、骨科等多个医学领域中,并在不断发展完善中。
(2)地质勘探、石油化工等领域是人工智能的主要作用发挥领地。1978年美国斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECTOR”,该系统用于勘探评价、区域资源估值和钻井井位选择等,是工业领域的首个人工智能专家系统,其发现了一个钼矿沉积,价值超过1亿美元。
3.在技术研究中的应用
(1)在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质、形状和大小进行判断和归类;专家运用超声无损检测仪器,以其高精度的运算、控制和逻辑判断力代替大量人的体力与脑力劳动,减少了任务因素造成的无擦,提高了检测的可靠性,实现了超声检测和评价的自动化、智能化。
(2)人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全是我们关心的重点,因此我们必须在传统技术的基础上进行网络安全技术的改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的AI技术,开发更高级AI通用和专用语言,和应用环境以及开发专用机器,而与人工智能技术则为我们提供了可能性。
三、人工智能的发展方向
1.专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统。近年来,在“专家系统”或“知识工程”的研究中已出现了成功和有效应用人工智能技术的趋势。人类专家由于具有丰富的知识,所以才能达到优异的解决问题的能力。那么计算机程序如果能体现和应用这些知识,也应该能解决人类专家所解决的问题,而且能帮助人类专家发现推理过程中出现的差错,现在这一点已被证实。
2.智能信息检索技术的飞速发展。人工智能在网络信息检索中的应用,主要表现在:(1)如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术。(2)由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素对其进行推理,需要利用人工智能的研究成果。
3.SOAr是一种通用智能体系结构,其始终处在人工智能研究的前沿,已显示出强大的问题求解能力,它认为机器人的开发是人工智能应用的重要领域。在它的研究中突出4个概念:(1)所处的境遇机器人不涉及抽象的描述,而是处在直接影响系统的行为的境地。(2)具体化机器人有躯干,有直接来自周围世界的经验,他们的感官起作用后会有反馈。(3)智能的来源不仅仅是限于计算装置,也是由于与周围进行交互的动态决定。(4)浮现从系统与周围世界的交互以及有时候系统的部件间的交互浮现出智能。目前,国内外不少学者都对机器人足球系统颇感兴趣,足球机器人涉及机器人学、人工智能以及人工生命、智能控制等多个领域。足球机器人系统本身既是一个典型的多智能体系统,是一个多机器人协作自治系统,同时又为它们的理论研究和模型测试提供一个标准的实验平台。
参考文献:
[1]元慧.议当代人工智能的应用领域和发展状况[J].福建电脑,2008.
[2]刘玉然.谈谈人工智能在企业管理中的应用[J].价值工程,2003.
[3]焦加麟,徐良贤,戴克昌.人工智能在智能教学系统中的应用[J].计算机仿真,2003,(8).
[4]周明正.人工智能在医学专家系统中的应用[J].科技信息, 2007.
[5]张海燕,刘镇清.人工智能及其在超声无损检测中的应用[J].无损检测,2001,(8).
[6]马秀荣,王化宇.简述人工智能技术在网络安全管理中的应用[J].呼伦贝尔学院学报,2005,(4).
篇6
上周,沪深300指数上涨2.60%,计算机行业上涨0.32%,行业跑输大盘2.28个百分点,其中硬件板块下跌1.19%,软件板块上涨0.56%,IT服务板块上涨1.48%。个股方面网达软件、真视通、神州易桥涨幅居前;*ST三泰、湘邮科技、华力创通跌幅居前。
国际市场
麻省理工学院开发自动驾驶技术,在无地图乡间道路上也能导航;Waymo计划年内在凤凰城正式推出无人驾驶打车服务;Uber将测试无人机送餐服务,最短只要5分钟;美国白宫成立人工智能工作组,将决定美国对AI的投资力度。
国内市场
腾讯智慧零售首家全自助化智慧餐饮门店亮相深圳;科技部成立新一代人工智能发展研究中心;京东智能音响叮咚mini2,与英特尔宣布战略合作;青海省卫计委携手腾讯共建“互联网+健康医疗”。
A股上市公司重要动态信息
达实智能:中标1.9亿元智慧医院项目;广电运通:与腾讯公司、财付通签订1883.82万元地铁云平台AFC项目;全通教育:中标3496.44万元科创集散地服务项目;麦迪科技:与安挚投资签署产业并购基金框架合作协议;世纪瑞尔:拟1000万元占比50%设立中唐瑞尔。
投资策略
篇7
1 引言
近年来,任务驱动教学法越来越受到信息技术教师的青睐。教育部于2003年的《普通中学信息技术课程标准》在实施建议中指出:“‘任务驱动’教学强调让学生在密切联系学习、生活和社会实际的有意义的‘任务’情境中,通过完成任务来学习知识、获得技能、形成能力、内化伦理。因此要正确认识任务驱动中‘任务’的特定含义,使用中要坚持科学、适度、适当的原则,避免滥用和泛化;要注意任务的情境性、有意义性、可操作性;任务的大小要适当、要求应具体,各任务之间还要互相联系,形成循序渐进的梯度,组成一个任务链,以便学生踏着任务的阶梯去建构知识。”然而在教学实践中如何设计出恰如其分的任务,如何在任务驱动中更好地落实三维目标,是要解决的问题。
“用智能工具处理信息”是湛江市第二中学许淼淼老师执教的一堂示范课,该课在2010年第六届广东省信息技术优质课评比活动(高中组)中获得一等奖。本课例以“忆上海世博,探智能奥秘”为主线,进行任务设计,是一堂“任务驱动”教学法的典型课例。
2 任务驱动教学的设计
2.1 教学内容分析
教师必须以课标为依据,对教学内容进行认真细致的分析,在充分分析教学内容的基础上,确定一个单元或一个部分要求学生掌握的知识点。“用智能工具处理信息”是粤教版必修1《信息技术基础》第四章“信息的加工与表达(下)”第二节的内容。课标要求学生通过部分智能信息处理工具软件的使用,体验其工作过程,了解其实际应用价值,提高对信息智能处理内容的学习兴趣,从而为选修“人工智能初步”指引方向。对于本节内容,应以体验为主,最后在体验的基础上进行认知和理解。
2.2 学生学习特征分析
本课教学对象是高中一年级的学生,这个阶段的学生已经具有一定的逻辑思维能力和学习的自觉性,但还需要教师及时、合理、周详地引导。通过前面阶段的信息技术课的学习,他们已初步掌握一定的操作技能,能够根据任务的需求,利用工具软件处理信息。但是他们在自主思考方面还不主动、合作与探究的意识和技能等方面还比较欠缺。
鉴于本节课内容的前沿性和新颖性,教师完全可以放手让学生自己去实践,让学生动手动脑,培养他们自主探索、勇于实践的能力。通过合作交流,激发学生学习的兴趣,提高学习效率。
2.3 确定教学目标
教学目标是指导教学过程设计与教学效果评价的依据。根据教学内容与学生学习特征,确定当前教学内容所要达到的目标水平,这是进行教学设计的首要环节。“用智能工具处理信息”中的教学目标如下:
1)知识与技能目标:①了解信息智能处理的方式;②感受信息智能处理的基本工作过程;③初步了信息解智能处理的工作原理;④体验信息智能工具的应用价值。
2)过程与方法目标:①掌握简单智能信息处理工具的使用方法;②通过完成任务,体验人工智能的独特魅力;③掌握分析问题、呈现观点和交流思想的方法。
3)情感、态度、价值观目标:①感受智能信息处理的魅力,形成对人工智能这一前沿技术的探索愿望;②体验人工智能技术的实际应用价值。
2.4 教学重点、难点
1)教学重点:体验信息智能处理工具的应用。
2)教学难点:理解模式识别和自然语言理解的工作原理。
2.5 任务设计说明
本课中,许老师以“忆上海世博,探智能奥秘”为主题,变人工智能由抽象到具体,任务探究活动贯穿整课堂,调动学生的学习热情,使学生能主动参与、积极探索,掌握技巧的同时培养各种能力。本课中任务的设定由探究任务、继续探究任务和拓展任务组成,层层递进,体现了分层任务的概念,并且环环相扣,设计巧妙。
2.6 教学设计流程图(图1)
3 任务驱动教学模式的实施过程
3.1 创设情境,引入课题
【情境设置】播放视频“世博会海宝博士与杨澜的对话”。
【教师引入】大家思考一下,海宝博士是真人么?他是如何跟主持人交流的呢?
【学生讨论】海宝博士不是真人,而是机器人,它植入芯片,有语音识别系统,是一台高级的电脑……
【教师引申】我们大家说的这些都是人工智能的范畴,今天我们就共同学习如何用智能工具处理信息。(课件展示课题“用智能工具处理信息”)。
【设计意图】通过智能机器人的演示,创设一种人工智能的神奇氛围,使学生对智能处理信息有一个全面的认识,还可营造课堂氛围和激发学生对智能技术的兴趣。
3.2 感知体验,启发探索
探究活动一:体验机器翻译的乐趣
【活动背景】对于英语水平不好的学生来说,翻译句子是件非常头疼的事情,现在出现了翻译软件,可以帮助人们进行翻译,但是它翻译得好不好呢?就让我们来体验一下。
【活动任务】将学生分成两组,分别打开Google在线翻译和雅虎在线翻译,分别将“城市,让生活更美好”译成英文再译成中文然后再译成英文。
【活动探究】是谁在给我们翻译?为什么两种翻译软件两次翻译的中文和英文会有这么大的不同?这些网站又是如何进行双向翻译的呢?
探究活动二:体验手写输入的乐趣
【活动背景】用键盘录入汉字对于同学们来讲已经不是什么难题,但对于电脑初学者,汉字录入是他们感到非常头痛的一件事情。手写板的出现令输入汉字不再是一般人使用计算机的关卡,语音输入更是手疾人士应用计算机时的必需。这里我们借助“微软拼音2003输入板”来体验手写板的神奇功能。
【活动任务】打开微软拼音2003手写输入板,在桌面上建立记事本文件,内容为“城市,让生活更美好”。
【任务探究】怎样书写汉字可以提高识别率?导致识别率不高的原因有哪些?
3.3 层层深入,探究新知
新知一:自然语言理解
回顾活动一:体验机器翻译的乐趣
【教师引申】很显然,几秒钟之内就给出翻译结果,不可能是人类,给我们翻译的应该是机器。那为什么一般的工具又不具备翻译功能呢?
【原理探讨】机器翻译智能工具,它属于人工智能领域中的自然语言理解,但计算机不是人类,不能理解字里行间的意思,翻译起来比较生硬,有时候翻译得荒谬可笑。
【得出结论】下面请大家结合自己的英语知识对“城市,让生活更美好”进行翻译,并根据自己翻译的过程推测出翻译软件的工作过程(如图2所示)。
【概念理解】自然语言理解主要是指研究如何使计算机能够理解和生成自然语言的技术。自然语言的理解过程可分为3个层次:语法分析、句法分析和语义分析。
【设计意图】通过活动一的开展,使学生感受自然语言理解技术应用的魅力和价值,激发学习兴趣。在已有体验的基础上提出概念,加深学生的理解。
新知二:模式识别技术
回顾活动二:体验手写输入的乐趣
【教师引申】在刚才的活动中,同学们体验了手写输入汉字的神奇效果,但是如果我们的书写不规范,或我们写的字字库里还没有,也是不能输入的。
【原理探讨】智能手写输入是人工智能技术的研究领域之一,它所采用的是模式识别技术。
【牛刀小试】接下来我们玩一个游戏“掌中写字”:两人一组,甲闭眼伸手,乙在其手心写字,甲猜字,然后互换角色进行。思考人脑是怎样猜字的?经历了怎样的过程?
【得出结论】根据人脑猜字的过程推断手写输入软件的工作流程,如图3所示。
【概念理解】模式识别是利用计算机对物体、图像、语音、字符等进行自动识别的技术。它的一般过程包括:样本采集、信息的数字化、预处理、数据特征的提取、与标准模式进行比较、分类识别等。
【设计意图】通过游戏时猜字过程的对比,加深学生对模式识别过程的理解。
3.4 总结提升,共享交流
【共享交流】请大家就自己所实践的活动过程及结果发表意见,并结合教材简单分析其工作流程及原理,了解人工智能的两个研究领域:模式识别和自然语言处理。
【总结提升】人工智能(AI,artificial intelligence)是研究、开发利用计算机来模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术学科。
【设计意图】通过学生共同讨论交流,进一步加深巩固本节课的知识。
3.5 课外延伸,展望未来
【课后探究】利用飞信与网络机器人“海宝博士”聊天,试图发现网络机器人的语言破绽。
【得出结论】机器不能完全代替人,我们不能完全依赖机器。在现实生活中,同学们应该学会举一反三,并懂得在适当的情况下选择合适的智能信息处理工具为自己的学习、生活和工作服务。
【展望未来】人工智能对我们的生活正起着越来越大的作用,它是人类智慧的结晶。作为一名中学生,我们还没有足够的知识和能力参与到人工智能的前沿研究当中,但我们可以利用学习到的初步知识,积极探索,多些创意,也许未来就有你想实现的更智能的处理工具,更好地为人类服务。(观看世博短片《2020年老王的一家》,畅想未来生活中的智能工具。)
【设计意图】在学生的心中埋下美好的种子,激励他们探究未来世界的勇气。
4 结束语
用智能工具处理信息这一课,许老师很好地发挥了“任务驱动”教学法的作用,注重学生的参与体验,活动设计环环相扣,启发学生自主探究并总结规律,体现了新课程以教师为主导、学生为主体的教育理念;通过设置几个活动,层层深入带领学生研究探讨,顺利实现预定的目标,同时也有效培养了学生自主学习的能力。
“任务驱动”教学法在信息技术教学中备受关注有其一定的道理,但怎样使其发挥更大作用,还需要在实践中继续探讨和研究。
参考文献
篇8
在教育信息化飞速发展的时代,经常会听到某高校建成了“智慧教学环境”或“智慧校园”,甚至有些高校进行了简单的信息化教学设施的改造,也冠名为“智慧教育环境”建设。是技术发展太快,还是概念炒作呢?或者是人们对“智慧教学环境”的内涵理解有偏差呢?带着这些问题,笔者对智慧教育的概念进行了深入研究,并对现阶段已经建成的智慧教学环境进行了实地调研。希望通过开展此项研究找到当前智慧教学环境建设中存在的问题与漏洞,为今后智慧教学环境的建设提供建议。
一、智慧教学环境的内涵
今天我们所说的智慧教育源于IBM提出的“智慧地球”,智慧地球的核心是以一种更智慧的方法通过利用新一代信息技术来改变政府、公司和人们交互的方式,以便提高交互的明确性、效率、灵活性和响应速度。智慧地球具有三个明显的特征:①对环境透彻的感知力,通过利用物联网等实现随时随地感知、测量、捕获和传递信息;②更全面的互联互通,在有线和无线网络支持下,利用先进的系统协同工作实现全面互通;③深入的智能化,利用人工智能技术获取智能化的洞察并付诸实践,进而创造新的价值。[1]
《2015中国智慧学习环境白皮书中》指出,智慧学习作为一类学习系统,是通过物联网技术、大数据系统和人工智能技术等现代高科技来全面感知学习情境、识别学习者特征,提供合适的学习资源与便利的互动工具,自动记录学习过程和测评学习结果,有效支持人们的终身学习、职业发展和自我价值的实现。从而可以实现人们能够在任意时间(Any time)、任意地点(Any where),以任意方式(Any way)和任意步调(Any pace)(简称4A)进行学习,这类学习环境能够支持学习者轻松地(Easy Learning)、投入地(Engaged Learning))和有效地(Effetive Learning))(简称3E)学习。[2]
我国学者祝智庭教授认为:智慧教育的真谛就是通过构建技术融合的学习环境,让教师能够施展高效的教学方法,让学习者能够获得适宜的个性化学习服务和美好的发展体验,使其由不能变为可能,由小能变为大能,从而培养具有良好的价值取向、较强的行动能力、较好的思维品质、较深的创造潜能的人才。[3]
通过对上述概念的分析可以看出,智慧教学环境的基本条件是对环境的感知、全面的互联互通和深入的人工智能;智慧教学环境中主要用到物联网、大数据和人工智能来感知学习环境和学习者特征、营造学习情景,主动提供学习资源、自动记录和评价学习结果;智慧教学环境建设为培养具有良好的价值取向、较强的行动能力、较好的思维品质、较深的创造潜能的人才,提供环境保障。
智慧教学环境主要具有如下特征:①?ρ?习者和环境的感知,比如,通过一些传感设备(物联网)实时控制教室的温度、湿度、亮度等,为学习者提供最为舒适的学习环境;②个性化资源的推送,在智慧教学环境中,可以实时感知学习过程,并主动推送个性化的学习资源;③对学习结果的记录与分析。智慧教学环境通过对学习者学习过程的记录与分析,可自动分析学习者的特征和学习情况,并产生相应的学习报表或者学习建议;[4](4)智慧教育最根本的特征是要实现教育信息化的终极目标。
二、智慧学习环境的建设现状
当前智慧教学环境的建设正在如火如荼的进行,部分高校已经建成了智慧教学环境示范区。为深入研究智慧教学环境的建设与应用情况,笔者对部分高校的智慧教学环境示范区进行了实地考察,发现当前的智慧教学环境可分如下几类:
1.普通多媒体教室的改造升级
在已经建设成功的“智慧教室”中最为初级的是普通多媒体教室的升级版,此类教室只是对普通多媒体教室进行了装修和改造,使得教室中的座位灵活、舒适,其多媒体设备配置更加先进。当前改造成功的多媒体教室中基本都安装了高清投影、交互式电子白板或互动式大屏幕、无线扩音系统等。
2.课堂互动工具应用型
当前智慧教室中的互动系统种类繁多,比较常见的主要包括:利用台式电脑通过局域网进行互动、利用Internet进行远程的互动教学、基于手机或平板电脑的互动系统:
(1)基于台式电脑的互动系统。这种类型的教室中,每个学生座位上配有一台台式计算机,通过相关的互动软件,可实现师生之间、学生之间在网络环境下的实时互动交流,包括教师单独辅导,下发、上传资料等。
(2)基于网络的远程直播、互动系统。为实现跨校区之间、跨区域之间的教学直播互动,部分院校建设了“远程直播”教室。在此类型教室中通过高清摄像机、直播管理系统,可实现远距离直播、互动等功能。此外,通过录播控制系统,也可以实现对教师授课过程的自动录制和保存。
(3)基于智能手机或平板电脑的课堂互动系统。有些学校的“智慧课堂”可以看到基于手机或平板电脑的互动系统,此类互动系统可以让师生之间通过智能手机或平板电脑进行互动,下发、上传资料,也实现了学生实时投票、抢答等功能。另外,此类课堂互动系统已经初步实现记录课堂教学过程,并对授课情况可进行初步分析与统计。
3.教学资源库及社会化软件应用型
(1)有些地区或学校建设了相应的资源库或学习平台,便称之为智慧教育环境。
(2)还有些学校可利用微信、QQ等社会化软件实现新生注册、宿舍查询等功能,他们把这些社会化软件的简单应用说成了智慧校园。[5]
4.环境友好型
(1)教学环境的提升
部分智慧教学示范区中教室颜色鲜艳、明亮,走廊和学习区温馨、清爽,桌椅板凳舒适、灵活,教室里面配置了中央空调、电动窗帘等,整个示范区使学生能感受到愉悦、清新。但在信息化智能技术的应用方面,很少看到大数据分析系统、物联网、云计算等新型技术的应用,因此,这些环境也难以称为智慧教学环境。
(2)物联网的初步应用
有些学校建成的“智慧教室”中开始使用一些初级的物联网设备,比如,显示温度、湿度、照度等参数设备。仅仅使用一些物联网设备也难以称之为智慧教学环境。
5.综合应用型
一些学校智慧教室中综合了各种前沿技术,我们似乎看到了智慧教育的影子。此类教学环境中:教室实现有线和无线网络的全覆盖;教室外安装了人脸识别系统和RFID考勤机,这些系统采集的数据可直接传送到教务系统;可以感知教室的温度、光线等,并可实现自动控制;开发了基于云计算的教育资源库和移动学习管理系统;此外,还有智能控制系?y、增强现实的互动演示和视频会议系统、自动录播系统等。[6]
三、现阶段高等院校智慧教学环境“智慧”的缺失
通过对智慧教育内涵的研究,结合智慧教学环境的建设现状,发现现阶段“智慧教学环境”的建设与传统教学环境相比已经有了很大的提升,但还没真正实现“智慧教育”。下面笔者对照智慧教育的概念与特征,从环境建设、技术的运用以及对人才培养的支持等方面对现阶段的“智慧教学环境”加以分析:
1.对环境和学习者的感知
感知学习情景涉及学习者特征分析、传感器技术和自动推理等方面的应用,通过信息采集、动态建模和情景推理三个模块来实现[7],要感知学习情景,物联网和人工智能技术是必不可少的。目前,智慧教学环境中对物联网技术的应用还处在最初级的对基本环境的感知方面,比如,温度、湿度和光线的感知,缺乏对物联网的深入应用。要实现对学习者特征的自动识别,必然用到人工智能、学习分析等技术,但在目前的智慧教育环境中还没有看到成功案例。
2.智慧教育资源的提供
智慧资源是指以培养具有21世纪生存技能的智慧创造者为目的,支持智慧学习和智慧教学活动的有效开展,具有泛在性、情景感知性、联通性、进化性、多维交互性和个性化智能推送等核心特征的新型数字化学习资源[8]。在智慧教育资源的建设和应用过程中:首先,用到大数据分析技术,对学生的学习特征和学习情况进行全面的分析;其次,通过人工智能等技术实现向学习者进行优质教育资源的精准推送;第三,可通过物联网、大数据和人工智能来全面感知学习环境,利用VR技术营造更为真实的学习情境。在当前建设的“智慧教学环境”中,虽然可以看到丰富的学习资源和互动工具,但它们并没有达到智慧资源的标准。
3.对学习结果的记录与分析
Siemens认为学习分析是:“关于学习者以及他们的学习环境的数据测量、收集、分析和汇总呈现,目的是理解和优化学习以及学习情境”[9],学习分析必然会用到学习科学、人工智能、大数据等方面的理论和技术。目前我们看到的是一些授课软件对课堂的记录与初步的数据统计,并不能达到学习分析的标准。在对教学过程的记录过程中,通过自动录播系统,可以实现对教学过程的自动录制,但这种记录只能是机械的记录,缺少智能成分。
4.对教育目标的实现
智慧教育最根本的特征是要实现教育信息化的根本目标,即“要破解制约我国教育发展的难题,促进教育的变革与创新;要对教育发展具有革命性影响”[10]。要对教育发展产生革命性影响,智慧教学环境应做到如下几点:首先,要改变知识产生、传播和管理的方法和模式,让知识变得触手可及;其次,要支持学习者的终身学习、职业发展和自我价值的实现;第三,要营造良性的教育生态环境,使学习者能随时、随地开展所需的学习。显然目前的“智慧教学环境”还不能支持实现教育信息化的根本目标,因此还难以称之为智慧教学环境。
四、智慧教学环境建设建议
通过上述分析可以看出智慧教学环境的建设还处在初级阶段,目前建设的很多“智慧教学环境”只能说是现代教育环境,还不能称之为智慧教学环境。要真正实现智慧教学环境,还需要在教育理论、技术和方法等方面大幅提升。结合上述分析,本文对智慧教学环境的建设提出如下几点认识:
1.强化顶层设计,准确定位,系统规划
智慧教学环境的建设是一个系统工程,它包括校园环境、教室环境、硬件设施、软件系统,甚至还包括教师的教学理念、方法,学生的学习习惯、方式等方面的内容。因此,智慧教学环境的建设首先需要明确目标,强调顶层设计,对我们将要实现的目标进行系统的规划。
2.遵从事物发展规律,循序渐进,稳步推进
智慧教学环境的建设是一个长期的过程,不可能一蹴而就。在智慧教学环境的建设过程中还伴随着教学方法、理念的转变。因此,智慧教学环境的建设应该在系统规划的基础上分阶段开展,循序渐进地做好每个阶段的工作,最后才有可能实现真正的智慧教育。
3.明确智慧教育本质,平心静气,不忘教育根本
智慧教育的本质是利用信息化手段,为学习者的学习提供更优质的环境、更人性化的服务。智慧教学环境的建设必然用到云计算、物联网、大数据和人工智能等技术;智慧教学环境必然能给师生提供更便捷的教与学支持,让学生可以开展任何时间、任何地点、任意方式的学习;智慧教学环境必然给师生提供丰富的、个性化的资源和及时的教与学的分析报告;智慧教学环境可以支持实现教育信息化的根本目标。满足了上述条件才可称之为智慧教学环境,切不可将简单的环境改造、软件应用和资源建设冠名为智慧教学环境。
篇9
[关键词]人工智能;包装专业;人才培养转型
人工智能时代,是继农业革命、工业革命后,人类现代社会的第三次浪潮时代。以人工智能、大数据、物联网等为代表的新技术、新应用应运而生[1]。包装产业作为典型的传统产业,人的操作技能与经验曾发挥着决定性的重要作用,对生产效率、产品质量等有着重要的影响。然而,随着包装产业向绿色化、数字化、智能化、融合化的技术升级与转型,企业的岗位设置和人才需求也正在发生巨大变化[2]。为了深入了解包装相关产业的转型,深圳职业技术学院传播工程学院会同中国印刷科学技术研究院针对四类包括包装印刷生产企业、包装设计公司、设备制造企业和终端品牌客户在内的28家大中型代表性企业开展了“人工智能时代包装人才需求的调研”。本文将结合这次调研结果,探讨人工智能时代高职院校包装专业人才培养转型。
一、包装相关企业用人现状分析
根据调研数据分析,对于包装印刷生产企业,人员占比最大的是印刷生产人员和印后加工人员,这体现出目前我国包装印刷生产行业的现实情况,即印刷生产及印后加工自动化、数字化、智能化水平都处于较落后的状态。但随着数字车间、智能工厂的建设,印刷生产、印后加工、质检、仓储物流岗位将更多地被智能化设备所替代[3],因此这些岗位的人员需求度将逐年降低。对于包装设计公司,人才需求主要集中在策划及包装创意设计人员,且设计师岗位工作目前受到人工智能技术的冲击较小。这也说明在人工智能时代,设计师岗位结构变化不大,因为设计岗位属于智力劳动型岗位,对设计师的专业知识和创新能力要求较高。作为包装印刷企业服务商的设备制造企业,其主要人员岗位均集中在产品研发人员、产品生产人员及售后服务人员。在这次人工智能技术革命中,设备制造商将发挥着重要作用,其产品要满足智能化的需要,就必须掌握并应用人工智能相关的技术,所以未来其产品研发岗位必定是设备制造企业的核心岗位,且对人才的要求较高,需求较旺盛。而对于最受毕业生就业喜欢的终端品牌客户其产品研发人员的比例远远高于前三类企业,产品研发人员一直是终端品牌客户关注的主要岗位,未来需求也将保持稳定。在调研中我们还发现,除了上述固有岗位结构变化外,对于包装类企业在人工智能时代也将催生一批新的就业岗位,如IE工程师、智能设备操作员、云服务平台运维人员、智能化信息管理人员、智能化物流管理仓储人才、智能化服务平台的运营人员等,这些新岗位的出现为包装高职教育提出更高的人才培养要求。
二、人工智能时代对包装专业高职人才培养提出的新要求
人工智能时代,技术创新不断涌现,包装产业结构也随之调整,在人才知识结构和专业技术能力要求两方面对包装专业高职人才的培养提出了新要求。
(一)人才知识结构要求
根据调研数据分析,从企业选择数量来看,人工智能时代,包装专业人才需要具备的知识,按照占比排前的依次为“包装策划与营销知识”“包装结构设计”“智能包装技术”“包装造型设计”。在人工智能时代,包装专业人才需要跨界融合的趋势越来越明显。作为一个包装从业人员要不断强化市场营销意识,根据包装产品的属性与特点,结合市场与消费者需求进行设计开发,并将功能、结构、装潢、材料、生产工艺等方面的因素同时考虑,进行针对性、多样化包装设计。例如,包装设计已由单品包装转为系列化的包装设计,一套茶叶包装可扩充为茶叶包、茶叶盒、茶叶手提袋等多种包装产品。另外,人工智能时代,智能包装必定成为包装行业的主流趋势,因此,日常工作中,包装设计师在保留包装产品基本功能后,还应设法提升产品的附加价值,进行品牌推广的同时需增加感知、监控、定位、记录等相关信息的辅助包装设计功能,帮助客户对产品流通全程进行跟踪、监控,以提高供应链整体效率,使客户安心放心使用产品[4]。与此同时,包装专业人才还应具备数据统计与分析、AR/VR/HTML5等新技术知识,可以帮助包装设计师了解消费者的心理动态,设计出更符合消费者需求的包装产品。
(二)专业能力要求
人工智能时代,随着客户需求的提高、包装承载功能的丰富,包装相关企业对于包装专业人才的能力有更高的要求,各调研对象对必备能力的选择,从选择的数量上来看,对于包装专业人才必须具备的能力排名靠前的分别是“对市场品牌的敏感度与审美”“包装造型与外观创意设计能力”“包装产品策划能力”和“包装结构设计能力”。这充分说明包装专业人才属于智慧型人才,需为客户提供品牌策划与设计方案。为此,首先要了解客户需求,对设计品牌的起源、特点及标志有一定认识,才能正确、清楚地进行需求定位;其次才是设计环节。而人工智能时代,包装专业人才的竞争,将不再局限于纸面上的设计图案,创新思维将成为当前包装策划设计人才的核心竞争力。
三、人工智能时代高职院校包装专业人才培养转型建议
人工智能等新技术与包装产业的融合对包装教育提出更高的要求和人才培养规格[5]。高职教育作为一种比其他教育类型更贴近市场、更注重实用性的教育,需要及时调整专业定位和人才培养目标。
(一)专业定位
高职教育以市场和就业为导向,企业需要什么样的人才,我们就应当培养什么样的人才,从前面的调研数据可知,无论是知识结构还是能力要求,策划和设计都是最重要的两个点。包装策划指根据产品特色与生产条件并结合市场与消费需求,对产品的市场目标、包装方式与品牌定位进行整体方向性规划定位的决策活动。包装设计则是一个大设计概念,包含装潢设计、结构设计、造型设计、运输包装设计、工艺设计等[6]。目前包装人才培养方面各院校更多偏重于设计、技术方面,而忽视了策划。未来,整个行业对具有市场数据分析、文案写作、创新思维、市场营销的策划类人才将有更多的需求。包装人才,策划先行,包装专业需在策划类课程建设、师资培养等方面投入更多精力。
(二)人才培养目标
包装产业的融合性特点使得包装专业人才跨界融合的趋势越来越明显。未来,行业将更需要能提供包装整体解决方案的复合型高技术高技能人才,因此在人才培养目标的制订上将体现以下三个方面的特点。1.具有跨学科、跨专业知识背景调研数据显示,包装企业从业者往往身兼数职,需要同时掌握多种专业知识和业务知识。例如包装策划人员,一方面要有市场营销知识和品牌推广能力,对于客户消费心理有基本的分析和判断;另一方面还需要具备设计思维和设计技能,同时还应对各种包装材料、包装形式、包装工艺有深入了解。因此包装人才培养,不仅要具备包装设计、包装材料、包装工艺等知识,还要具备计算机软件应用、市场营销等方面的知识和技能以及人工智能基础知识。2.具有运用大数据分析、人工智能、物联网技术的能力目前包装企业还面临设备操作智能化水平低、数据信息交互机制缺失、生产劳动强度大的局面。为了更快地推进包装企业的智能化,实现高质高效,包装企业现阶段更需要一批既懂包装专业知识,又精通大数据分析、信息化、网络化、智能技术的技术型人才。包装专业人才同样需要运用大数据分析客户需求、客户喜好,同时能够将人工智能技术、物联网、区块链技术引入包装设计中,发展智能化包装。3.具有创新思维创新是企业发展最核心的动力,从前面的调研也可以看出,在人工智能时代,创新技术和创新设计已经成为企业的第一核心竞争力,特别是作为包装专业人才,需要通过策划、创意设计进行包装的创新以满足功能上的新要求和视觉上的新鲜感。没有创新思维,就像无本之木,没有办法实现包装在功能、形式、外观、材料等方面的创新。企业首先看重的就是创新思维,其次才是专业能力。高职院校应在平时教学中注重培养学生基于专业知识的发散思维,通过各种竞赛锻炼创新实践能力。应积极组织学生参与“包装之星”“世界之星”“全国包装设计职业技能大赛”等科技竞赛,以赛促学,以赛育人,参与设计专题讨论交流,切实提高学生的专业素养和培养质量
四、结语
篇10
本周观点:
2018年,“互联网+”、人工智能及数字经济领域重大工程将获国家资金直接支持。10月13日,国家发改委官方《关于组织实施2018年“互联网+”、人工智能创新发展和数字经济试点重大工程的通知》。最终获批项目2018年将直接获得国家补助资金投资支持。
IT重大产业规划进入实质性落地阶段,行业景气度加速向上。自2012年12月国务院印发《“十三五”国家信息化规划》,到2017年3月人工智能首次写入政府工作报告,到7月份国务院印发《新一代人工智能发展规划》,此次国务院重大工程项目补助是对IT关键领域产业规划推进的实质性落地,更彰显了政府对科技产业的支持决心,未来3-5年相关领域行业景气度有望加速向上。
覆盖三大领域,17个细分重点发展方向。重大工程申报方向主要在“互联网+”、人工智能和数字经济三大领域内,17个明确细分方向:包括新一代云计算操作系统、边缘计算云平台、异构计算云平台、物联网微功耗芯片、无人驾驶及工业领域高端传感器、互联网协同制造服务支撑平台、深度学习智能芯片、深度学习开源平台、高准确度人脸识别、高灵敏度语音识别、无人驾驶航空器产品、智能服务机器人、政务信息系统整合共享、大数据应用、数字经济公共基础设施、中国-东盟信息港及“一带一路”数字丝绸之路。
申报项目需通过严格技术指标要求,细分领域龙头企业受益最大。此次试点重大工程要求,申报项目需严格控制数量,避免“小、散”,切实体现重大、突出重点,从而有利于国家集中资金扶持重难点技术和产品的攻克。
对此,文件对相关重大工程申报均提有对应的严格技术指标,以深度学习智能芯片为例,指标要求:1.申报企业可任选前端芯片或云端芯片进行申报;2.基于自主知识产权新型计算机指令集,配套编译器支持MXNET、CAFFE等框架;3.云端芯片性能不低于400Gops/W,前端芯片整体功耗不高于5W;4.单款智能芯片出货量不低于100万片;5.在3个以上领域得到应用。因此,相关概念性的企业将被档于门槛之外,真正具备技术实力和优质产品积累的领军企业将最大受益。