相对论和量子力学的关系范文
时间:2023-11-22 17:57:46
导语:如何才能写好一篇相对论和量子力学的关系,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
本书共25章:1. 引言;2. 数学综述;3. 量子力学的规则;4. 基本定律与和波动力学间的关联;5.量子力学规律的进一步说明;6. 一维波动力学的后续发展;7. 角动量的理论;8. 三维波动力学:氢原子;9. 对束缚态问题的时间无关近似;10. 微扰理论的应用:氢原子的束缚态;11. 相同粒子;12. 原子的结构;13. 分子;14. 物质的稳定性;15. 光子;16. 非相对论带电粒子与辐射间的相互作用;17. 微扰理论中的其它课题;18. 散射;19. 特殊相对论和量子力学:KleinGordon方程;20. 狄拉克方程;21. 相对论自旋-1/2粒子与外部电磁场的相互作用;22. 狄拉克场;23. 相对论电子、正电子和光子之间的相互作用;24. 弱相互作用的量子力学;25. 量子测量问题。每章的结尾有练习题。书的末尾有3个附录、引文的出处、参考书目和主题索引。
本书著者Eugene D. Commins是美国加州大学伯克利分校物理系的退休教授,是该校优秀的研究生导师。他的主要研究领域是实验原子物理学。他是美国国家科学院(NAS)院士,美国科学促进会(AAAS)成员,美国物理学会(APS)成员。他曾多次获得教学奖,包括2005年美国物理学教师协会颁发的奥斯卡金奖,这是对有杰出贡献的物理教师的最高奖。他发表过不少论著。不幸的是,本书出版后不久,作者去世了(1932-2015)。
本书的内容在许多方面与其它的量子力学教科书不同。传统的量子力学大多是在直角坐标或极坐标中讨论或展开量子力学问题,而本书较多地在希尔伯特(Hilbert)矢量空间探索量子力学问题,还利用了与传统量子力学的对应关系,数学工具不同,因此对量子力学各种关系的表征也不同。本书是物理系大学生和研究生的教科书和参考书。也是物理学家有价值的参考书。
篇2
关键词:空间;时间;质量;能量;科学技术
物理学是一门既古老又年轻的自然科学,它对现代科学技术的发展起着重要的作用。物理学和其他自然科学一样,是研究自然界中物质运动的客观规律的科学。细分起来物理学大致经过了四个发展阶段。
1 物理学的发展过程
1.1 宏观低速阶段
研究宏观低速的理论是牛顿力学,研究对象为宏观低速运动的物体。例如:汽车、火车的运动,地球卫星的发射。在牛顿力学中,牛顿认为:质量、时间、空间都是绝对的。也就是说,对于时间来讲不存在延长和收缩的问题,即时间是在一秒钟,一秒钟地或一个小时,一个小时地均匀流失。对于空间和质量来讲也不存在着变大或变小的问题。牛顿力学的三大定律,就是在这样的基础上建立的。
1.2 宏观高速阶段
研究宏观高速的理论是爱因斯坦的相对论力学,爱因斯坦在1905年发表了论文相对论力学。爱因斯坦认为空间、质量、时间都是相对的。并且找出了动质量和静质量之间的关系:其中m0为静质量;m为动质量。
1.3 微观低速阶段
其理论是薛定谔,海森堡两个创立的量子力学。研究对象为分子、原子、电子、粒子等肉眼所看不见的物质。
1.4 微观高速阶段
理论是量子场论,研究对象为宇宙射线,放射性元素。例如“镭”。量子场论就是粒子通过相互作用而被产生,湮灭或相互转化的规律。例如:通过对天外射线射向地球宇宙射线的研究发现“反粒子”,即电子的反粒子正电子。负电子与正电子相互作用湮没——转化为二个γ光子,例如“闪电”。
2 物理学与工程技术的关系
物理学与工程技术有着密切的关系,他们之间是相互促进共同发展的。我们平时常说科学技术,实际上科学和技术是两个不同的概念。科学解决理论问题,而技术解决实际问题。科学是发现自然界当中确实存在的事实,并且建立理论,把这些理论和现象联系起来。科学主要是探索未知,而技术是把科学取得的成果和理论应用于实际当中,从而解决实际问题。所以技术是在理论相对比较成熟的领域里边工作。科学与工程技术相互促进的模式主要有以下两种。
2.1 技术——物理——技术
例如:蒸汽机的发明和蒸汽机在工业当中的应用形成了第一次工业革命——热力学统计物理——蒸汽机效率的提高,内燃机,燃气轮机的发明。这一次主要是这样:由于蒸汽机的发明,在当初工业应用上,出现了很多应用技术的问题。例如蒸汽机发明的初期热效率很低,大概不到5%。这样,就对物理提出了很尖锐的问题。那就是热机的效率最高能达到多少?热机的效率有没有上限?上限是多少?再一个就是通过什么样的方式来提高热机的效率?由于这些问题就促进了物理学的发展,正是在这些问题解决的过程当中,逐渐形成和建立了热力学统计物理。而热力学统计物理很好地回答了提高热机效率的途径,以及提高热机效率的限度等等这些理论上的问题。
2.2 物理——技术——物理
例如:
①电磁学——发电机,电力电器,无线电通信技术——电磁学;电磁学从库仑定律的发现,以及法拉第发现电磁感应定律,直到1865年麦克斯韦建立电磁学基本理论,这些都是科学家在实验室里边逐渐形成的,这都是理论建立的过程,而这些理论应用于实际就发明了电动机、发电机等其它电器以及无线电通信技术,而这些实用技术的进一步发展又给电磁学提出来了许多需要解决的实际问题。正是这些问题的逐步解决,使得电磁学更加的完善和在理论上进一步得到了提高。
②量子力学,半导体物理——晶体管超级大规模集成电路技术,电子计算机技术,激光技术——量子力学,激光物理;量子力学是20世纪初期为了解决物理上的一些疑难问题而建立起来的一种理论,这种理论应用于解决晶体的问题就形成了半导体技术,而半导体技术的进一步发展就发明了大规模集成电路和超大规模集成电路,而超大规模集成电路的发明是产生电子计算机的主要物质基础,而正是由于电子计算机技术的发展又向量子力学提出了一些其他更加深刻需要解决的问题,而这些问题的解决就促进了量子力学的进一步发展和完善。
③狭义相对论,质能关系E=mc2, E=mc2——原子弹及核能的利用——核物理,粒子物理,高能物理;狭义相对论是20世纪初期爱因斯坦建立的一种理论,他是为了解决电磁学等其他物理学科上的一些经典物理当中理论上的一些不协调和不自恰这样一种矛盾而提出的一种理论,这种理论当中有一个很重要的理论结果,那就是质能关系E=mc2,E=mc2。而这种质能关系被我们称为打开核能宝库的钥匙,这一理论结果的应用直接导致了或者指导了核能的应用,而对于核能的进一步应用又提出了许多新的问题,而这些新问题的进一步解决使得理论更加完善而得到进一步提高,从而形成像核物理,粒子物理,以及高能物理等等,那么实际技术上问题的解决又进一步促进了物理学的发展。
3 结语
应该说物理和技术有着密切的联系,物理原理及理论的初创式开发和应用都形成了当时的高新技术,物理学仍然是当代高新技术的主要源泉。所有新技术的产生都在物理学中经历了长期酝酿。例如:1909年卢瑟福的粒子散射实验——40年后的核能利用;1917年爱因斯坦的受激发射理论——1960年第一台激光器的诞生等,整个信息技术的产生、发展,其硬件部分都是以物理学为基础的。
参考文献:
[1]张启仁.经典场论 [M] .北京 :科学出版社 ,2003.
[2]井孝功.量子力学 [M] .哈尔滨 :哈尔滨工业大学出版社,2004.
[3]关洪.空间:从相对论到 M理论的历史[M].北京 :清华大学出版社 ,2004.
篇3
1、相对论是20世纪杰出的物理学家阿尔伯特·爱因斯坦提出的。相对论是关于时空和引力的理论,依其研究对象的不同可分为狭义相对论和广义相对论。
2、相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础。相对论极大地改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非经典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。
3、狭义相对论在狭义相对性原理的基础上统一了牛顿力学和麦克斯韦电动力学两个体系,指出它们都服从狭义相对性原理,都是对洛伦兹变换协变的,牛顿力学只不过是物体在低速运动下很好的近似规律。广义相对论又在广义协变的基础上,通过等效原理,建立了局域惯性长与普遍参照系数之间的关系,得到了所有物理规律的广义协变形式,并建立了广义协变的引力理论,而牛顿引力理论只是它的一级近似。
4、这就从根本上解决了以前物理学只限于惯性系的问题,从逻辑上得到了合理的安排。相对论严格地考察了时间、空间、物质和运动这些物理学的基本概念,给出了科学而系统的时空观和物质观,从而使物理学在逻辑上成为完美的科学体系。
(来源:文章屋网 )
篇4
[关键词]量子体系 对称性 守恒定律
一、引言
对称性是自然界最普遍、最重要的特性。近代科学表明,自然界的所有重要的规律均与某种对称性有关,甚至所有自然界中的相互作用,都具有某种特殊的对称性——所谓“规范对称性”。实际上,对称性的研究日趋深入,已越来越广泛的应用到物理学的各个分支:量子论、高能物理、相对论、原子分子物理、晶体物理、原子核物理,以及化学(分子轨道理论、配位场理论等)、生物(DNA的构型对称性等)和工程技术。
何谓对称性?按照英国《韦氏国际辞典》中的定义:“对称性乃是分界线或中央平面两侧各部分在大小、形状和相对位置的对应性”。这里讲的是人们观察客观事物形体上的最直观特征而形成的认识,也就是所谓的几何对称性。
关于对称性和守恒定律的研究一直是物理学中的一个重要领域,对称性与守恒定律的本质和它们之间的关系一直是人们研究的重要内容。在经典力学中,从牛顿方程出发,在一定条件下可以导出力学量的守恒定律,粗看起来,守恒定律似乎是运动方程的结果.但从本质上来看,守恒定律比运动方程更为基本,因为它表述了自然界的一些普遍法则,支配着自然界的所有过程,制约着不同领域的运动方程.物理学关于对称性探索的一个重要进展是诺特定理的建立,定理指出,如果运动定律在某一变换下具有不变性,必相应地存在一条守恒定律.简言之,物理定律的一种对称性,对应地存在一条守恒定律.经典物理范围内的对称性和守恒定律相联系的诺特定理后来经过推广,在量子力学范围内也成立.在量子力学和粒子物理学中,又引入了一些新的内部自由度,认识了一些新的抽象空间的对称性以及与之相应的守恒定律,这就给解决复杂的微观问题带来好处,尤其现在根据量子体系对称性用群论的方法处理问题,更显优越。
在物理学中,尤其是在理论物理学中,我们所说的对称性指的是体系的拉格朗日量或者哈密顿量在某种变换下的不变性。这些变换一般可分为连续变换、分立变换和对于内禀参量的变换。每一种变换下的不变性,都对应一种守恒律,意味着存在某种不可观测量。例如,时间平移不变性,对应能量守恒,意味着时间的原点不可观测;空间平移评议不变性,对应动量守恒,意味着空间的绝对位置不可观测;空间旋转不变性,对应角动量守恒,意味着空间的绝对方向不可观测,等等。在物理学中对称性与守恒定律占着重要地位,特别是三个普遍的守恒定律——动量、能量、角动量守恒,其重要性是众所周知,并且在工程技术上也得到广泛的应用。因此,为了对守恒定律的物理实质有较深刻的理解,必须研究体系的时空对称性与守恒定律之间的关系。
本文将着重讨论非相对论情形下讨论量子体系的时空对称性与三个守恒定律的关系,并在最后给出一些我们常见的对称变换与守恒定律的简单介绍。
二、对称变换及其性质
一个力学系统的对称性就是它的运动规律的不变性,在经典力学里,运动规律由拉格朗日函数决定,因而时空对称性表现为拉格朗日函数在时空变换下的不变性.在量子力学里,运动规律是薛定谔方程,它决定于系统的哈密顿算符,因此,量子力学系统的对称性表现为哈密顿算符的不变性。
对称变换就是保持体系的哈密顿算符不变的变换.在变换S(例如空间平移、空间转动等)下,体系的任何状态ψ变为ψ(s)。
三、对称变换与守恒量的关系
经典力学中守恒量就是在运动过程中不随时间变化的量,从此考虑过渡到量子力学,当是厄米算符,则表示某个力学量,而
然而,当不是厄米算符,则就不表示力学量.但是,若为连续变换时,我们就很方便的找到了力学量守恒。
设是连续变换,于是可写成为=1+IλF,λ为一无穷小参量,当λ0时,为恒等变换。考虑到除时间反演外,时空对称变换都是幺正变换,所以
(8)式中忽略λ的高阶小量,由上式看到
即F是厄米算符,F称为变换算符的生成元。由此可见,当不是厄米算符时,与某个力学量F相对应。再根据可得
(10)
可见F是体系的一个守恒量。
从上面的讨论说明,量子体系的对称性,对应着力学量的守恒,下面具体讨论时空对称性与动量、能量、角动量守恒。
1.空间平移不变性(空间均匀性)与动量守恒。
空间平移不变性就是指体系整体移动δr时,体系的哈密顿算符保持不变.当没有外场时,体系就是具有空间平移不变性。
设体系的坐标自r平移到,那么波函数ψ(r)变换到ψ(s)(r)
2.空间旋转不变性(空间各向同性)与角动量守恒
空间旋转不变性就是指体系整体绕任意轴n旋δφ时,体系的哈密顿算符不变。当体系处于中心对称场或无外场时,体系具有空间旋转不变性。
3.时间平移不变性与能量守恒
时间平移不变性就是指体系作时间平移时,其哈密顿算符不变。当体系处于不变外场或没有外场时,体系的哈密顿算符与时间无关(),体系具有时间平移不变性。
和空间平移讨论类似,时间平移算符δt对波函数的作用就是使体系从态变为时间平移态:
同样,将(27)式的右端在T的领域展开为泰勒级数
四、结语
从上面的讨论我们可以看到,三个守恒定律都是由于体系的时空对称性引起的,这说明物质运动与时间空间的对称性有着密切的联系,并且这三个守恒定律的确立为后来认识普遍运动规律提供了线索和启示,曾加了我们对对称性和守恒定律的认识.对称性和守恒定律之间的联系,使我们认识到,任何一种对称性,或者说一种拉格朗日或哈密顿的变换不变性,都对应着一种守恒定律和一种不可观测量,这一结论在我们的物理研究中具有极其重要的意义,尤其是在粒子物理学和物理学中,重子数守恒、轻子数守恒和同位旋守恒等内禀参量的守恒在我们的研究中起着重要的作用.下表中我们简要给出一些对称性和守恒律之间的关系。
参考文献
[1]戴元本.相互作用的规范理论,科学出版社,2005.
[2]张瑞明,钟志成.应用群伦导引.华中理工大学出版社,2001.
[3]A.W.约什.物理学中的群伦基础.科学出版社,1982.
[4]W.顾莱纳,B.缪勒.量子力学:对称性.北京大学出版社,2002.
[5]于祖荣.核物理中的群论方法.原子能出版社,1993.
[6]卓崇培,刘文杰.时空对称性与守恒定律.人民教育出版社,1982.
[7]曾谨言,钱伯初.量子力学专题分析 (上册).高等教育出版社,1990.207-208.
[8]李政道.场论与粒子物理 (上册).科学出版社,1980.112-119.
篇5
20世纪初期,阿尔伯特・爱因斯坦对牛顿宇宙学说的地位造成了影响深远的撼动,他向人们展示了宇宙的两个新特性:一是质量可以造成空间的弯曲,二是空间和时间具有内在相关性。他把这一新的概念称为时空。尽管这一观点令人震惊,但它的公式和牛顿的方程一样,连贯并且流畅。
然而,近期一小群研究人员发现,时空本身具有内在的随机性,这使得牛顿第零定律在小尺度上也不再适用了。
让我们来探究这一发现的意义。
首先,什么是时空?你或许还记得在平面几何当中,如果取两个点,通过第一个点画x轴和y轴(也就是把该点当作原点),那么这两个点之间的距离就是x2+y2的平方根,其中x和y是第二个点的坐标。在三维空间中,对应的距离用x2+y2+z2的平方根表示。这些距离是恒定的,它们的值不会因为坐标的画法而改变。
那么,如果把时间作为第四维呢?
四维时空中的一个点被称作一个“事件”:它在空间上的位置由x轴、y轴和z轴确定,在时间上的位置由t确定。那么,两个“事件”之间的距离是多少?用类推的方法,很容易认为这一距离是x2+y2+z2+t2的平方根,但事实并不是这样。如果采用不同的坐标系,这一距离就会变化,所以它事实上并不能真的被看作距离。爱因斯坦发现,恒定距离是x2+y2+z2-ct2的平方根, 其中c代表光速。如果你采用不同的坐标系,x、y、z和t的值可能发生变化,x2+y2+z2-ct2的平方根却不会。
爱因斯坦通过一个绝妙而且高度复杂的逻辑链推理得出,引力的实质是时空自身的几何学特性――它的曲率。而这一曲率是质量造成的。爱因斯坦说,如果宇宙中没有质量,那么时空就是平坦的,也就是没有曲率。
想要理解空间的曲率,可以想象一只在球体表面爬行的虫子。这只虫子要怎样才能知道它不是在一个无尽的平面上呢?如果这只虫子沿一个方向走,它最终会回到最初的地方。或者,如果这只虫子以正确的角度画一个坐标轴,它就会发现从起始点到任一点的距离并不是x2+y2的平方根。这只聪明的虫子或许就会推导出,自己处在一个曲面上。
因此,曲率影响两点之间的距离,而质量决定曲率。
》 在真空中,粒子和反粒子不断产生。
这就是爱因斯坦时空概念的要义。但是他的相对论仅仅是20世纪物理学的两大革命性突破之一,另一项是量子力学。因此,提出这样的问题就会显得很自然:量子力学怎样影响时空的几何学特性?这是当今物理学试图解决的最大的问题之一。随机时空似乎是答案的一部分。
量子力学的核心是海森堡不确定性原理。该原理指出,每个物理系统都一定会具有一些残余能量,即使是在绝对零度。这一残余能量被称为零点能,即使是时空中的真空也具有。在真空中,粒子和反粒子持续产生,然后互相碰撞使对方湮灭。粒子的突然产生和消失导致真空的零点能随时间波动。因为能量和质量是等效的(E=mc2),质量会产生时空弯曲, 真空能量波动会产生时空弯曲的波动,而这会造成时空中两点之间距离的变化。这就意味着,在小尺度上,时空是随机而无序的。
如果我们在一个不那么小的范围里看量子波动,这一区域内的波动倾向于抵消。但是如果我们在一个无限小的范围里考察这个现象,比如一个点,我们就会发现无限的能量。这不禁让人
思考:在什么尺度上才能捕捉到我们感兴趣的物理现象?它当然要足够小,但也不能小到它的能量庞大到无法把握。什么才是这一距离最合适的测量单位呢?
》 普朗克探究了距离的自然单位是什么的问题,这一自然单位应该基于普适常数。
为了回答这一问题,我们采用普朗克的思考方式。普朗克是量子力学之父,他曾经探求过距离的自然单位是什么的问题。所谓自然单位,就是不基于米的仲裁标准。他提出了一种使用普适常数的自然单位:真空中的光速(c);表示重力场强度的重力常数(G);普朗克常数(h),该常数表示粒子能量和频率之间的关系。普朗克确定了我们现在知道的普朗克长度lp,数值为hG/c3的平方根。普朗克长度是一个非常短的距离,大概为10-35米,是一个质子直径的亿兆分之一。这个距离太小了,目前无法被测量,或许永远都无法被测量。
但是普朗克长度具有重要意义。弦理论对点已经有了完整的研究,并且认为普朗克长度是已知可能的最小距离。更新的圈量子引力理论提出了相同的说法。极小体积内能量被无限放大的问题得以避免,因为根据这一理论,这种极小体积根本不存在。
普朗克长度还有另外一个重要的应用。相对论指出,身处快速行进的参考系中的观察者测量的距离会缩短,即所谓的洛伦兹收缩。但是普朗克长度是唯一可以通过c、G和h这样的常数推算
出的距离, 所以在任何一个参考系中的测量值都是相同的,不会受到洛伦兹收缩的影响。但这意味着,在这一尺度上,相对论也不适用。我们需要新的理论来解释这一现象,而随机时空理论很可能提供了这样一个解释。普朗克长度无法因洛伦兹收缩而变短,表明它是长度的一个基本量子,或者说单位。因此,普朗克长度很可能是时空的最小尺寸,比普朗克长度更小的尺寸可以被认为是不存在的。
现在,我们终于可以描述随机时空了。首先,它是颗粒状的,尺寸大约相当于普朗克长度。
其次,这些颗粒之间的距离定义并不明确。量子力学指出,一个物体越大,它的量子学特性就越不明显。因此,我们可以认为时空中某一区域内的质量增加,这一区域的随机性就越小。(这一点和相对论相似。相对论指出,一个区域内的质量越多,它产生的曲率就越高。)随机时空认为,如果宇宙中没有质量,时空就是平坦的,如同爱因斯坦相对论指出的那样。但这是完全随机的,无法被实际确定。如果没有质量,我们还要空间干什么?
第三,在随机时空理论中,因为在这一尺度上的随机特性,这些粒子可以随意飘动,这一点和弦理论以及圈量子引力理论不同。如果把随机时空中的粒子描述为一盒鹅卵石,随机性就像轻微晃动这个盒子,让石子们来回移动。我们希望这些活动的体积元素(鹅卵石)能够解释在普朗克长度上相对论不适用的问题。这是因为相对论是一种建立在牛顿第零定律之上的理论,它需要连贯流畅的数学函数,但在普朗克长度上,这种流畅的函数不再适用。
牛顿可能会感到吃惊。 他认为空间和时间是一个没有特征的空虚,只是让他的三大运动定律能够适用的框架,而这也确实见于每天在我们身边上演着的一切。随机时空理论却设定了一个不确定的时空,这个时空超出了连贯流畅的函数所能描述的范围。
篇6
人类以新的视野观察和认识世界
相对论是研究时间、空间、运动这三者关系的理论体系的总称,它是这100多年来人类最伟大的两个理论之一(另一个伟大理论是量子力学)。相对论的伟大是不足以用诺贝尔物理学奖来评价的。如果真有一个上帝的话,上帝过去总是说:“人类一思考,上帝就发笑。”相对论诞生之后,上帝改口了:“人类一思考,上帝就发慌。”
相对论是关于时空和引力的基本理论,依据研究的对象不同,分为狭义相对论和广义相对论。相对论从逻辑思想上统一了经典物理学,使经典物理学成为一个完美的科学体系。狭义相对论在狭义相对性原理的基础上统一了牛顿力学和麦克斯韦动力学两个体系,指出它们都服从狭义相对性原理,都是对洛伦兹变换协变的,牛顿力学只不过是物体在低速运动下很好的近似规律。广义相对论又在广义协变的基础上,通过等效原理,建立了局域惯性场与普遍参照系数的问题,从逻辑上得到了合理的安排。相对论严格考察了时间、空间、物质和运动这些物理学的基本概念,给出了科学而系统的时空观和物质观,从而使物理学在逻辑上成为完美的科学体系。
狭义相对论给出了物体在高速运动下的运动规律,并提示了质量与能量相当,著名的质能关系式,即E=MC2,可以用来计算核反应过程中所释放的能量,并导致了原子弹的诞生。广义相对论建立了完善的引力理论,而引力理论主要涉及的是天体。至今,相对论宇宙学进一步发展,而引力波物理、致密天体物理和黑洞物理这些属于相对论天体物理学的分支学科都有一定的进展,吸引了许多科学家为之奋斗。
相对论极大地改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”“四维时空”“弯曲时空”等全新的概念。它发展了牛顿力学,推动物理学发展到一个新的高度。一位法国物理学家曾经这样评价爱因斯坦:“在我们这一时代的物理学家中,爱因斯坦将位于最前列。他现在是、将来也还是人类宇宙中最光辉的巨星之一”,“按照我的看法,他也许比牛顿更伟大,因为他对于科学的贡献,将更加深入地进入人类思想基本要领的结构中。”
对称性原理对物理学研究有着十分重要的指导意义,爱因斯坦最善于应用这一原理,整个相对论都是在此基础上建立起来的。特别是在建立广义相对论的过程中,爱因斯坦还对原理做了创造性发展。过去是实验方程对称性,但爱因斯坦认为“这个链很有趣,如果从洛伦兹对称性以外的对称性出发,推导出方程,再利用它进行实验,不是更好吗”?爱因斯坦成功地实现了这个关系的倒置。他所说的这种新的对称性就是引力场方程在非欧几里德空间的协变。
相对论的建立也把化学和生物学推向了新的高峰。19世纪末,化学领域取得了巨大的成就,但也遇到了巨大的困难。其主要原因是“原子不可分,元素不能变”的观念根深蒂固。20世纪物理学的这场革命,从根本上改变了化学的基本概念,并使之获得了很多新的研究方法。由物理学家开创的化学键理论,X射线衍射法的运用,推动了结构化学的发展。20世纪后的化学,主要通过研究电子在分子和原子中的分布和运动,由此更深刻地揭示物质的性质和化学变化的规律。
分子生物学创立于20世纪50年代,物理学对其形成和发展产生了举足轻重的作用。X射线衍射方法的运用使生物大分子晶体结构分析成为可能。特别是薛定谔于1944年出版的《生命是什么》一书“从思想上唤起生物学革命”。该书在运用统计物理的概念分析生命现象后指出,生命物质的运动必然服从已知的物理学定律。这启发了人们用物理学的思想和方法探讨生命物质运动的规律。
科技和社会产生了诸多变革
100年前,爱因斯坦发表了具有划时代意义的5篇物理学论文,奠定了相对论的基础,并为量子理论的发展做出了重要贡献。原子能、晶体管、计算机、激光、纳米材料、宇宙飞船、生命科学等20世纪重大的发明,都是由爱因斯坦开创的近代物理学的结晶。
相对论和量子力学的建立使人类进入到信息时代。固体物理已有几个世纪的历史,直到20世纪初,由于X射线衍射的发现以及金属的自由电子论和能带理论的提出才使其成熟了。20世纪30年代后,量子力学使它成为一门研究固体多种物理性质、微观结构及其内部运动规律的学科。近年来,固体物理的研究对象由晶体扩展到非晶体和物体的表面,故更名为凝聚态物理学。半导体材料、磁性材料、纳米材料等是它研究的主要对象,这为计算机的诞生和发展奠定了科学和技术基础。 电路板
信息革命始于20世纪40年代,以计算机问世为标志,目前方兴未艾。从1904年发明二极管起,到1946年世界上第一台电子管计算机研制成功为止,是信息技术史上的“电子管时期”。1947年随着半导体晶体管的问世,信息技术史进入了“晶体管时期”。此后,集成电路的发明打破了电路与元件分离的传统观念,使电子设备微型化。经过大规模集成电路阶段后,超大规模集成电路又在迅猛发展。而计算机就是由这些物理元件组成的信息处理器。以激光器发明为标志的光电子技术,使信息技术上了一个新台阶。因为采用光子作为信息载体,其响应速度比电子快3个数量级,也不存在电磁串扰等。待到光子集成电路问世后,计算机的发展将更迅速,应用前景将更广阔。前两次工业革命延伸的是人的肢体功能,这次革命拓展的是人的大脑功能。因此,信息革命是更深刻的革命。海湾战争、科索沃战争和伊拉克战争就是最有力的证明。
20世纪初爱因斯坦相对论开启的科技革命和20世纪六七十年代开始的高科技时代,对人类思想文化的影响更是震撼性的。以网络信息技术为例,我们由此可窥一斑而知全豹。由于数字技术的应用,人类从观念到生活方式都发生了天翻地覆的变化。可以说,计算机、信息网络技术影响到了当今思想文化的每个角落。姑且不说数字技术改变了几百年来铅与火的印刷,上千年笔与纸的书写,现在文化的交流、知识信息的传播,甚至到了动一下指头,点击上网即可实现的地步。这与以前关山隔阻,需飞越千山万水,克服重重困难才能达到目的的情况相比,简直有天壤之别。
相对论与我们的生活息息相关
尽管大多数人至今还不知道相对论究竟是怎么回事,但事实上,它早就深刻地影响到整个人类社会,直接或间接地影响了我们每一个人的生活。1919年,爱因斯坦在与儿子埃德瓦的谈话中说:“当一只甲虫在一根弯曲的树枝上爬行的时候,它并没有觉察到这根树枝是弯曲的,我有幸觉察到了甲虫没有觉察到的东西。”爱因斯坦的这一觉察,在其后近100年中改变了整个世界,并且,这种改变现在还在继续。
GPS导航系统现在已经是一个满大街都可以看到的常用小电器了,可能每个司机都有一个车载的导航系统,或者手机里装有一个导航软件。如果没有相对论,那么导航系统就会出大问题。爱因斯坦指出:“传统的时间概念只能在简单的条件下才能确定,当多种因素暂时联系起来的时候,传统的计时方法就会失去作用。”因为根据相对论,卫星上的时钟会比地面上的时钟走得快,每天大约快38微秒(0.000038秒),如果不校正的话,GPS导航系统每天积累的误差将超过10千米(这个误差是垂直方向上的,不是水平方向上的),如果美军用这个来导航导弹的话,那麻烦就大了。因此,在GPS卫星发射前,要先把其时钟的走动频率调慢100亿分之4.465,把10.23兆赫调为10.22999999543兆赫,这些数字全靠有了相对论才能那么精确地计算出来。
篇7
二十世纪即将结,二十一世纪即将来临,二十世纪是光辉灿烂的一个世纪,是个类社会发展最迅速的一个世纪,是科学技术发展最迅速的一个世纪,也是物理学发展最迅速的一个世纪。在这一百年中发生了物理学革命,建立了相对信纸和量子力学,完成了从经典物理学到现代物理学的转变。在二十世纪二、三十年代以后,现代物理学在深度和广度上有了进一步的蓬勃发展,产生了一系列的新学科的交叉学科、边缘学科,人类对物质世界的规律有了更深刻的认识,物理学理论达到了一个新高度,现代物理学达到了成熟的阶段。
在此世纪之交的时候,人们自然想展望一下二十一世纪物理学的发展前景,探索今后物理学发展的方向。我想谈一谈我对这个问题的一些看法和观点。首先,我们来回顾一下上一个世纪之交物理学发展的情况,把当前的情况与一百年前的情况作比较对于探索二十一世纪物理学发展的方向是很有帮助的。
一、历史的回顾
十九世纪末二十世纪初,经典物物学的各个分支学科均发展到了完善、成熟的阶段,随着热力学和统计力学的建立以及麦克斯韦电磁场理论的建立,经典物理学达到了它的顶峰,当时人们以系统的形式描绘出一幅物理世界的清晰、完整的图画,几乎能完美地解释所有已经观察到的物理现象。由于经典物理学的巨大成就,当时不少物理学家产生了这样一种思想:认为物理学的大厦已经建成,物理学的发展基本上已经完成,人们对物理世界的解释已经达到了终点。物理学的一些基本的、原则的问题都已经解决,剩下来的只是进一步精确化的问题,即在一些细节上作一些补充和修正,使已知公式中的各个常数测得更精确一些。
然而,在十九世纪末二十世纪初,正当物理学家在庆贺物理学大厦落成之际,科学实验却发现了许多经典物理学无法解释的事实。首先是世纪之交物理学的三大发现:电子、X射线和放射性现象的发现。其次是经典物理学的万里晴空中出现了两朵“乌云”:“以太漂移”的“零结果”和黑体辐射的“紫外灾难”。[1]这些实验结果与经典物理学的基本概念及基本理论有尖锐的矛盾,经典物理学的传统观念受到巨大的冲击,经典物理发生了“严重的危机”。由此引起了物理学的一场伟大的革命。爱因斯坦创立了相对论;海林堡、薛定谔等一群科学家创立了量子力学。现代物理学诞生了!
把物理学发展的现状与上一个世纪之交的情况作比较,可以看到两者之间有相似之外,也有不同之处。
在相对论和量子力学建立起来以后,现代物理学经过七十多年的发展,已经达到了成熟的阶段。人类对物质世界规律的认识达到了空前的高度,用现有的理论几乎能够很好地解释现在已知的一切物理现象。可以说,现代物理学的大厦已经建成。在这一点上,目前有情况与上一个世纪之交的情况很相似。因此,有少数物理学家认为今后物理学不会有革命性的进展了,物理学的根本性的问题、原则问题都已经解决了,今后能做到的只是在现有理论的基础上在深度和广度两方面发展现代物理学,对现有的理论作一些补充和修正。然而,由于有了一百年前的历史经验,多数物理学家并不赞成这种观点,他们相信物理学迟早会有突破性的发展。另一方面,虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。
虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。客观物质世界是分层次的。一般说来,每个层次中的体系都由大量的小体系(属于下一个层次)构成。从一定意义上说,宏观与微观是相对的,宏观体系由大量的微观系统构成。物质世界从微观到宏观分成很多层次。物理学研究的目的包括:探索各层次的运动规律和探索各层次间的联系。
回顾二十世纪物理学的发展,是在三个方向上前进的。在二十一世纪,物理学也将在这三个方向上继续向前发展。
1)在微观方向上深入下去。在这个方向上,我们已经了解了原子核的结构,发现了大量的基本粒子及其运规律,建立了核物理学和粒子物理学,认识到强子是由夸克构成的。今后可能会有新的进展。但如果要探索更深层次的现象,必须有更强大得多的加速器,而这是非常艰巨的任务,所以我认为近期内在这个方向上难以有突破性的进展。
2)在宏观方向上拓展开去。1948年美国的伽莫夫提出“大爆炸”理论,当时并未引起重视。1965年美国的彭齐亚斯和威尔逊观测到宇宙背景辐射,再加上其他的观测结果,为“大爆炸”理论提供了有力的证据,从此“大爆炸”理论得到广泛的支持,1981年日本的佐藤胜彦和美国的古斯同时提出暴胀理论。八十年代以后,英国的霍金[2,3]等人开始论述宇宙的创生,认为宇宙从“无”诞生,今后在这个方向上将会继续有所发展。从根本上来说,现代宇宙学的继续发展有赖于向广漠的宇宙更遥远处观测的新结果,这需要人类制造出比哈勃望远镜性能更优越得多的、各个波段的太空天文望远镜,这是很艰巨的任务。
我个人对于近年来提出的宇宙创生学说是不太信的,并且认为“大爆炸”理论只是对宇宙的一个近似的描述。因为现在的宇宙学研究的只是我们能观测到的范围以内的“宇宙”,而我相信宇宙是无限的,在我们这个“宇宙”以外还有无数个“宇宙”,这些宇宙不是互不相干、各自孤立的,而是互相有影响、有作用的。现代宇宙学只研究我们这个“宇宙”,当然只能得到近似的结果,把他们的延伸到“宇宙”创生了初及遥远的未来,则失误更大。
3)深入探索各层次间的联系。
这正是统计物理学研究的主要内容。二十世纪在这方面取得了巨大的成就,先是非平衡态统计物理学有了得大的发展,然后建立了“耗散结构”理论、协同论和突变论,接着混沌论和分形论相继发展起来了。近年来把这些分支学科都纳入非线性科学的范畴。相信在二十一世纪非线性科学的发展有广阔的前景。
上述的物理学的发展依然现代物理学现有的基本理论的框架内。在下个世纪,物理学的基本理论应该怎样发展呢?有一些物理学家在追求“超统一理论”。在这方面,起初是爱因斯坦、海森堡等天才科学家努力探索“统一场论”;直到1967、1968年,美国的温伯格和巴基斯坦的萨拉姆提出统一电磁力和弱力的“电弱理论”;目前有一些物理学家正在探索加上强力的“大统一理论”以及再加上引力把四种力都统一起来的“超统一理论”,他们的探索能否成功尚未定论。
爱因斯坦当初探索“统一场论”是基于他的“物理世界统一性”的思想[4],但是他努力探索了三十年,最终没有成功。我对此有不同的观点,根据辩证唯物主义的基本原理,我认为“物质世界是既统一,又多样化的”。且莫论追求“超统一理论”能否成功,即便此理论完成了,它也不是物理学发展的终点。因为“在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识只具有相对的真理性。无数相对的真理之总和,就是绝对的真理。”“人们在实践中对于真理的认识也就永远没有完结。”[5]
现代物理学的革命将怎样发生呢?我认为可能有两个方面值得考试:
1)客观世界可能不是只有四种力。第五、第六……种力究竟何在呢?现在我们不知道。我的直觉是:将来最早发现的第五种力可能存在于生命现象中。物质构成了生命体之后,其运动和变化实在太奥妙了,我们没有认识的问题实在太多了,我们今天对于生命科学的认识犹如亚里斯多德时代的人们对于物理学的认识,因此在这方面取得突破性的进展是很可能的。我认为,物理学业与生命科学的交叉点是二十一世纪物理学发展的方向之一,与此有关的最关于复杂性研究的非线性科学的发展。
2)现代物理学理论也只是相对真理,而不是绝对真理。应该通过审思现代物理学理论基础的不完善性来探寻现代物理学革命的突破口,在下一节中将介绍我的观点。
三、现代物理学的理论基础是完美的吗?
相对论和量子力学是现代物理学的两大支柱,这两大支柱的理论基础是否十全十美的
呢?我们来审思一下这个问题。
1)对相对论的审思
当年爱因斯坦就是从关于光速和关于时间要领的思考开始,创立了狭义相对论[1]。我们今天探寻现代物理学革命的突破口,也应该从重新审思时空的概念入手。爱因劳动保护坦创立狭义相对论是从讲座惯性系中不同地点的两个“事件”的同时性开始的[4],他规定用光信号校正不同地点的两个时钟来定义“同时”,这样就很自然地导出了洛仑兹变换,进一步导致一个四维时空(x,y,z,ict)(c是光速)。为什么爱因劳动保护担提出用光信号来校正时钟,而不用别的信号呢?在他的论文中没有说明这个问题,其实这是有深刻含意的。
时间、空间是物质运动的表现形式,不能脱离物理质运动谈论时间、空间,在定义时空时应该说明是关于什么运动的时空。现代物理学认为超距作用是不存在的,A处发生的“事件”影响B处的“事件”必须通过一定的场传递过去,传递需要一定的时间,时间、空间的定义与这个传递速度是密切相关的。如果这种场是电磁场,则电磁相互作用传递的速度就是光速。因此,爱因斯坦定义的时空实际上是关于由电磁相互作用引起的物质运动的时空,适用于描述这种运动。
爱因斯坦把他定义的时间应用于所有的物质运动,实际上就暗含了这样的假设:引力相互作用的传递速度也是光速c.但是引力相互作用是否也是以光速传递的呢?令引力相互作用的传递速度为c'。至今为止,并无实验事实证明c'等于c。爱因斯坦因他的“物质世界统一性”的世界观而在实际上假定了c=c'。我持有“物质世界既统一,又多样化的”以观点,再加之电磁力和引力的强度在数量级上相差太多,因此我相相信c'可能不等于c。工样,关于由电磁力引起的物质运动的四维时空(x,y,z,ict)和关于由引力引起的运动的时空(x',y',z',ic't')是不同的。如果研究的问题只涉及一种相互作用,则按照现在的理论建立起来的运动方程的形式不变。例如,爱因斯坦引力场方程的形式不变,只需把常数c改为c'。如果研究的问题涉及两种相互作用,则需要建立新的理论。不过,首要的事情是由实验事实来判断c'和c是否相等;如果不相等,需要导出c'的数值。
我在二十多年前开始形成上述观点,当时测量引力波是众所瞩目的一个热点,我曾对那些实验寄予厚望,希望能从实验结果推算出c'是否等于c。令人遗憾的是,经过长斯的努力引引力波实验没有获得肯定的结果,随后这项工作冷下去了。根据爱国斯坦理论预言的引力波是微弱的,如果在现代实验技术能够达到的测量灵敏度和准确度之下,这样弱的引力波应该能够探测到的话,长期的实验得不到肯定的结果似乎暗示了害因斯坦理论的缺点。应该从c'可能不等于c这个角度来考虑问题,如果c'和c有较大的差异,则可能导出引力波的强度比根据爱因劳动保护坦理论预言的强度弱得多的结果。
弱力、强力与引力、电磁力有本质的不同,前两者是短程力,后两者是长程力。不同的相互作用是通过传递不同的媒介粒子而实现的。引力相互作用的传递者是引力子;电磁相互作用的传递者是光子;弱相互作用的传递者是规范粒子(光子除外);强相互作用的传递者是介子。引力子和光子的静质量为零,按照爱因斯坦的理论,引力相互作用和电磁相互作用的传递速度都是光速。并且与传递粒子的静质量和能量有关,因而其传递速度是多种多样的。
在研究由弱或强相互作用引起的物质运动时,定义惯性系中不同的地点的两个“事件”的“同时”,是否应该用弱力或强力信号取代光信号呢?我对核物理学和粒子物理学是外行,不想贸然回答这个问题。如果应该用弱力或强力信号取代光信号,那么关于由弱力或强力引起的物质运动的时空和关于由电磁力引起的运动的时空(x,y,z,ict)及关于由引力引起的运动的时空(x',y',z',ic't')
有很大的不同。设弱或强相互作用的传递速度为c'',c''不是常数,而是可变的,则关于由弱或强力引起的运动的时空为(x'',y'',z'',Ic''t''),时间t''和空间(x'',y'',z'')将是c'的函数。然而,很可能应该这样来考虑问题:关于由弱力引起的运动的时空,在定义中应该以规范粒子的静质量取作零时的速度c1取代光速c。由于“电弱理论”把弱力和电磁力统一起来了,因此有可能c1=c,则关于由弱力引起的运动的时空和关于由电磁力引起的运动的时空是相同的,同为(x,y,z,ict)。关于由强力引起的运动的时空,在定义中应该以介子的静质量取作零(在理论上取作零,在实际上没有静质量为零的介子)时的速度c''取代光速c,c''可能不等于c。则关于由强力引起的运动的时空(x'',y'',z'',Ic''t'')不同于(x,y,z,ict)或(x',y',z',ic't')。无论上述两种考虑中哪一种是对的,整个物质世界的时空将是高于四维的多维时空。对于由短程力(或只是强力)引起的物质运动,如果时空有了新的一义,就需要建立新的理论,也就是说需要建立新的量子场论、新的核物理学和新的粒子物理学等。如果研究的问题既清及长程力,又涉及短程力(尤其是强力),则更需要建立新的理论。
1)对量子力学的审思
从量子力学发展到量子场论的时候,遇到了“发散困难”[6]。1946——1949年间,日本的朝永振一郎、美国的费曼和施温格提出“重整化”方法,克服了“发散困难”。但是“重整化”理论仍然存在着逻辑上的缺陷,并没有彻底克服这一困难。“发散困难”的一个基本原因是粒子的“固有”能量(静止能量)与运动能量、相互作用能量合在一起计算[6],这与德布罗意波在υ=0时的异性。
现在我陷入一个两难的处境:如果采用传统的德布罗意关系,就只得接受不合理的德布罗意波奇异性;如果采纳修正的德布罗意关系,就必须面对使新的理论满足相对论协变性的难题。是否有解决问题的其他途径呢?我认为这个问题或许还与时间、空间的定义有关。现在的量子力学理论中时宽人的定义实质上依然是决定论的定义,而不确定原理是微观世界的一条基本规律,所以时间、空间都不是严格确定的,决定论的时空要领不再适用。在时间或空间的间隔非常小的时候,描写事情顺序的“前”、“后”概念将失去意义。此外,在重新定义时空时还应考虑相关的物质运动的类别。模糊数学已经发展得相当成熟了,把这个数学工具用到微观世界时空的定义中去可能是很值得一试的。
1)在二十一世纪物理学将在三个方向上继续向前发展(1)在微观方向上深入下去;(2)在宏观方向上拓展开去;(3)深入探索各层次间的联系,进一步发展非线性科学。
2)可能应该从两方面去控寻现代物理学革命的突破口。(1)发现客观世界中已知的四种力以外的其他力;(2)通过审思相对论和量子力学的理论基础,重新定义时间、空间,建立新的理论
篇8
关键词:自然哲学 量子革命 系统辩证法
关于20世纪科学革命,有人说只须记住三件事:相对论、量子革命和混沌学(系统科学中最突出的新分支)。正是这三大科学革命为人类建构全新的自然图景(也就是新颖的自然哲学)作出了决定性的贡献。这里所谓自然哲学是指人对自然的哲学反思。自然哲学的中心问题就是基于人与自然的关系来研究自然本体最一般的性质和人类的世界图景。
一
自然哲学在哲学史上有过两个全盛时期(古希腊及近代机械论),只是在谢林、黑格尔之后衰落了。由于20世纪三大科学革命的强大影响,自然哲学正在当代复兴起来,这是十分令人鼓舞的。我们先从三大科学革命说起。
首先要提到的是相对论革命对改造人类世界图景的贡献。在1905年的狭义相对论中,时空性质依赖于参照系等概念是对“观察无关性”的经典信念的初次冲击;1915年的广义相对论把引力场(它具有整体全息相关性)确立为新的“独立的实在”,这是对牛顿的实体观的又一次打击。接着要论述的是量子革命,它比相对论革命更为深刻地改变着人类的世界图景。因为1925年以后所创建的量子力学进一步使笛卡儿与牛顿以来的主客绝对二分原则、实体主义原则乃至严格决定论原则都受到猛烈冲击。最后要强调的是系统科学革命。20世纪中叶以来近半个世纪系统科学的蓬勃发展表明,从总体上说,系统自然观集中体现了当代自然图景的精华,因此系统自然观几乎成了当代自然科学的世界图景的代名词,贝塔朗菲称之为“一种新的自然哲学”。20年代所出现的怀特海的“机体论哲学”则是这种自然哲学之先声。
当代的系统自然观借助于维纳的控制论(1949)、贝塔朗菲的一般系统论(1948)、普利高津的耗散结构论(1969)和哈肯的协同学(1971)等理论复活了亚里士多德的机体论和内在目的论的自然哲学。〔1〕控制论通过对“动物(即生命系统)和机器(即非生命系统)的通用规律”的研究表明,自动机器通过反馈调节机制可以表现出与神经控制同样的合目的性或规律。[1]维纳在《控制论》中对牛顿的严格决定论进行了深刻有力的批判,肯定了统计力学家吉布斯把偶然性引进到科学中来的重大的方法论意义,并突破了目的论与机械论之间的两极对立。莫诺在《偶然性与必然性——略论现代生物学的自然哲学》(1971)一书中,则用生物微观控制论表明,借助于生物化学和分子生物学层次的反馈机制以及微观-宏观相互作用,完全偶然的基因突变最终可以纳入物种进化的必然轨道;耗散结构论表明,在远离平衡态条件下开放系统可以通过非线性正反馈机制的作用表现出有序化和合目的性;协同学还进一步发现序参量是整个自组织过程的主宰如此等等。总之,所有这些自动机器和自组织理论都表明,无须超自然的神力和神秘的“生命力”,自然系统也象自动机一样可以凭借内在机制的作用呈现合目的性。从这个特定意义上说,认为宇宙=巨大的超级自动机的“机械论”是对的,而非神学性的宇宙“内在目的论”也是对的。从历史上看,牛顿的机械论自然哲学是对亚里士多德的目的论自然哲学的否定。现在,我们的立足于系统科学的新自然哲学则应看作一种“否定之否定”。它是对机械论与目的论自然哲学的更高的辩证综合。
当代自然哲学(它以系统自然观及其系统辩证法为核心或灵魂)最有革命性的一个方面,也许表现在反严格决定论和对偶然性客观意义的新认识。直到现在为止,一般人都相信“近似决定论”:只要近似知道一个系统的运行规律和初始条件就可以足够好地计算出系统的近似行为。可是混沌学中著名的“蝴蝶效应”,即系统演化进程对初始条件的敏感依赖性,却断然否决了牛顿-拉普拉斯决定论的任何翻版(如“近似决定论”)的有效性。美国气象学家洛仑兹在1961年发现,实际上长期天气预报是不可能的。因为即使对于严格确定的气象方程组,初始条件的小误差,也会导致灾难性的后果。诸如珞珈山的蝴蝶拍拍翅膀那样的初始小扰动,经由地球大气系统中的逐级放大,最终可能在南美洲引起大风暴。这种由决定论引出来的混沌,对经典观念的打击是毁灭性的。混沌革命加强并深化了量子革命。
通过量子力学、分子生物学、协同学乃至混沌学的研究,现代科学家越来越认识到,偶然性在自然界具有不容忽视的本体论地位,以及研究偶然性的内在机制的重要性。为恩格斯赞同过的黑格尔关于“必然性自己规定自己为偶然性,……偶然性又宁可说是绝对的必然性”(〔2〕,第562—563页)的辩证论断,得到最新自然科学的支持。正如马克斯·玻恩在《关于因果与机遇的自然哲学》(1951)中所注意到的,量子世界是由因果与机遇联合统治的,其中机遇是有规则的。同样,在哈肯的协同学演化方程(如福克-普朗克方程和郎之万方程)中,决定论力项与随机力项是共同起作用的。在混沌理论中,混沌本是由决定论规律引出的内在的无序和不规则性,然而对混沌吸引子的相空间图解研究却表明,即使混沌也有精细结构,其中机遇也是有规则的,偶然性与必然性相互作用的深层非线性机制是可以认识的。从量子力学到系统科学的研究表明,概率统计定律是比严格决定论定律更好的认识工具,但原有的“大数定律”与“统计平均值”等概念对于描述偶然性已经显得太粗糙了,非线性数学该出阵参战了。因为唯有借助于非线性数学才可能认清偶然性起作用的深层结构机制。
当代自然哲学中的系统整体论思想也是相当有革命性的。自从欧几里得、阿基米德以来,“整体=部分和”的公理已经成为背景知识不可缺少的一部分。这一观念也是牛顿的机械论自然哲学的一个基本要素(它与实体主义、还原主义相协调)。然而,一般系统论中的贝塔朗菲原理“整体不等于各部分简单相加的总和”,却断然取消了欧几里得的公理,以整体论取代了机械论的还原主义。量子力学中的全域相关性和粒子物理学中的新奇现象(“基本”粒子分割到一定限度,将出现“部分大于整体”的佯谬)以及生态系统的整体关联性(卡普拉《转折点》,1989)都支持贝塔朗菲的系统整体观。
总之,以现代物理学与系统科学为代表的当代科学革命已经引起了人类自然图景的根本变革,人们有理由期待一种浸透着量子力学辩证法和系统科学辩证法精神的全新的自然哲学的出现。
二
现在我们转入当代自然哲学的主要疑难及其可能解法的讨论。
鉴于机械论自然哲学所遇到的困难,当代自然哲学所要讨论的主要问题可以归结如下:1.自然本体的性质问题。物理实在究竟是孤立的实体还是依赖于系统场境的存在?“潜在”是否也是物理实在的基本形态之一?究竟是否存在终极实在?2.物理实在所遵循的规律究竟是决定论还是非决定论的?自然系统究竟是必然性还是偶然性所支配的?偶然性应当具有怎么样的本体论地位(是否应当有)?3.所谓“观察者侵入物理事件”的实质是什么?主客二分的合理界限是什么?4.系统整体论与还原主义孰是孰非?5.目的论的新解释问题。自然系统本身能有目的性吗?能代替上帝作为选择主体的地位吗?目的论是否真与机械论势不两立?它又如何与神学划清界线?下面我们将依次详细分析这些问题:
1.自然本体或物理实在的性质问题。
牛顿机械论自然哲学的本体论或实在观的要害就在于实体主义。一切物理实在被认为都有实体性、实存性,自然被等同于实体的集合(简单相加的总和),一种在绝对空间构架中的机械性的存在物。然而,在新的原子科学中,从前认为不容置疑的“实体实存”原则已经失效。明确的电子“轨道”或光子“路径”等经典性观念在量子力学中是不允许的。电子实际上以“电子云”方式存在着,它并没有绝对分明的轮廓,而且只是或然地显现出来。如“测不准关系”所要求的,电子的位置与相应的动量具有天生的不确定性,决不可能同时有确定的值,因而人们决不可能同时测量到其确定的值。所有这些事实,如果从牛顿的经典本体论的眼光来看简直是不可理解的,因为“潜在性”观念完全没有地位。
实际上,现代物理学家海森伯在批判牛顿机械论实在观的基础上,确实发展了一种全新的、更广义的“潜在”实在观。他根据量子力学事实总结出,潜在是介于可能与现实之间的物理实在的新型式,它被认为特别适用于微观客体。海森伯尖锐地指出:“在量子论中显示的实在概念的变化,并不是过去的简单的继续,而却象是现代科学结构的真正破裂。”(〔3〕,第2页)“几率波的概念是牛顿以来理论物理学中全新的东西。……它是亚里士多德哲学中‘潜在’(potentia)这个老概念的定量表述。它引入了某种介乎实际的事件和事件的观念之间的东西,这是正好介乎可能性和实在性之间的一种新奇的物理实在。”(〔3〕,第11页)“事件并不一定是确定的,而是可能发生或倾向于发生的事情便构成了宇宙中的实在”。(〔4〕,第177页)
总之,海森伯认为量子理论意味着实在观念的革命,牛顿机械论的实在观念已经失效。他举例说,几率波、量子态、电子轨道等都与统计期望值相关联,表示倾向性的、潜在的物理实在,这是物理实在的新形式。
现代粒子物理学的新假说把潜在性观念发展到海森伯本人始料所不及的程度。乔弗利·丘(Geoffrey Chew)著名的粒子靴绊学说[2],断然否定了终极实体的可能性,揭示了自然本体的自助的、生成的本性。按照我的看法,它使系统实在论与系统辩证法完全本体论化了!由于任何粒子都可以充当基础粒子,用以构成其他粒子,因此说穿了没有任何一种粒子是真正的“基本粒子”,这就是所谓“基本粒子并不基本”。从根本上说,自然界不可能还原到任何一种或几种终极的实体。说一个质子可以由中子和π介子所构成,或者说它是由Λ超子和K介子所构成,或者说它是由两个核子和一个反核子所构成,甚至说是由场的连续质所构成。所有这一切可能性是同样真实地存在的。应当说,所有这些陈述都同样地正确又同样地不完善。因为真实世界等于所有这些潜在的“可能世界”互相叠加的总和。借用日本物理学家武谷三男的话来说:“作为终极要素的实体——基本粒子本身也是相互流动地相互转化的。这件革了以前的物质观,显示了辩证逻辑的正确性。”(〔5〕,第28页)
我们的进一步的问题是:作为自然本体的物理实在究竟是否可以归结为互相孤立的实体?还是从本质上说只能是依赖系统场境的整体全息相关的存在?在对著名的EPR假想[3]的实验检验中所表现出来的量子关联(即远距粒子之间的整体相关性)很好地回答了这一问题。正如美国科学哲学家西莫尼(A.Shimony)所指出:“我们生活在一个实验结果正在开始阐明哲学问题的非凡时代”。而今最新实验结果表明,两个相隔几米且又没有彼此传递信息机制的实体可能被相互纠结在一起,即它们的行为可以有极显著的相关性,以致对其中一个实体进行测量将瞬时地影响到另一个实体的测量结果。这个新奇的实验结果断然否定了爱因斯坦等人(EPR)的预设(即“空间上远隔的客体的实在状态必定是彼此独立的”),却符合量子力学的系统整体观。正如玻尔所注意到的,量子现象是作为整体而存在的,其中所反映出来的内在关联是不可消解的。量子现象的整体性不允许人们对它作机械的切割并把这种切割物认作它自身。因此我们有理由说,量子力学的整体实在观是与系统整体观相通的,量子辩证法与系统辩证法相互渗透,量子革命与系统科学革命相互支持。因此,作为科学革命的结晶,新自然哲学主张,物理实在的部分性质取决于整体,取决于系统的内在关联,从根本上说,自然本体是整体全息相关的存在。
2.决定论与非决定论疑难,偶然性的本体论地位问题。
从前认为不容置疑的机械论自然哲学的“严格决定论”预设,如今在新的原子科学中也已经失效。人们向来认为,自然科学和“自然科学唯物主义”有一个不可动摇的支柱:这就是严格决定论。对自然科学的这种见解,最典型地表现在拉普拉斯杜撰的那个精灵故事中,据说这个精灵(超智慧者)知道世界现况的一切决定因素,因而能够无歧义地得出世界在过去或未来的其他一切状态。这个被后人称作“拉普拉斯妖”的理想实验正是严格决定论的化身。可是,现在在微观领域里发现了与这种严格决定论原则相违背的种种反常事实。简略地说,热学与分子物理学的研究表明,气体分子运动是包含不确定性的自然进程,由于初始条件捉摸不定,单个分子的运动状态成为纯粹的偶然事件。分子运动论乃至统计力学的建立表明,概率统计定律也是自然描述不可缺少的一种基本形式。
强调概率统计定律重要性的科学思想反映到自然哲学中去,就成为“统计决定论”。其要旨可概括如下:对于一些包含不确定性的自然过程,虽然严格决定论不能直接应用,但若应用统计方法研究大量单个偶然事件的平均行为,却可以找出明显的统计规律性。换句话说,这些自然过程在统计平均意义上仍是决定论性的。这是决定论的弱化形式之一。
统计决定论的科学基础在于经典统计力学。统计力学的基本出发点则在于,认为尽管大量分子的集团行为满足统计规律,但从底层基础而言,单个分子(单个过程)仍遵守牛顿定律,满足严格决定论。这样,统计决定论并不把不确定性归因于基础规律的不同,而是把它归因于初始条件的难以捉摸(即人类知识的不完备性)。因此,统计决定论只是严格决定论的补充形式。
然而,将概率统计观点真正贯彻到底,最终导致量子物理学的兴起,而测不准关系的发现则使严格决定论沦为无意义的空想。
在现代科学家中第一个对“非完全决定论”(即under-determinism,这个词的不恰当的替代词是indeterminism,即非决定论)有十分清醒认识的是哥廷根学派的马克斯·玻恩。他在名著《关于因果和机遇的自然哲学》中对非完全决定论作了比其他量子物理学家(如玻尔、海森伯等)更为系统和透彻的分析。通过对玻恩文本的适当解释、调整与转译,我们可以提炼出对当代自然哲学极有价值的内容和决定论/非决定论问题的辩证解。〔7〕
非完全决定论的最主要或最有特色的一种表现形式,是与量子力学相应的概率决定论。其要点如下:(1)单个(量子)过程内在地是几率性的、非决定性质的;(2)“自然界同时受到因果律和机遇律的某种混合方式的支配。”(〔8〕,第9页)(3)机遇律是自然律的终极形式,偶然性有规则,“它们是用数学上的概率论表述出来的。”(〔8〕,第7页)
关于自然界究竟是由必然性还是偶然性所支配的,是决定论性还是非决定论性的那个争论,波普有一个著名的比喻:“云和钟”。“云”就是天上的云,代表极端不确定性,它非常不规则、毫无秩序又有点难以预测;“钟”就是家家都有的时钟,代表高度的确定性,它非常有规则、有秩序又是高度可预测的。这是两个不同的极端,一端变化莫测,另一端高度精确。一般的自然事物往往处在这两个极端之间。波普用“所有的云都是钟”(当然也可以说“所有自然事物都是钟”)表示决定论,用“所有的钟都是云”(当然也可以说“所有自然事物都是云”)表示非决定论。波普终于认识到,人类理性需要的是“处于完全的偶然性和完全的决定论之间的某种中间物,即处于完全的云和完善的钟之间的某种中间物。”(〔6〕,第239—240页)这种完全的偶然论(非决定论)和完全的决定论的中间物,我们可以恰当地称作“非完全决定论”,它意味着对偶然性与必然性、因果与机遇的某种辩证综合,这就是当代自然哲学对这一争论所作的正确解。以上我们是借用M.玻恩与波普的话,经校正、转译纳入自己的概念框架,并用以阐发自己的“非完全决定论”观点。〔7〕
现代生物学和生物微观控制论也为非完全决定论提供新的佐证。莫诺在其名著《偶然性与必然性(略论现代生物学的自然哲学)》中,从分子生物学的材料出发,有力地抨击了严格决定论,并为恢复偶然性在自然哲学中的本体论地位付出极大的努力。莫诺是这样说的:
当偶然事件——因为它总是独一无二的,所以本质上是无法预测的——一旦掺入了DNA的结构之中,就会被机械而忠实地进行复制和转录,……从纯粹偶然性的范围中被延伸出来以后,偶然性事件也就进入了必然性的范围,进入了相互排斥、不可调和的确定性的范围了。因为自然选择就是在宏观水平上、在生物体的水平上起作用的。自然选择能够独自从一个噪声源泉中谱写出生物界的全部乐曲。(着重号为引者所加)(〔9〕,第88页)
莫诺这段话应当看作关于生物自然界的非完全决定论,关于极小几率的偶然事件向极严格规律转化过程的生动说明。特别是最后那句话是说明生物界的偶然性与必然性的相互联系、相互作用方式的绝妙比喻。当然,由于莫诺有时十分不恰当地将严格决定论与辩证唯物论混为一谈,应当注意他的言论本身具有两重性。(〔10〕,第324页)
非完全决定论的内容还由于系统科学的兴起而得到了进一步丰富和加强。有人因之称作系统决定论。其要旨可概括如下:
一般的自然界的复杂系统(在自然哲学中姑且撇开社会系统),不能由它的构成要素和子系统通过简单相加和线性因果链无歧义地决定其整体功能和行为。但系统的存在与演化仍有相当确定的规律可循,机遇与因果共同决定着系统的存在和发展,因而系统在整体上仍有决定性。
具体地说,系统演化的主要机理就在于机遇性涨落、反馈和非线性作用。人们常喜欢将借助于系统科学特有的资料所认识的辩证法,称作“系统辩证法”。系统科学从自己的角度阐明了因果与机遇、决定性与随机性的辩证法:自组织系统作为远离平衡态的开放系统,以偶然的随机的涨落为诱导,通过正反馈和非线性放大,某一涨落在矛盾竞争之中取得支配地位,成为序参量,于是使系统的演化纳入必然的轨道,建立时空、功能上的新的有序状态。系统辩证法与矛盾辩证法在自组织动力学机制的解释上是高度一致的:当自组织系统处于不稳定点时,系统内部矛盾全面展开并有所激化,与各种子系统及其要素的局部耦合关系和运动特性相联系的模式和参量都异常活跃,各种参量的涨落此起彼伏,它们都蕴含着一定的结构与组织的胚芽,为了建立自己的独立模式并争夺对全局的支配权,它们之间进行激烈的竞争与对抗,时而“又联合又斗争”,最后才选拔出作为主导模式的序参量。非完全决定论在协同学的描述系统演化的数学方程中也得到反映。如郎之万方程(描述布朗运动的)和福克-普朗克方程中,概率论描述与因果性描述共处于一体,随机作用项与决定论作用项被综合在一起,偶然性与必然性因子被综合在一起。从自然哲学看,它们体现了机遇律与因果律的辩证综合。
3.物理事件与观察的关系、主体-客体相互作用问题。
从前认为不容置疑的“客观事件与任何观测无关”的自然哲学信条,如今在新的原子科学中同样也正在失效。正如海森伯所指出,经典物理学的真正核心,也就是物理事件在时间、空间上的客观进程与任何观测无关的信念,由于许多量子实验的发现而受到冲击。而现代物理学的真正力量就存在于自然界为我们提供的那些新的思想方法之中。因此,再指望用新实验去发现与观测无关的“纯客观事件”或不依赖于观察者和相关参照系的“绝对时间”,就无异于指望极地探险家在南极圈尚未勘查过的地方会发现“世界尽头”,那只能是不切实际的幻想。(〔4〕,第4页和第9页)对原子、电子那样的客体的任何一次射线照射或观测都足以破坏其初始状态,而且由于或然性和不可逆性,这种状态不可恢复。
玻尔为量子力学所作的“互补性诠释”中一个最基本的思想是:观察者(主体)与被观察者(客体)之间的严格划界是不可能的,因为在实际过程中两者处在紧密相连的相互作用之中。无论是纯粹的“主体”即可以)“无干扰”地进行观察的观察者)或是纯粹的“客体”(可以绝对隔绝外界作用而界定被观察系统的孤立状态)概念都只是经典物理学所作的理想化,而这两种理想化既是相互补充又是相互排斥的。〔11〕这就是玻尔著名的“我们既是观众(观察者),又是演员(被观察者)”辩证论断的真实含义。
实际上,从当代自然哲学的眼光看,这是很自然的:人(观察者)本来就是自然(被观察者)不可分割的一部分,我们只能用一种内在化的眼光来看待自然,而不可能象上帝那样用完全超脱的外在化眼光看自然,这就是问题的症结所在。
正如罗森菲尔德所指出,所谓“观察者介入原子事件进程”的局势,容易产生科学事实的客观性被败坏的假象,因此我们必须与机械论和不可救药的唯心主义划清界线。罗森菲尔德本人正是以辩证法为武器在与机械论和唯心主义划界的过程中阐明了观察者与物理事件的辩证关系的客观性质。(〔12〕,第140页)海森伯说得很分明:“量子论并不包含真正的主观特征,它并不引进物理学家的精神作为原子事件的一部分”。(〔3〕,第22页)可见,“客体行为与观测有关”原则并不意味着我们可以抛弃客观实在而接受主观主义。
4.系统整体实在观问题。在阐述以上各个问题的过程中,我们实际上已经阐明了整体实在观的基本观点:“整体不同于各部分机械相加的总和”。自然本体是依赖于系统场境的存在、处在相对相关中的存在,是整体全息相关的实在。正如D.玻姆所指出的,按照量子概念,世界是作为统一的不可分割的整体而存在的,其中即使是每个部分内在的性质(波或粒子)也在一定程度上依赖于场境。其实,人本身就是自然的产物,自然不可分割的一部分,人只能作为参与者并在相互作用过程中用内在化的观点来理解自然本体。只是在系统及其诸要素之间的相互作用可以忽视的情况下,还原主义才是近似地有效的。
5.自然本体目的性的(自组织解释)问题。简单地说,当代自然哲学的目的论观是亚里士多德内在目的论的复活和发展,是现代系统科学目的论观的升华。宇宙象是一个有机统一的整体,自然系统(包括生命系统和非生命自组织系统)的结构、功能和演化过程的合目的性可以通过自然本身的自组织机制的作用得到合理解释。〔1〕
例如,自然选择的实质问题是由生物哲学所提出的一个重要问题。按照生物控制论的初步解答,关于生物进化的自然选择机制实质上就是一种以偶然的突变为素材,通过反馈调节的最优化控制机制。艾根的超循环理论则进一步明确,在大分子的自组织阶段,在生化反应的超循环中选择价值高的突变不断通过过滤和正反馈放大,形成功能性的组织,强化、优化并向更高水平进化。这里,一方面自然选择表现为自然本身的纯物质性的有规则的相互作用过程,但它不同于牛顿的机械因果性模式,因为其中突变与选择机制、机遇与因果是辩证地联合起作用的;另一方面,尽管它排除了自然神力的干预,却仍然是合目的性的过程,因为它有自引导的、自动调节的功能(使物种或分子拟种适应环境)。这样,按系统辩证法重新解释过的合理的目的论又能与神学划清界线。
三
正如我们已经看到的,20世纪早期的相对论量子论革命向统治思想界长达二三百年之久的机械论自然哲学,提出了全面的诘难和挑战,并给予毁灭性的打击。当代自然哲学正是在克服旧自然哲学的危机,在回答新兴自然科学所提出的诘难和挑战的过程中逐步建立起来的。20世纪中叶以来以系统科学群为代表的新兴科学的迅速发展,丰富了当代自然哲学的内涵,加速了人类自然图景革新的步伐。
总起来说,当代自然哲学的核心观点,可以简要地重新概括如下:
1.自然本体是依赖于系统场境的、在关系中生成的、流动的实在,作为孤立实体的终极实在根本不存在,“潜在”是物理实在的一种新形式;2.自然系统遵循非完全决定论(即决定论与非决定论的中间物),它是由因果与机遇联合统治的,此两者互斥又互补。偶然性的本体论地位是:它是自然本体本质中的一个规定、一个方面和一个要素。偶然性存在精细的非线性作用机制(由混沌革命所发现!)。3.物理事件与观测有关,人作为自然系统的一分子只能用参与者的身分和内在化的观点来观察自然,绝对的主客二分只是不切实际的幻想;4.系统整体观在总体上比还原主义更为合理,不过为了进行精细的研究,有节制的还原主义仍是必不可少的和有启发力的,两者其实是互斥又互补的。5.自然系统的合目的性可以按自组织观点得到最合理的解释,目的论与机械论也是互斥又互补的。
最后,我们所要强调的是偶然性的恰当的本体论地位问题。迄今仍有不少读者受过时的哲学教科书的影响,把偶然性当作一种外在的、主观的、局部的、非本质的和不稳定的或暂时的东西。其实这种看法有违辩证法的本意,可以毫不客气地说它属于机械论的范畴。通过对量子辩证法与系统辩证法的研究,我们可以十分有把握地说:机遇或偶然性在本体论中恰恰是一种内在的、固有的、普遍的、本质的和永久性的成分。借用列宁论“假象”的话来说,偶然性是“本质的一个规定、一个方面和一个环节”,是“本质自身在自身中的表现”。机遇与偶然性是客观的并且具有自己的非常独特的规律。在新自然哲学中,我们不能再满足于把偶然性看作必然性的“补充形式”的外在化理解,而要比以往任何时候都更加清醒地认识到,机遇与因果相互联结、相互渗透,辩证地融为一体。在非完全决定论中,偶然性恢复了它本来应有的本体论地位,机遇与因果,偶然性与必然性以几率或统计性乃至“混沌吸引子”为中介辩证地联结在一起。在相空间中混沌吸引子的精巧的无穷嵌套的自相似结构,精确而形象地展示出系统演化过程中机遇与因果如何联合起作用的深层非线性机制,进一步丰富了对自然本体辩证内涵的认识。
应当说,这是量子辩证法与系统辩证法对矛盾辩证法的一项贡献,它们本应是相得益彰的。
参考文献
〔1〕桂起权:《目的论自然哲学之复活》,载“自然辩证法研究”1995(7),并收入吴国盛主编《自然哲学》一书,中国社科出版社1994年版。
〔2〕《马克思恩格斯全集》第20卷。
〔3〕海森伯:《物理学与哲学》商务印书馆1984年版。
〔4〕海森伯:《严密自然科学基础近年来的变化》上海译文出版社1978年版。
〔5〕《武谷三男物理学方法论论文集》商务印书馆1975年版。
〔6〕波普:《客观知识》,上海译文出版社1987年版。
〔7〕桂起权:《非完全决定论:因果与机遇的辩证综合》,载“科学技术与辩证法”1991(2)。
〔8〕玻恩:《关于因果和机遇的自然哲学》商务印书馆1964年版。
〔9〕莫诺:《偶然性与必然性(略论现代生物学的自然哲学)》,上海人民出版社1977年版。
〔10〕桂起权:《科学思想的源流》武汉大学出版社1994年版。
〔11〕桂来权《析量子力学中的辩证法思想—玻尔互补性构架之真谛》,载“哲学研究”1994(10)。
〔12〕罗森菲尔德:《量子革命》商务印书馆1991年版。
注释:
[1]正是在这一意义上,梁实秋在《远东英汉大辞典》中,将控制论(cybernetics)译作神经机械学。
篇9
手机给我们带来的便捷当然是顶呱呱的。要说手机这玩意能耐,那是没的说。这小小玩意既是顺风耳,也是千里眼,既能打电话也可以发短信,既能摄影又能照相,既可写来也能画,既能上网浏览又能打游戏,当然还会哄着你看新闻查资料听音乐做录音,更有视频对话导航定位等等千奇百怪的功能,也毕恭毕敬地等你宠幸备用。
应该说,手机使用起来要多方便就有多方便,老少爷们姑娘娃儿,拿起来就可以操作。能达到如此便捷的水准,我们无论如何都要对手机设计者们心存一份感激之情。正是众多设计者锲而不舍,不遗余力地创新打造、潜心研发,不断将高精尖科学技术浓缩进这个小小的方块,才使得大众能充分享受到现代科技所带来的种种泽惠。光说手机大小,仅仅十几年,设计者们变戏法似地,把过去的大哥大砖头微缩成了掌上宝,既超轻超薄、整屏高清,还具有微型电脑的种种功能。
不要小看这小小的手中玩物,我们打起电话或者捣鼓起来看似简单,而在这简单背后,实际上是大量的系统工程在给予支持。单说通电话一项,就得有六大系统共同掺和:通信卫星转发系统、地面雷达发射接收系统、中继站、程控交换系统、基站无线电微波覆盖系统、手机收发终端系统。这些还只是表面看得见摸得着的内容,而这些系统肚子里面的科学理论,毫无疑问都是顶尖的,比如当今最伟大的二个科学理论——相对论和量子力学,就在其中发挥了领跑作用。
相对论里一个很重要结论说,高速飞行航天器上的时钟跟地面比会走得慢些。这个慢的数字虽然极小极小,但长年累月的积累,就会产生蝴蝶效应——一只蝴蝶翅膀的扇动可能引来暴风雨,那么全球定位系统就会差之千里了,也即卫星找不到地球之家,地面雷达寻不着卫星了。因此这极小的时差就必须用相对论来修正。而庞大的卫星通信系统和数以亿计的手机之间,存在着极其复杂的互联关系,为消除它们之间的缠绕,这就需要运用量子力学的概率理论进行模糊处理。怎么样,这些道道够味了吧。
篇10
关键词:大学生;量子物理;物理学史
作者简介:丁艳丽(1979-),女,回族,辽宁辽阳人,沈阳化工大学数理系,讲师;母继荣(1964-),女,河北乐亭人,沈阳化工大学数理系,副教授。(辽宁 沈阳 110142)
中图分类号:G642.0?????文献标识码:A?????文章编号:1007-0079(2012)35-0067-02
量子力学是反映微观粒子(分子、原子、原子核、基本粒子等)运动规律的理论。[1]它是20世纪初在大量实验事实和旧量子论基础上建立起来的,是人们认识和理解微观世界的基础。量子物理和相对论的成就使得物理学从经典物理学发展到现代物理学,奠定了现代自然科学的主要基础。量子力学的发现引发了一系列划时代的科学发现与技术发明,对人类社会的进步作出了重要贡献。通过量子物理的教学,有利于培养大学生的科学素质、科学思维方法和科研能力,培养学生的探索精神、创新精神、科学思维能力以及辩证唯物主义的科学观。另外,量子物理是处于发展中的理论,怎样将量子论和广义相对论(引力作用)统一起来仍是困扰人们的问题。“弦理论”的提出使人们看到了希望,通过这部分的教学可以培养学生的横、纵向思维和不断追求科学真理的精神。因此,在大学物理的教学中应适当增加量子物理的教学内容。由于量子物理里好多概念、思想和宏观世界里的完全不同,叫人无法理解,以致量子论的奠基人之一玻尔(Niels Bohr)都要说:“如果谁不为量子论而感到困惑,那他就是没有理解量子论。”[2]那么怎样让学生在轻松愉快的状态下学好量子物理呢?在教学过程中适当引入物理学史有利于学生掌握其核心,既培养了学生的学习兴趣,又有利于实现启发式教学,而非纯粹的概念和公式的教学。下面主要从几个方面阐述物理学史在大学生学习中的重要作用。
一、非物理专业大学生学习量子物理的需要
即使是物理专业的学生,多数人在学习量子物理时一直如在云里雾里,虽然知道微观粒子的波粒二象性,也知道不确定原理,了解原子的轨道理论,但是却不知道为什么这样。这一方面是由于量子物理里好多概念、思想和宏观世界里的完全不同。另一方面,学生没有掌握量子物理的核心,没有从整体上把握量子物理的基石。一些教材对这部分的介绍也较少。如果在教学中能够引入量子物理的发展史,不仅能吸引学生的注意力,调动学生的学习兴趣,还有利于学生理解量子物理的概念和思想,使学生能够身临其境地感受到那场史诗般壮丽的革命,深刻体会量子论的伟大,有利于学生辩证唯物主义观的形成。而非物理专业的学生与物理专业的学生相比,在学习量子物理时难度更大。这是由于物理专业的学生开设了许多物理专业课,如原子分子物理、物理学史等课程,为量子物理的学习奠定了基础。而非物理专业的学生没有前期的知识铺垫,对知识的掌握难度增大。如果能适当加入量子发展史的介绍,不仅降低了学生学习难度,还激发了学生学习兴趣,这就更突显出物理学史在大学物理教学中的重要作用。
从整体上介绍量子物理的发展史可以使学生掌握量子物理的核心,从整体上把握量子物理的基石,即波恩的概率解释、海森堡的不确定性原理和玻尔的互补原理。[2]这三大核心原理中,前两者摧毁了经典世界的因果性理论,互补原理和不确定原理又合力捣毁了世界的客观性和客观实在性理论。一些实验和理论斗争的介绍不仅可以吸引学生的学习兴趣,还可以培养学生的科学思维方法。19世纪末20世纪初,好多物理学家认为物理学大厦已经基本建成,后辈的工作只是做些细枝末节的修补和完善。但当时物理学天空漂浮着两朵小乌云,一朵是“以太的绝对参考系”,另一朵是“黑体辐射的紫外线灾难”。前者导致了相对论的建立,后者导致了量子物理的建立。
对量子物理三大基石的掌握,即波恩的概率解释、海森堡的不确定性和玻尔的“互补原理”是量子物理的三大支柱。大学所学的量子物理学是基于这三个支柱的。这就像数学中的公理一样,对于大学生而言不能去讨论为什么,只能是是什么。
二、大学生素质教育的需要
大学物理的量子部分教学不同于物理专业学生的量子物理教学。大学物理教学的目的主要是增强学生分析问题和解决问题的能力,培养学生科学的思维方法、辩证唯物主义观等素质教育,重在方法而非纯理论教学。因此,大学物理的教学目的与任务是使学生对物理学的基本概念、基本理论和基本方法有比较系统的认识和正确的理解,为进一步学习打下坚实的基础。更为重要的是,在大学物理课程的各个教学环节中,都应在传授知识的同时注重培养学生分析问题和解决问题能力,注重培养学生科研探索精神和辩证唯物主义世界观的形成。量子物理发展史的介绍和讲解有助于培养学生这方面的能力。
1.辩证唯物主义世界观的培养
在大学物理的教学过程中融入物理学史的内容有利于培养学生的辩证唯物主义世界观。如关于光的本性的争论持续了300年,光的波动理论和微粒理论艰苦卓绝地斗争了300年。量子论就是在这种斗争中逐渐建立起来的。托马斯·杨的双缝干涉实验、菲涅尔的圆盘衍射等实验形象的描述可使学生体会到光的波动性;而光电效应实验、康普顿的X射线散射实验等实验的介绍可使学生深刻体会光的粒子性;德布罗意电子波及实物粒子波理论的介绍及戴维逊和革末关于电子的实验,电子通过镍块时展现了X射线衍射图案,证明了电子具有波动性,由此人们认识到了光及实物粒子的波粒二象性。这部分的教学可使学生领悟到看似毫不相干的量实际上存在着深刻的联系,波动性和粒子性原来是不可分割的一个整体。就像漫画中教皇善与恶的两面,虽然在每个确定的时刻只有一面能够体现出来,但它们确实集中在一个人的身上。从中学生们可以深刻体会到任何事物都存在两面性,人们要辩证地看待问题。这部分历史的简单介绍还可以使学生深刻体会到人们对真理的认识是随着科技的发展而不断完善的过程,也是一个艰苦长期的斗争过程。对光的波粒二象性的认识有利于培养学生辩证唯物主义世界观。
2.分析问题和解决问题能力的培养
在大学物理的教学过程中适当引入一些实验的描述或利用多媒体等手段演示实验过程有利于培养学生的分析能力和解决能力。对康普顿实验的讲解分析可以培养学生的分析问题和解决问题的能力,尤其是康普顿的分析过程,而非纯理论上的推导分析。康普顿在研究X射线被自由电子散射的时候发现一个奇怪的现象:散射出来的X射线分成两个部分,一部分和原来的入射射线波长相同,而另一部分却比原来的射线波长要长,具体的大小和散射角存在着函数关系。如果运用通常的波动理论,散射应该不会改变入射光的波长才对。但是怎么解释多出来的那一部分波长变长的射线呢?康普顿苦苦思索,试图从经典理论中寻找答案,却撞得头破血流。终于有一天,他作了一个破釜沉舟的决定,引入光量子的假设,把X射线看作能量为hν的光子束的集合。这个假定马上让他看到了曙光,眼前豁然开朗:那一部分波长变长的射线是因为光子和电子碰撞所引起的。光子像普通的小球那样,不仅带有能量,还具有动量。当它和电子相撞,便将自己的能量交换一部分给电子。这样一来,光子的能量下降,根据公式E=hν,E下降导致ν下降,频率变小,便是波长变大。这样,X射线被自由电子散射的问题得到完美的解决。然后再进行理论推导,根据动量和能量守恒解决该问题,这样不仅使学生印象深刻,还锻炼了物理思维能力。
3.求实精神的培养
通过大学物理量子史部分的教学,介绍科学家严谨的治学态度、勇于追求真理的精神,培养学生追求真理的勇气、严谨求实的科学态度和刻苦钻研的作风。
4.科学观察和思维能力的培养
在教学的过程中适当融入量子发展史的内容有利于培养学生科学观察和思维能力。如玻尔的互补原理的提出过程。当海森堡完成“不确定原理”后向玻尔请教,两人就“不确定原理”是从粒子性而来还是波动性而来展开了论战,从而提出了互补原理:波和粒子在同一时刻是互斥的,但它们却在一个更高的层次上统一在一起,作为电子的两面性被纳入一个整体概念中。这就是玻尔的“互补原理”。它连同波恩的概率解释、海森堡的不确定性共同构成了量子论“哥本哈根解释”的核心,至今仍然深刻地影响人们对于整个宇宙的终极认识。讲解过程中应形象生动地描述海森堡和玻尔的讨论过程及他的思维过程,使学生有种身临其境的感觉,从而培养科学观察和思维的能力。在教学过程中适当介绍思维实验有利于培养学生的思维能力及科学分析能力。如海森堡不确定性原理的提出过程就借助了思维实验及1935年爱因斯坦提出EPR思维实验等。[3]
5.创新意识的培养
通过学学物理学的研究方法、量子物理的发展史以及物理学家的成长经历等,引导学生树立科学的世界观,激发学生的求知热情、探索精神、创新欲望以及敢于向旧观念挑战的精神。如普朗克能量子假设的提出体现了敢于向旧观念、权威学家挑战的精神。而创新意识对一个学生来说是非常重要的,对社会生产力的发展也起着重要作用的。
6.科学美感的培养
以麦克斯韦方程组为例,描述麦氏方程所表现出的深刻、对称、优美,使得每一个科学家都陶醉在其中,玻尔兹曼情不自禁地引用歌德的诗句“难道是上帝写的这些吗?”描述麦克斯韦方程组的美。[2]一直到今天,麦氏方程组仍然被公认为科学美的典范。许多伟大的科学家都为它的魅力折服,并受它深深的影响,有着对于科学美的坚定信仰,甚至认为:对于一个科学理论来说,简洁优美要比实验数据的准确来得更为重要。依此引导学生认识物理学所具有的明快简洁、均衡对称、奇异相对、和谐统一等美学特征,培养学生的科学审美观,使学生学会用美学的观点欣赏和发掘科学的内在规律,逐步增强认识和掌握自然科学规律的能力。
7.科学探索精神的培养
物理学在追求着大统一。许多科学家献身于这项伟大的事业,比如弦理论的提出。讲述其发展过程可激发学生的科学探索精神。
三、科学发展的需要
科学发展到今天,是建立在前人取得成就的基础上的。牛顿都说:“我站在了巨人的肩上。”以史为鉴,才能少走弯路。物理学发展到今天只剩下了最后一个分歧,但也很可能是最难以调和和统一的分歧,即量子物理和引力理论。只有了解和掌握了前辈所创造的财富,才能找到解决物理大统一的有效道路,才能实现物理学的梦想。这需要几代人的共同努力,可能需要几十年甚至几百年才有可能实现。很多人正在为之不断努力,这也是人们不断追求的科学理想。
大学生量子物理的学习需要适当引入物理学史,这既有利于学生学好大学物理,培养学生的辩证唯物主义世界观、分析问题和解决解决问题的能力、求实精神、科学观察和思维的能力、创新意识及科学探索精神,又有助于启发式教学。
参考文献:
[1]周世勋.量子力学教程[M].第1版.北京:高等教育出版社,2002.
[2]曹天元.上帝掷骰子么:量子物理史话[M].沈阳:辽宁教育出版社,