量子力学特征范文

时间:2023-11-22 17:56:25

导语:如何才能写好一篇量子力学特征,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

量子力学特征

篇1

关键词 意识 量子测量 波函数塌缩 神经活动

中图分类号:B80-05 文献标识码:A DOI:10.16400/ki.kjdkz.2015.11.074

On the Inner Relation between Quantum Mechanics and Consciousness

CHEN Si

(Department of Psychology, Jianghan University, Wuhan, Hubei 430056)

Abstract Consciousness and quantum mechanics are closely related with each other. In the research of quantum mechanics, consciousness is the premise of measurement process which can cause the wave function collapse and influence the description of the physical objects. In the research of consciousness ,the traditional research way which based on the classical mechanics confront the dilemma, the quantum mechanics could provide a new approach for explaining the consciousness in a different perspective, the quantum theories about the consciousness can be divided into three kinds.

Key words consciousness; quantum measurement; wave function collapse; neural activities

意识与量子力学原本分属于两个完全不同的学科,前者是心灵哲学与认知科学研究的对象,后者是物理学的前沿领域。随着意识问题在当代科学背景下,已经成为了哲学、心理学、物理学和认知神经科学等分科科学共同关注的焦点,意识问题的跨学科特征也日益突显。运用不同的学科方法来解释和说明意识问题,成为一种研究的必然趋势。许多的心灵哲学家和物理学家认为,意识和量子力学之间有着密切的关系。他们主张,不仅量子力学需要意识的参与以保证描述物理世界的完整性,意识研究也需要引入量子力学来突破现有的困境。

1 意识在量子力学中的位置

意识在量子力学中的作用主要表现两个方面,一是在量子测量中,意识作为测量过程的初始条件,由始至终地影响着对物理对象的描述,二是意识引发波函数塌缩理论。

第一,意识与量子测量。经典力学认为,只要在测量过程中,具备明确的初始值,根据一系列基本粒子的初始位置和速度,就可以实现对事件的准确预测,揭示出世界的真实状态,并且,其测量结果不会受到观察者意识的影响。因此,就某种程度而言,经典力学中观察者的行为同样是被决定和可准确预测的,观察者的心灵与观察者本身的原子构成的经典态被视为相等同。但是,在量子测量的过程中,这种测量过程和结果的客观严格决定性和确定性会发生改变。依据标准的量子力学思考,以玻尔、海森堡等人为代表的哥本哈根学派认为,测量和观察在描述物理实在的过程中具有十分重要的作用。在量子测量的过程中,测量的结果会表现出一定的不确定性,即每一次的测量结果都不相同。这种不确定性主要来自观察者的意识和测量工具在每一次测量过程中所产生的差异性影响。“量子力学并不描述物理实在本身,而是描述物理实在出现的概率,而这种概率取决于观察者的观察。”①量子力学的产生从根本上改变了观察者在测量过程中的地位。

测量问题研究的是一个处于经典态的观察者是怎样在一个量子世界里存在的问题,量子世界描述了不同态的叠加,但是人类主体对世界的知觉和描述却属于宏观层次上的经典态。所以,在维格纳、斯塔普(Henry Stapp)等物理学家看来,人类主体对经典世界的经验为什么以及怎样从量子世界中突现中出来,是量子理论要解决的根本问题之一。在量子理论中,人与微观领域的物质和能量同处于一个测量过程,观察者的意识会对测量的结果产生直接的影响,使测量结果表现出一种主客体不可分割的特征,正如海森堡所说,“自然科学不是自然界本身,而是人和自然界关系的一部分,因而就依顺于人。”②量子力学所揭示出的物理实在以几率波的形式呈现,并且只有在观察者的意识参与到测量过程进行观察时才会出现。在测量过程中,观察者的意识是量子力学所描述的物理实在本身的基本前提,自始至终都决定着测量的结果。因此,量子理论不是关于描述客观物理实在本身的知识,它从一开始就包含了观察者意识这一因素。量子理论实际上是由人类主体意识通过对物理对象的观察得到、并经过认知加工的知识。但是在经典力学中,情况则恰恰相反,人类主体同测量过程和测量结果截然分离,有意识的主体与客体对象之间有明确的边界。

第二,意识引发塌缩理论。冯・诺依曼在其1932年的著作《量子力学的数学基础》中首次提出“意识引发塌缩”理论(consciousness cause collapse proposal,简称CCCP),受到维格纳和斯塔普的支持。该理论认为,“测量”仅仅发生在有意识的观察者和波函数相互作用的基础上,所以仅从量子力学的角度来描述世界是不完整的,一个完整、科学、系统的描述应该包含意识状态对量子力学的影响,而塌缩就是在有意识的观察者的心灵同其它系统的纠缠中发生的。“量子力学的规律是正确的,但是有一个系统有可能要用量子力学来说明,这个系统就是整个物质世界。有一个不在量子力学之内的外部的观察者,这个观察者就是人类(和动物)的心灵,它在大脑上执行测量并导致波函数的塌缩。”③持这种观点的哲学家和物理学家,如查尔默斯(David Chalmers)和洛克伍德(Michael Lockwood)认为,“塌缩动力学为交互论说明敞开了大门”。④同时,他们也认为意识能够从某种复杂的大脑物理状态中突现出来,从而具有引发波函数塌缩的因果效力。

当然,“意识引发塌缩”理论实际上还面临许多问题。例如,意识引发塌缩是在什么时候发生的?是否仅在有意识的观察者参与的测量过程中,意识才会引发塌缩?根据现有的宇宙知识,早期宇宙的量子状态并不是一个意识的本征态(eigenstate),在宇宙产生的最初的三分钟里,也没有一个有意识的观察者在观察一切的发生。如果宇宙最初的那个状态是根据薛定谔所提出的规律而演化出的早期宇宙状态,那么一个与有意识的观察者的存在相关联的本征态就不可能产生。第一次的塌缩需要有意识的观察者出现才能产生,但是有意识的观察者的出现则需要更早状态的塌缩才能产生,塌缩与有意识观察者出现的先后顺序问题的不确定,直接导致意识引发塌缩不可能开始的结论。尽管,“意识引发塌缩”理论受到了许多科学性和哲学家的支持,但是他们并没有为该观点提供一种可靠的论证。并且,这一理论和作为主流说明的多世界理论相悖。多世界理论认为,波函数是对于整个宇宙的完备描述,它是一种基本的物理实体,从不塌缩;并且,量子测量不需要意识的参与,把意识引入到物理说明中,只会使实在论遭遇到危机。

尽管对于意识在量子力学中的位置尚无定论,但是已经有越来越多的物理学家和哲学家参与到这一争论中去,比如维格纳、斯塔普、查尔默斯等人,他们关于意识在量子力学研究中的作用的积极讨论,已经表明,意识是量子力学研究中不可忽视的一个重要问题。

2 量子力学视域中的意识研究

早期的量子力学研究者如普朗克、玻尔、薛定谔等人主张,意识研究应该引入量子随机性来解决与决定论之间的矛盾,此后,量子力学视域中的意识研究开始兴起。我们将首先说明为什么意识研究要引入量子力学,然后论述用量子力学研究意识的三条主要路径。

2.1 为什么意识研究需要引入量子力学

还原的唯物主义的观点以经典力学的决定论、还原论等原则为立论的基础。决定论认为,质点是真正的实在,只要给出质点的位置和动量,那么,依据一定的初始值,自然和人的行为就可以被准确地预测。还原论主张,一切高级运动形式都可以还原为低级、基本的活动形式,把这种方法运用到意识研究中就是把意识这种大脑的高级活动形式还原为最基本的大脑神经活动,以达到揭示意识本质的目的。传统的意识研究建立在这种理论基础之上,而意识问题的关键在于,意识的主观特征该如何进行有效的还原,并且使被还原为神经活动的意识仍然能够具有说明主观感受的完备性呢?这一问题被查尔默斯称为著名的“意识困难问题”。

“在经典力学中没有任何支持‘感受’存在的逻辑上的依据。它是一个理性封闭的概念系统,它的原则只有在决定事物的位置和运动的时候起作用,这个系统局限于一个狭小的数学框架内,不涉及任何现象性的性质。”⑤这就是说,在以经典力学为基础的认识论框架内,并没有人的主观感受的存在地位,经典力学以排除意识问题来实现自身体系的完整性。一种排除了意识存在地位的理论如何能够解决意识问题?这显然是令人怀疑的。

因此,彭罗斯(Roger Penrose)、斯塔普等物理学家认为,如果对意识的研究仍局限在经典力学的框架内,意识问题永远不可能得到解决,我们必须在一个全新的框架内说明意识和大脑活动之间的关系,而量子力学的引入,能够为我们提供新的研究视角。

2.2 量子力学视域中意识研究的三条路径

意识是由大脑神经活动基于某种动力学而实现的过程,由于它涉及到微观层面的化学和电子现象,因此,对它的描述必然要涉及到量子理论。从而,我们可以把意识看成是一个发生在大脑微观世界中的特殊的量子力学现象。持这种观点的物理学家和心灵哲学家认为,“意识是一种对神经反射的直接认识,这种神经反射是通过已知的量子事件突然实现的。”⑥根据目前的研究,量子力学对意识的说明可以分为三条路径。

第一条路径是运用相关的量子力学概念,如量子叠加、塌缩等原理与意识活动进行类比来达到说明意识的目的。在说明的过程中,不需要涉及复杂的运算,也不需要将具体的概念运用到具体的情境中。这种方式的说明仅仅是一种概念上相似性的类比,因此本质上不是对意识过程的科学表征,并不能真正揭示意识的本质。

第二条路径是运用具体的量子力学概念来揭示神经生理学的过程。通过这条途径,量子力学对意识的相关特征做出了说明。

第一,用玻色―爱因斯坦凝聚态说明意识的高度整合性。个体在反观当下的意识状态的时候,大脑中会呈现一幅统一和谐的意识场景。例如,当某人在上课的时候,因为听到窗外的音乐而想起了某部电视剧的情节、大脑中会浮现电视剧的场景和人物、甚至是当时的天气,同时,他的耳边又传来老师的讲课声,同时他的右手正在做着笔记。于是,他所有的感官都被调动起来,在大脑中形成了一幅统一但富有情节跳跃性的场景。这幅场景完整且丰富,个体无法把它自行分割,也就是说,大脑中所呈现的统一和谐的意识场景不能被分割成他正在听音乐或者他正在做笔记这些构成意识内容的元素而独立存在。同时,随着老师的突然提问,他形成的意识场景被打破,继而思考老师提问的意识场景,或者随着窗外音乐声的停止,他的意识场景转换成了另一幅图像呈现在大脑中。不论意识的内容如何改变,他的意识状态总是统一且不可分割的整体。

玻色―爱因斯坦凝聚态是一种全新的物质状态,即不同活动水平的原子在温度极低的条件下会凝聚在一起而具有统一的特征。当这些原子处于静止状态时,它们以无序的方式排列,一旦它们受到外界的刺激,并且细胞的能量因刺激而达到某个临界水平时,它们就会一致性地被激活。这种神经元的激活能够波及整个大脑,并产生一致的量子电场。玻色―爱因斯坦凝聚态的过程机制恰好能够说明,分布在不同脑区且活动水平各异的神经元活动怎样能够协同行动,以支持一个完整统一的意识场景的产生。

第二,用测不准原理说明思维的量子化特征。EEG (Electro Encephalo Gram)实验已经证实,思维过程在本质上具有量子化的特征。思维过程与量子过程的变化有诸多相同点。例如,当一个人在回忆多年前,在某节印象深刻的课堂上被老师提问自己所做的回答时,大脑中许多与当时场景相关的模糊要素都处在被调动的潜在状态中,例如当时的天气、情绪状态、问题的内容、他的回答、同学们的反应等。当他把注意力刻意集中到其中一个记忆片段,如当时回答问题的紧张状态上,准备仔细回想和再现曾经回答过的内容时,他会发现在回忆的过程中常常会遇到困难。对当时所回答内容的记忆会变得不如刻意集中注意力之前那样清晰和完整,甚至试图回忆起来的思路也会消失而被其它的思路所取代。在未刻意回忆时本来清晰完整的回答,反而在集中注意力之后变得模糊,甚至原先的回忆思路也被打乱,最终导致意识场景发生改变。这一特征能够用海森堡在1927年所提出的“测不准原理”来说明。

“测不准原理”表明,一个微观粒子的物理量,如位置和动量、时间与能量等不可能同时具有确定的数值,如果在一对物理量中,其中一个量的值越确定,那么另一个量的值就越难以确定。就思维的特征而言,被刻意关注的回忆类似于电子的二象性中的粒子性而具有“位置”,在刻意集中注意力之前的潜伏性的整体思路,就像电子的二象性中的波而具有“动量”。两者不能同时清晰或者同时确定,而只能确定一个。

第三条路径是一种关于量子力学的普遍性理论,其代表人物是玻姆(David Bohm)和斯塔普。玻姆等人提出一种“新实在论”的观点。他们认为,意识和物质不是两个根本性的实在,物质和意识只是从隐序的基本实在中投射到显序中的投射物。斯塔普持类似的观点,并提出了建立在过程本体论上的意识观点,即最本质的实在元素是现实场合(actual occasion),而不是物质或者心灵。现实场合可以把心理的和物理的特征紧密地联系起来。这样,心物直接互动的观点就被他在更为深层次的基础上提出的心物关联的约束集合(constraint set)所取代。

3 结论

量子力学与意识看似毫不相关,但实际上却是一对具有多重内在关联性的奇妙的搭档,两者的交叉研究极大地拓展了彼此的理论视域,其背后的形而上学基础是一种交互二元论。从交互二元论的角度出发,意识被赋予了引发波函数塌缩的因果效力,并作为一种测量过程的初始条件由始至终影响着对物理对象的客观描述。并且,意识研究中量子力学的引入,突破了长期以来用经典力学规律说明意识问题所遭遇到的瓶颈,为意识的高度整合性等特征提供了有力的科学说明。随着交叉学科的纵深发展,意识与量子力学的内在关联性将会得到更多的揭示。

注释

① 郑荣双.形而上学心理学[M].上海:上海教育出版社,2008:117.

② 金尚年.量子力学的物理基础和哲学背景[M].上海:复旦大学出版社,2007:95.

③ Zvi Schreiber. The Nine Lives of Schroedingers's Cat[J].1995.http:///abs/quant-ph/9501014.

篇2

关键词:量子力学;经典科学世界图景;非机械决定论;整体论;复杂性;主客体互动

Abstract:Asoneofthreerevolutionsofphysicsin20thcentury,quantummechanicshasgreatlytransformedtheworldviewofclassicalscienceinmanyaspects.Quantummechanicsbreaksthoughthemechanicaldeterminisminclassicalscience,transformingitintononmechanicaldeterminism;itchangesscientificcognitiveprocessfromthetheoryofreductionismtothetheoryofwholism;itshiftsthewayofthinkingfrompursuingsimplicitytoexploringthecomplexity;italsoestablishestheinteractionbetweensubjectandobjectinscientificresearches.

Keywords:quantummechanics;worldviewofclassicalscience;nonmechanicaldeterminism;wholism;complexity;interactionbetweensubjectandobject

经典科学基本上是指由培根、牛顿、笛卡儿等开创的,近三百年内发展起来的一整套观点、方法、学说。经典科学世界图景的最大特征是机械论和还原论,片面强调分解而忽视综合。以玻尔、海森伯、玻恩、泡利、诺伊曼等为代表的哥本哈根学派的量子力学理论三部曲:统计解释—测不准原理—互补原理所反映的主要观点是:微观粒子的各种力学量(位置、动量、能量等)的出现都是几率性的;量子力学对微观粒子运动的几率性描述是完备的,对几率性的原因不需要也不可能有更深的解释;决定论不适用于量子力学领域;仪器的作用同观察对象具有不可分割性,确立了科学活动中主客体互动关系。[1]量子力学的发展从根本上改变了经典科学世界

图景。

一、量子力学突破了经典科学的机械决定论,遵循因果加统计的非机械决定论

经典力学是关于机械运动的科学,机械运动是自然界最简单也是最普遍的运动。说它最简单,因为机械运动比较容易认识,牛顿等人又采取高度简化的方法研究力学,获得了空前成功;说它最普遍,因为机械力学有广泛的用途,容易把它绝对化。[2]机械决定论是建立在经典力学的因果观之上,解释原因和结果的存在方式和联系方式的理论。机械决定论认为因和果之间的联系具有确定性,无论从因到果的轨迹多么复杂,沿着轨迹寻找总能确定出原因或结果;机械决定论的核心在于只要初始状态一定,则未来状态可以由因果法则进行准确预测。[3]其实,机械决定论仅仅适用于宏观物体,而对于微观领域以及客观世界中大量存在的偶然现象的研究就产生了统计决定论。[4]

量子力学是对经典物理学在微观领域的一次革命。量子力学所揭示的微观世界的运动规律以及以玻尔为代表的哥本哈根学派对量子力学的理解,同物理学机械决定论是根本相悖的。[5]按照量子理论,微观粒子运动遵守统计规律,我们不能说某个电子一定在什么地方出现,而只能说它在某处出现的几率有多大。

玻恩的统计解释指出,因果性是表示事件关系之中一种必然性观念,而机遇则恰恰相反地意味着完全不确定性,自然界同时受到因果律和机遇律的某种混合方式的支配。在量子力学中,几率性是基本概念,统计规律是基本规律。物理学原理的方向发生了质的改变:统计描述代替了严格的因果描述,非机械决定论代替了机械决定论的统治。

经典统计力学虽然也提出了几率的概念,但未能从根本上动摇严格决定论,量子力学的冲击则使机械决定论的大厦坍塌了。量子力学揭示并论证了人们对微观世界的认识具有不可避免的随机性,它不遵循严格的因果律。任何微观事件的测定都要受到测不准关系的限定,不可能确切地知道它们的位置和动量、时间和能量,只能描述和预言微观对象的可能的行为。因此,量子力学必须是几率的、统计的。而且,随着认识的发展,人们发现量子统计的随机性,不是由于我们知识和手段的不完备性造成的,而是由微观世界本身的必然性(主客体相互作用)所注定。

二、量子力学使得科学认识方法由还原论转化为整体论

还原论作为一种认识方法,是指把高级运动形式归结为低级运动形式,用研究低级运动形式所得出的结论代替对高级运动形式的本质认识的观点。它用已分析得出的客观世界中的主要的、稳定的观点和规律去解释、说明要研究的对象。其目的是简化、缩小客体的多样性。这种方法在人类认识处于初级水平上无疑是有效的。如牛顿将开普勒和伽利略的定律成功地还原为他的重力定律。但是还原论形而上学的本质,以及完全还原是不可能的,决定了还原论不能揭示世界的全貌。

量子力学认为整体与部分的划分只有相对意义,整体的特征绝非部分的叠加,而是部分包含着整体。部分作为一个单元,具有与整体同等甚至还要大的复杂性。部分不仅与周围环境发生一定的外在联系,同时还要表现出“主体性”,可将自身的内在联系传递到周边,并直接参与整体的变化。因而,部分与整体呈现了有机的自觉因果关系。在特定的临界状态,部分的少许变化将引起整体的突变。[6]

波粒二象性是微观世界的本质特征,也是量子论、量子力学理论思想的灵魂。用经典观点来看,也就是按照还原论的思想,粒子与波毫无共同之处,二者难以形成直观的统一图案,这是经典物理学通过部分还原认识整体的方法,是“向上的原因”。可是微观粒子在某些实验条件下,只表现波动性;而在另一些实验条件下,只表现粒子性。这两种实验结果不能同时在一次实验中出现。于是,玻尔的互补原理就在客观上揭示了微观世界的矛盾和我们关于微观世界认识的矛盾,并试图寻找一种解决矛盾的方法,这就是微观粒子既具有粒子性又具有波动性,即波粒二象性。这就是整体论观点强调的“向下的原因”,即从整体到部分。同样,海森伯的测不准原理说明不能同时测量微观粒子的动量和位置,这也说明绝不能把宏观物体的可观测量简单盲目地还原到微观。由此我们可以看出,造成经典科学观与现代科学观认识论和方法论不同的根本在于思考和观察问题的层面不同。经典科学一味地强调外在联系观,而量子力学则更强调关注事物内部的有机联系。所以,量子力学把内在联系作为原因从根本上动摇了还原论观点。

三、量子力学使得科学思维方式由追求简单性发展到探索复杂性

从经典科学思维方式来看,世界在本质上是简单的。牛顿就说过,自然界喜欢简单化,而不喜欢用什么多余的原因以夸耀自己。追求简单性是经典科学奋斗的目标,也是推动它获取成功的动力。开普勒以三条简明的定律揭示了看似复杂的太阳系行星运动,牛顿更是用单一的万有引力说明了千变万化的天体行为。因而现代科学是用简单性解释复杂性,这就隐去了自然界的丰富多样性。

量子力学初步揭示了客观世界的复杂性。经典科学的简单性是与把物理世界理想化相联系的。经典物理学所研究的是理想的物质客体。它不但用理想化的“质点”、“刚体”、“理想气体”来描述物体,而且把研究对象的条件理想化,使研究的视野仅仅局限于人们自己制定的范围之内。而客观世界并不是如此,特别是进入微观领域,微观粒子运动的几率性、随机性;观测对象和观测主体不可分割性等都足以说明自然界本身并不是我们想象的那么简单。

在现代科学中,牛顿的经典力学成了相对论的低速现象的特例,成为非线性科学中交互作用近似为零的情况,在量子力学中是测不准关系可以忽略时的理论表述。复杂性的提出并不是要消灭简单性,而是为了打破简单性独占的一统地位。复杂性是把简单性作为一个特例包含其中,正如莫兰所说的,复杂性是简单性和复杂性的统一。复杂性比简单性更基本,可能性比现实性更基本,演化比存在更基本。[7]今天的科学思维方式,不是以现实来限制可能,而是从可能中选择现实;不是以既存的实体来确定演化,而是在演化中认识和把握实体。复杂性主张考察被研究对象的复杂性,在对其作出层次与类别上的区分之后再进行沟通,而不是仅仅限于孤立和分离,它强调的是一种整体的协同。

四、量子力学使科学活动中主客体分离迈向主客互动

经典科学思维方式的一个指导观念就是,认为科学应该客观地、不附加任何主观成分地获取“照本来样子的”世界知识。玻尔告诉人们,根本不存在所谓的“真实”,除非你首先描述测量物理量的方式,否则谈论任何物理量都是没有意义的!测量,这一不被经典物理学考虑的问题,在面对量子世界如此微小的测量对象时,成为一个难以把握的手段。因为研究者的介入对量子世界产生了致命的干扰,使得测量中充满了不确定性。在海森伯看来,在我们的研究工作由宏观领域进入微观领域时,我们就会遇到一个矛盾:我们的观测仪器是宏观的,可是研究对象却是微观的;宏观仪器必然要对微观粒子产生干扰,这种干扰本身又对我们的认识产生了干扰;人只能用反映宏观世界的经典概念来描述宏观仪器所观测到的结果,可是这种经典概念在描述微观客体时又不能不加以限制。这突破了经典科学完全可以在不影响客体自然存在的状态下进行观测的假定,从而建立了科学活动中主客体互动的关系。

例如,关于光到底是粒子还是波,辩论了三百多年。玻尔认为这完全取决于我们如何去观察它。一种实验安排,人们可以看到光的波现象;另一种实验安排,人们又可以看到光的粒子现象。但就光子这个整体概念而言,它却表现出波粒二象性。因此,海森伯就说,我们观测的不是自然本身,而是由我们用来探索问题的方法所揭示的自然。[8]

量子力学的发展表明,不存在一个客观的、绝对的世界。唯一存在的,就是我们能够观测到的世界。物理学的全部意义,不在于它能够描述出自然“是什么”,而在于它能够明确,关于自然我们能够“说什么”。

参考文献:

[1]林德宏.科学思想史[M].第2版.南京:江苏科学技术出版社,2004:270-271.

[2]郭奕玲,沈慧君.物理学史[M].第2版.北京:清华大学出版社,1993:1-2.

[3]刘敏,董华.从经典科学到系统科学[J].科学管理研究,2006,24(2):44-47.

[4]宋伟.因果性、决定论与科学规律[J].自然辩证法研究,1995,11(9):25-30.

[5]彭桓武.量子力学80寿诞[J].大学物理,2006,25(8):1-2.

[6]疏礼兵,姜巍.近现代科学观的演进及其启示[J].科学管理研究,2004,22(5):56-58.

篇3

关键词 量子物理;现代信息技术;关系;原理应用

中图分类号:O41 文献标识码:A 文章编号:1671-7597(2013)15-0001-02

量子物理是人们认识微观世界结构和运动规律的科学,它的建立带来了一系列重大的技术应用,使社会生产和生活发生了巨大的变革。量子世界的奇妙特性在提高运算速度、确保信息安全、增大信息容量等方面发挥重要的作用,基于量子物理基本原理的量子信息技术已成为当前各国研究与发展的重要科学技术领域。

随着世界电子信息技术的迅猛发展,以微电子技术为基础的信息技术即将达到物理极限,同时信息安全、隐私问题等越来越突出。2013年5月美国“棱镜门”事件的爆发,引发了对保护信息安全的高度重视,将成为推动量子物理科学与现代信息技术的交融和相互促进发展的契机。因此,充分认识量子物理学的基本原理在现代信息技术中发展的基础地位与作用,是促进现代信息技术发展的前提,也是丰富和发展量子物理学的需要。

1 量子物理基本原理

1)海森堡测不准原理。在量子力学中,任何两组不可同时测量的物理量是共扼的,满足互补性。在进行测量时,对其中一组量的精确测量必然导致另一组量的完全不确定,只能精确测定两者之一。

2)量子不可克隆定理。在量子力学中,不能实现对各未知量子态的精确复制,因为要复制单个量子就只能先作测量,而测量必然改变量子的状态,无法获得与初始量子态完全相同的复制态。

3)态叠加原理。若量子力学系统可能处于和描述的态中,那么态中的线性叠加态也是系统的一个可能态。如果一个量子事件能够用两个或更多可分离的方式来实现,那么系统的态就是每一可能方式的同时迭加。

4)量子纠缠原理。是指微观世界里,有共同来源的两个微观粒子之间存在着纠缠关系,不管它们距离多远,只要一个粒子状态发生变化,另一个粒子状态随即发生相应变化。换言之,存在纠缠关系的粒子无论何时何地,都能“感应”对方状态的变化。

2 量子物理与现代信息技术的关系

2.1 量子物理是现代信息技术的基础与先导

物理学一直是整个科学技术领域中的带头学科并成为整个自然科学的基础,成为推动整个科学技术发展的最主要的动力和源泉。量子力学是20世纪初期为了解决物理上的一些疑难问题而建立起来的一种理论,它不仅解释了微观世界里的许多现象、经验事实,而且还开拓了一系列新的技术领域,直接导致了原子能、半导体、超导、激光、计算机、光通讯等一系列高新技术产业的产生和发展。可以说,从电话的发明到互联网络的实时通信,从晶体管的发明到高速计算机技术的成熟,量子物理开辟了一种全新的信息技术,使人类进人信息化的新时代,因此,量子物理学是现代信息技术发展的主要源泉,而且随着现代科学技术的飞速发展,量子物理学的先导和基础作用将更加显著和重要。

2.2 量子物理为现代信息技术的持续发展提供新的原理和方法

现代信息技术本质上是应用了量子力学基本原理的经典调控技术,随着世界科学技术的迅猛发展,以经典物理学为基础的信息技术即将达到物理极限。因此,现代信息技术的突破,实现可持续发展必须借助于新的原理和新的方法。量子力学作为原子层次的动力学理论,经过飞速发展,已向其他自然科学的各学科领域以及高新技术全面地延伸,量子信息技术就是量子物理学与信息科学相结合产生的新兴学科,它为信息科学技术的持续发展提供了新的原理和方法,使信息技术获得了活力与新特性,量子信息技术也成为当今世界各国研究发展的热点领域。因此,未来的信息技术将是应用到诸如量子态、相位、强关联等深层次量子特性的量子调控技术,充分利用量子物理的新性质开发新的信息功能,突破现代信息技术的物理极限。

2.3 现代信息技术对量子物理学发展的影响

量子信息技术应用量子力学原理和方法来研究信息科学,从而开发出现经典信息无法做到的新信息功能,反过来,现代信息技术的发展大大地丰富了量子物理学的研究内容,也将不断地影响量子物理学的研究方法,有力地将量子理论推向更深层次的发展阶段,使人类对自然界的认识更深刻、更本质。近年来,随着量子信息技术领域研究的不断深入,量子信息技术的发展也使量子物理学研究取得了不少成果,如量子关联、基于熵的不确定关系、量子开放系统环境的控制等问题研究取得了巨大进展。

3 基于量子物理学原理的量子信息技术

基于量子物理原理和方法的量子信息技术成为21世纪信息技术发展的方向,也是引领未来科技发展的重要领域。当前量子物理学的基本原理已经在量子密码术、量子通信、量子计算机等方面得到充分的理论论证和一定的实践应用。

3.1 量子计算机——量子叠加原理

经典计算机建立在经典物理学基础上,遵循普通物理学电学原理的逻辑计算方式,即用电位高低表示0和1以进行运算,因此,经典计算机只能靠以缩小芯片布线间距,加大其单位面积上的数据处理量来提高运算速度。而量子计算遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息。计算方式是建立在微观量子物理学关于量子具有波粒两重性和双位双旋特性的基础上,量子算法的中心思想是利用量子态的叠加态与纠缠态。在量子效应的作用下,量子比特可以同时处于0和1两种相反的状态(量子叠加),这使量子计算机可以同时进行大量运算,因此,量子计算的并行处理,使量子计算机实现了最快的计算速度。未来,基于量子物理原理的量子计算机,不仅运算速度快,存储量大、功耗低,而且体积会大大缩小。

3.2 量子通信——量子纠缠原理

量子通信是一种利用量子纠缠效应进行信息传递的新型通信方式。量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等。从信息学上理解,量子通信是利用量子力学的量子态隐形传输或者其他基本原理,以量子系统特有属性及量子测量方法,完成两地之间的信息传递;从物理学上讲,量子通信是采用量子通道来传送量子信息,利用量子效应实现的高性能通信方式,突破现代通信物理极限。量子力学中的纠缠性与非定域性可以保障量子通信中的绝对安全的量子通信,保证量子信息的隐形传态,实现远距离信息转输。所以,与现代通信技术相比,量子通信具有巨大的优越性,具有保密性强、大容量、远距离传输等特点,量子通信创建了新的通信原理和方法。

3.3 量子密码——不可克隆定理

经典密码是以数学为基础,通过经典信号实现,在密钥传送过程中有可能被窃听且不被觉察,故经典密码的密钥不安全。量子密码是一种以现代密码学和量子力学为基础,利用量子物理学方法实现密码思想和操作的新型密码体制,通过量子信号实现。量子密码主要基于量子物理中的测不准原理、量子不可克隆定理等,通信双方在进行保密通信之前,首先使用量子光源,依照量子密钥分配协议在通信双方之间建立对称密钥,再使用建立起来的密钥对明文进行加密,通过公开的量子信道,完成安全密钥分发。因此量子密码技术能够保证:

1)绝对的安全性。对输运光子线路的窃听会破坏原通讯线路之间的相互关系,通讯会被中断,且合法的通信双方可觉察潜在的窃听者并采取相应的措施。

2)不可检测性。无论破译者有多么强大的计算能力,都会在对量子的测量过程中改变量子的状态而使得破译者只能得到一些毫无意义的数据。因此,量子不可克隆定理既是量子密码安全性的依靠,也给量子信息的提取设置了不可逾越的界限,即无条件安全性和对窃听者的可检测性成为量子密码的两个基本特征。

4 结论

量子物理是现代信息技术诞生的基础,是现代信息技术突破物理极限,实现持续发展的动力与源泉。基于量子物理学的原理、特性,如量子叠加原理、量子纠缠原理、海森堡测不准原理和不可克隆定理等,使得量子计算机具有巨大的并行计算能力,提供功能更强的新型运算模式;量子通信可以突破现代信息技术的物理极限,开拓出新的信息功能;量子密码绝对的安全性和不可检测性,实现了绝对的保密通信。随着量子物理学理论在信息技术中的深入应用,量子信息技术将开拓出后莫尔时代的新一代的信息技术。

参考文献

[1]陈枫.量子通信:划时代的崭新技术[N].报,2011.

[2]曾谨言.量子物理学百年回顾[J].北京大学物理学科90年专题特约专稿,2003(10).

[3]李应真,吴斌.物理学是当代高新技术的主要源泉[J].学术论坛,2012.

[4]董新平,杨纲.量子信息原理及其进展[J].许昌学院学报,2007.

[5]周正威,陈巍,孙方稳,项国勇,李传锋.量子信息技术纵览[J].中国科学,2012(17).

[6]郭光灿.量子信息技术[J].中国科学院院刊,2002(5).

[7]朱焕东、黄春晖.量子密码技术及其应用[J].国外电子测量技术,2006(12).

篇4

【关键词】量子;通信;技术;发展

对量子信息进行研究是将量子力学作为研究基础,根据量子并行、纠缠以及不可克隆特性,探索量子编码、计算、传输的可能性,以新途径、思路、概念打破原有的芯片极限。从本质来说:量子信息是在量子物理观念上引发的效应。它的优势完全来源于量子并行,量子纠缠中的相干叠加为量子通讯提供了依据,量子密码更多的取决于波包塌缩。理论上,量子通信能够实现通信过程,最初是通过光纤实现的,由于光纤会受到自身与地理条件限制,不能实现远距离通信,所以不利于全球化。到1993年,隐形传输方式被提出,通过创建脱离实物的量子通信,用量子态进行信息传输,这就是原则上不能破译的技术。但是,我们应该看到,受环境噪声影响,量子纠缠会随着传输距离的拉长效果变差。

一、量子通信技术

(一)量子通信定义

到目前为止,量子通信依然没有准确的定义。从物力角度来看,它可以被理解为物力权限下,通过量子效应进行性能较高的通信;从信息学来看,量子通信是在量子力学原理以及量子隐形传输中的特有属性,或者利用量子测量完成信息传输的过程。

从量子基本理论来看,量子态是质子、中子、原子等粒子的具体状态,可以代表粒子旋转、能量、磁场和物理特性,它包含量子测不准原理和量子纠缠,同时也是现代物理学的重点。量子纠缠是来源一致的一对微观粒子在量子力学中的纠缠关系,同时这也是通过量子进行密码传递的基础。Heisenberg测不准原理作为力学基本原理,是同一时刻用相同精度对量子动量以及位置的测量,但是只能精确测定其中的一样结果。

(二)量子通信原理

量子通信素来具有速度快、容量大、保密性好等特征,它的过程就是量子力学原理的展现。从最典型的通信系统来说具体包含:量子态、量子测量容器与通道,拥有量子效应的有:原子、电子、光子等,它们都可以作为量子通信的信号。在这过程中,由于光信号拥有一定的传输性,所以常说的量子通信都是量子光通信。分发单光子作为实施量子通信空间的依据,利用空间技术能够实现空间量子的全球化通信,并且克服空间链路造成的距离局限。

利用纠缠量子中的隐形量子传输技术作为未来量子通信的核心,它的工作原理是:利用量子力学,由两个光子构成纠缠光子,不管它们在宇宙中距离多远,都不能分割状态。如果只是单独测量一个光子情况,可能会得到完全随机的测量结果;如果利用海森堡的测不准原理进行测量,只要测量一个光子状态,纵使它已经发生变化,另一个光子也会出现类似的变化,也就是塌缩。根据这一研究成果,Alice利用随机比特,随机转换已有的量子传输状态,在多次传输中,接受者利用量子信道接收;在对每个光子进行测量时,同时也随机改变了自己的基,一旦两人的基一样,一对互补随机数也就产生。如果此时窃听者窃听,就会破坏纠缠光子对,Alice与Bob也就发觉,所以运用这种方式进行通信是安全的。

(三)量子密码技术

从Heisenberg测不准原理我们可以知道,窃听不可能得到有效信息,与此同时,窃听量子信号也将会留下痕迹,让通信方察觉。密码技术通过这一原理判别是否存在有人窃取密码信息,保障密码安全。而密钥分配的基本原理则来源于偏振,在任意时刻,光子的偏振方向都拥有一定的随机性,所以需要在纠缠光子间分设偏振片。如果光子偏振片与偏振方向夹角较小时,通过滤光器偏振的几率很大,反之偏小。尤其是夹角为90度时,概率为0;夹角为45度时,概率是0.5,夹角是0度时,概率就是1;然后利用公开渠道告诉对方旋转方式,将检测到的光子标记为1,没有检测到的填写0,而双方都能记录的二进制数列就是密码。对于半路监听的情况,在设置偏振片的同时,偏振方向的改变,这样就会让接受者与发送者数列出现差距。

(四)量子通信的安全性

从典型的数字通信来说:对信息逐比特,并且完全加密保护,这才是实质上的安全通信。但是它不能完全保障信息安全,在长度有限的密文理论中,经不住穷举法影响。同时,伪随机码的周期性,在重复使用密钥时,理论上能够被解码,只是周期越长,解码破译难度就会越大。如果将长度有限的随机码视为密钥,长期使用虽然也会具有周期特征,但是不能确保安全性。

从传统的通信保密系统来看,使用的是线路加密与终端加密整合的方式对其保护。电话保密网,是在话音终端上利用信息通信进行加密保护,而工作密钥则是伪随机码。

二、量子通信应用与发展

和传统通信相比,量子通信具有很多优势,它具有良好的抗干扰能力,并且不需要传统信道,量子密码安全性很高,一般不能被破译,线路时延接近0,所以具有很快的传输速度。目前,量子通信已经引起很多军方和国家政府的关注。因为它能建立起无法破译的系统,所以一直是日本、欧盟、美国科研机构发展与研究的内容。

在城域通信分发与生成系统中,通过互联量子路由器,不仅能为任意量子密码机构成量子密码,还能为成对通信保密机利用,它既能用于逐比特加密,也能非实时应用。在严格的专网安全通信中,通过以量子分发系统和密钥为支撑,在城域范畴,任何两个用户都能实现逐比特密钥量子加密通信,最后形成安全性有保障的通信系统。在广域高的通信网络中,受传输信道中的长度限制,它不可能直接创建出广域的通信网络。如果分段利用量子密钥进行实时加密,就能形成安全级别较高的广域通信。它的缺点是,不能全程端与端的加密,加密节点信息需要落地,所以存在安全隐患。目前,随着空间光信道量子通信的成熟,在天基平台建立好后,就能实施范围覆盖,从而拓展量子信道传输。在这过程中,一旦量子中继与存储取得突破,就能进一步拉长量子信道的输送距离,并且运用到更宽的领域。例如:在潜安全系统中,深海潜艇与岸基指挥一直是公认的世界难题,只有运用甚长波进行系统通信,才能实现几百米水下通信,如果只是使用传统的加密方式,很难保障安全性,而利用量子隐形和存储将成为开辟潜通的新途径。

三、结束语

量子技术的应用与发展,作为现代科学与物理学的进步标志之一,它对人类发展以及科学建设都具有重要作用。因此,在实际工作中,必须充分利用通信技术,整合国内外发展经验,从各方面推进量子通信技术发展。

参考文献

[1]徐启建,金鑫,徐晓帆等.量子通信技术发展现状及应用前景分析[J].中国电子科学研究院学报,2009,4(5):491-497.

篇5

[关键词]量子体系、对称性、守恒定律

一、关于对称性和守恒定律的研究

对称性是自然界最普遍、最重要的特性。近代科学表明,自然界的所有重要的规律均与某种对称性有关,甚至所有自然界中的相互作用,都具有某种特殊的对称性——所谓“规范对称性”。实际上,对称性的研究日趋深入,已越来越广泛的应用到物理学的各个分支:量子论、高能物理、相对论、原子分子物理、晶体物理、原子核物理,以及化学(分子轨道理论、配位场理论等)、生物(DNA的构型对称性等)和工程技术。

何谓对称性?按照英国《韦氏国际辞典》中的定义:“对称性乃是分界线或中央平面两侧各部分在大小、形状和相对位置的对应性”。这里讲的是人们观察客观事物形体上的最直观特征而形成的认识,也就是所谓的几何对称性。

关于对称性和守恒定律的研究一直是物理学中的一个重要领域,对称性与守恒定律的本质和它们之间的关系一直是人们研究的重要内容。在经典力学中,从牛顿方程出发,在一定条件下可以导出力学量的守恒定律,粗看起来,守恒定律似乎是运动方程的结果.但从本质上来看,守恒定律比运动方程更为基本,因为它表述了自然界的一些普遍法则,支配着自然界的所有过程,制约着不同领域的运动方程.物理学关于对称性探索的一个重要进展是诺特定理的建立,定理指出,如果运动定律在某一变换下具有不变性,必相应地存在一条守恒定律.简言之,物理定律的一种对称性,对应地存在一条守恒定律.经典物理范围内的对称性和守恒定律相联系的诺特定理后来经过推广,在量子力学范围内也成立.在量子力学和粒子物理学中,又引入了一些新的内部自由度,认识了一些新的抽象空间的对称性以及与之相应的守恒定律,这就给解决复杂的微观问题带来好处,尤其现在根据量子体系对称性用群论的方法处理问题,更显优越。

在物理学中,尤其是在理论物理学中,我们所说的对称性指的是体系的拉格朗日量或者哈密顿量在某种变换下的不变性。这些变换一般可分为连续变换、分立变换和对于内禀参量的变换。每一种变换下的不变性,都对应一种守恒律,意味着存在某种不可观测量。例如,时间平移不变性,对应能量守恒,意味着时间的原点不可观测;空间平移评议不变性,对应动量守恒,意味着空间的绝对位置不可观测;空间旋转不变性,对应角动量守恒,意味着空间的绝对方向不可观测,等等。在物理学中对称性与守恒定律占着重要地位,特别是三个普遍的守恒定律——动量、能量、角动量守恒,其重要性是众所周知,并且在工程技术上也得到广泛的应用。因此,为了对守恒定律的物理实质有较深刻的理解,必须研究体系的时空对称性与守恒定律之间的关系。

本文将着重讨论非相对论情形下讨论量子体系的时空对称性与三个守恒定律的关系,并在最后给出一些我们常见的对称变换与守恒定律的简单介绍。

二、对称变换及其性质

一个力学系统的对称性就是它的运动规律的不变性,在经典力学里,运动规律由拉格朗日函数决定,因而时空对称性表现为拉格朗日函数在时空变换下的不变性.在量子力学里,运动规律是薛定谔方程,它决定于系统的哈密顿算符,因此,量子力学系统的对称性表现为哈密顿算符的不变性。

对称变换就是保持体系的哈密顿算符不变的变换.在变换S(例如空间平移、空间转动等)下,体系的任何状态ψ变为ψ(s)。

三、对称变换与守恒量的关系

经典力学中守恒量就是在运动过程中不随时间变化的量,从此考虑过渡到量子力学,当是厄米算符,则表示某个力学量,而

然而,当不是厄米算符,则就不表示力学量.但是,若为连续变换时,我们就很方便的找到了力学量守恒。

设是连续变换,于是可写成为=1+IλF,λ为一无穷小参量,当λ0时,为恒等变换。考虑到除时间反演外,时空对称变换都是幺正变换,所以

(8)式中忽略λ的高阶小量,由上式看到

即F是厄米算符,F称为变换算符的生成元。由此可见,当不是厄米算符时,与某个力学量F相对应。再根据可得

(10)可见F是体系的一个守恒量。

从上面的讨论说明,量子体系的对称性,对应着力学量的守恒,下面具体讨论时空对称性与动量、能量、角动量守恒。

1.空间平移不变性(空间均匀性)与动量守恒。

空间平移不变性就是指体系整体移动δr时,体系的哈密顿算符保持不变.当没有外场时,体系就是具有空间平移不变性。

设体系的坐标自r平移到,那么波函数ψ(r)变换到ψ(s)(r)

2.空间旋转不变性(空间各向同性)与角动量守恒

空间旋转不变性就是指体系整体绕任意轴n旋δφ时,体系的哈密顿算符不变。当体系处于中心对称场或无外场时,体系具有空间旋转不变性。

3.时间平移不变性与能量守恒

时间平移不变性就是指体系作时间平移时,其哈密顿算符不变。当体系处于不变外场或没有外场时,体系的哈密顿算符与时间无关(),体系具有时间平移不变性。

和空间平移讨论类似,时间平移算符δt对波函数的作用就是使体系从态变为时间平移态:

同样,将(27)式的右端在T的领域展开为泰勒级数

篇6

关键词: 微磁学 交换作用 经典交换作用

1.引言

在真实的磁化过程中,交换作用能、磁各向异性能和静磁能中任何一项都不能忽略。如果这些能量项作为微扰加入海森堡哈密顿量中,然后用量子力学的方法求解,那就是最为理想的了。但是,实际上即使不附加其他能量项,也必须做粗略的近似才能求解。所以,微磁学应运而生,它没有顾及量子力学,忽略了物质的原子本性,而采用介质的经典物理方法处理问题,这种经典理论是与M(T)的量子理论(忽略了静磁作用)并行发展起来的,它起源于1935年Landau和Lishitz关于两个反方向磁畴间畴壁结构的论文及1940―1941年W.F.Jr.Brwon的几篇论文。Brwon将此经典理论命名为“微磁学”,此理论忽略了原子理论的微观性质,用宏观的观点讨论问题并认为材料是连续的。因而,采用了经典矢量来代替自旋,并且在“连续介质”的极限下,为了使其能与麦克斯韦方程组一起使用,采用了一项经典的能量项来代替量子力学中的交换作用能。本文主要考虑交换作用能经典的代替项,并通过分析,讨论它的适用性与局限性。

2.何为“交换作用”

在顺磁体中,其原子磁矩只与外磁场相互这样。而在铁磁体中情况却不相同,其原子的自旋之间存在着相互作用,每个自旋都力图使其他自旋沿着它的方向取向,自旋间的相互作用来源于自旋的量子力学性质,交换作用没有经典的对应物,是量子力学中电子波函数的重叠引起的。这些自旋之间存在着一种力,这种力试图使所有的自旋平行排列,这就是所谓的交换作用,可以用自旋和自旋之间的交换作用能表示,交换作用能正比于•

ε=-′J

其中,求和符号旁边的分号表示求和时排除i=j,因为能与自旋发生作用,除此之外,此式遍及材料中所有的原子自旋。系数J称为交换积分。系数的正负是这样定义的,如果J为正,则自旋平行取向,如果J为负,则自旋反平行取向,分别意味着铁磁性耦合与反铁磁耦合。

对于交换积分J,目前尚不能根据基本原理计算出,只能假设给出哈密顿量,而J作为一个参量,其数值由理论与某些实验(通常是居里温度)值的比较来确定。

3.“经典”的交换作用

“交换作用”是一种非常“短程”的作用力,它只能在邻,也可能在次近邻自旋之间产生作用,而对较远的自旋没有作用,将自旋算符近似地用经典矢量表示,则交换作用能有〈1〉式给出,如果只能是最邻近自旋之间的J不等于零,则:

ε=-′J•=-JScosφ

其中,φ为自旋和之间的夹角。

可以预期,相邻自旋之间的夹角“总”是很小的,因为交换作用是极短程的作用力,不允许产生大的夹角。当φ很小时。可以假设每个平面上有几个自旋,这些平面相互平行,此时则有:

ε=JSφ

在计算中将所有自旋相互平行的状态作为参考状态,减去参考状态的能量即得到上述表示式。这意味着重新定义了交换作用能的零点。但是,不必担心,只要互相一致,重新定义是合理的。

如图1所示,设为平行于局域自旋方程的单位矢量,在小角度的场合,|φ|≈|-|。需指出,这一定义也意味着平行于磁化强度矢量的局部方向。不仅定义在格点上,而且是一个连续变量,其泰勒级数展开的一级近似为:

|-|=|(•)|

其中,是从格点i到格点j的位置矢径

将〈4〉式代入〈3〉式,则得:

ε=JS•[(•)]

上式中的第二个求和遍及格点i到所有邻近的位置矢径,例如对晶格常数为a的简单立方晶格,需要六个位置矢径S=a(±1,±1,±)求和。对于三种立方晶格很容易求和,计算表明三种立方晶格的表达式相同,只是系数因子不同。

将对i的求和变换为对整个铁磁体求积分,则立方晶体交换作用能的表达式为:

ε=?蘩wd?,w=1/2C[(m)+(m)+(m)]

其中C=c

上式中,a为晶胞棱边的长度,c为常数,其数值对于简单立方,体心立方,面心立方分别为1,2和4。

4.交换作用与“经典”的交换作用

前面已经提到,交换作用没有经典的对应物,是量子力学中电子波函数的重叠引起的。实际的交换能量论即〈1〉式来源于库仑作用,因为它应用了反映pauli不相容原理的行列式。根据pauli不相容原理,两个相同自旋的电子不能处于同一个位置,因此,它们的重叠就比经典电子的重叠小(详情参见文献1),因为交换能量项的主要特征是其积分中包含了对自旋波函数的求和,因自旋波函数是彼此正交的,如果自旋不平行取向,则积分为零。所以,这一项能量实际上表征了两个自旋爬行取向,以及反爬行取向的两个姿态的能量“岔值”,其作用在于力图使自旋彼此平行取向(或者反平行取向,这取决于交换积分的正负)。

但是,在“经典”的交换作用中,恰恰忽略了交换作用最为重要的一点,即电子的自旋波函数,而是以经典的矢量来代替自旋。而这一变化,促使了经典的能量论代替了量子力学的交换作用能,这一变化,使得交换能量的计算显得更加简捷方便,也便于解决目前考虑到量子力学性质时难以解决的问题,比如,对三种立方晶格即(简单立方,体心立方,面心立方)交换作用能的积分,以及对两个反方向磁畴间畴壁结构的求解问题等。

可是,既然经典交换作用已经忽略了物质的原子本性,不以经典矢量来代替自旋。那么,我们在利用经典交换作用解决问题时,就必须忽略它带来的局限性和一些限制。

5.经典交换作用的应用和限制

在上一节中已经提到,经典交换能量式为:

ε=JS•[(•)]

其对三种立方晶格交换作用能的表达式为:

ε=?蘩wd?,w=1/2C[(m)+(m)+(m)]

其中C=c

a为晶胞棱边的长度,c为常数,而对六角密堆晶体,譬如能对Si的体积同样给出〈6〉式,只是系数C不同,其值为:

C=

其中a为最邻近原子间的距离。

对于低对称性的晶体,〈6〉式需做某种修改。不多对于大多数有实际意义的情况,可以认为这一表达式仍然是交换作用的很好近似,比如连续介质的假设是物理真实的很好近似一样。将常数C看作是材料的一个物理参数,其数值可以通过理论计算结果及测量数据的拟合而求得。当然,如果已知交换积分J,那么从理论表达式〈7〉和〈8〉也可求出常数C。

不过,J与温度有关。靠近居里温度T的J值不再适用于微磁学计算,因为微磁学往往适用于室温附近。通常用铁磁共振实验可以较准确地测出交换常数C,对于铁和镍,其数量级C≈2×10erg/cm。

对于解决晶体中磁化强度矢量的方向随空间位置变化的问题〈6〉式给出的交换作用能量是非常有用的工具。假设磁化强度矢量的数值在晶体内处处相同,且等于M(T),再均匀磁化,即晶体各点的磁化强度矢量均平行取向时,磁化强度的微商为零。交换作用能随磁化强度矢量的空间变化率的增大而增加,正如所预期的,交换作用能力图避免磁化强度矢量随位置的急剧变化。

但是,交换作用能的使用是有其限制的,我们绝不能在超出其有效的近似范围去应用它。它主要有以下限制。

5.1与材料是连续的基本假设有关

如果所涉及的任何特征长度都远大于晶胞的尺寸,则材料是连续的,这个假设是合理的。但是,事先并不能完全保证这一点,不过,必须牢记,如果某个微磁学计算中涉及以长度为量纲的参数,只有在这些参数的数值远大于晶格常数是结果才是可信的。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

5.2温度不能太高

将格点上的自旋变为连续变量时,的数值在整个晶体内便自动的变为一个常数。同时实验证实,磁畴中的数值是材料常数M(T),只与温度有关,格点上具有固定自旋的图像对于实际材料并不是一种很好的近似(参见文献1)。下式给出的实验事实

||=M(T)

只有在较大的体积中求平均时才正确,而当涨落足以使从一点到另一点有差别时,在每个点上(9)式就不满足了。因为缺乏更好的模型,微磁学理论仍假设〈6〉式到处成立。因此,这个理论不能应用于居里点附近,因为居里点附近很小的“局部”场都会改变的数值。

同时对此理论来做必要的修改前,不能应用于高温。如果假设尚不清楚,不过已有一些推行此理论的尝试,其中取得重大步骤的是Minnaja(参见文献2),他证明在存在热涨落的情况下,应该用下列交换作用能密度的表达式代替〈6〉式。

w=[(m)+(m)+(m)]

其中,M为矢量的数值,是位置的函数。但是,这一理论仍存在问题,没有用确定值的另一关系式代替(9)式,因而这部分工作尚未完成。另外在“成核问题”(Nucleation)的研究中(9)式是可以忽略的。

5.3这些近似只适用于相邻自旋间“小夹角的情况”

不过,由于交换作用力是极短程的作用力,一般地讲:相邻自旋间的夹角预期是很小的。但是,这一普遍的规则并不排除一些非寻常情况下的例外,譬如在材料拐角处,由于其他能量项的制约磁化强度必须翻转方向,如果以为〈6〉式是严格正确的,那么,形式上自旋夹角的不连续跃变会使交换作用能变为无穷大。因此,不能认为〈6〉式是严格成立的,因为它毕竟是〈2〉式的近似表达式。而自旋跃变时,〈2〉式并不趋于无穷大。〈3〉式总是有限的,而取近似的结果导致无穷大。这意味着这种近似方法不适用此特殊情况,应该采用别的方法进行研究。

6.结语

虽然经典的交换作用的使用存在诸多限制,在应对一些特殊情况时,问题也的确存在。但不可否认的是,对于大多数的问题,目前来说,别无选择,只能采用〈6〉式。对于特殊的问题,我们就需采用一些特殊的技术。因而,在没有找到更好的办法之前,经典的交换作用不失为一种很好的方法。

参考文献:

[1]A.Aharoni.铁磁学性理论导论[M].兰州:兰州大学出版社.

[2]Minnaja.N(1970).Micromagaetics at high temperature.phy.s.Rev.B.1,1151-9.

[3]钟文定.铁磁学(中)[M].北京:科学出版社,1998.

篇7

1.发现外尔费米子

2015年2月16日,中国科学院物理所与普林斯顿大学的两个独立团队先后宣布,在一种特殊晶体中发现了外尔费米子。1929年,德国物理学家外尔提出,狄拉克方程无质量的解描述的是一对具有相反“手性”的新粒子,即外尔费米子。

多年来,研究者一直未能在实验中发现这种粒子,后来凝聚态物理的发展让物理学家得以在特殊晶体中寻找外尔费米子。理论计算表明,特殊晶体内的电子态符合无质量、具有手性的特征,即存在相当于外尔费米子的准粒子,而进一步的实验证实了这个预言。

外尔费米子的性质使其在新型电子器件开发和拓扑量子计算等领域有着广泛的应用前景。

2015年4月24日,中山大学黄军就团队在《蛋白质与细胞》杂志上称,他们运用基因组编辑技术在无法发育成胎儿的异常人类胚胎中删除并修复了与地中海贫血症有关的HBB基因。这篇曾因伦理等问题被《自然》、《科学》拒稿的论文,引发了广泛的争论。

这些争论直接促成了2015年12月的“人类基因编辑国际峰会”。在此次会议上,20多个国家的参会科学家一致认为,以“定制婴儿”为目的改变人类胚胎或生殖细胞基因组是不负责任的,但不应排除以其他目的在胚胎层面进行基因组编辑的可能性。

3.大脑中的淋巴系统

2015年6月1日,弗吉尼亚大学医学院的神经科学家称,他们在小鼠硬脑膜上发现两根与外周免疫系统直接相连的淋巴管,而人类的硬脑膜上很可能也存在类似结构。

这一发现在改写教科书的同时,也颠覆了科学界对神经-免疫系统相互作用的认识,将对脑部给药以及自闭症、阿尔茨海默病、多发性硬化症等多种与免疫和炎症相关的神经系统疾病的研究与治疗产生重要影响。

4.“新视野”号飞掠冥王星

2015年7月14日,美国航空航天局的“新视野”号探测器在经过9年时间的漫长跋涉后,终于抵达并近距离飞掠了它的目的地――冥王星。在此期间,“新视野”号通过搭载的科学仪器采集了大量数据,并在之后不断传送回地球。

冥王星曾被当作行星中的一员,也是柯伊伯带天体的代表。柯伊伯带天体远离太阳,化学成分的演化很缓慢,可能还保存着与太阳系诞生以及生命起源相关的线索,但由于它们距离地球非常遥远,此前天文学家对其了解非常有限。

5.量子力学的“超距作用”

量子力学最让人迷惑的特性之一,就是它可以容许相隔甚远的两个粒子发生瞬时的相互作用,对一个粒子进行观测会同时影响另一个粒子,且不受光速的限制。

2015年8月24日,荷兰代尔夫特理工大学的团队宣布,他们设计并进行了迄今为止最严格的实验,证明了量子力学的“超距作用”是真实的。这一新发现可促进量子加密技术的研究。

6.火星上存在液态水

2015年9月28日,美国航空航天局召开会,宣布火星勘测轨道飞行器(MRO)发现了火星存在流动液态水的有力证据。利用MRO上的成像光谱仪,研究者在有神秘条纹的火星山坡上探测到了水合矿物的特征信号。这些暗色条纹会随时间的推移反复消失和出现――在温暖的季节,这些条纹颜色会加深并显现出来,而在较冷的季节则消失不见。

这一发现增进了人类对火星的了解,有助于研究生命形成的条件。

篇8

立足大背景 寻求新发展

量子信息物理,顾名思义,这是一个由信息科学与量子力学学科交叉产生的、全新的研究方向。

“这门学科的出现有其重要的意义。”崔海涛介绍,“根据摩尔(Moore)定律,每18个月,计算机微处理器的速度就会增长一倍,其中单位面积(或体积)上集成的元件数目也会相应地增加。可以预见,在不久的将来,芯片元件就会达到它能以经典方式工作的极限尺度。因此,如何突破这种尺度极限是当代信息科学所面临的一个重大科学问题。量子信息的研究就是充分利用量子物理基本原理的研究成果,发挥量子相干特性的强大作用,探索以全新的方式进行计算、编码和信息传输的可能性,为突破芯片极限提供新概念、新思路和新途径。”“量子力学与信息科学结合,不仅充分显示了学科交叉的重要性,而且量子信息的最终物理实现,会导致信息科学观念和模式的重大变革。”崔海涛说。

时至今日,量子信息技术的发展不仅引起了学术界的关注,各发达国家也针对其制定了本国的研究发展规划,以期抢占未来信息科技的制高点,并投入大量人力、物力用于支撑该领域的基础性、前瞻性的研究。我国也于2006年9月了国家中长期科学和技术发展规划纲要(2006-2020年),将以量子调控技术为代表的量子信息技术的研究纳入到基础研究重大科学研究计划当中。正如《纲要》中所描述的那样:“以微电子为基础的信息技术将达到物理极限,对信息科技发展提出了严峻的挑战,人类必须寻求新出路,而以量子效应为基础的新的信息手段初露端倪,并正在成为发达国家激烈竞争的焦点。量子调控就是探索新的量子现象,发展量子信息学、关联电子学、量子通信、受限小量子体系及人工带隙系统,构建未来信息技术理论基础,具有明显的前瞻性,有可能在20~30年后对人类社会经济发展产生难以估量的影响。”崔海涛团队的研究项目就是在这一大背景下展开,致力于解决量子信息技术中关键的、基础性的问题,并对相关实验技术的发展产生重要的理论指导作用。

紧扣量子纠缠 顺通量子信息

细看崔海涛的研究履历,其关键词便是“量子纠缠”。

“如果说量子信息主要是基于量子力学的相干特征、重构密码、计算和通讯的基本原理,那么,量子纠缠在其中发挥的是非常重要而且非常基本的作用。”在多年的学习和研究过程中,崔海涛认识到,一方面,许多重要的量子信息技术都需要量子纠缠的参与才能实现,例如,量子远程传态、量子保密通讯、量子密钥分发等;另一方面,由于量子体系与其他自由度的相互作用,这种作用最终导致体系的自由度与其他自由度的量子纠缠,由于环境选择的结果,量子体系的相干性质会逐渐消失,此即所谓退相干过程。退相干是实现量子信息过程所面临的最大障碍,如何有效克服退相干,延长量子体系的相干时间是当前量子信息技术研究的前沿课题。“就是这样奇特的物理性质,物理学家们对它的理解至今也非常有限,这严重制约了量子信息技术的发展,因此,建立对量子纠缠普遍的物理理解已经成为当今量子信息领域最为急迫需要解决的问题之一。”

如何建立对多体量子态纠缠的普遍理解?如何在具体的物理系统中制备纠缠的量子多体态?看上去,只要解决了这两个问题,量子纠缠就不再是瓶颈,然而,真的如此简单么?“最直观的做法是将两体纠缠的理解推广到多体。但经事实证明,这种推广具有很大的局限,因为量子多体态的纠缠具有远比两体纠缠更为丰富的内容。”接着,崔海涛进行了举例说明,“在3量子比特中,存在两个随机定域操作与经典通讯操作下不等价的三体纠缠态;GHZ态和W态。它们都是真正的三体纠缠态,却表现出完全不同的纠缠性质。对于GHZ态,任意一个或两个量子比特的约化密度矩阵都是单位阵;而W态,通过对任一量子比特的测量,可以得到其他两个量子比特的最大纠缠态。4个量子比特情况就更为复杂,迄今为止也没有一个完整的分类。”

直观推广不成,崔海涛又开始考虑换角度钻研。他认为,多体纠缠的度量应该包括两方面的内容:纠缠模式(pattern)和纠缠强度(intensity)。纠缠强度即纠缠的大小,现已有一些比较好的度量方式,如几何纠缠;纠缠模式则是指对应多体纠缠的分类。而伴随着纠缠模式,又出现了一个新的问题――多体态不同纠缠模式表示什么样的物理意义?“因为这涉及到如何在实验室中制备不同的多体纠缠。不同的纠缠模式必然对应完全不同的物理性质,SLOCC不等价关系的存在也限制了从‘最大纠缠态’得到其他任意纠缠态的可能。对于不同的纠缠模式,我们需要不同的物理系统(Hamilton量)来制备。这些系统之间又是怎样的关系呢?”

为了解惑,在国家自然科学基金项目“几何相与量子纠缠的理论研究”和“多体系统中的量子纠缠及其几何分类的理论研究”的支持下,崔海涛带领研究团队在此研究方向上刻苦钻研多年,并取得了一些深刻的认识。通过附加对称性的要求,例如,量子态的平移不变性质,他们发现完全可以普遍地建立这些多体纠缠态间的等价关系。而且,经进一步研究发现,这些等价关系可以通过态的几何性质很好地区分。也就是说,不等价的多体纠缠对应体系的不同几何结构。更为重要的是,这些几何结构可以通过几何相物理地加以描述。多体纠缠中的非平庸几何结构的发现并不是孤立的,联系最近凝聚态体系中相关几何效应的发现,有理由相信他们之间存在某种形式的联系。相关的研究工作正在进行中。

事实上,围绕多体系统中的几何相与量子纠缠的理论问题,崔海涛自攻读博士期间就产生了浓厚的兴趣。特别是近5年来,陆续发表了一些高水平的学术成果,并主持承担了一些科研项目。迄今为止共发表学术论文22篇,均为SCI收录,论文总引用次数137次,他引超过80次。其中,有7篇文章发表在国际权威物理学期刊“Physical Review A”上。2007年发表在“Physics Letter A”上的论文“A Study on the suddendeath of entanglement”已被引用60次(他引57次),其他论文亦有不同程度的引用。

对于热爱这项研究的崔海涛来说,这种对未知科学世界的探索是他甘之如饴的兴趣和追求,也是他情愿脚踏实地“做一辈子的职业”。

篇9

关键词:结构化学;创新精神;高等教育;教育改革

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)02-0083-02

结构化学是高等院校化学、材料等相关专业的一门专业基础课,是理论化学的一个重要分支。它是探究原子、分子、晶体结构的微观结构,原子和分子中电子的运动规律,及原子和分子结构和性质之间关系的一门科学[1-3]。开设结构化学课程的目的是使相关专业的学生对微观世界的结构和运动规律有所了解,初步掌握结构与性质的相互关系;从而使学生更进一步地从更深的层次上理解其他化学相关的专业课程,包括无机化学、有机化学、分析化学、物理化学等。

一、结构化学课程的特点

结构化学这门课程特点明显,如下:(1)综合程度高;(2)理论性强;(3)内容抽象。由于这一系列的特点,初学者在开始接触这门课程时,常有听“天书”无从下手的感觉;作者在教学过程中也因此遇到了一些问题。下面将遇到的问题做一概括:

1.综合程度高。结构化学这门课程不是建立在经典力学体系下的课程,而是一门以量子力学为基础的课程[4]。因此在此门课程的学习开始,就要求学生们巩固好大一、大二所学的四大化学(无机化学、有机化学、分析化学、物理化学)课程以及其他学过的化学理论基础知识,并在脑海中建立起一套完善的量子力学体系。此外量子力学论还是近代物理的重要组成部分,因此同学还要兼备一定的物理知识基础。只有综合掌握了物理和化学的相关基础知识后,才能从本质上理解微观化学领域各个粒子的结构与性能的特征,学懂结构化学这门课程。由此可见,该课程不管是教还是学,两方面都存在着较大的难度。

2.理论性强。结构化学授课困难的一个重要原因就是课本中含有大量的公式推导过程,复杂的数学模型和大段的文字叙述求解过程。公式推导过程用到比较多的包括微积分、线性代数等高等数学知识。而高等数学方面向来是化学专业学生们的弱点,一步步的推导过程枯燥乏味,让学生感觉云里雾里般,进而忙于应付求解过程忽略了公式中各个变量的深层次含义。

3.内容抽象。微观粒子的结构和运动规律是结构化学的主要研究内容,而看不见摸不着的微观粒子的运动给同学们学的过程带来了一定的困难,文字叙述无法直观表达,只能靠学生的凭空想象。因此这门课程对学生的逻辑思维能力和空间想象能力都有较高的要求。

二、结构化学课程授课过程中存在的问题及改革建议

本文作者根据自己多年的教学授课经验,结合学生课后的反馈意见,对改革结构化学的教学方式提出了一些建议,旨在激发学生的学习兴趣充分调动学生的学习积极性,活跃课堂气氛提高课上学生的吸收率。

1.重视引导。结构化学是一门化学专业类的理论基础课,学生们看到教材上大段的文字叙述还有繁杂的数学公式推导过程,往往还没有开始学习就对此门课程失去了兴趣。所以,在上第一节课的时候就应对学生进行正确的引导,在绪论课上给大家讲述一些结构化学发展史。首先便是1900年,普朗克提出了量子假说,勇敢地打破了能量必须连续变化的经典理论,规定了以间断形式存在的能量,电磁场中的能量和物质交换间的能量,能量子的大小同辐射频率成正比,用普朗克常数作为二者之间的比例常数,从而得出黑体辐射能量分布公式,完美地诠释了黑体辐射现象。其次在1905年,爱因斯坦意识到了量子化概念在微观领域的重要性,引进了光子的概念,从而解释了光电效应,开启了量子力学的新篇章。学生们在听故事的同时,会不知不觉地克服恐惧心理,激发学习的兴趣。最后顺着教学大纲的思路,引导大家用量子力学体系的思维去思考分析结构化学中所遇到的问题,让同学们处于愉快的气氛中,带着笑容下课。

2.充分利用多媒体教学手段辅助教学。结构化学在教学内容上涉及一些相对抽象的模型,如原子轨道形状、多原子分子的组合方式、配位化合物的配位形式、晶体的点阵结构等都涉及原子和分子的空间排布规律,这些内容要求学生具备较强的空间想象能力。传统的板书教学方式很难将结构化学中较为抽象的理论以直观的形式表现给同学们,大段大段的纯文字描述也使得学生感到晦涩难懂。多媒体技术可以将授课内容动态化、立体化[5],绝大多数的分子、晶体结构都可以用3D软件结合FLASH等做成可360°观看,任意缩放、平移、旋转的模型,同学们可任意角度观看,有利于巩固加深记忆。

3.注重理论与实际的联系。由于结构化学是一门理论基础学科,因此学生们理解起来可能会有一定的难度,容易学过即忘,在教学过程中应让学生通过理论联系实际中所熟知或已学过的现象,通过类比的方法巩固加深记忆。比如,在讲晶体的宏观对称性时,联系大自然,启发学生思考:大自然虽然讲究对称美,但为什么很少有五边形和七边形的物体呢?由此引入晶体的空间点阵结构、对称元素、对称操作的概念并对对称轴次加以证明,得出结论:晶体结构中的对称轴次只允许存在1、2、3、4、6这五种不存在5和7,这与大自然世界的对称美是相呼应的。而讲到离域键的共轭效应时,以碱性条件下酚酞会变成红色为例,结合学生高中所学知识让学生理解酚酞变色的根本原因,主要过程是酚酞与碱性溶液发生反应,形成了离域键,产生了共轭效应,酚酞-碱性溶液体系能量下降,能级间隔变小,光谱偏移至可见光区,因此我们看到无色的酚酞变成了红色。通过这种由外至内、循序渐进的引导方式使学生转变对结构化学这门课程的印象,说明这门课程不是凭空想象漫无边际地研究我们用不到的东西,而是服务于实践,解释着实践中所遇到的问题,从而使他们树立起学习信心,增加学习动力,真正做到课上讲过的东西当堂就吸收理解掌握。

4.弱化公式推导。结构化学教学的目的就是让同学们理解掌握结论和推导过程中各符号的物理意义及这些符号在化学中起到了什么样的作用,有什么应用。结构化学中的公式推导过程用到的高等数学的课程知识比较多,包括微积分的多重积分求解,线性代数中的行列式求值等。而数学功底普遍是化学专业学生们的弱项,大部分所用到的数学知识又都是在大一学习的可能已经被忘到了脑后,因此在讲述结构化学课本中的公式时应尽可能弱化公式推导过程,强化学生对整体大局和结论的理解,不再单独强调详细的求解过程。因此在讲到公式部分时,首先要明确每个符号所代表的物理意义,从本质上理解结构化学这门课程,引导学生们如何去解决问题,解决问题后又能得出怎样的结论,所得结论的实际意义是什么,然后再回到研究数学推导求解过程上。让学生抓住该课程的主线厘清学习这门课程的基本思路,顺着大纲学下去,把握住主要的大方向,这样继续向后面章节学习就不会出现断层。反之如果从数学公式推导出发,进行烦琐的化简计算,就容易忽略需要解决的问题的主体,不知道这些纯数学求解过程是要干什么,得出的结果有什么意义,事倍功半。

5.科学的完善考核机制。考试是教学活动不可缺少的一部分,也是衡量教师授课成果和学生掌握课程情况的主要方法。现代大学是以培养综合创新型人才为目的的,因此在教学考核过程中,应该用科学的、多元的方式去综合评价每个学生,拒绝一考定终身的制度,取代传统的单一闭卷考试方法,转变学生们认为只要死记硬背课本就能取得好成绩的惯性思维。将最终成绩定为三部分之和,其中,平时成绩占30%;期中成绩30%;期末成绩40%。平时成绩的30%包括课堂表现(10%)、习题作业(10%)和专业课小论文(10%)。课堂上教师有针对性地提出问题并根据学生的回答情况给出分数,既能随时掌握学生们的学习状况还能根据学生们的整体掌握情况随时调整课程安排。有利于增强师生课上的互动、改变课堂沉闷的授课氛围,培养学生们独立自主的思考问题,讨论问题,解决问题的能力,同时还可以锻炼他们的语言表达能力和应变能力。课后的习题作业主要是引导学生正确地复习所学内容。专业小论文则偏重于考查学生查阅相关文献、获取知识的能力。这样灵活的考试机制有利于引导学生改变突击复习期末考试的方法,树立正确的学习观,从平时开始做到课后即复习,查漏补缺,也只有这样才能真正达到结构化学的教学目的。

根据笔者多年来对结构化学课程改革的摸索,使用上述方法学生们学习结构化学课程的积极性明显提高,课堂气氛也活跃起来了,学生们爱听了,授课效率明显提高。

总之,结构化学是一门其中理论在实际生活中接触较少,学习的知识内容相对抽象,老师和同学们在教与学的过程都感到较为困难的理论基础课。教师们应精心备课,认真设计教学内容,研究课程改革,由浅入深的教学,消除学生们对课程的恐惧心理。通过一系列的改革过程,改变课堂环境,活跃课堂气氛,让学生体会到独立自主创新和团队合作精神的重要性,培养他们对问题分析和解决的能力;最后引入科学合理的考核机制对学生进行综合评价,引导学生树立正确的学习观,不断充实结构化学理论基础知识,提高主动获取知识、综合运用知识的能力,培养多能创新型优秀人才。

参考文献:

[1]杨志广,彭鹏,石晓明,周凯.如何激发学生学习结构化学的兴趣[J].教育教学论坛,2014,(20):118-120.

[2]令狐文生,董华平.结构化学课程建设的实践与思考[J].教育教学论坛,2011,(35):214-215.

[3]韩波.结构化学教学实践与初探――引导启发式教学[J].科技信息,2013,(25):218,259.

篇10

美国著名社会学家、马里兰大学社会系杰出教授乔治・瑞泽尔曾在其代表作《社会的麦当劳化》一书中分析指出,工业经济时代,最为典型的特征是四大特性,即追求效率、可量化、可预测、可控制。符合四大特性将得出最大产出。

事实上,无论是经济学及经济实践领域,还是依照经济学理念进行“再造”的其他学科和领域,乔治・瑞泽尔所说的“麦当劳化”四大特性应用都非常广泛。追求效率的意义自不待言,可量化则需要启动最为精细的细化,可预测、可控制意味着需要实行标准化、均一化。

现代社会中的“科学管理”,本质上是以“麦当劳化”为内核的。由此形成的管理科学,可以有效控制管理成本,短平快地复制管理体系。这样的管理,要求管理者和管理对象服从“麦当劳化”,谢绝个性,排斥创新,拒绝变化。当然也因此出现了哲学家所称的“异化”问题。

不光是商业管理领域,教育、公共管理等其他许多方面,早就出现了对“麦当劳化”的猛烈抨击,一些学者甚至认为,“现代病”、“城市病”、“文明病”的内核就源于此。批评评归批评,让人顿为沮丧的是,批评者往往难以拿出令人信服的解决方案。

美国组织管理领域前沿大师和思想家、哈佛大学博士、非营利组织柏卡纳研究所(TheBerkana Institute)联合创始人玛格丽特・惠特利,2014年获得了国际领导力协会颁发的“终身成就奖”。玛格丽特・惠特利所著的《领导力与新科学》一书,是从近几十年来量子力学等新科学的深入发展拓展深化了人对世间万物的认识角度,揭示指出“科学管理”、“麦当劳化”不符合事物演进发展的规律和科学定律。

自然秩序永恒的定律在于变化,这也因此使无序很大程度上会成为新秩序的源头。依照量子理论,事物的准确预测是不可能的,只能使用更为确切的术语:可能性。“在亚原子层次上,如果不干涉事物的生成,或者更准确地说,如果不参与事物的生成,就观察不到任何东西”。

《领导力与新科学》将牛顿开启的近代科学作为某种意义上的批判对象。牛顿、笛卡尔等近代科学巨匠虽然没有直接描述“麦当劳化”,却开启了将整体简化为部分,并进一步分割的做法。在组织管理上,人们习惯于对结构和组织进行设计,广泛收集组织,用先进的数学方法进行决策,建立不断优化的精细模型,纳入和分析更多的变量,提出更加精确的分析方法。玛格丽特・惠特利指出,在牛顿式的组织中,界限无处不在,角色和责任都划分得很清楚,这给人一种非常可靠的感觉。

实际上,在传统的管理秩序下,管理陈规要想发挥作用,常常也免不了个体、群体在流程中作出调整,适应环境需要灵活调整行为,都有“自组织”的经历。有意思的是,管理科学、领导科学在强调其“科学性”一面的同时,也将无法回避艺术性的一面。

量子力学揭示的世界,不是人们误认为的确定的、僵化的世界。世界不是一台机器,人更不是机器,有关世界与人、人与人的关系和联系,以及事物的预测和控制,人们一直以来就错了。20世纪30年代,天文学家詹姆斯・金斯就曾指出,“与其说世界看起来像是一个大机器,不如说其更像一位伟大的思想家”――量子世界,人们不需要精准的描述和细分任务,而要学会如何推动进程。依照量子理论,在系统内的局部开展行动,能够深入到系统的内部,参与到所有同步发生的复杂事物之中,因而需要更加关注相关性,而不是狭义、简单意义上的因果性。这些都是互联网时代的重要特性。