量子力学与相对论的矛盾范文

时间:2023-11-21 18:13:08

导语:如何才能写好一篇量子力学与相对论的矛盾,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

量子力学与相对论的矛盾

篇1

关键词:物理本体;物理实体;量子现象;主观;客观

基金项目:国家社会科学基金项目“量子概率的哲学研究”(16BZX022)

中图分类号:N03 文献标识码:A 文章编号:1003-854X(2017)06-0054-06

一、引言

时间和空间是人类所有经验的背景。除去存在的事物,时间、空间什么也不是,不存在只有一件事物的时间、空间,时空是事物之间相互关系的一个方面。

人类通过感性经验认知的时空,称作经验时空;以科学原理和科学方法指导认知的时空是科学时空;牛顿时空、狭义相对论时空、广义相对论时空、量子力学时空,是经验时空的科学提升和科学发展,称作物理时空①。物理时空是科学时空。描述现象实体的时空是现象时空,经验时空、物理时空、科学时空均是现象时空。而未经观察的“自在实体(物理本体)”所在时空,称为“本体时空”。“本体时空”是复数的②,因此,人类实质生活在复数时空中 。作为自然人,观察者存在于“本体时空”,实时空是人类对时空认识的简化③。

主体、客体、观察信号是人类认知自然的三大基本要素④。一般“现象对观察者的主观依赖性”有其客观原因,体现观察信号的自然属性对观察者在认知中的影响。当把现象对观察者的主观依赖性转化为时空的属性后,就可以达到客观描述物质世界⑤。所谓客观描述就是理论计算与经验及科学实验结果相符。

考虑观察信号的客观作用并纳入时空理论的科学建构之中,客观描述物理现象,是物理学家的重要工作。一般,哲学认知中没有明晰“观察信号中介作用”的客观地位,不管“机械反映论”,还是“能动反映论”,都自动将其融入“反映论”理论体系,尤其是前者,往往容易导致主观唯心主义的滋生。

狭义相对论用光对时,考虑了光对建立时空的贡献;牛顿时空是对时信号速度c趋于无穷大的极限情态;考虑引力场对建立时空的影响,引力时空是弯曲的,狭义相对论的平直时空是它的局域特例。从牛顿力学到狭义相对论再到广义相对论,时空发生了变化,但主体与描述对象的关系没有变,主体对客体的描述是客观的。那么是否主体对认知对象完全没有主观影响?如果有,它如何产生,又如何消解,实现客观描述物质世界?经典力学中,人类的处理方法是通过揭示“现象对观察者的主观依赖性”及其产生机理,在不同认知领域区分描述中可以忽略的和不可忽略的,能忽略的舍弃,不能忽略的转化成时空的属性,实现客观描述;而从牛顿力学(或相对论力学)到量子力学,时空没有变化,描述对象具有波粒二象性,“量子现象的主观依赖性”更为突出。如何消解“量子现象对观察者的主观依赖性”,实现量子现象的客观描述,一直是量子力学基础讨论的热点。量子力学必须有自己的客观描述量子现象的时空⑥。

量子力学时空是闵氏时空的复数拓展和推广⑦,由此可以实现客观描述量子世界。它与相对论时空有交集,也有异域。有因必有果,反之亦然,时间与因果关系等价⑧。量子力学中的非定域性,与能量、动量量子化及量子态的突变性相关联。突变无须时间,导致因果链断裂,与因果关联的相互作用也被删除,由此引进了类空间隔。平行并存量子态的出现,是不遵从因果律的量子力学新表现;当能量、动量和相互作用变得连续,宏观时序得到恢复时,回到相对论时空,量子测量中“量子态和时空的坍缩”⑨ 是不同物理时空的转换,希尔伯特空间只是它们的共同数学应用空间⑩。

时空不是绝对的,相对时空有更广阔的含义,人类需要扩大对时空概念的认知,不同的认知层次有不同的时空对应,复数时空更为本质。人们不应该将所有领域的物理实体归于某一时空描述,或者用一种时空的性质去否定另一种时空的存在。还是爱因斯坦说得好:是理论告诉我们能够观察到什么。当然,新的实验事实又将告诉人们,理论及其对应的时空应该如何修改和发展。理论不同时空不同,时空具有建构特征。

二、时空的哲学认知与物理学描述

时空是哲学的基本概念,也是物理学的基本概念。哲学认为,时间和空间是物质的存在形式,既不存在没有时空的物质,也不存在没有物质的时空。笛卡尔指出,空间是事物的广延性,时间是事物的持续性;康德认为,时空是感性材料的先天直观形式;牛顿提出时间和空间是彼此分离,绝对不变的,强调数学的时间自我均匀流逝;莱布尼茨说,空间是现象的共存序列,时间与运动相联系;黑格尔认为,事物运动的本质是空间和时间的直接统一。休谟认为,时、空上的接近和先后关系与因果性直接相关。中国的“宇”和“宙”就是空间和时间概念,它是把三维空间和一维时间概念同宇宙密切联系在一起的最早应用{11}。

哲学具有启示作用,但时空概念如果不与人的社会实践、科学实验、科学理论及其数学物理方法相联系,就只能停留在形而上,无法上升为科学理论概念。

物理学中,空间从测量和描述物体及其运动的位置、形状、方向中抽象出来;时间则从描述物体运动的持续性、周期性,以及事件发生的顺序、因果性中抽象出来;空间和时间的性质,主要从物体运动及其相互作用的各种关系和度量中表现出来。描述物体的运动,先选定参照物,并在参照物上建立一个坐标系,一般参照物被抽象成点,它就是坐标系的原点;假定被描述物体的形体结构对讨论的问题(或对参照物的时空)没有影响,将物体抽象成质点,讨论质点在坐标系中的运动及其相关规律,这就是物理学。由此,“时空是物质的存在形式”的哲学认知也就转化为人类可操作的具体物理理论描述。

可见,时空的认知与人类的社会实践、科学实验、科学进步直接相关,离不开物理和数学方法的应用。笛卡尔平直空间、闵可夫斯基空间、黎曼空间都已作为物理学所依托的几何学,在牛顿力学、狭义相对论、广义相对论中得到了充分应用。由此,几何学被赋予了物理意义。从牛顿力学到狭义相对论再到广义相对论,时空发生了变化,但描述对象与观察者之间的关系没有变,描述是客观的,并且描述对象都可抽象成经典的粒子,采用质点模型。量子力学不同,从牛顿力学(相对论力学)到量子力学,描述量子现象的时空没有变化{12},物理模型没有变,但量子现象对观察者有明显的主观依赖性,难以客观描述微观量子现象。深入分析,解决的办法有两种,一是更换物理模型的同时也改变物理时空,消除“量子现象对观察者的主观依赖性”,实现客观描述微观量子客体;二是改变时空的同时,保留“量子现象对观察者的主观依赖性”,将本体、认识、时空融为一体,主观纳入客观,模糊主客关系。双4维时空量子力学基础采用了第一种方法。通过场物质球模型,把点模型隐藏的空间自由度释放出来;在改变物理模型的同时,也改变了描述时空;将不是点的微观客体自身的空间分布特性,转化为描述空间的属性,客观描述量子客体。我们认为,第二种方法将主观认识不加区分地“融入时空”,有损客观性、科W性,量子力学时空必须是描述客观世界的时空。物理时空需要建构。

三、牛顿绝对时空中“现象对观察者的主观依赖性”及其“消解”

众所周知,物理学对物体运动状态的描述,理应包含参照物和被描述物体自身的时空特征,而参照物和物体自身的时空特征,必须通过观察发现。观察需要观测信号,物体运动状态及其时空特征必然带有观测信号的烙印{13}。

“物理本体”不可直接观察,我们观察到的是“物理实体”{14}。参照物与研究对象都有自己对应的物理时空,牛顿力学时空应该是两者的综合,而不应该只是参照物的时空。但是,牛顿力学中光速无穷大,在讨论物体运动时,又假设研究对象的时空结构对讨论的问题没有影响,忽略不计,于是,研究对象抽象成了质点,整个理论体系就只有与参照物联系的时空了。

任何具体物体都不会是质点。当用信号去观察它时,物体自身的时空特征与物体的运动状态与观察信号的性质、强弱和传播速度相关。质点模型忽略物体自身的几何形象及其变化,忽略运动及观察信号对物体自身时空特征的影响,参照物也不例外。在从参照物到坐标系的抽象中,抽掉运动及观察信号对参照物时空特性的影响,就是抽掉物体运动及观察信号对坐标系时空特性的影响,就是抽掉人的参与对时空认知的影响{15}。牛顿力学时空与物体运动及观察者无关,绝对不变,基于绝对不动的以太之上。所以,牛顿可以把时间和空间从物质运动中分离出来,时间和空间也彼此分割,空间绝对不变,数学的、永远流逝的时间绝对不变{16}。哲学的时空演变成了可操作的物理时空。这是宏观低速运动对时空的简化与抽象,理论与宏观经验及计算相符。

相互作用实在论认为,现实世界是人参与的世界,对一个研究对象的观察,离不开主体、客体、观察信号三个基本要素。参照物和观察对象的运动和变化及其时空属性,与观察信号的性质相关。牛顿力学中,不是没有现象对观察主体的依赖性,而是在理论的建立中认为影响很小,可以忽略不计。牛顿力学是“物理本体=物理实体”的力学{17}。这与宏观经验和科学实验相符,在宏观低速运动层次实现了主客二分,理论被看作是对客观实在的描述。牛顿力学中,物质告诉时空如何搭建描述背景,时空告诉物质如何在背景中运动。二者构成背景相关。

牛顿时空是均匀平直时空,相对匀速运动坐标系间的变换是伽利略变换。物理定律在伽利略换下具有协变性,相对性原理成立。

四、狭义相对论中“现象对观察者的主观依赖性”及其“消解”

狭义相对论建立之前,洛伦兹就认为高速运动中物体长度在运动方向发生收缩{18}。这是他站在牛顿时空立场,承认以太及绝对坐标系的存在对洛伦兹变换所作的解释。描述时空没有变,“现象对观察者出现了主观依赖性”。自然现象失去了客观性,这是一次认识危机,属19世纪末20世纪初两朵乌云之一。

狭义相对论不同,它考虑宏观高速运动中观察信号对物体时空特征的影响。爱因斯坦在“火车对时”实验中,他用“光”作为观察、记录、认知物体时空特征的信号{19};通过参照物到坐标系的抽象,论证静、动坐标系K与K′“同时性”不同,静、动坐标系运动方向时空测量单位发生了变化;将洛伦兹所称“运动物体自身运动方向上的长度收缩”演变成坐标系时空框架的属性,还原质点模型,建立相对论力学。实现了观察者对观察对象的客观描述。

狭义相对论中质点的动量、能量、位置和时间都有确定值,质点的运动具有确定的轨迹,这一点与牛顿力学相同。

狭义相对论时空的另一重要物理意义是揭示了“物理本体”的客观实在性。

牛顿力学缺少相对论不可直接观察的静能(m0c2,m0c)对应物,物理本体=物理实体,哲学上的抽象时空直接过渡到牛顿物理时空。

狭义相对论不一样,每一个物体都有一个不可直接观察的静能(m0c2,m0c)对应物,它在任何静止参考系中都是不变量,是物理实体背后的物理本体,物理本体不变,变的是mc2、mc对应的物理实体。“物理本体”既不是形而上的(物自体),也不是形而下的(物体),是形而中的(静能对应物)。它可以认知、可以理论建构,但又不可直接观察。相对于牛顿,爱因斯坦相对论揭示了“物理本体”的真实存在性。“客观物质世界”不是思维的产物。

狭义相对论中,物质告诉时空在运动方向如何修正测量单位,时空告诉物质如何长度收缩、时间减缓。时空具有相对性。

狭义相对论时空虽然也是均匀平直时空,但由于有上述“相对时空”的出现,时空度规与欧氏时空度规有明显区别,所以称为赝欧氏时空。

但狭义相对论仍然是只考虑光及光速的有限性对建立时空的影响,没有考虑引力作用对建立时空的影响。如果考虑引力对时空的影响又如何呢?

五、广义相对论中“现象对观察者的主观依赖性”及其“消解”

广义相对论中有水星近日点进动问题和光走曲线的讨论。站在牛顿平直时空的立场,观察结果与理论计算不符。这不是仪器的精度不够,也不是操作失误,而是理论本身的问题。因为,牛顿力学也好,狭义相对论也好,讨论引力问题,引力场对参照物和研究对象时空属性的影响都没有计入其中,而留在观察者对“现象”的观察、判断之中,出现宇观大尺度“现象对观察者的主观依赖性”。如果考虑引力场使时空发生弯曲,利用弯曲时空计算水星近日点进动和光走曲线现象,“现象对观察者的主观依赖性”就变成时空的属性。“现象对观察者的主观依赖性”就得到了“消解”,观察现象与理论结果就取得了一致。这里,物质使时空弯曲,时空告诉物质如何在弯曲时空中运动。广义相对论实现了观察者对观察对象的客观描述。

广义相对论时空是弯曲的,时空度规是变化的。

六、量子力学中“现象对观察者的主观依赖性”及其“消解”

微观客体具有波粒二象性,同一个电子,通过双缝表现为波,而打在屏幕上又表现为粒子,电子集波和粒子于一身,“量子现象对观察者的主观依赖性”更为突出。经典力学中波动性和粒子性不能集物体于一身,量子力学与经典力学表现出深刻的矛盾。矛盾的产生,可能是描述微观现象的时空出了问题。量子力学的研究领域是微观世界,研究对象是微观客体,不是经典的粒子,用以观察的信号也不是连续的光,而是量子化了的光,通过光信号建立的时空应该与牛顿、相对论时空有所区别。而量子力学使用的还是牛顿时空、狭义相对论时空,时空没有变,物理模型没有变,而研究领域、观察信号和研究“对象”变了。量子力学必须有自己对应的时空,将“量子现象对观察者的主观依赖性”,转化为描述时空的属性,实现客观描述量子现象! 双4维时空量子力学就是为实现这一目标应运而生的。

现有量子力学“量子现象对观察者的主观依赖性”之所以难以消解,与量子力学中的点模型相关。许多量子现象与点模型隐藏的空间自由度有直接联系,但点模型忽略了这些自由度对产生微观量子现象的作用和影响。我们必须将隐藏的空g自由度还原于时空,才可能正确地认识、客观描述量子现象。

可以公认,微观客体不是点{20},是一个有形客体,有一定的空间分布,不存在确定于某点的空间位置,这是客观事实。理论上,牛顿时空几何点位置是确定的,量子力学使用的是质点模型,0 维,位置也是确定的,牛顿时空可以精确描述质点的运动。那么微观客体空间分布的不确定性如何处理?人们只好转而认为点粒子在其“空间分布”区域位置具有概率属性。微观客体自身空间分布的客观实在性在量子世界转化成了一种主观认知,赋予了微观客体“内禀”的概率属性,其运动产生概率分布,或称其为概率波。

这是一个认识上的困惑,似乎量子力学描述失去了客观实在性。这也是量子力学当今的困境。解决困难的方法是:(一)更换点模型,释放点模型隐藏的自由度,展示“这些自由度对产生微观现象的贡献”;(二)建立适合量子力学自身的时空,将释放的自由度植入其中,让“量子现象对观察者的主观依赖性”变成量子力学时空自身的属性。

双4维时空量子力学的办法是:(一)用“转动场物质球”模型取代“质点”模型,释放点模型隐藏的空间自由度;(二)将4维实时空M4(x)拓展到双4维复时空W(x,k),且将“释放的空间自由度――曲率k”作为双4维复时空的虚部坐标;(三)4维曲率坐标将量子力学赋予微观客体自身的概率属性变成量子力学复时空的几何属性,场物质球自身的旋转与运动产生物质波――物理波。

“场物质球”与“物质波”(类似对偶性假设)既是同一物理实在的两种不同描述方式,更是微观客体粒子性和波动性的统一,曲率的大小表示粒子性,曲率的变化表示波动性。场物质球的物质密度是曲率k的函数,因此,物质波既是场物质球的结构波又是场物质密度波。物质波不是传播能量,而是传播场物质球的结构或物质密度变化,可映射成实时空M4(x)的概率分布{21},与实验结果相一致。

这样,点模型中“量子现象对观察者的主观依赖性”通过“释放的自由度”转变为时空W(x,k)的属性,物质波传播其中,量子现象是物质波所为。

研究表明,是量子测量引入的连续作用,使双4维时空W(x,k)全域转换到实时空M4(x),波动形态转变成粒子形态(“相变”),球模型转换成点模型,概率属性内在其中,物质波自动映射成概率波,数学处理类似表象变换{22}。

简言之,传统量子力学,微观客体简化成质点,描述时空不变,人的主观意识介入其中,将其空间分布特性――位置不确定性,变成点粒子的概率属性,实现描述对象从客观到主观认知的转变,具有位置不确定性的点粒子,其运动产生概率波;双4维时空量子力学,微观客体简化成场物质球,“空间分布具体化为几何曲率”,空间分布特性变成曲率坐标,仍然是从客观到客观,描述时空变成了复时空,曲率坐标在其虚部,场物质球的运动产生物质波――物理波。通过量子测量,物质波映射成概率波,球模型演变成点模型,显示概率属性,时空内在自动转换,量子现象对观察者的主观依赖性消解在建构的时空理论中。具体论证方法是:

将静态场物质球写成自旋波动形式:Ψ0=е■,描述在复空间。ω0是常数,它的变化只与自身坐标系时间t0相关,全空间分布(物理本体所在空间)。设建在“静态”场物质球上的坐标系为K0,观察微观客体从静止开始作蛩僭硕,由洛伦兹变换:

微观客体的运动速度不同,平面波相位不同。复相空间kμxμ即为物质波所在时空。物质波是物理波。

自由微观客体的速度就是建在其上惯性坐标系的速度,惯性系间的坐标变换,隐藏速度突变――“超光速”概念,因为,连续变化会引进引力场破坏线性空间。不同惯性系中平面波之间,相位不同,类似量子力学中的不同本征态。这是相对论中的情形{24}。

但是,量子力学建立其理论体系时,把上述不同惯性系中的平面波(不同本征态,每一本征态则对应一惯性系),通过本征态突变跃迁假设(量子分割),切断因果联系,形成同一时空中“同时”并存的本征态的叠加。态的跃迁不需要时间,“超光速”(非定域),将类空间隔引入量子力学时空,破坏了原有的因果关系。叠加量子态的存在,是“违背”因果律在量子力学中的新表现。

量子力学时空显然不是牛顿、狭义相对论时空,但量子力学却误认为量子跃迁引起的时空性质的变化是牛顿、狭义相对论时空中的特征,这当然会带来不可调和的认知矛盾。

同一微观客体,不同本征态“同时”并存的物理状态,从整体看,是洛伦兹协变性在量子力学中的新表现。突变区“超光速”,是类空空间,“不遵从”因果律;释放光子的运动在类光空间;而本征态自身在类时空间,微观客体运动速度不能超过光速,需保持因果律,物质波讨论的就是这一部分,就像相对论讨论类时空间物理一样。量子纠缠态将涉及到上述三种不同性质物理空间量子态的转换,有完全合理的物理机制,不需要思维的特殊作用。不过,相对论长度收缩效应,将以物质波波长在运动方向上的收缩来体现。有了双4维时空量子力学,量子力学与相对论就是相容的,光锥图分析一样适用。

相对论与量子力学的不同,关键在于认知层次发生了变化,光由连续场演变成了量子场。而我们用来观察世界的光信号直接与时空相关,光的物理性质的变化,必然带来物理空间性质的变化,带来物理模型的变化,带来量子力学时空W(x,k)与相对论时空M4(x)之间的区别,带来对物质波――物理波的全新认知。我们预言,物质波有通讯应用价值{25},但与量子力学非定域性无关。

《双4维复时空量子力学基础――量子概率的时空起源》的理论实践表明,我们的工作是可取的{26}。结论是,量子力学中,物质告诉时空如何具有概率属性,时空告诉物质如何作概率运动。量子现象对观察者的主观依赖性消解在对应的时空理论之中,实现了观察者对量子现象的客观描述。

双4维时空是描述量子现象的物理时空,时空度规,无论实数部分,还是虚数部分,都是平直的{27}。

近年来,由于量子通讯技术的飞速发展,量子纠缠的物理基础引起了人们的特别关注,波函数的物理本质,量子力学的非定域性讨论十分热烈。“量子现象对观察者的主观依赖性”更是讨论的核心。人们甚至被量子现象的奇异性迷惑了,特别是,有科学家甚至认为:“客观世界很有可能并不存在”。世界是人臆造出来的?科学实在论者当然不能赞成!更加深入的探讨,我们将另文讨论。

按照曹天予的评论,《双4维复时空量子力学基础――量子概率的时空起源》值得关注{28}。双4维复时空与弦论、圈论比较,最大优点是将时空拓展、推广到了复数空间,数学没有那么复杂,而物理学基础却更加坚实、清晰。

七、结论与讨论

1.“现象对观察者的主观依赖性”普遍存在于人与自然的关系之中,融入时空的只能是物理实体对时空有影响的部分,时空具有建构特征。

2. 物质运动与时空的关系:牛顿力学中,物质告诉时空如何搭建运动背景,时空告诉物质如何在背景上运动;狭义相对论中,物质告诉时空如何修正测量单位,时空告诉物质如何在运动方向长度收缩、时间减缓;广义相对论中,物质告诉时空如何弯曲,时空告诉物质如何在弯曲时空中运动;量子力学中,物质告诉时空如何具有概率属性,时空告诉物质如何作概率运动。

3. 量子力学时空是平直的,其方程是线性的,而广义相对论时空是弯曲的,其方程是非线性的{29}。量子力学与广义相对论的统一,不能机械地凑合,它们的统一,必须从改变时空的性质做起,建立相应的运动方程,并搭起非线性空间与线性空间的相互联络通道。

注释:

① 赵国求:《双4维时空量子力学基础》,湖北科学技术出版社2016年版,第5页;Cao Tian Yu, From Current Algebra to Quantum Chromodynamics: A Case for Structural Realism, Cambridge: Cambridge University Press, 2010, pp.202-241.

② Rocher Edouard, Noumenon: Elementaryentity of a Newmechanics, J. Math. Phys., 1972, 13(12), pp.1919-1925.

③④⑥⑦⑩{13}{15}{17}{21}{22}{24}{25}{27} w国求:《双4维时空量子力学基础》,湖北科学技术出版社2016年版,第5、105、9、147、179、94、133―136、106、151、151、159、152、149页。

⑤ 主观与客观:“客观”,观察者外在于被观察事物;“主观”,观察者参与到被观察事物当中。 辩证唯物主义认为主观和客观是对立的统一,客观不依赖于主观而独立存在,主观能动地反映客观。

⑧ L・斯莫林:《通向量子引力的三条途径》,李新洲等译,上海科学技术出版社2003年版,第29―33页。

⑨ 张永德:《量子菜根谭》,清华大学出版社2012年版,第29页;赵国求:《双4维时空量子力学基础》,湖北科学技术出版社2016年版,第178页。

{11} 冯契:《哲学大辞典》,上海辞书出版社2001年版,第1579―1582页。

{12} 参见L・斯莫林:《物理学的困惑》,李泳译,湖南科学技术出版社2008年版。

{14} 相互作用实在论中的基本概念:(1)物质:外在世界的本原。(2)基本相互作用:遍指自然力,有引力,电磁、强、弱等力。(3)自在实体:指未经观察的“自然客体”(相互作用实在论中,自在实体作为物理研究对象时称物理本体)。(4)现象实体:经过观察,系统的、稳定的、深刻反映事物本质的理性认知物。现象则表现自在实体非本质的一面。(相互作用实在论中,现象实体作为物理研究对象时称物理实体)。(5)观测信号:人类认知世界使用的探测信号。

{16} 参见伊・牛顿:《自然哲学之数学原理宇宙体系》,武汉出版社1996年版。

{18} 参见倪光炯等:《近代物理学》,上海科学技术出版社1980年版。

{19} 参见A・爱因斯坦:《相对论的意义》,科学出版社1979年版;爱因斯坦等:《物理学的进化》,周肇威译,上海科学技术出版社1964年版。

{20} 坂田昌一:《坂田昌一科学哲学论文集》,安度译,知识出版社2001年版,第140页。

{23} 参见Guo Qiu Zhao, Describe Quantum Mechanics in Dual 4d Complex Space-Time and the Ontological Basis of Wave Function, Journal of Modern Physics, 2014, 5(16), p.1684;赵国求:《双4维时空量子力学基础》,湖北科学技术出版社2016年版,第149页。

{26} 参见Guo Qiu Zhao, Describe Quantum Mechanics in Dual 4d Complex Space-Time and the Ontological Basis of Wave Function, Journal of Modern Physics, 2014, 5(16), p.1684;赵国求:《双4维时空量子力学描述》,

《现代物理》2013年第5期;赵国求、李康、吴国林:《量子力学曲率诠释论纲》,《武汉理工大学学报》(社会科学版)2013年第1期。

{28} 曹天予:《当代科学哲学中的库恩挑战》,《中国社会科学报》2016年5月31日。

篇2

在建立科学理论体系的过程中,往往需要以一系列巨量的、通常是至为复杂的实验、归纳和演绎工作为基础。而且人们一般相信科学知识就是在这个基础上产生和累积起来的。但只要这种认识活动过程是为一个协调一致的目标所固有,只要它真正属于科学研究自我累进的进程,则不论其如何复杂,仍只是过程性的,而不从根本上规定科学的性质、程序,乃至结论。这就使我们在考察复杂的科学认识活动时,可以抽取出高于具体手段的,基本上只属于人类心智与外在世界相联络的东西,即科学语言,来作为认识的中介物。

要说明科学语言何以能成为这样的中介,需要先对科学的认识结构加以分析。

作为一种形式化理论的近现代科学,其目的是力图摹写客观实在。这种摹写的认识论前提是一个外在的、自为的客体和作为其思维对立面的内在的主体间的双重存在。这一认识论前提在科学认识方面衍生出一个更实用的前提,就是把客体看作是一种自在的“像”或者“结构”(包括动态结构,比如动力学所概括的各种关系和过程)。

这一自在的实在具有由它的“自明性”所保证的严格规范性。这种自明性只在涉及存在与意识的根本关系时才可能引起怀疑。而科学是以承认这种自明性为前提的。因此科学实际就是关于具有自明性的实在的思维重构。它必须限于处理自在的实在,因为科学的严格规范性(主要表现为逻辑性)是由实在的自明性所保证的,任何超越实在的描述都会破坏这种描述的前提。这一点对稍后关于量子力学的讨论非常重要。

上述分析表明,科学的严格规范性并非如有唯理论倾向的观点所认为的那样,是来自思维,也并非如经验论观点所认为的来自具体手段对经验表象的操作,也并不象当代某些科学哲学家所认为的纯粹出于主体间的共同约定。科学的最高规范是存在在客观实在中的,是来自客体的自明性。一切具体手段只是以这种规范为目标而去企及它。

在科学认识活动中,不论是一个思维过程还是一个实验过程,如果其中缺失了语言过程,那就什么意义都不会有。科学语言与人类思维形态固然有很大的关系,但是它们可能在一个很高的层次上有着共同的根源。就认识的高度而言,思维形态作为人类的一种意识现象,对它进行本质的追究,至少目前还不能完全放在客观实在的背景上。因此,在科学认识的层次上,思维形态完全可以被视为相对独立的东西。而科学语言则是明确地被置于实在自身这一背景之中的。这就使我们实际上可以把科学语言看作一种知识,它与系统的科学知识具有完全相同的确切性,即它首先是与实在自身相谐合,然后才以这种特殊性成为思维与对象之间的中介。这才能保证,既使科学语言所述说的科学是关于实在的确切图景,又使思维活动具备与实在相联络的手段。

科学语言作为一种知识所具备的上述特殊性,使它成为客观实在图景构成的基本要素,或科学知识的“基元”。思维形态不能独立地形成知识,但思维形态却提供某种方式,使科学语言所包含的知识基元获得某种特定的加成和组合,从而构成一种系统化的理论。这就是语言在认识中的中介作用。由于任何事物都必须“观念地”存乎人的意识中,才能为人的心智所把握,所以,在这个意义上,一个认识过程就是一个运用语言的过程。

二、数学语言

数学语言常常几乎就是科学语言的同义词。但实际上,科学语言所指的范围远比数学语言的范围大,否则就不会出现量子力学公式的解释问题。在自然科学发生以前,数学所起的作用也还不是后世的那种对科学的叙录。只是由于精密推理的要求所导致的语言理想化,才推进了数学的应用。但归根究底,数学与前面说的那种合乎客观实在的知识基元是不同的。将数学用作科学的语言,必须满足一个条件,即数学结构应当与实在的结构相关,但这一点并不是显然成立的。

爱因斯坦曾分析过数学的公理学本质。他说,对一条几何学公理而言,古老的解释是,它是自明的,是某一先验知识的表述,而近代的解释是,公理是思想的自由创造,它无须与经验知识或直觉有关,而只对逻辑上的公理有效性负责。爱因斯坦因此指出,现代公理学意义上的数学,不能对实在客体作出任何断言。如果把欧几里德几何作现代公理学意义上的理解,那么,要使几何学对客体的行为作出断言,就必须加上这样一个命题:固体之间的可能的排列关系,就象三维欧几里德几何里的形体的关系一样。〔1〕只有这样,欧几里德几何学才成为对刚体行为的一种描述。

爱因斯坦的这种看法与上文对科学语言的分析是基本上相通的。它可以说明,数学为什么会一贯作为科学的抽象和叙录工具,或者它为什么看上去似乎具有作为科学语言的“先天”合理性。

首先,作为科学的推理和记载工具的数学,实际上是从思维对实在的一些很基本的把握之上增长起来的。欧几里得几何学中的“点”、“直线”这样一些概念本身就是我们以某种方式看世界的知识。之所以能用这些概念和它们之间的关系去描绘实在,是因为这些“基元”已经包含了关于实在的信息(如刚体的实际行为)。

其次,数学体系的那种严密性其实主要是与人类思维的属性有关,尽管思维的严密性并不是一开始就注入了数学之中。如前所述,思维的严密性是由实在的自明性来决定的,是习得的。这就是说,数学之所以与实在的结构相关,只是因为数学的基础确切地说来自这种结构;而数学体系的自洽性是思维的翻版,因而是与实在的自明性同源的。

由此可见,数学与自然科学的不同仅表现在对于它们的结果的可靠性(或真实性)的验证上。也就是说,科学和数学同样作为思维与实在相互介定的产物,都有可能成为对实在结构的某种描述或“伪述”,并且都具有由实在的自明性所规定的严密性。但数学基本上只为逻辑自治负责,而科学却仅仅为描述的真实性负责。

事实正是如此。数学自身并不代表真实的世界。它要成为物理学的叙录,就必须为物理学关于实在结构的真实信息所重组。而用于重组实在图景的每一个单元,实际上是与物理学的基本知识相一致的。如果在几何光学中,欧几里德几何学不被“光线”及其传播行为有关的概念重组,它就只是一个纯粹的形式体系,而对光线的行为“不能作出断言”。非欧几何在现代物理学中的应用也同样说明了这一点。

三、物理学语言

虽然物理学是严格数学化的典范,但物理学语言的历史却比数学应用于物理学的历史要久远得多。

在认识的逻辑起点上,仅当认识论关系上一个外在的、恒常的(相对于主体的运动变化而言)对象被提炼和廓清时,才能保证一种仅仅与对象自身的内在规定性有关的语言描述系统成为可能。对此,人类凭着最初的直觉而有了“外部世界”、“空间”、“时间”、“质料”、“运动”等观念。显然,这些观念并非来自逻辑的推导或数学计算,它是人类世代传承的关于世界的知识的基元。

然后,需要对客观实在进行某种方式的剥离,才能使之通过语言进入我们的观念。一个客观实在,比如说,一个电子,当我们说“它”的时候,既指出了它作为离散的一个点(即它本身),又指出了它身处时空中的那个属性。而后一点很重要,因为我们正是在广延中才把握了它的存在,即从“它”与“其它”的关系中“找”出它来。

当我们按照古希腊人(比如亚里士多德)的方式问“它为什么是它”时,我们正在试图剥离“它”之所以为“它”的属性。但这个属性因其离散的本质,在时空中必为一个“奇点”,因而不能得到更多的东西。这说明,我们的语言与时空的广延性合若符节,而对离散性,即时空中的奇点,则无法说什么。如果我们按照伽利略的方式问“它是怎样的”时,我们正是在描绘它与广延有关的性质,即它与其它的关系。这在时空中呈现为一种结构和过程。对此我们有足够的手段(和语言)进行摹写。因为我们的语言,大多来自对时空中事物的经验。我们运用语言的主要方式,即逻辑思维,也就是时空经验的抽象和提升。

可见,近现代物理学语言是一种关于客观实在的时空形式及过程的语言,是一种广延性语言。几何学之所以在科学史上扮演着至为重要的角色,首先不在于它的严格的形式化,而在于它是关于实在的时空形式及过程的一个有效而简洁的概括,在于与物理学在面对实在时有着共同的切入点。

上述讨论表明了近现代物理学语言格式包含着它的基本用法和一个根深蒂固的传统,这是由客观实在和复杂的历史因素所规定的。至为关键的是,它必须而且只是关于实在的时空形式及过程的描述。可以想象,离开了这种用法和传统,“另外的描述”是不可能在这种语言中获得意义的。而这正是量子力学碰到的问题。

四、量子力学的语言问题

上文说明,在描摹实在时,人类本是缺乏固有的丰富语言的。西方自古希腊以来,由于主、客体间的某种相互介定而实现了有关实在的时空形式和过程的观念及相应的逻辑思维方式。任何一种特定的语言,随着时代的变迁和认识的深入,某些概念的含义会发生变化,并且还会产生新的语言基元。有时,这样的变化和增长是革命性的。但不可忽视的是,任何有革命性的新观念首先必须在与传统语言的关系中获得意义,才能成为“革命性的”。在自然科学中,一种新理论不论提出多么“新”的描述,它都必须仍然是关于时空形式及过程的,才能在整体的科学语言中获得意义。例如,相对论放弃了绝对时空、进而放弃了粒子的观念,但代之而起的那种连续区概念仍然是时空实在性的描述并与三维空间中的经验有着直接联系。

量子力学的情况则不同。微观粒子从一个态跃迁到另一个态的中间过程没有时空形式;客体的时空形式(波或粒子)取决于实验安排;在不观测的情况下,其时空形式是空缺的;并且,观测所得的客体的时空形式并不表示客体在观测之前的状态。这意味着,要么微观实在并不总是具有独立存在的时空形式,要么是人类无法从认识的角度构成关于实在的时空形式的描述。这两种选择都将超出现有的物理学语言本身,而使经典物理学语言在用于解释公式和实验结果时受到限制。

量子力学的这个语言问题是众所周知的。波尔试图通过互补原理和并协原理把这种限制本身上升为新观念的基础。他多次强调,即使古典物理学的语言是不精确的、有局限性的,我们仍然不得不使用这种语言,因为我们没有别的语言。对科学理论的理解,意味着在客观地有规律地发生的事情上,取得一致看法。而观测和交流的全过程,是要用古典物理学来表达的。〔2〕

量子力学的反对者爱因斯坦同样清楚这里的语言问题。他把玻尔等人尽力把量子力学与实验语言沟通起来所作的种种附加解释称之为“绥靖哲学”(Beruhigunsphilosophie)〔3〕或“文学”〔4〕,这实际上指明了互补原理等观念是在与时空经验相关的科学语言之外的。爱因斯坦拒绝承认量子力学是关于实在的完备描述,所以并不以为这些附加解释会在将来成为科学语言的新的有机内容。薛定谔和玻姆等人从另一个角度作出的考虑,反映了他们以为玻尔、海森堡、泡利和玻恩等人的观点回避了经典语言与实在之间的深刻矛盾,而囿于语言限制并为之作种种辩解。薛定谔说:“我只希望了解在原子内部发生了什么事情。我确实不介意您(指玻尔)选用什么语言去描述它。”〔5〕薛定谔认为,为了赋予波函数一种实在的解释,一种全新的语言是可以考虑的。他建议将N个粒子组成的体系的波函数解释为3N维空间中的波群,而所谓“粒子”则是干涉波的共振现象,从而彻底抛弃“粒子”的概念,使量子力学方程描述的对象具有连续的、确定的时空状态。

固然,几率波的解释使得理论的数学结构不能对应于实在的时空结构,如果让几率成为实验观察中首要的东西,就会让客观实在在描述中成了一种“隐喻”。然而薛定谔的解释由于与三维空间中的经验没有明显的联系,也成了另一种隐喻,仍然无法作为一种科学语言而获得充分的意义。

玻姆的隐序观念与薛定谔的解释在语言问题上是相似的。他所说的“机械序”〔6〕其实就是以笛卡尔坐标为代表的关于广延性空间的描述。这种描述由于经典物理学的某些限定而表现出明显的局限性。玻姆认为量子力学并未对这种序作出真正的挑战,在一定程度上指出了量子力学的保守性。他企图建立一种“隐序物理学”,将量子解释为多维实在的投影。他以全息摄影和其它一些思想实验为比喻,试图将客观实在的物质形态、时空属性和运动形式作全新的构造。但由于其基础的薄弱,仍然只是导致了另一种脱离经验的描述,也就是一种形而上学。

这里所说的“基础”指的是,一种全新的语言涉及主客体间完全不同的相互介定。它涉及对客体的完全不同的剥离方式,也就是说,现行科学语言及其相关思维方式的整个基础都将改变。然而,现实地说,这不是某一具有特定对象和方法的学科所能为的。

可见,试图通过一种全新的语言来解决量子力学的语言问题是行不通的。这个问题比通常所能想象的要无可奈何得多。

五、量子力学何种程度上是“革命性”的

量子力学固然在解决微观客体的问题方面,是迄今最成功的理论,然而这种应用上的重要性使人们有时相信,它在观念上的革命也是成功的。其实,上述语言与实在图景的冲突并未解决。量子力学的种种解释无法在科学语言的基础上必然过渡到那种非因果、非决定论观念所暗示的宇宙图景。这就使我们有必要对量子力学“革命性”的程度作审慎的认识。

正统的量子力学学者们都意识到应该通过发展思维的丰富性来解决面临的困难。他们作出的重要努力的一个方面是提出了很多与经典物理学不同的新观念,并希望这些新观念能逐渐溶入人类的思想和语言。其中玻恩用大量的论述建议几率的观念应该取代严格因果律的概念。〔7〕测不准原理以及其中的广义坐标、广义动量都是为粒子而设想的,却又不能描述粒子在时空中的行为,薛定谔认为应该放弃受限制的旧概念,而玻尔却认为不能放弃,可以用互补原理来解决。玻尔还希望,波函数这样的“新的不变量”将逐渐被人的直觉所把握,从而进入一般知识的范围。〔8〕这相当于说,希望产生新的语言基元。

另一方面,海森堡等人提出,问题应该通过放弃“时空的客观过程”这种思想来解决。〔9〕这又引起了量子力学的客观性问题。

这些努力在很大程度上是具有保守性的。

我们试把量子力学与相对论作比较。相对论的革命性主要表现在,通过对时间和空间的相对性的分析,建立起时间、空间和运动的协变关系,从而了绝对时空、绝对同时性等旧观念,并代之以新的时空观。重要的是,在这里,绝对时空和绝对同时性是从理论上作为逻辑必然而排除掉的。四维时空不变量对三维空间和一维时间的性质依赖于观察者的情形作了简洁的概括,既不引起客观性危机,又与人类的时空经验有着直接关联。相对论排除了物理学内部由于历史和偶然因素形成的一些含混概念,并给出了更加准确明晰的时空图景。它因此而在科学语言的范围内进入了一般知识。

量子力学的情况则不同。它的保守性主要表现在:

第一,严格因果律并不是从理论的内部结构中逻辑地排除的。只是为了保护几率波解释,才不得不放弃严格因果律,这只是一种人为地避免逻辑矛盾的处理。

第二,不完全连续性、非完全决定论等观念并没有构成与人类的时空经验相关联的自洽的实在图景。互补原理和并协原理并没有从理论内部挽救出独立存在于时空的客体的概念,又没有证明这种概念是不必要的(如相对论之于“以太”那样)。因此,量子力学的有关哲学解释看似抛弃旧观念,建立新观念,实际上,却由于这些从理论结构上说是附加的解释超出了关于实在的描述,因而破坏了以实在的自明性为保证的描述的前提。所以它实际上对观念的丰富和发展所作的贡献是有限的。

第三,量子力学内在地不能过渡到关于个别客体的时空形式及过程的模型,使得它的反对者指责说这意味着位置和动量这样的两个性质不能同时是实在的。而为了保护客观性,它的支持者说,粒子图像和波动图象并不表示客体的变化,而是表示关于对象的统计知识的变化。〔10〕这在关于实在的时空形式及过程的科学语言中,多少有不可知论的味道。

第四,人们必须习惯地设想一种新的“实在”观念以便把充满矛盾的经验现象统一起来。在对客体的时空形式作抽象时,这种方法是有效的。而由于波函数对应的不是个别客体的行为,所以大多新的“实在”几乎都是形而上学的构想。薛定谔和玻姆的多维实在、玻姆在阐释哥本哈根学派观点时提出的那种包含了无限潜在可能性的“第三客体”〔11〕,都属于这种构想。玻恩也曾表示,量子力学描述的是同一实在的排斥而又互补的多个影像。〔12〕这有点象是在物理学语言中谈论“混元”或“太极”一样,很难说对观念有积极的建设。

本文从科学语言的角度,对量子力学尤其是它的哲学基础的保守性作出一些分析,这并不是在相对论和量子力学之间作价值上的优劣判断。也许量子力学的真正价值恰恰在于它所碰到的困难是根本性的。

海森堡等人与新康德主义哲学家G·赫尔曼进行讨论时,赫尔曼提出,在科学赖以发生的文化中,“客体”一词之所以有意义,正在于它被实质、因果律等范畴所规定,放弃这些范畴和它们的决定作用,就是在总体上不承认经验的可能性。〔13〕我们应该注意到,赫尔曼所使用的“经验”一词,实际上是人类对客观事物的广延性和分立性的经验。这种经验是科学的实在图景成立的基础或真实性的保证,逻辑是它的抽象和提升。

在本文的前三节已经谈到,自从古希腊人力图把日常语言理想化而创立了逻辑语言以来,西方的科学语言就一直是在实在的广延性和分立性的介定下发展起来的。我们也许可以就此推测,对于人的认识而言,世界是广延优势的,但如果因此认为实在仅限于广延性方面,却是缺乏理由的。广延性优势在语言上的表现之一是几何优势。西方传统中的代数学思想是代数几何化,即借助空间想象来理解数的。不论毕达哥拉斯定理还是笛卡尔坐标都一样。直角三角形的斜边是直观的,而根号2不是。我们可以用前者表明后者,而不能反过来。可是一个离散的数量本身究竟是什么呢?它是否与实在的另一方面或另一部分(非广延的)相应?也许在微观领域里不再是广延优势而量子力学的困难与此有关?

如果量子力学面临的是实在的无限可能性向语言的有限性的挑战,那么问题的解决就不单单是语言问题,甚至不单单是目前形态的物理学的问题。它将涉及整个认识活动的基础。玻尔似乎是深刻地意识到这一点的。他说“要做比这些更多的事情完全是在我们目前的手段之外。”〔14〕他还有一句格言;“同一个正确的陈述相对立的必是一个错误的陈述;但是同一个深奥的真理相对立的则可能是另一个深奥的真理。”〔15〕

参考文献和注释

〔1〕〔3〕〔4〕《爱因斯坦文集》第一卷,商务印书馆,1994,第137、241、304页。

〔2〕〔5〕〔9〕〔13〕〔14〕〔15〕海森堡:《原子物理学的发展和社会》,中国社会科学出版社,1985,第141、84、82、131、47、112页。

〔6〕玻姆:《卷入——展出的宇宙和意识》,载于罗嘉昌、郑家栋主编:《场与有——中外哲学的比较与融通(一)》,东方出版社,1994年。

〔7〕玻恩:《关于因果和机遇的自然哲学》,商务印书馆,1964年。

〔8〕〔12〕玻恩:《我这一代的物理学》,商务印书馆,1964,第65、192页。

篇3

关键词:量子力学;经典科学世界图景;非机械决定论;整体论;复杂性;主客体互动

Abstract:Asoneofthreerevolutionsofphysicsin20thcentury,quantummechanicshasgreatlytransformedtheworldviewofclassicalscienceinmanyaspects.Quantummechanicsbreaksthoughthemechanicaldeterminisminclassicalscience,transformingitintononmechanicaldeterminism;itchangesscientificcognitiveprocessfromthetheoryofreductionismtothetheoryofwholism;itshiftsthewayofthinkingfrompursuingsimplicitytoexploringthecomplexity;italsoestablishestheinteractionbetweensubjectandobjectinscientificresearches.

Keywords:quantummechanics;worldviewofclassicalscience;nonmechanicaldeterminism;wholism;complexity;interactionbetweensubjectandobject

经典科学基本上是指由培根、牛顿、笛卡儿等开创的,近三百年内发展起来的一整套观点、方法、学说。经典科学世界图景的最大特征是机械论和还原论,片面强调分解而忽视综合。以玻尔、海森伯、玻恩、泡利、诺伊曼等为代表的哥本哈根学派的量子力学理论三部曲:统计解释—测不准原理—互补原理所反映的主要观点是:微观粒子的各种力学量(位置、动量、能量等)的出现都是几率性的;量子力学对微观粒子运动的几率性描述是完备的,对几率性的原因不需要也不可能有更深的解释;决定论不适用于量子力学领域;仪器的作用同观察对象具有不可分割性,确立了科学活动中主客体互动关系。[1]量子力学的发展从根本上改变了经典科学世界

图景。

一、量子力学突破了经典科学的机械决定论,遵循因果加统计的非机械决定论

经典力学是关于机械运动的科学,机械运动是自然界最简单也是最普遍的运动。说它最简单,因为机械运动比较容易认识,牛顿等人又采取高度简化的方法研究力学,获得了空前成功;说它最普遍,因为机械力学有广泛的用途,容易把它绝对化。[2]机械决定论是建立在经典力学的因果观之上,解释原因和结果的存在方式和联系方式的理论。机械决定论认为因和果之间的联系具有确定性,无论从因到果的轨迹多么复杂,沿着轨迹寻找总能确定出原因或结果;机械决定论的核心在于只要初始状态一定,则未来状态可以由因果法则进行准确预测。[3]其实,机械决定论仅仅适用于宏观物体,而对于微观领域以及客观世界中大量存在的偶然现象的研究就产生了统计决定论。[4]

量子力学是对经典物理学在微观领域的一次革命。量子力学所揭示的微观世界的运动规律以及以玻尔为代表的哥本哈根学派对量子力学的理解,同物理学机械决定论是根本相悖的。[5]按照量子理论,微观粒子运动遵守统计规律,我们不能说某个电子一定在什么地方出现,而只能说它在某处出现的几率有多大。

玻恩的统计解释指出,因果性是表示事件关系之中一种必然性观念,而机遇则恰恰相反地意味着完全不确定性,自然界同时受到因果律和机遇律的某种混合方式的支配。在量子力学中,几率性是基本概念,统计规律是基本规律。物理学原理的方向发生了质的改变:统计描述代替了严格的因果描述,非机械决定论代替了机械决定论的统治。

经典统计力学虽然也提出了几率的概念,但未能从根本上动摇严格决定论,量子力学的冲击则使机械决定论的大厦坍塌了。量子力学揭示并论证了人们对微观世界的认识具有不可避免的随机性,它不遵循严格的因果律。任何微观事件的测定都要受到测不准关系的限定,不可能确切地知道它们的位置和动量、时间和能量,只能描述和预言微观对象的可能的行为。因此,量子力学必须是几率的、统计的。而且,随着认识的发展,人们发现量子统计的随机性,不是由于我们知识和手段的不完备性造成的,而是由微观世界本身的必然性(主客体相互作用)所注定。

二、量子力学使得科学认识方法由还原论转化为整体论

还原论作为一种认识方法,是指把高级运动形式归结为低级运动形式,用研究低级运动形式所得出的结论代替对高级运动形式的本质认识的观点。它用已分析得出的客观世界中的主要的、稳定的观点和规律去解释、说明要研究的对象。其目的是简化、缩小客体的多样性。这种方法在人类认识处于初级水平上无疑是有效的。如牛顿将开普勒和伽利略的定律成功地还原为他的重力定律。但是还原论形而上学的本质,以及完全还原是不可能的,决定了还原论不能揭示世界的全貌。

量子力学认为整体与部分的划分只有相对意义,整体的特征绝非部分的叠加,而是部分包含着整体。部分作为一个单元,具有与整体同等甚至还要大的复杂性。部分不仅与周围环境发生一定的外在联系,同时还要表现出“主体性”,可将自身的内在联系传递到周边,并直接参与整体的变化。因而,部分与整体呈现了有机的自觉因果关系。在特定的临界状态,部分的少许变化将引起整体的突变。[6]

波粒二象性是微观世界的本质特征,也是量子论、量子力学理论思想的灵魂。用经典观点来看,也就是按照还原论的思想,粒子与波毫无共同之处,二者难以形成直观的统一图案,这是经典物理学通过部分还原认识整体的方法,是“向上的原因”。可是微观粒子在某些实验条件下,只表现波动性;而在另一些实验条件下,只表现粒子性。这两种实验结果不能同时在一次实验中出现。于是,玻尔的互补原理就在客观上揭示了微观世界的矛盾和我们关于微观世界认识的矛盾,并试图寻找一种解决矛盾的方法,这就是微观粒子既具有粒子性又具有波动性,即波粒二象性。这就是整体论观点强调的“向下的原因”,即从整体到部分。同样,海森伯的测不准原理说明不能同时测量微观粒子的动量和位置,这也说明绝不能把宏观物体的可观测量简单盲目地还原到微观。由此我们可以看出,造成经典科学观与现代科学观认识论和方法论不同的根本在于思考和观察问题的层面不同。经典科学一味地强调外在联系观,而量子力学则更强调关注事物内部的有机联系。所以,量子力学把内在联系作为原因从根本上动摇了还原论观点。

三、量子力学使得科学思维方式由追求简单性发展到探索复杂性

从经典科学思维方式来看,世界在本质上是简单的。牛顿就说过,自然界喜欢简单化,而不喜欢用什么多余的原因以夸耀自己。追求简单性是经典科学奋斗的目标,也是推动它获取成功的动力。开普勒以三条简明的定律揭示了看似复杂的太阳系行星运动,牛顿更是用单一的万有引力说明了千变万化的天体行为。因而现代科学是用简单性解释复杂性,这就隐去了自然界的丰富多样性。

量子力学初步揭示了客观世界的复杂性。经典科学的简单性是与把物理世界理想化相联系的。经典物理学所研究的是理想的物质客体。它不但用理想化的“质点”、“刚体”、“理想气体”来描述物体,而且把研究对象的条件理想化,使研究的视野仅仅局限于人们自己制定的范围之内。而客观世界并不是如此,特别是进入微观领域,微观粒子运动的几率性、随机性;观测对象和观测主体不可分割性等都足以说明自然界本身并不是我们想象的那么简单。

在现代科学中,牛顿的经典力学成了相对论的低速现象的特例,成为非线性科学中交互作用近似为零的情况,在量子力学中是测不准关系可以忽略时的理论表述。复杂性的提出并不是要消灭简单性,而是为了打破简单性独占的一统地位。复杂性是把简单性作为一个特例包含其中,正如莫兰所说的,复杂性是简单性和复杂性的统一。复杂性比简单性更基本,可能性比现实性更基本,演化比存在更基本。[7]今天的科学思维方式,不是以现实来限制可能,而是从可能中选择现实;不是以既存的实体来确定演化,而是在演化中认识和把握实体。复杂性主张考察被研究对象的复杂性,在对其作出层次与类别上的区分之后再进行沟通,而不是仅仅限于孤立和分离,它强调的是一种整体的协同。

四、量子力学使科学活动中主客体分离迈向主客互动

经典科学思维方式的一个指导观念就是,认为科学应该客观地、不附加任何主观成分地获取“照本来样子的”世界知识。玻尔告诉人们,根本不存在所谓的“真实”,除非你首先描述测量物理量的方式,否则谈论任何物理量都是没有意义的!测量,这一不被经典物理学考虑的问题,在面对量子世界如此微小的测量对象时,成为一个难以把握的手段。因为研究者的介入对量子世界产生了致命的干扰,使得测量中充满了不确定性。在海森伯看来,在我们的研究工作由宏观领域进入微观领域时,我们就会遇到一个矛盾:我们的观测仪器是宏观的,可是研究对象却是微观的;宏观仪器必然要对微观粒子产生干扰,这种干扰本身又对我们的认识产生了干扰;人只能用反映宏观世界的经典概念来描述宏观仪器所观测到的结果,可是这种经典概念在描述微观客体时又不能不加以限制。这突破了经典科学完全可以在不影响客体自然存在的状态下进行观测的假定,从而建立了科学活动中主客体互动的关系。

例如,关于光到底是粒子还是波,辩论了三百多年。玻尔认为这完全取决于我们如何去观察它。一种实验安排,人们可以看到光的波现象;另一种实验安排,人们又可以看到光的粒子现象。但就光子这个整体概念而言,它却表现出波粒二象性。因此,海森伯就说,我们观测的不是自然本身,而是由我们用来探索问题的方法所揭示的自然。[8]

量子力学的发展表明,不存在一个客观的、绝对的世界。唯一存在的,就是我们能够观测到的世界。物理学的全部意义,不在于它能够描述出自然“是什么”,而在于它能够明确,关于自然我们能够“说什么”。

参考文献:

[1]林德宏.科学思想史[M].第2版.南京:江苏科学技术出版社,2004:270-271.

[2]郭奕玲,沈慧君.物理学史[M].第2版.北京:清华大学出版社,1993:1-2.

[3]刘敏,董华.从经典科学到系统科学[J].科学管理研究,2006,24(2):44-47.

[4]宋伟.因果性、决定论与科学规律[J].自然辩证法研究,1995,11(9):25-30.

[5]彭桓武.量子力学80寿诞[J].大学物理,2006,25(8):1-2.

[6]疏礼兵,姜巍.近现代科学观的演进及其启示[J].科学管理研究,2004,22(5):56-58.

篇4

摘 要:凝聚态物理学作为物理学的一大分支,其研究前景十分广泛。凝聚态物理学是研究凝聚态物质的物理性质以及它们的微观结构的学科。其通过分析构成凝聚态物质的电子、离子、原子、分子的运动形态和运动规律,从而对凝聚态物质的物理性质进行认知。凝聚态物质是固体物理学的一个拓展方面,研究的物质的典型特征之一是其具有多种形态。同时,凝聚态物理学也为材料研究引入了新的体系。本文就目前凝聚态物理学发展情况,对其中的基本概念的产生、含义及其发展进行阐述。

关键词:凝聚态物理学;基本概念;特点阐述

凝聚态物理学的基本概念需根据物质世界的层次化进行阐述效果会更加明了。作为一门至今仍然拥有丰富生命力的研究学问,凝聚态物理学时时刻刻影响着我们生活的方方面面。例如,液态金属、溶胶、高分子聚合物等等物质的研究都和凝聚态物理学有着密不可分的联系。凝聚态物理学发展历史和其理论支撑,是对凝聚态物理学的基本概念进行阐述的基础。

一、凝聚态物理学发展历史

1、物质世界层次化

为了对凝聚态物理学基本概念进行阐述,首先就需要提到物质世界层次化的研究方式。纵观二十世纪的物理学发展,在二十世纪初,两大划时代的物理理论突破的出现,拉开了宇观物理学和微观物理学的探究序幕。两大理论即是相对论和量子论,相对论和量子理论是对传统物理学的质疑和挑战。其中,狭义相对论修正了经典物理学当中的电磁学和力学之间存在的矛盾;广义相对论则是为近代物理学当中的天体运行研究做出了巨大的贡献。量子论的建立正式拉开了现代物理学对于微观世界的研究,使得基于原子乃至更小系统的探究成为可能。现代物理学的研究方式正是基于这一种将物质世界进行分层的观点进行的,因为物理学当中的理论使用范围都有区别。例如,在宏观世界当中,牛顿力学成立;在微观世界当中,牛顿力学就难以支撑实验事实了。

2、凝聚B物理学的步步发展

从科学家开始探索微观世界开始,凝聚态物理学就悄然发展开来。科学家从原子物理出发,深入到原子核内外空间的研究,为了探索微观世界粒子的基本特性,建立了多代高能粒子加速器,使得近代微观物理学探索出中子、夸克、轻子类的微观粒子。同时,近代物理学的一条研究途径也是将原子物理作为基本主线。在这条研究主线当中,量子力学和统计物理学向结合,奠定了固定物理学的基础。固定物理学的逐渐发展扩大,演变为了凝聚态物理学。凝聚态物理学的研究发展从简单到复杂,从宏观到微观。其结合到其他学科(材料学、化学、生物学等)共同创新,取得了巨大成果。

二、凝聚态物理学的基本概念阐述

1、基本理论

凝聚态物理学基本概念中最重要的基础则是构建这门学科的理论支撑。其基本理论当中的核心即是量子物理和经典物理。根据凝聚态物理学的发展历史来看,量子物理理论推动了凝聚态物理学的发展,使其对众多实验研究成为可能。经典物理理论在凝聚态物理学中并非一无是处,仍在一些研究方面起着不可忽视的作用。两种理论知识在凝聚态物理学当中的应用都存在着自身的适用范围,下面对其进行比较说明。在中学物理中我们初步了解到,物质粒子具有二象性――粒子与波。在粒子的二象性当中,粒子所具有的波动性使得量子力学有别与经典力学。二者的适用范围的界限通常是一些临界温度、直径、场(电场、磁场)强等方面。

2、凝聚现象

凝聚态物理学的基础概念即是凝聚现象,然而凝聚现象在我们日常生活当中是随处可见的。大家都知道,气体可以凝结成固体或者是液体,液体和固体之间最明显的区别是液体的流动性。根据量子力学等理论分析,在某些临界温度附近,物质之间就发生凝聚现象。发生凝聚现象的物质往往具备一些新的物理性质。例如物质原有的沸点、导电性、光敏性等发生改变。

3、凝聚态物质的有序化

根据中学物理和化学的知识可知,物质反应在平衡状态时,其系统能量内能与熵等因素的影响。系统物质内能的上升使得系统趋于不稳定性,使得熵值增加。当温度下降时,凝聚态物质则趋于熵值下降和系统稳定,研究发现,凝聚态物质往往是某一种有序结构的物相。大量物质粒子所组成的系统表现出来的直观特征即是位置序,这也说明不同的粒子直接是存在着相互联系的。当然,也存在着粒子相互作用较弱的情况,其宏观表现即是粒子无序分布。在经典粒子系统当中,使得系统有序化的物理基础则是粒子和粒子之间的相互作用,这可当作是量子力学当中的一个问题处理。根据中学知识我们知道,在量子力学当中,物质粒子存在着位置不确定性和动量不确定性。根据上述进行总结,凝聚态物质是空间当中的凝聚体,而相对空间往往是分为两个方面。一方面是位置形态空间,另外的一方面是抽象的动量空间。凝聚态物质的有序化在这两个空间当中的存在形态极为丰富。

三、研究概念阐述

凝聚态物理学当中基本的研究概念在于以下几个方面。第一是固体电子论。对固定系统当中电子的行为研究是凝聚态物理学一直在努力的方向,按照电子行为的相互作用的大小,又将其分为三个小的区域。首先是弱关联区,这个区域的研究已经取得了巨大进展,也是构成半导体物理学的理论基础。其次是中等关联区域,主要研究对象包括的是一般的金属和强磁性的物质,其构成了磁铁学的物理基础。强关联区受能带理论发展的影响,目前其研究还有待开拓。第二是宏观量子态。宏观量子态研究当中对某些物质的超导现象的研究是一个重点,一些非常规的超导体研究也是目前科学家所努力的方向。第三是纳米结构与介观物理,凝聚态物理学对于一些简单物质的研究已经较为清楚。按照不同物质材料的结构尺度进行探究是凝聚态物理学研究的新方向之一,纳米结构和介观物理需要量子理论进行支撑,研究目的主要是为了获取材料和器件的复合体,同时创造出一些具有优良性能的物理材料。

四、总结

凝聚态物理学的理论基础是量子力学,目前量子力学的发展已经趋于完备。由于凝聚态物理学设计大量微观粒子的研究,其复杂程度较高,需要研究者从实验、计算、推演等方面开展研究。凝聚态物理学作为一门高新技术,其研究前景十分广阔。只要充分结合其他相关学科知识,加以探究,一定会取得更加丰硕的研究成果。

参考文献

[1]冯端,金国钧.凝聚态物理学中的基本概念[J].物理学进展, 2000, 20(1):1-21.

篇5

十九世纪末二十世纪初,经典物物学的各个分支学科均发展到了完善、成熟的阶段,随着热力学和统计力学的建立以及麦克斯韦电磁场理论的建立,经典物理学达到了它的顶峰,当时人们以系统的形式描绘出一幅物理世界的清晰、完整的图画,几乎能完美地解释所有已经观察到的物理现象。由于经典物理学的巨大成就,当时不少物理学家产生了这样一种思想:认为物理学的大厦已经建成,物理学的发展基本上已经完成,人们对物理世界的解释已经达到了终点。物理学的一些基本的、原则的问题都已经解决,剩下来的只是进一步精确化的问题,即在一些细节上作一些补充和修正,使已知公式中的各个常数测得更精确一些。

然而,在十九世纪末二十世纪初,正当物理学家在庆贺物理学大厦落成之际,科学实验却发现了许多经典物理学无法解释的事实。首先是世纪之交物理学的三大发现:电子、X射线和放射性现象的发现。其次是经典物理学的万里晴空中出现了两朵“乌云”:“以太漂移”的“零结果”和黑体辐射的“紫外灾难”。[1]这些实验结果与经典物理学的基本概念及基本理论有尖锐的矛盾,经典物理学的传统观念受到巨大的冲击,经典物理发生了“严重的危机”。由此引起了物理学的一场伟大的革命。爱因斯坦创立了相对论;海林堡、薛定谔等一群科学家创立了量子力学。现代物理学诞生了!

把物理学发展的现状与上一个世纪之交的情况作比较,可以看到两者之间有相似之外,也有不同之处。

在相对论和量子力学建立起来以后,现代物理学经过七十多年的发展,已经达到了成熟的阶段。人类对物质世界规律的认识达到了空前的高度,用现有的理论几乎能够很好地解释现在已知的一切物理现象。可以说,现代物理学的大厦已经建成。在这一点上,目前有情况与上一个世纪之交的情况很相似。因此,有少数物理学家认为今后物理学不会有革命性的进展了,物理学的根本性的问题、原则问题都已经解决了,今后能做到的只是在现有理论的基础上在深度和广度两方面发展现代物理学,对现有的理论作一些补充和修正。然而,由于有了一百年前的历史经验,多数物理学家并不赞成这种观点,他们相信物理学迟早会有突破性的发展。另一方面,虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。

虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。客观物质世界是分层次的。一般说来,每个层次中的体系都由大量的小体系(属于下一个层次)构成。从一定意义上说,宏观与微观是相对的,宏观体系由大量的微观系统构成。物质世界从微观到宏观分成很多层次。物理学研究的目的包括:探索各层次的运动规律和探索各层次间的联系。

回顾二十世纪物理学的发展,是在三个方向上前进的。在二十一世纪,物理学也将在这三个方向上继续向前发展。

1)在微观方向上深入下去。在这个方向上,我们已经了解了原子核的结构,发现了大量的基本粒子及其运规律,建立了核物理学和粒子物理学,认识到强子是由夸克构成的。今后可能会有新的进展。但如果要探索更深层次的现象,必须有更强大得多的加速器,而这是非常艰巨的任务,所以我认为近期内在这个方向上难以有突破性的进展。

2)在宏观方向上拓展开去。1948年美国的伽莫夫提出“大爆炸”理论,当时并未引起重视。1965年美国的彭齐亚斯和威尔逊观测到宇宙背景辐射,再加上其他的观测结果,为“大爆炸”理论提供了有力的证据,从此“大爆炸”理论得到广泛的支持,1981年日本的佐藤胜彦和美国的古斯同时提出暴胀理论。八十年代以后,英国的霍金[2,3]等人开始论述宇宙的创生,认为宇宙从“无”诞生,今后在这个方向上将会继续有所发展。从根本上来说,现代宇宙学的继续发展有赖于向广漠的宇宙更遥远处观测的新结果,这需要人类制造出比哈勃望远镜性能更优越得多的、各个波段的太空天文望远镜,这是很艰巨的任务。

我个人对于近年来提出的宇宙创生学说是不太信的,并且认为“大爆炸”理论只是对宇宙的一个近似的描述。因为现在的宇宙学研究的只是我们能观测到的范围以内的“宇宙”,而我相信宇宙是无限的,在我们这个“宇宙”以外还有无数个“宇宙”,这些宇宙不是互不相干、各自孤立的,而是互相有影响、有作用的。现代宇宙学只研究我们这个“宇宙”,当然只能得到近似的结果,把他们的延伸到“宇宙”创生了初及遥远的未来,则失误更大。

3)深入探索各层次间的联系。

这正是统计物理学研究的主

要内容。二十世纪在这方面取得了巨大的成就,先是非平衡态统计物理学有了得大的发展,然后建立了“耗散结构”理论、协同论和突变论,接着混沌论和分形论相继发展起来了。近年来把这些分支学科都纳入非线性科学的范畴。相信在二十一世纪非线性科学的发展有广阔的前景。

上述的物理学的发展依然现代物理学现有的基本理论的框架内。在下个世纪,物理学的基本理论应该怎样发展呢?有一些物理学家在追求“超统一理论”。在这方面,起初是爱因斯坦、海森堡等天才科学家努力探索“统一场论”;直到1967、1968年,美国的温伯格和巴基斯坦的萨拉姆提出统一电磁力和弱力的“电弱理论”;目前有一些物理学家正在探索加上强力的“大统一理论”以及再加上引力把四种力都统一起来的“超统一理论”,他们的探索能否成功尚未定论。

爱因斯坦当初探索“统一场论”是基于他的“物理世界统一性”的思想[4],但是他努力探索了三十年,最终没有成功。我对此有不同的观点,根据辩证唯物主义的基本原理,我认为“物质世界是既统一,又多样化的”。且莫论追求“超统一理论”能否成功,即便此理论完成了,它也不是物理学发展的终点。因为“在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识只具有相对的真理性。无数相对的真理之总和,就是绝对的真理。”“人们在实践中对于真理的认识也就永远没有完结。”[5]

现代物理学的革命将怎样发生呢?我认为可能有两个方面值得考试:

1)客观世界可能不是只有四种力。第五、第六……种力究竟何在呢?现在我们不知道。我的直觉是:将来最早发现的第五种力可能存在于生命现象中。物质构成了生命体之后,其运动和变化实在太奥妙了,我们没有认识的问题实在太多了,我们今天对于生命科学的认识犹如亚里斯多德时代的人们对于物理学的认识,因此在这方面取得突破性的进展是很可能的。我认为,物理学业与生命科学的交叉点是二十一世纪物理学发展的方向之一,与此有关的最关于复杂性研究的非线性科学的发展。

2)现代物理学理论也只是相对真理,而不是绝对真理。应该通过审思现代物理学理论基础的不完善性来探寻现代物理学革命的突破口,在下一节中将介绍我的观点。

三、现代物理学的理论基础是完美的吗?

相对论和量子力学是现代物理学的两大支柱,这两大支柱的理论基础是否十全十美的

呢?我们来审思一下这个问题。

1)对相对论的审思

当年爱因斯坦就是从关于光速和关于时间要领的思考开始,创立了狭义相对论[1]。我们今天探寻现代物理学革命的突破口,也应该从重新审思时空的概念入手。爱因劳动保护坦创立狭义相对论是从讲座惯性系中不同地点的两个“事件”的同时性开始的[4],他规定用光信号校正不同地点的两个时钟来定义“同时”,这样就很自然地导出了洛仑兹变换,进一步导致一个四维时空(x,y,z,ict)(c是光速)。为什么爱因劳动保护担提出用光信号来校正时钟,而不用别的信号呢?在他的论文中没有说明这个问题,其实这是有深刻含意的。

时间、空间是物质运动的表现形式,不能脱离物理质运动谈论时间、空间,在定义时空时应该说明是关于什么运动的时空。现代物理学认为超距作用是不存在的,A处发生的“事件”影响B处的“事件”必须通过一定的场传递过去,传递需要一定的时间,时间、空间的定义与这个传递速度是密切相关的。如果这种场是电磁场,则电磁相互作用传递的速度就是光速。因此,爱因斯坦定义的时空实际上是关于由电磁相互作用引起的物质运动的时空,适用于描述这种运动。

爱因斯坦把他定义的时间应用于所有的物质运动,实际上就暗含了这样的假设:引力相互作用的传递速度也是光速c.但是引力相互作用是否也是以光速传递的呢?令引力相互作用的传递速度为c'。至今为止,并无实验事实证明c'等于c。爱因斯坦因他的“物质世界统一性”的世界观而在实际上假定了c=c'。我持有“物质世界既统一,又多样化的”以观点,再加之电磁力和引力的强度在数量级上相差太多,因此我相相信c'可能不等于c。工样,关于由电磁力引起的物质运动的四维时空(x,y,z,ict)和关于由引力引起的运动的时空(x',y',z',ic't')是不同的。如果研究的问题只涉及一种相互作用,则按照现在的理论建立起来的运动方程的形式不变。例如,爱因斯坦引力场方程的形式不变,只需把常数c改为c'。如果研究的问题涉及两种相互作用,则需要建立新的理论。不过,首要的事情是由实验事实来判断c'和c是否相等;如果不相等,需要导出c'的数值。

我在二十多年前开始形成上述观点,当时测量引力波是众所瞩目的一个热点,我曾对那些实验寄予厚望,希望能从实验结果推算出c'是否等于c。令人遗憾的是,经过长斯的努力引引力波实验没有获得肯定的结果,随后这项工作冷下去了。根据爱国斯坦理论预言的引力波是微弱的,如果在现代实验技术能够达到的测量灵敏度和准确度之下,这样弱的引力波应该能够探测到的话,长期的实验得不到肯定的结果似乎暗示了害因斯坦理论的缺点。应该从c'可能不等于c这个角度来考虑问题,如果c'和c有较大的差异,则可能导出引力波的强度比根据爱因劳动保护坦理论预言的强度弱得多的结果。

弱力、强力与引力、电磁力有本质的不同,前两者是短程力,后两者是长程力。不同的相互作用是通过传递不同的媒介粒子而实现的。引力相互作用的传递者是引力子;电磁相互作用的传递者是光子;弱相互作用的传递者是规范粒子(光子除外);强相互作用的传递者是介子。引力子和光子的静质量为零,按照爱因斯坦的理论,引力相互作用和电磁相互作用的传递速度都是光速。并且与传递粒子的静质量和能量有关,因而其传递速度是多种多样的。

在研究由弱或强相互作用引起的物质运动时,定义惯性系中不同的地点的两个“事件”的“同时”,是否应该用

弱力或强力信号取代光信号呢?我对核物理学和粒子物理学是外行,不想贸然回答这个问题。如果应该用弱力或强力信号取代光信号,那么关于由弱力或强力引起的物质运动的时空和关于由电磁力引起的运动的时空(x,y,z,ict)及关于由引力引起的运动的时空(x',y',z',ic't')

有很大的不同。设弱或强相互作用的传递速度为c'',c''不是常数,而是可变的,则关于由弱或强力引起的运动的时空为(x'',y'',z'',Ic''t''),时间t''和空间(x'',y'',z'')将是c'的函数。然而,很可能应该这样来考虑问题:关于由弱力引起的运动的时空,在定义中应该以规范粒子的静质量取作零时的速度c1取代光速c。由于“电弱理论”把弱力和电磁力统一起来了,因此有可能c1=c,则关于由弱力引起的运动的时空和关于由电磁力引起的运动的时空是相同的,同为(x,y,z,ict)。关于由强力引起的运动的时空,在定义中应该以介子的静质量取作零(在理论上取作零,在实际上没有静质量为零的介子)时的速度c''取代光速c,c''可能不等于c。则关于由强力引起的运动的时空(x'',y'',z'',Ic''t'')不同于(x,y,z,ict)或(x',y',z',ic't')。无论上述两种考虑中哪一种是对的,整个物质世界的时空将是高于四维的多维时空。对于由短程力(或只是强力)引起的物质运动,如果时空有了新的一义,就需要建立新的理论,也就是说需要建立新的量子场论、新的核物理学和新的粒子物理学等。如果研究的问题既清及长程力,又涉及短程力(尤其是强力),则更需要建立新的理论。

1)对量子力学的审思

从量子力学发展到量子场论的时候,遇到了“发散困难”[6]。1946——1949年间,日本的朝永振一郎、美国的费曼和施温格提出“重整化”方法,克服了“发散困难”。但是“重整化”理论仍然存在着逻辑上的缺陷,并没有彻底克服这一困难。“发散困难”的一个基本原因是粒子的“固有”能量(静止能量)与运动能量、相互作用能量合在一起计算[6],这与德布罗意波在υ=0时的异性。

现在我陷入一个两难的处境:如果采用传统的德布罗意关系,就只得接受不合理的德布罗意波奇异性;如果采纳修正的德布罗意关系,就必须面对使新的理论满足相对论协变性的难题。是否有解决问题的其他途径呢?我认为这个问题或许还与时间、空间的定义有关。现在的量子力学理论中时宽人的定义实质上依然是决定论的定义,而不确定原理是微观世界的一条基本规律,所以时间、空间都不是严格确定的,决定论的时空要领不再适用。在时间或空间的间隔非常小的时候,描写事情顺序的“前”、“后”概念将失去意义。此外,在重新定义时空时还应考虑相关的物质运动的类别。模糊数学已经发展得相当成熟了,把这个数学工具用到微观世界时空的定义中去可能是很值得一试的。

1)在二十一世纪物理学将在三个方向上继续向前发展(1)在微观方向上深入下去;(2)在宏观方向上拓展开去;(3)深入探索各层次间的联系,进一步发展非线性科学。

2)可能应该从两方面去控寻现代物理学革命的突破口。(1)发现客观世界中已知的四种力以外的其他力;(2)通过审思相对论和量子力学的理论基础,重新定义时间、空间,建立新的理论

3)由于现代物理学尚未发生“危机”,因此目前发生现代物理学革命的条件也许还不成熟,物理学的发展和物理学革命都有赖于在物理实验和对客观物质世界的观测中获得新的结果,实验和观测是发展物理学的量重要手段,这是我们要关注的首要问题。然而,科学的发展和物理学的发展有本身的逻辑,符合客观规律的、有真知灼见的思维也是一个关键。

篇6

关键词:物理常数;光速;普朗克常数

基本物理常数是物理学中的一些普适常数,是人类在探索客观世界基本运动规律的过程中提出和确定的基本物理常量。这些常数与自然科学的各个分支有着密切的关系,在科学理论的提出和科学试验的发展中起着很重要的作用。基本物理常数包括牛顿引力常数G、真空中的光速C、普朗克常数h、基本电荷e、电子静止质量Me、阿伏伽德罗常数Na等。

物理学中许多新领域的开辟以及重大物理理论的创立,往往与相关基本物理常数的发现或准确测定密切相关。基本物理常数描绘和反映了物理世界的基本性质和特征,它们为不同领域的区分提供了定量的标准。基本物理常数的测定及其精度的不断提高,经历了漫长的历史时期,生动地反映了实验技术和测量方法的发展与更新,现在,许多基本物理常数的精度已达10-6量级,有的甚至达到10-8~10-10量级。本文限于篇幅,仅以光速C和普朗克常数h为例来说明。

光速是光波的传播速度,原与声波、水波等的传播速度类似,并不具有任何“特殊的”的地位。但细分析起来,光速也似乎确有一些特殊之处。其一是光速的数值非常大,远非其他各种波动速度所能比拟;其二是光波可以在真空中传播,而其他波动则离开了相应的弹性介质便不复存在,由此引来了关于以太(假想的弹性介质)的种种争论。

1865年麦克斯韦建立了电磁场方程组,证明了电磁波的存在,并推导出了电磁波的速度C等于电流的电磁单位与静电单位之比。1849年斐索用实验测出光在空气中的传播速度为C=3.14858×108米/秒。分属光学和电磁学的不相及的两个传播速度C电磁波与C光波之间出乎意料的惊人相符,使麦克斯韦立即意识到光波就是电磁波。于是,以C为桥梁把以前认为彼此无关的光学与电磁学统一了起来。同时,由于电磁波传播依赖的是电磁场的内在联系,无需任何弹性介质,使得“以太”的存在和不存在没有什么差别,不需要强加在它身上种种性质。至此,光速C的地位陡然升高。

麦克斯韦电磁场理论揭示了电磁场运动变化的规律,统一了光学与电磁学,开创了物理学的新时代。但同时它也提出了新的更深刻的问题:麦克斯韦方程组只适用于某个特殊的惯性系还是适用于一切惯性系。如果麦克斯韦方程组只适用于某个特殊的惯性系,则不仅违背相对性原理,且该惯性系就是牛顿的绝对空间,地球相对它运动将受到以太风的吹拂,然而试图探测其影响的Michelson-Mor1ey实验却得出了否定的结果。如果麦克斯韦方程组适用于一切惯性系,则根据伽利略变换得出的经典速度合成规律,在不同惯性系中的光速应不同,甚至会出现违背因果关系的超光速现象,也难以解释。总之,对于麦克斯韦电磁场理论,伽利略变换和相对性原理之间存在着不可调和的深刻矛盾。直至1905年Einstein以相对性原理和光速不变原理为前提,并借助洛伦兹变换方程建立起狭义相对论之后,这一切矛盾和困惑才最终得以解决。

由此可见,真空中的光速C从光波的速度上升为一切电磁波的传播速度之后,又进一步成为一切实际物体和信号速度的上限,并且在任何惯性系中C的取值都相同。C作为基本物理常数,提供了不可逾越的速度界限,从根本上否定了一切超距作用,成为相对论和新时空观的鲜明标志,同时又成为是否需要考虑相对论效应的定量判断标准。

1900年普朗克为解释黑体辐射,提出谐振子能量不连续的大胆假设。1905年Einstein为解释光电效应,把能量子假设推广到电磁波,提出“光量子”。1924年德布罗意通过粒子与波的对比,假设微观粒子也具有波动性,也就是波粒二象性,设其动量为p,则其德布洛依波长由下式绝定:pλ=h,这里h是一常量,叫普朗克常数,h几乎处处出现,它宣告物理学新的研究领域——量子物理学诞生了。

量子物理学的进展表明,普朗克常数h是量子物理学的重要常数,凡是涉及量子效应的一切物理量都与它有关,h不仅必然成为微观粒子运动特征的定量标准,而且成为划分量子物理与经典物理的定量界限(正如C是划分相对论与非相对论的定量界限一样)。如果物理体系具有作用量纲的物理量与h可相比拟,则该体系的行为必须在量子力学的框架内描述;反之,如果物理体系具有作用量纲的物理量远大于h,则经典物理学的规律就在足够的精确度对该体系有效。普朗克常数h的深刻含义和重要地位,使之得以跻身基本物理常数之列。

普朗克常数h的一个意外而有趣的含义在于,它是一个直接关系到宇宙存在形式的基本常数。宇宙中广泛存在着有形的物质与辐射,其间的能量交换(如物体发光或吸收光)遵从一条物理原理,即能量按自由度均分。如果不存在普朗克常数,即若h=0,则表明辐射与有形物质之间的能量交换可任意进行。由于辐射的自由度与频率的平方成正比,随着频率增高,辐射自由度在数量上是没有上限的。因此,辐射通过与有形物质的能量交换,将不断地从有形物质中吸取能量,最终导致有形物质的毁灭。于是,整个宇宙只剩下辐射,没有原子、分子,没有气体、液体、固体等,生命与人类当然无从谈及。幸而普朗克常数h不为零,辐射的能量是不连续的,存在着ε=hv的能量台阶,波长越短频率越高的辐射其能量台阶越高,在与有形物质的能量交换中越不起作用,相应的辐射自由度冻结,从而使有形物质与幅射的能量交换受到限制,两者才能达到平衡,我们这个宇宙才能以当今丰富多采的形式存在下去。

下面介绍一下近代精确测量C和h的方法。

测量真空中光速的精确方法是,直接测量激光的频率ν和真空波长λ,由两者乘积得出真空光C。1972年,通过测量甲烷谱线的频率与真空波长,得出真空中光速为c=299792458±1.2米/秒。1983年第17届国际计量大会规定新的米定义为:“米是1/299792458秒的时间间隔内光在真空中行程的长度。”由于光速是定义,不确定度为零,从此不再需要任何测量,结束了300多年精密测量C的历史。

h首先由普朗克给出,普朗克利用黑体辐射位移定律中的Wien常数b与k(Boltzmann常数)、C、h的关系,由b、k、C算出h,用实验方法测定h则始于Millikan,他利用光电效应的实验得出h,近代精确测定h的方法是利用Josephson效应,这是超导体的一种量子效应。

1900年,Thomson在总结以往几百年的物理学时指出:“在已经基本建成的科学大厦中,后辈物理学家似乎只要做一些零碎的修补工作就行了;但是,在物理学晴朗天空的远处,还有两朵令人不安的乌云。”这两朵乌云就是当时无法解释的黑体辐射和Michel-son—MOrley实验,正是它们引起了物理学的深刻变革,导致量子力学和相对论的诞生,与此同时出现了两个基本物理常数h和C。

参考文献

[1][美]威切曼著,复旦大学物理系译,《量子物理学》,科学出版社,1978年

篇7

(赤峰学院 物理与电子信息工程学院,内蒙古 赤峰 024000)

摘 要:实验是科学研究的基础,能够创造新知识、产生新技术.近代物理实验对培养学生综合能力具有特殊功能,是培养创新思维品质、分析解决问题能力、实践能力和实验技能的重要环节.近代实验技术在许多科学领域与工程实践中有广泛应用.本文结合原子物理学课程、近代物理实验课程特点和学生实际,探讨近代物理实验的教学方法和教学组织形式,培养学生创新意识和创新能力.

关键词 :创新思维;创新能力;开放式教学

中图分类号:G642.4文献标识码:A文章编号:1673-260X(2015)01-0233-02

1 引言

众所周知,在近代物理学的发展过程中,两个重要的物理实验与经典的物理学理论尖锐矛盾,一个是黑体辐射中的紫外灾难(ultra-violet catastrophe),另一个是迈克尔逊 A.A.Michelson-莫雷E.W.Morley实验.它们导致量子理论和相对论的建立,开创了近代物理的新纪元.Einstein提出的狭义相对论,改变了Newton力学的绝对时空观,而量子理论则涉及物质运动形式和规律的根本改变[1-3].量子理论不仅能够揭示极为广泛的自然现象,同时还引发了极为广泛的新技术上的应用.近代物理理论和技术的应用推动了原子物理、核物理、粒子物理、凝聚态物理和天体物理等的研究,产生了半导体、核工程、激光等新的现代科学技术.这些新技术在能源、材料、工程技术、工农业、国防、生物科学、医学等诸多领域有着十分广泛的应用.纵观物理学的发展过程,实验始终是科学研究的基础,能够创造新知识、产生新技术,是培养创新思维品质、分析解决问题能力、实践能力和实验技能的重要环节.但学生不重视实验课程,动手能力和主动性较差,个性和潜能不能充分发挥,因此我们尝试推进近代物理实验教学改革.

2 合理设置教学内容 突出思想方法和现代实验技术

近代物理学的两大支柱-量子论和相对论,前者研究微观粒子的统计行为,后者则研究高速(接近光速)运动物体的行为,许多经典物理学的规律已不再适用,两者在生活中又没有相应的模型与之对应,因此研究过程离不开新的物理思想、方法和现代测量技术.近代物理实验课程,目的是使学生掌握先进的研究问题的思想、方法、技术和手段,跟踪最新科学研究动态,培养学生创新思维品质,造就高素质人才.我们在近代物理实验项目建设过程中,经充分论证,设置了黑体辐射、弗兰克-赫兹实验、X射线物象分析、原子力显微镜、扫描隧道显微镜、微波测量技术、激光拉曼、塞曼效应、钠原子光谱、核磁共振等12个必修项目,另外我们正在积极建设原子核物理技术实验-快速电子的动量与动能的相对论关系实验项目.这些实验包括了近代物理学发展过程中具有经典性、物理思想影响深远的物理实验,体现实验技能和现代测试技术的实验及现论、现代新技术在各领域应用的实验,使学生掌握基本理论、研究问题的思想方法和高级实验技能,培养学生创新思维意识、创新能力、分析解决问题能力和自主研究问题的兴趣与能力.

3 合理选择教学方法 培养创新思维品质

近代物理实验课程是物理学专业和应用物理学专业高年级学生的必修课程,重在培养学生的创新思维品质和科学素质,提高学生科学认知的水平和能力.12个近代物理实验项目中涉及到原子物理实验、X光技术、微波技术、磁共振技术等[4-5].针对教学内容和学生实际适时调整教学方式方法,对于实验原理、仪器构造、操作注意事项等内容,用现代多媒体技术手段呈现并认真分析讲解.对于具体的操作方法、技能,教师要充分发挥主导和示范作用,学生须严格按操作规程序完成操作.如塞曼效应实验中,法布里-珀罗标准具的调节;激光拉曼实验中外光路的调节及应用程序的使用;扫描隧道显微镜实验中针尖、样品的安装,STM工作软件的使用等以提高学生的基本实验技能.对于综合研究性、设计性的实验内容,教师要创设实验教学环境,提出需要研究解决的问题,采用探索研究式、启发式、讨论式等教学方法并根据实验进展适时引导、启发、答疑、解惑,改变学生机械、被动的重复教材实验过程的状态,引导学生思维活动,培养学生的创新思维品质,同时鼓励学生大胆质疑,相互讨论,使学生不迷信、不盲从于教材和教师,充分发挥学生的积极性、主动性,将实验过程变成积极思维、勇于探索的创造性过程,培养学生创造性思维品质和创新能力.

4 采取开放式教学模式 促使知识向能力转化

12个近代物理实验项目计划课时仅为48学时,这就需要打破传统的教与学、理论与实验、时间与空间的界限,采用开放式的教学模式,实现教与学的互动.开放式教学指设备、场地、内容、时间、兴趣、思维、教学方法、教学手段等全面开放,以促进学生将知识转化为能力.就原子物理部分实验而言,教师可以根据理论课的教学进程、教学内容灵活安排实验内容和时间,课堂上提出要探讨研究的课题,引导学生进行分析讨论并综合运用所学知识、技能,提出研究解决问题的思路方法,设计实验方案.如:在玻尔理论的教学过程中,课堂上可引导学生分析讨论,提出实验验证原子内部能量量子化的思想方法并设计实验方案,然后与弗兰克-赫兹实验进行比较修改完善设计方案.在这个基础上并在这个时间点安排学生完成弗兰克-赫兹实验实验,证明原子内部量子化的量子化.弗兰克-赫兹实验是验证性实验,但教师在授课过程中提出能够引发学生思维的问题,创设思维环境,调动学生积极思考问题,并综合运用所学知识解决问题,理论与实验的有机结合使这个验证性实验变成了设计性实验,促进学生将所学知识向能力进行转化.对于原子的核式结构模型、原子的空间量子化、实物粒子的波粒二象性等教学内容虽然没安排相应的实验或没有实验条件,同样可以采用这种方式进行教学,如验证卢瑟福散射公式、原子的空间量子化等,教师创设思维环境,提出有待解决的问题,引导学生分析讨论,调动学生思维,探求解决方案,然后让学生查阅相关资料,完善改进自己的设计方案,培养获取信息的能力、运用所学知识分析解决问题的能力及创造性思维能力.原子物理学课程中[6-7],巧妙的构思与设计贯穿于教学过程始终,在教学过程中,教师要善于创设问题情境,解放学生的思维空间,学生大胆想象、设计、争论、探究,教师及时引导、修正、解惑、答疑,理论课与实验课有机结合统筹安排的教学效果明显优于传统的二者分开教学的教学效果.

由于设备、场地、内容、时间、兴趣、思维等全面开放,教师可以精选实验仪器设备开发新的实验项目进行科学研究或作为学生的选修项目.对于选修实验项目,教师要明确提出任务要求,学生根据实验任务要求综合运用所学知识技能进行构思,并正确选择实验仪器,设计实验方案,独立进行实验操作,培养学生综合运用知识解决物理问题的能力和创造能力.学生也可以参与教师的科研工作,培养学生实验设计能力、组织实施能力和知识应用能力.除此之外,学生也可根据自己的专业特点、兴趣爱好,有目的有计划的进行自主实验,即学生根据自己要研究解决问题的,查阅资料并认真研究,提出分析、解决问题的构想,自主选择仪器、设计研究方案,然后在教师的指导下独立进行实验研究,对于实验过程中出现的一些新的问题及时与教师研究讨论,不断修改完善实验方案,寻求解决问题的最佳途径.自主实验在时间、空间、实验内容、实验方案的设计等方面给学生充分的自主权,充分的学习思维空间,丰富的想象空间,充分发挥学生的积极性,培养学生观察、思维、设计、操作、创新能力.

近代物理的理论和技术在诸多领域有广泛应用,在教学过程中,将理论课、实验课的教学内容适当拓宽,实现理论、实验、应用同步教学.如将理论课与实验资源、网络资源有机结合,引导学生探究描隧道显微技术、核磁共振层析技术、核能利用、X射线衍射物象分析技术、血管造影技术、激光技术等内容,激发学生的创造热情和潜能,培养学生科学严谨的科学态度.

5 结语

近代物理实验是一门综合性较强的实验课程,在教学过程中恰当的选择教学方法、适当拓展教学内容,采用以学生为主体、教师为主导的开放式实验教学模式,使学生进入创新思维能力、分析解决问题能力、实验技术和实验能力不断提高的良性循环中.开放性教学的实施,给学生充分的学习、思维和想象空间,使学生运用知识、技能独立分析和解决实际问题的能力、动手实践能力、思维能力和创新能力得到提高.但实施过程中也会遇到各种意想不到的问题,教师面临前所未有的挑战,这就要求教师不断充实和完善自己,确保教学质量稳步提升.

参考文献:

〔1〕曾谨言.量子力学教程[M].科学出版社,2003.

〔2〕曾谨言,龙贵鲁,裴寿镛.量子力学新进展(第三辑)[M].清华大学出版社,2003.

〔3〕曾谨言,裴寿镛,龙贵鲁.量子力学新进展(第二辑)[M].清华大学出版社,2001.

〔4〕张天喆,董有尔.近代物理实验[M].科学出版社,2004.

〔5〕吴思诚,王祖铨.近代物理实验[M].北京大学出版社,1995.

篇8

摘要:物理学作为一门最基础的自然学科,在产生形成发展的过程中,蕴含着丰富的哲学文化。为了充分挖掘自然科学中的哲学思想,加强科学文化与哲学文化之间的联系,文章从唯物辩证法、美学、科学道德3个方面剖析了物理学中的哲学思想。

关键词:物理学;哲学思想

物理学是一门最基本的自然学科,它是探讨物质结构和物质基本运动规律的学科,所以人们往往认为物理学只是包含一些枯燥的理论公式,而忽视了物理学中包含的人文因素诸如人文哲学思想、美学等方面。实际上,物理学在产生、形成、发展的过程中,人们不是为了物理学而研究物理学,而是为了有助于人类、社会以及个体人的发展而研究物理学,所有这些都涉及到了人与人的关系、人与自然的关系,这些关系中都蕴含着丰富的哲学思想。

1物理学中的唯物辩证法思想

物理学在古代被称为自然哲学,物理学作为一门精密的学科进行研究是从1687年牛顿发表的《自然哲学的数学原理》开始的。随着学科的发展与不断完善,物理学才从哲学中分化出来,形成独立的学科,但物理文化中蕴含的哲学思想是不会被分离的。

1.1实践是检验真理的唯一标准

物理学是实验科学,物理实验既是建立物理理论的基础又是检验物理理论真理性的方法。杨振宁教授说“物理学是以实验为本的学科”,物理学上很多理论都是通过实验检验论证的结果,体现了唯物辩证法的认识论观点――实践是检验真理的唯一标准。

1.2物质是普遍联系的

物理发展史上,很多地方体现了物质是普遍联系的观点。比如人们曾经把电和磁孤立起来,物理学家奥斯特接受自然力统一的哲学思想。坚信电和磁之间存在某种潜在联系,经过多年研究,终于发现了电流的磁效应,并由此开创了电磁学的新纪元。把电和磁联系了起来,这正体现了唯物辩证法的特征――物质是普遍联系的。

1.3事物发展过程中的“否定之否定”规律

人们对物理现象及其本质的认识是不断地发展和完善起来的,每一种理论的建立过程都体现了“实验(事实)――理论假设――实验(新的事实)――修正理论”,遵循着辩证唯物主义中的“否定之否定”规律。比如在整个光学的发展史中对光本质这个问题的认识,先是牛顿的微粒说;再是惠更斯的弹性波动说;接着麦克斯韦提出电磁波动说;到20世纪爱因斯坦提出光量子说。最终人们认识到光具有波粒二象性,人类对光本性的认识就正是遵循着“否定之否定”认识规律的反映。

1.4主要矛盾与次要矛盾的辩证关系

物理学中为了方便研究问题,经常抓住物体的主要特征,忽略物体的次要特征,而抽想出一些理想模型。如“质点”这个理想模型保留了实际物体的质量和存在的位置,而忽略了物体本身的大小形状,体现出辩证唯物主义中的“主要矛盾与次要矛盾之间的辩证关系”。

1.5运动的相对性和时空的相对性

近代物理学的一大理论―爱因斯坦的相对论中涉及的哲学问题很多。最突出的就是相对运动和相对的时空观念。相对论指出:相对性原理的本质在于运动的相对性这一事实,而不存在绝对运动。相对论否定了绝对运动的存在,就否定了绝对时空的概念。它通过不变的光速把时间和空间联合为一个整体,由洛伦兹变换建立起各个惯性系之间的时空关系。

可见,不论是物理文化知识本身,还是物理文化形成、发展的过程都蕴含着丰富的哲学思维方法,对人类的自然观和哲学思想有重大的影响。

2物理学中的美学文化

2.1物理理论的美学特征

2.1.1简单深刻美

在一个艺术家眼里简单是一种美。自然现象错综复杂,物理学则力求用简单的方程或定律去概括自然规律,但其反映的内在规律确是非常深刻的。如能量的转化和守恒定律反映了各种不同形式的能量的转化,牛顿的三大定律更是概括了宏观低速条件下各种机械运动的规律,麦克斯韦电磁方程组将复杂的电磁现象统一其中,爱因斯坦相对论中的基本原理简单凝练,但其中内涵确是丰富而深刻的。

2.1.2对称守恒美

对称是自然界中广泛存在的也是人们很乐于接受的一种美学形式,物理学在对自然的表述中处处显现出了这种对称的美:引力和斥力,“电生磁”与“磁生电”,粒子与反粒子,物质与反物质、圆孔或单缝衍射图样的对称、无限长直导线周围磁场的轴对称等等。物理定律对某种规范变换的不变性、守恒性更是贯穿于整个物理学的一种对称形式,物理学中有许多守恒定律如:动量守恒、机械能守恒等等。实际上,对称性已经成为当代物理学家研究物理理论的一种方法。

2.1.3统一和谐美

篇9

关键词:物理学;科学素质;探索精神

物理学是自然科学和工程技术的基础,对学生的成长和发展具有稳定性、长效性的重要支撑作用,在培养学生科学素质和科研能力等方面具有不可替代的优势。大学物理作为一门重要的基础课程,除了传授相关物理知识以外,其基础地位和在科学素质培养中的作用更为重要。重视大学物理课程教学,不断强化其对学生科学素质培养的作用,对教员来说是一个重要的课题,需要不断努力探索。

一、要充分认识大学物理课程的基础地位

物理学是一门最基础的自然科学,随着自然科学的发展,它的各部分内容已分别形成许多独立的学科。物理学在整个自然科学的发展中占有非常重要的地位,物理学的知识和方法已成为许多自然科学部门和工程技术领域的基础。一方面,它所建立的基本概念,已渗透到自然科学的其它领域,它所得出的原理是关于物质世界的基本规律,是普适的,是相对稳定的;另一方面,物理学所采用的思维方法和研究方法也被其他学科所吸收,科学的思维方法和研究方法对于在其他学科领域的学习和工作的人也具有深远的影响。而且,物理学也是技术发展的基础和先导。物理学的三次突破(经典力学热力学、电磁场理论、相对论量子力学)导致了生产力的三次飞跃,使人类从工业机械化时代进入电气化时代、再进入信息化时代。正如我国著名科学家钱学森所说:“现代科学技术,说到底,是靠两门学问:一是物理,二是数学。

二、要充分发挥大学物理课程在学生科学素质培养方面的作用

物理学是探索物质结构和运动基本规律的学科,重在探索。物理学的发展往往是从发现矛盾和提出问题开始的。正如爱因斯坦所说:“提出一个问题往往比解决一个问题更重要。”费曼也曾说:“科学是一种方法,它教导人们:一些事情是怎样被了解的,什么事情是已知的,现在了解到什么程度,如何对待疑问和不确定性,证据服从什么法则,如何去思考事物,做出判断,如何区别真伪和表面现象。”所以说,物理学在培养学生科学素质方面有独特的作用。

(一)培养学生科学的自然观和辩证唯物主义的世界观

在大学物理教学中,教员要充分揭示物理知识的内涵,并适当利用物理学的发展历史,来帮助学生树立科学的自然观和辩证唯物主义的世界观。例如:从古代宇宙理论到托勒密的地心体系、到哥白尼的日心说、到牛顿的静态宇宙模型、再到称之为“标准宇宙模型”的大爆炸宇宙学说,反映了人类对宇宙认识的逐步深入;对物质层次结构、运动形态与相互转化,对称性与守恒律等的研究与发现,充分体现了世界的物质性,证明了物质世界的客观性和可认识性;牛顿力学实现了天体力学与地面力学的统一,电磁场理论使电学、磁学和光学得到统一,力学与电磁学的统一,导致的狭义相对论的创立,四种基本相互作用的依次发现与研究导致“大统一理论”的研究与发展等,充分说明了物质世界的统一性。辩证法的核心――矛盾的对立统一规律,在物理学中的例证也是丰富多彩的,如吸引与排斥、压缩与膨胀、有序与无序、对称与破缺、量变与质变、连续与离散等。

(二)培养学生的探索精神与创新精神

在大学物理教学中,可以结合物理学的发展历史、物理学家的生平事迹对学生进行教育,鼓励学生独立思考、勇于提出见解,培养他们的探索精神和创新精神。普朗克提出热力学第二定律新思想曾受到亥姆霍兹、克劳修斯反对,他叹息道:“新的科学理论常常通过说服反对者而获胜,它最后的胜利是由于反对者们终于死去而赞成它的年轻一代成长了起来。”物理学界常戏称为“普朗克定理”,足见探索、创新精神的难能可贵。通过介绍哥白尼、伽利略等科学家在追求真理道路上的曲折遭遇到最后胜利,可以强调创新的勇气和探索的意志;法拉第在电流磁效应发现后产生“磁生电”的思想,经过十年努力,发现了电磁感应现象,体现了科学家的不怕失败、百折不挠、勇与探索的精神。体现创新精神的例子也有很多,如爱因斯坦放弃传统的时空观,提出狭义相对论,又经长达十年之久的研究创立了广义相对论;李政道、杨振宁以怀疑批判精神,认真分析大量实验事实,提出弱相互作用宇称不守恒并得到实验证实;狄拉克提出“负能电子海”,预言了正电子的存在等。正如爱因斯坦所说,“想象力比知识更重要,因为知识是有限的,而想象力概括了世界上的一切,推动着进步,并且是知识进化的源泉。”

(三)培养学生掌握科学研究方法

在大学物理教学中,教员要努力帮助学生掌握科学研究方法,为他们能在以后的学习和工作中恰当处理问题打下良好基础。物理学严谨精密,利用数学工具揭示物质世界的客观规律,同时物理学也是一门实验性很强的科学。研究物理学的方法丰富多彩,有观察实验、分析综合、归纳演绎、科学抽象、类比联想、猜测试探、理想化方法、模型化方法、半定量方法等。如,类比法是一种逻辑思维方式,它是根据事物之间在某些方面的类似或同一,推断它在其他方面也可能类似或同一的思维方法。如惠更斯将光与声波类比,提出了光的波动理论;德布罗意将粒子与光进行类比,提出了实物粒子也应具有二象性的著名论断,预言了物质波的存在。又如,理想模型是物理规律和物理理论赖以建立的基础,大学物理课程中就涉及很多物理模型,像质点、刚体、理想气体、电偶极子等都为处理问题带来了方便。再如,作为逻辑推理的助手,理想试验是用假想的、在理想或极端条件下的推理,对命题做出判断,它在物理学发展史上起着重要而独特的作用,如伽利略用理想斜面试验论证了惯性定律,牛顿设想高空平抛物体导致万有引力定律的发现,爱因斯坦设计箱体辐射论证质能关系,海森堡用理想实验论证了不确定关系等。

总之,我们应当重视大学物理课程的基础地位,在教学实施过程中体现素质教育的思想,从以书本为中心转移到关注学生的科学素质培养上来,充分挖掘物理学中蕴含的丰富思想和方法,强化学生的科学素质培养,使他们终身受益。

参考文献

[1]张三慧.大学基础物理学[M].清华大学出版社,2003.

篇10

在金融界里,你是和上帝的造物玩游戏。

模拟世界

伟大的数学家卡尔・弗里德克・高斯在19世纪曾有定论:“数学是科学的皇后”,照这样说的话,那么物理学就是皇帝。从17世纪中叶到19世纪末,牛顿的引力定律、三大运动定律和微分学极度完美地描述了我们这个世界和太阳系物体的机械运动。

牛顿之后两百年,苏格兰物理学家詹姆斯・克拉克・迈克斯韦在1864年用简洁优美的微分方程,同样惊人地准确地刻画了光波、X射线和电磁波的传播。迈克斯韦方程表明,电和磁这两种之前彼此不相干的物理现象,其实都是同一个统一的电磁场的不同部分。

到20世纪初,步伐加快了。爱因斯坦在对牛顿力学和迈克斯韦方程理论上的矛盾进行思考之后,提出了狭义相对论。狭义相对论修正了牛顿的机械运动定律,使之与迈克斯韦方程统一起来。15年后,爱因斯坦再次向牛顿力学开刀,提出了广义相对论。广义相对论修改了牛顿的引力定律,将引力描述成一种在空间和时间上范围很广的引力波。几乎是在同一时间,波尔、薛定谔和海森堡在伟大的爱因斯坦的帮助下,发展出了关于分子、原子以及亚原子粒子微观行为的量子力学。

在任何一个领域中,在追求科学规律的背后,目的又是什么呢?很明显,是为了预测未来并掌控未来。绝大多数现代科技,无论我们喜欢也好,依赖也罢,甚至是憎恨、厌恶乃至恐惧――比如手机、电网、X射线造影、核武器等等,都是在诸如量子力学、电磁理论、相对论等基础理论之上发展起来的。而这些基础理论无一例外都是大脑思考的结果。20世纪用来预测未来的经典工具的确就是这样一些物理学理论。最近,物理学家们开始在金融领域使用这些工具。

在过去的20年中,无论是华尔街还是伦敦金融城,在几乎所有大型金融机构,以及很多小型金融机构中,一小群前物理学家和应用数学家们开始尝试着把他们的技术应用于证券市场。他们以前曾被那些误认为火箭技术是最尖端科学领域的人们称为“火箭科学家”,而现在,他们通常被称为“宽客”(Quant)。

最成功的理论

物理学家们在华尔街又做什么呢?他们主要是构建模型来确定证券价值。他们埋身于投资银行、对冲基金或者是像彭博和SunGard那样的金融软件公司,对旧的模型修修补补,并开发出新的模型。到目前为止,在整个金融界最著名、应用也最广泛的是“布莱克-肖尔斯期权定价模型”。

“布莱-克肖尔斯模型”令人叹服地告诉我们如何在基础股票之上制造出一个期权,并且提供了成本的估算方法。据布莱克和肖尔斯所言,制造期权非带像是做水果沙拉,而股票就有点像是水果。

1973年,布莱克和肖尔斯告诉大家,你可以把几股IBM股票和现金混合在一起制造出一份IBM的股票期权,就好像你把苹果和橘子混在一起做水果沙拉一样。当然,合成一个期权不管怎么说都要比做水果沙拉复杂多了,否则早就有别人发现怎么做了。在水果沙拉中,苹果和橘子的比例是固定不变的(比如50%的苹果配上50%的橘子),而期权的配比却是持续变化的。期权要求随着股票价格的变化,不断调整组合中股票和现金的数量。用水果沙拉来说就是,可能刚开始时有50%的苹果和50%的橘子,随着苹果价格的上涨,沙拉可以调整为40%的苹果和60%的橘子;而苹果价格的下降,则可能带来70%苹果和30%橘子的配比。在某种意义上就是,当原料价格和时间不断变化时,你却一直努力保持组合的价格不变。而你需要遵守的那个准确的秘诀就由“布莱克-肖尔斯方程”给出。这个方程的符案,也就是“布莱克-肖尔斯公式”,告诉你照着秘诀去做成本会是多少。在布莱克和肖尔斯之前,甚至都没有人能猜想出你可以用简单的原料制造出一个期权来,就更别提还能计算出期权的合理价格了。

这项发现是现代金融领域的一场革命。布莱克和肖尔斯凭借他们的洞察力,让期权这个以前仅供少数人享用的“大餐”成了标准化的“套餐”。金融机构的交易员们现在可以根据各种基础证券制造和销售期权,创造出客户想要的而又不用自己来承担的确定的风险。这就好像在一个充满了氢气和氧气的干渴世界里,终于有人发现了如何合成水。

宽客的生活

在交易领域作实务工作的宽客的生活完全不同于物理学家的生活。我在物理研究领域工作多年后,于1985年底首次进入华尔街,当时我的新老板让我接手一个存在问题的用于债券期权的“布莱克-肖尔斯模型”的第二轮使用,这个模型是他一年前设计的。我仍像个物理学家那样谨慎而又小心地开始了工作。我阅读了相关论文,学习了有关理论,分析了存在的问题,着手重新编写模型运算的计算机程序。几个星期后,老板对我工作的进展缓慢变得不耐烦了。“你应该清楚,”他把我叫到一边,严厉地说道,“干这个活你只需要知道四件事,就是加、减、乘、除,而且大多数时候,还没用到除法,活就应该干完了!”

我明白他的意思。当然这个模型用到的高等数学比加减乘除要多。但他的想法是对的。大多数的期权交易商们必须尽可能快地制造出客户们需要的产品,他们是靠这个吃饭的,换句话说,他们提供服务是为了赚钱。对他们来讲,一个简单的、易于理解的模型远比一个更好的、更复杂的模型有用得多。当你的利润很丰厚,又想尽可能多地做业务时,过分地关注那些你一时半会儿搞不定的细节,就可能会耽误赚钱。而且通常情况下,很难准确地定义出哪些因素构成个“更好”的模型――市场上鲜有可控的实验。

思想家对垒实践者

在华尔街,交易员和宽客是不同的两类人。交易员常以意志坚定、性格直率为荣,而宽客则更加谨慎小心、少言寡语。这种性格上的差异正是深层文化偏好上的反映。交易员受雇就是来做交易的。他们整天就是盯着屏幕,搜集经济信息,在电子数据表格间飞快地换来换去,运行宽客们编写的程序,输入交易信息,跟销售员和经纪人交谈,还有敲击键盘。在工作时间很难和一名交易员有广泛的交流;经常是足足等了一个小时,才有5分钟搭话时间,而这5分钟还会被打断。交易员们做的部分事情,有一点像打电子游戏。结果呢,尽管不是永远正确,但他们学会了坚持己见,从本能出 发快速思考问题,并果断做出决定。他们以工作时间被打扰为乐。

宽客则不同。他们就像搞研究的学者一样,习惯于从开始到结束聚焦于一件事,而且要深入进去,要做得好。但在一个你同时要做好几件事、任务繁多的商业环境里,这样做就是消受不起的奢侈品了。加入华尔街后,对我来说心态上最难调整的就是必须学会同时完成好几项任务,要停下手头还没完成的急活儿,赶紧处理另外一 件更紧迫的事儿,搞完后就往堆积如山的文件里一扔。

交易员和宽客的思维方式也 不一样。优秀的交易员必须时刻关注变化带来的风险以及对他们的头寸会有什么影响。特别是股票期权,因为其内在的不对称性和放大股票价格变动的特点,任何一点微小的变动都会造成巨大的亏损或收益。宽客则较少考虑未来的变动,而更关注现在价值的变化。根据金融理论,在任一时点上,一种证券的所谓合理价值就是在将来范围内所有可能的价值的平均值。因此合理价值与价值变动就是一枚硬币的两面;如果一只证券在未来的市场变动中价值会下降,那么下降得越多,从理论上说,这只证券今天就越不值钱,还是那句老话――“风险多一点,回报多一点”。宽客把均值视为价值,而交易员觉得有必要为所有变动担心,这就是两者的不同,也造成了他们工作交流上的困难。

优秀的宽客也必须是个多面手,懂交易、懂销售、懂程序设计、懂数学。很多宽客都想转行去做交易员,但是他们面前有很大的障碍,比如学者出身的背景、谨慎小心的性格以及宽泛驳杂的技术。

宽客就是华尔街物种界限的违反者,他们是混血的选手,使那些纯种的交易员和不含杂质的IT经理人感到不舒服。宽客还是些职业定位不清晰的业余选手。当投资银行的交易员和程序员按照明确的职业阶梯,一步一步往上爬时,宽客的职业阶梯却很短,而且往往走到半空时就断了。

上帝的与世俗的

在对物理规律的追求之中存在着一种近乎宗教般虔诚的品质,这种品质源于物理学先验的特性。一颗行星是“如何”知道它必须遵守牛顿定律的,或者一粒电子是如何发现它应该按照量子电力学的原理运行呢?难道内部有一个小人操作着里面的超微型计算机来决定电了下一步的方位吗?当你看到那些原理、想象、还有一些数学――总之都是人类的思想――能够预测出宇宙行为的时候,很难不生出一种惊讶的感觉。在缺乏真正的领悟之时,唯有艺术最接近上帝。