医学影像超声诊断学范文

时间:2023-11-20 17:56:40

导语:如何才能写好一篇医学影像超声诊断学,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

医学影像超声诊断学

篇1

[关键词] 乳腺肿瘤;早期诊断;血氧功能成像技术;多普勒超声

[中图分类号] R737.9 [文献标识码] A [文章编号] 1673-7210(2013)08(b)-0095-05

乳腺癌是女性最常见的恶性肿瘤之一,其发病率约占女性癌症的17%,且近二十年来一直呈上升趋势[1-2]。临床研究发现,早期诊断能有效提高患者生存率[3]。目前,乳腺检查方法较多,但无论是CT、磁共振、钼靶、多普勒超声等检查,都有其不足之处,在已有的检查方法基础上,尝试与其他新兴辅助手段联检,倍受临床关注[4]。乳腺血氧功能成像技术(breast blood oxygen functional image technology,BOI)是近年新发展起来的红外成像技术,具有便捷、无创、可同时定性、定量等显著优势。然而BOI无法显示乳腺实质结构,需结合临床医师的经验做出诊断,主观性较大,易漏诊。因此,综合分析各种检查方法的特点,寻求一种高效、准确的联合筛查方法,对临床早期乳癌的诊断意义深远。目前研究中,多普勒超声与BOI联合应用于乳腺癌早期诊断的研究鲜有报道。本研究以此为切入点,以期为乳腺癌的早期诊断提供依据,现报道如下:

1 资料与方法

1.1 一般资料

选择2010年12月~2012年3月深圳市宝安区人民医院收治的225例乳腺单发肿块患者,均为女性,年龄19~75岁,平均39.2岁,发病至就诊时间3~415 d,平均42.1 d,肿块直径0.3~4.2 cm,平均1.6 cm;肿块位于右侧乳腺者135例,其中外上象限者48例,外下象限者13例,内上象限者33例,内下象限者11例,中间象限者30例;肿块位于左侧乳腺者90例,其中外上象限者25例,外下象限者11例,内上象限者17例,内下象限者21例,中间象限者16例。本研究经医院伦理委员会通过,且所有患者均经知情交代,自愿入组。

1.2 入组标准

①初次诊断“乳腺肿块”,既往无同类病史及乳腺手术史,未经过任何治疗。②非妊娠期或哺乳期妇女。③既往无乳腺癌及其它恶性肿瘤病史。

1.3 主要实验仪器

乳腺血氧功能成像检查仪(E2SN22型,武汉一海公司;GJM-GT系列型,深圳市国基科技有限公司);活检装置(MC1610型,MAGNUM 美国巴德公司);彩超(百胜AU3探头,频率7~12 MHz;意大利HDI5000及GE VIV7探头,频率为7.5~12 MHz;美国Vivid7探头,频率7.5~12 MHz GE)。

1.4 研究方法

入组病例首先进行临床检查,怀疑乳腺恶性肿块者,进一步经乳腺彩超证实后,进行乳腺血氧功能检查。由主诊医师决定治疗方案,并结合患者意愿,行空芯针穿刺病理检查或肿物切除活检手术,比较彩超诊断与病理诊断及血氧功能诊断与病理诊断,分别计算出乳腺彩超及乳腺血氧功能成像技术筛查乳腺癌的诊断敏感度、特异度及二者结合对于乳腺癌诊断的敏感度、特异度。

1.4.1 乳腺血氧功能检测的流程、方法及注意事项

1.4.1.1 仪器的操作流程 ①输入检查者的基本信息。②动态观察正反像图象。③对双乳两次拍照,自动分析,得出18幅图片。④进入修改界面填写报告单打印。

1.4.1.2 检查方法 ①被检查者端坐于摄像头前方55~75 cm处。②暴露双乳。③对双乳的5个象限及腋窝区进行触诊,挤压观察有无分泌物。④打开探头光源开关,对好焦距和光圈。⑤原则对线打光及遮光办法。⑥动态观察,取感兴趣点采图。⑦拍摄后,探头停留2 s,使图采集完整。⑧进入诊断部分,点击血氧值,输入诊断词汇。

1.4.1.3 检查注意事项 ①下垂,向下,使尽可能半圆重叠。②光源达到亮度最满意为佳,尽可能包括全乳(除外病变)。

1.4.2 乳腺血氧功能检测的诊断标准

1.4.2.1 灰影诊断标准 ①浅灰影:正常乳腺乳晕外区灰度。②中灰影:近似乳晕区灰度。③深灰影:同或大于灰度,乳晕区外组织最亮度为“0”级。一般情况下,浅、中灰影描述良性;中、深灰影多描述恶性(炎症、结核、外伤也会为深灰影,需结合病史);动态影像中如果出现灰影,灰影压指不退色,有诊断意义,多考虑为恶性。

1.4.2.2 血管诊断标准 ①A型:没有血管或仅1~2条血管。②B型:多于2条以上,树枝状、网状、不规则分布。③C型:多形容恶性,表现为:放射型,引流型,迂回型 ,中断型。血管分为A、B、C三型;A、B型基本属于正常组织血管;C型多产生于恶性肿瘤(不绝对,无伴随灰影,没有临床意义)。

1.4.2.3 血氧值诊断标准①高血:血值>1.4(显示为红色,图1)。②中血:血值1.2~1.4(显示为黄色,图2)。③平血:血值0.9(显示为绿色,图4)。⑤中氧:氧值0.9~0.85(显示为黄色,图5)。⑥低氧:氧值1.4,氧值

1.4.2.4 曲线结构图诊断标准 ①增生的改变:轻度:曲线不稳(图1);中度:多同心圆改变,曲线致密,走形较清晰(图2);重度:曲线结构明显紊乱,可有多发单线条小环影(图3)。②恶性肿瘤改变:典型的曲线结构局部致密、结构紊乱或不典型局部曲线扭曲(图4)。③良性小肿物或小结节改变:小于1.0 cm结节,在正常结构内出现的单线条小环影;大于1.0 cm肿物显示局部曲峰上抬(图5)。

1.4.3 诊断分级及报告结论参考标准

①乳腺0级:非特异性改变,建议另作其它项检查。②乳腺1级:未见异常,希望定期作健康检查。③乳腺2级:所有良性病改变(包括轻度增生),建议定期 检查。④乳腺3级:显示明显异常,但良性可能性大(包括中重度增生),按医嘱须短期复查(3~6个月)。⑤乳腺4级:可疑癌(50%),建议其它检查联合进一步确诊。⑥乳腺5级:高度可疑癌(几乎可以定论),建议作钼靶、CT、磁共振或活检等进一步检查。⑦乳腺6级:为病理已经明确诊断为恶性的。

1.4.4 彩超仪器检测的操作流程

①录入检查者的基本信息。②对病例进行多普勒超声检查。③观察图像特征。④详细记录并打印报告。

1.4.5 彩超仪器的检测方法

①被检查者仰卧床上。②暴露双乳。③对双乳的5个象限及腋窝区进行触诊,挤压观察有无分泌物。④双乳涂上耦合剂,探头由乳腺外象限开始至内下象限逐步检测。⑤动态观察:观察指标包括:肿物形态及边界;内部回声/病灶后回声;侧壁声影;微小钙化灶;血流显像分布、血流峰值流速、血流阻力指数值、血管数目等。观察方法:对乳腺肿块作纵、横、斜多切面扫查。⑥标记并测量肿物大小。⑦记录并打印报告。

1.4.6 彩超检测乳腺癌诊断参考标准

①肿块边界不整,界限不清或欠清,边缘呈锯齿状或蟹足状。②无包膜或包膜不完整。③纵横比值> 1。④肿块多为低回声,内部回声不均或极低回声,多可见微钙化。⑤后方多伴回声衰减或侧方声影。⑥内部及周边血流多较丰富、可见穿支血管或/和血流阻力高。

1.4.7 病理检测乳腺癌诊断参考标准(浸润性导管癌)

①有原位癌的结构。②间质浸润,癌呈条索状或团块状。③高倍镜下见细胞体积增大,可见核仁,核仁深,比例失调。

1.5 观察指标及标准

对比分析血氧功能检查结果与最后临床病理诊断结果,用所得数据统计乳腺血氧功能成像技术筛查乳腺癌的敏感度、特异度、阳性预测率、阴性预测率等指标,并与病理结果及彩超结果相比较,以及血氧功能检查与彩超相结合诊断乳腺癌的敏感度、特异度,评价该检查方法的诊断价值。

1.5.1 病例判别标准

①真阳性:检测结果为“恶性”,且病理诊断为恶性肿瘤。②假阳性:检测结果为“恶性”,但病理诊断为良性肿块。③真阴性:检测结果为“良性”,且病理诊断为良性肿块。④假阴性:检测结果为“良性”,但病理诊断为恶性肿瘤

1.5.2 计算方法

①敏感性=真阳性/(真阳性+假阴性)。②特异性=真阴性/(真阴性+假阳性)。③准确性=(真阳性+真阴性)/(真阳性+真阴性+假阳性+假阴性)。

1.6 统计学方法

采用统计软件SPSS 15.0对数据进行分析,计数资料以率表示,采用χ2检验。以P < 0.05为差异有统计学意义。

2 结果

2.1 血氧功能检查结果与病理诊断结果的比较

本实验中,血氧功能检查对乳腺肿块的敏感度为91.9%(34/37),特异度为88.3%(166/188),阳性预测值为61.8%(34/55),阴性预测值为98.2%(167/170)。见表1。

2.2 彩超检查结果与病理诊断结果的比价

本实验中,彩超检查对乳腺肿块的敏感度为86.8%(33/38),特异度为85.6%(160/187),阳性预测值为52.4%(33/63),阴性预测值为98.8%(160/162)。见表2。血氧功能检查结果与彩超检查结果比较,敏感性、特异性、阳性预测值、阴性预测值各指标均无统计学差异(P >0.05)。

2.3 彩超与血氧结合对诊断恶性肿瘤的敏感性、特异性、准确率

本实验中,彩超与血氧结合检查对乳腺肿块的敏感度为97.4%(37/38),特异度为90.3%(169/187),阳性预测值为67.3%(18/55),阴性预测值为99.4%(169/170),显著高于单项血氧功能成像检查或彩超检查(P < 0.05),而血氧与彩超联合检查的阴性预测率则与单项血氧功能成像检查或彩超检查差异无统计学意义(P < 0.05)。

3 讨论

乳腺癌是女性最常见的恶性肿瘤之一,全世界每年约有120万例乳腺癌病例新发,每年大约有50万妇女因乳腺癌而死亡,近二十年来我国乳腺癌的发病率也呈上升趋势,乳腺癌已经成为癌症中第2位主要的死亡原因[5]。近20年来,我国及亚洲各国的乳腺癌发病率不断升高,发患者数已居女性所有恶性肿瘤的第1位。目前,我国的乳腺癌发病率已从5年前的17/105增加至去年的52/105,上升超过3倍[6-7]。

乳腺癌是一种自主生长性的疾病,发生于乳腺内的导管系统,一旦癌细胞从导管结构扩散到导管周围组织则出现侵袭性生长的特性。早期发现、早期诊断对于乳癌的重要性的理论依据是基于乳腺癌的预后与肿块的大小和腋窝淋巴结受累状况所反映的临床分期有关[8]。随着肿瘤直径的增大,长期随访所发现的预后也就越差,而得以早期发现的大多数乳腺癌都能获得较好的预后这一事实,足以支持在危险人群中开展普查。但普查采用的检查手段应有足够的敏感性,才能提高早期诊断率,为早期治疗提供依据。由于目前乳腺癌的发病原因尚未明确,因此还不能据此预测哪些人会患乳腺癌。能做到的只能是早期发现、早期诊断、早期治疗[9],亦即对危险人群的大样本筛查。

传统的乳腺癌病灶的发现依靠乳腺定期自检、临床体检以及常规影像学检查。大量的临床研究表明,定期的乳腺自检并能提高乳腺癌的早期发现率,而临床体检发现的乳腺癌主要是有临床体征的一部分[10]。因此,乳腺癌的早期发现应该依靠影像学手段而非临床体检,目前主要的影像学检查方法包括乳腺超声检查、钼靶X线摄片等[11]。在良好操作下,钼靶X线摄片与病理诊断符合率为87%,彩色多普勒超声检查与病理诊断符合率为94%[12]。但是钼靶照相对人体具有放射线损伤的危险性,可能诱发乳腺组织癌变。其优点为敏感性较高、有照片结果可供反复观察、比对,对实体瘤及钙化灶的诊断率高。而超声检查的优势主要限于囊性和实质性肿块的鉴别。故乳腺钼靶照相和乳腺超声检查都具有其局限性[13-14]。因此许多国家近年来投入大量人力物力研究新型的乳腺肿块检查诊断方法,其内容主要涉及形态影像学、功能影像学和分子影像学,特别是新的安全、无辐射、无创的检查方法成为主要的研究方向,其中就包括乳腺血氧功能成像技术。乳腺血氧功能成像技术是应用乳腺组织中的含氧血红蛋白和去氧血红蛋白对近红外光具有不同的散射与吸收特征这一原理发展而来的一种新的功能成像技术,是乳腺疾病检查的一种重要方法[15-16]。它的主要特点是无创、敏感,可进行定性、定量检查,并且对乳腺组织病变的早期变化的检测更为准确。该项技术对早期乳腺疾病如乳腺癌的早期诊断具有重要的临床价值。金宗浩等报道乳腺癌的“高血低氧”符合率为85.7%,乳腺增生的“非高血低氧”符合率为83.3%,乳腺良性肿瘤的“非高血低氧”符合率90.2%[17]。可以设想,把两种各具优点的检查技术联合起来研究,会找到一个提高乳腺癌早期诊断的新方法。但是两种技术联合应用在乳腺癌的诊断方面的研究尚少见报道。

鉴于多普勒超声与血氧成像技术联合应用在乳腺癌的诊断方面的研究尚较少见报道,本项目随机选择未经临床治疗乳腺肿块病例,分别进行多普勒超声及血氧功能成像观察,以手术病理结果为校对标准,分析和评价多普勒超声检查、血氧成像技术检查以及两种检查联合运用在乳腺癌临床早期诊断方面的准确性、敏感性和特异性,探讨提高乳腺肿块诊断率的方法,为临床筛查及诊断早期乳癌提供可靠依据。

有学者提出肿瘤的生长和转移依赖肿瘤组织的微血管形成的理论[18],认为当实体肿瘤生长到直径>2 mm时,就需要肿瘤性新生血管的生成为肿瘤内细胞的旺盛的生长提供营养,以利于肿瘤的进一步生长,并提供血行转移通道。实体肿瘤生长可分为两个时期-无血管期(avascular phase)和血管期(vascular phase)[19]。无血管期的肿瘤细胞主要依靠扩散作用与周围组织进行物质交换,该时期肿瘤生长速度较为缓慢。随着肿瘤细胞的不断增殖,直径不断扩大,扩散作用渐渐地不能满足肿瘤细胞进一步增长的需要,肿瘤开始进入血管期。肿瘤血管生成是导致肿瘤从“缓慢生长”的无血管期状态过渡到“自主生长”的血管期状态的关键。新生的肿瘤性血管为肿瘤提供丰富的血液灌注,提供充足的营养物质和氧。从而使肿瘤细胞代谢旺盛,耗氧增加,生长不断加速。肿瘤向周围组织内浸润生长的同时,新生的肿瘤血管也处在不断的生成、生长、退变与重建的过程中。同时新生血管也为肿瘤的转移和侵袭提供通道,经由宿主血管和微循环系统向以及远处周围组织浸润,形成转移[20]。同时,癌肿组织局部坏死、瘤体增大造成内部循环不良、癌细胞新陈代谢旺盛等原因均可造成肿瘤局部血氧含量降低,故此造成了恶性肿瘤具有高血流、低血氧的特点。乳腺血氧功能成像系统将功能学信息和形态学信息融合,同时具有结构图像和功能图像特征[21]。既包含乳腺内病变区血和氧的含量进行定量检测和二维成像,又包含病灶区的结构成像,通过等灰度线、血管显化和边缘检测,提供丰富的信息,使诊断具有较高的准确性、敏感性。

乳晕区血值“作差”说明:乳晕区灰度次于灰度,因此,乳晕区的血值本身就高于组织血值,所以,乳晕区的病变的血氧值必须经过“作差”加以修正;“作差”是乳晕区病变的血值减去正常乳晕区血值,之后再+1,即是乳晕区病变部位真正的血值[22]。例:病变乳晕区血值2.04、正常乳晕区如果血值1.12,相减之后为0.92+1=1.92这个值为真正的意义的血氧值。

乳腺血氧功能影像检查仪所获得的信息说明:①动态观察血管信息和灰影信息。②静态观察血图、氧图、增强图信息,包括原图信息。动态图像能够观察整个的全貌,而静态的原图与增强图只是一个局部。原图和增强图是上感兴趣、关键部位的局部拍照图片,它是动态图像中关键点的记录。在拍照的过程中,动态图像中某些信息会出现缩小或丢失现象,因此在报告单中,既要描述动态的信息,也要描述静态观察原图、增强图信息。同时还要尽量避免在拍照过程中的信息丢失。诊断过程中,动态判断标准与静态判断标准是相同的[23]。

血氧图的信息说明:血图和氧图是根据两个波长单色光的原图,计算而得,原图上的许多无用的干扰信息,在血图、氧图上产生干扰,必须人为的加以排除,必须借助原图、增强图的可疑信息,然后再“可疑处点血氧”才是有意义的,也可以在血图、氧图上观察是否有“可疑处”,然后在原图上加以确认。原图为深灰色,血氧图显示红色起到了定位作用,上的血氧值没有意义。乳晕上的血氧值必须经过“作差”加以修正。在血氧图上看到的正常血管因是表面血管为静脉血管,与坐标色相同,可表现为“高血低氧”,不代表有任何病,也不能误取信息。

乳腺癌诊断标准中:①血氧值是主线;②灰影血管是关键;③增强、曲线紧相连。其中有两项以上指标的符合,就有诊断价值。血氧值原则高血低氧是乳腺癌特有指标,但是,肿瘤本身耗氧程度不同,采集的信息会有所不同,运用好三句话的关系,做出诊断会更科学化。准确率会更高。总之,恶性病变以血氧值为主要标准;良性以曲线结构为标准。乳腺增生程度判断,依靠曲线结构图。曲线结构非常紊乱,为重度增生,或有非典型增生可能,此类为高危人群。能为这一类人群提供短期复查的信息,是其它仪器不能获取的信息,社会效益可观。一些良性肿物,在结构曲线上出现为小的单线条影像。

本研究组中血氧功能成像诊断系统针对乳腺癌和良性肿瘤的诊断结果其敏感度、特异度、阳性预测率、 阴性预测率等指标与乳腺彩超比较,差异无统计学意义(P > 0.05),而血氧功能成像与乳腺彩超结合,则其敏感度、特异度、阳性预测率等指标与血氧功能成像及乳腺彩超比较,差异均有统计学意义(P < 0.05),而阴性预测率则与血氧功能成像及乳腺彩超相比较均无统计学差异(P > 0.05)。在本实验中,血氧功能成像诊断系统针对典型乳腺癌,其诊断特征相比较突出,乳腺癌为等灰度线、边缘、血管异常、高血低氧表现者,其诊断乳正确率较高(97.4%,37/38),本组漏诊乳腺癌1例,这是由于此1例未看到灰影,未看到紊乱的等灰度线、模糊的边缘线及新生的小血管,也并无高血低氧表现。另将良性肿瘤误诊为乳腺癌1例,占0.5%(1/187),可能由于该病变新生毛细血管,局部血红蛋白增加,内部结构改变等,致灰度线等发生相应改变,提高了对近红外光的敏感度[24]。

综上所述,血氧功能成像单独应用于鉴别乳腺良性、恶性肿瘤较乳腺彩超并无明显优势,但血氧功能成像与乳腺彩超结合则其诊断价值则明显优于血氧功能成像及乳腺彩超,提示乳腺血氧功能成像可作为常规乳腺影像学检查的简便、无创、有效的辅助手段,对乳腺癌的早期诊断及普查具有重要意义。

[参考文献]

[1] Porter PL. Global trends in breast cancer incidence and mortality [J]. Salud Publica Mex,2009,51(2):141-146.

[2] 金宗浩.乳腺增生与乳腺[M]上海:上海科学技术出版社,2002:169-208.

[3] Jones SA,Bain JR. Review of data describing outcomes that are used to assess changes in quality of life after reduction mammaplasity [J]. Plats Reconstract Surg,2001,108(1):62-67.

[4] 骆清铭,曾绍群,程,等.组织光学成像技术的研究进展[J].中国医疗器械杂志,2006,30(3):157-162.

[5] 姜军,韩晓蓉,张毅,等.红外乳腺导管造影术诊断溢液的临床价值[J].第三军医大学学报,2003,25(23):2069-2072.

[6] 黄烨,陈登峰,袁璐,等.乳腺肿块微血管密度与血氧近红外光参数的实验研究[J].肿瘤防治研究,2007,34(1):51-53.

[7] Petit JY,Garusi C,Greuse M,et al. One hundred and eleven cases of the Europesn Institute of Oncology(Milan)[J]. Tumor,2002,88(1):41-47.

[8] 谢则平,王晓芳,张先林,等.近红外光无创伤诊断乳腺癌的临床研究[J].癌症,2000,19(2):185.

[9] 宁连胜.现代乳腺疾病治疗学[M].北京:人民卫生出版社,2007:960-978.

[10] 李坤成.乳腺影像诊断学[M].北京:人民卫生出版社,2003:3.

[11] 郭晓霞,王雁,边晓琳,等.超声在乳腺肿块鉴别诊断中的应用[J].医药论坛杂志,2010,31(12):105-106.

[12] 廖桂英,温赐祥.高频彩超诊断乳腺肿块的临床研究[J].河北医学,2008,14(1):27-30.

[13] 包明稳,徐晓红.超声诊断乳腺癌的现状及新技术应用[J].广东医学院学报,2009,27(2):204-205.

[14] 陈雪松,黄海燕,徐晓红.彩超诊断乳腺肿块75 例临床应用[J].中国肿瘤,2008,17(6):537-538.

[15] 林文妙,周卫国,郁成,等.乳腺良性肿瘤的影像学及临床分析[J].广东医学院学报,2008,26(3):307-308.

[16] Hong AS ,Rosen EL,Soo MS,et al. BI2RADS for Sonography:Positive and Negative Predictive Values of Sonographic Features [J]. American Journal of Roen-tgenology,2005,184(4):1260-1265.

[17] Evans N,Lyons K. The use of ult rasound in the diagonosis of invasive lobular carcinoma of t he breast less than 10 m min size [J]. Clin Radio 2000,55(4):261-263.

[18] Petit JY,Garusi C,GreuseM,et al. One hundred and eleven cases of the European Institute of Oncology(Milan)[J]. Tumor,2002,88(1):41-47.

[19] 冯宪超,孙占和.钼靶摄影结合超声检查在乳腺癌诊断中的价值[J].中国现代药物应用,2010,4(8):25-26.

[20] 金宗浩,党云文.乳腺良恶性肿瘤的血氧及血流微量检测临床研究[J].中国肿瘤临床与康复,2006,13(2):104-106.

[21] 施建华,甄林林,周玉梅,等.乳腺三算子及血氧功能成像技术在早期乳腺癌诊断中的应用[J].江苏医药,2009,35(8):898-900.

[22] 孙立宏,金莉.乳腺血氧功能影像检查仪对乳腺癌检查的作用分析-附9000例体检病例分析[J].中国妇幼保健,2010,25(12):1718-1719.

[23] Folkman J. Tumor angiogenesis:therapeutic implications [J]. N Engl J Med,1971,285(21):1182-1186.

篇2

【关键词】  医学影像;临床诊断;应用价值

1895年,X射线被德国物理学家伦琴发现,并在不久后在人体疾病的检查中得以应用,由此开创了一门全新的医学学科——放射诊断学。发展到如今,已经形成了包括多种诊断方法在内的更为全面的医学影像检查技术。特别是近30年来,在传统的X线检查基础上,CR、DR、CT、钼靶X线摄影、CT、MRI、USG以及核素显像设备都在不断地改进并完善,影响诊断已从单一依靠形态变化进行诊断发展成为集形态、功能和代谢改变诊断为一体的综合诊断系统。与此同时,诸如心脏和脑的磁源成像等新技术以及如分子影像学等新的学科分支也在陆续涌现,影像诊断学的范畴还在继续不断充实和扩大。然而,在临床诊断中,面对众多的检查方法,如何科学选择则具有了更重要的临床意义。笔者根据自己多年的工作经验,对医学影像检查在临床中的应用进行了一定探索。

1 影像检查方法的特点和适用性

1.1 X线成像检查

X线成像检查是医学影像中应用历史最长、操作最简单方便且价格相对低廉的检查方法,其检查范围包括透视、X线平片检查以及对比剂造影检查等几个方面,对检查部位通常要求具有较好的组织密度对比性,比如骨骼、胸和胃肠道等,当然有时候也用于全身各个系统的检查。其特点主要表现在以下几点:①结构层次显示比较丰富,有利于整体观察受检部位的组织结构,具有较高的空间分辨率;②检查相关操作方法比较简单,其费用相对低廉;③可灵活变换进行动态病变观察,但由于影像难以长时间保留图像,所以不利于以后治疗过程中的对比分析,同时对细微的病变发现比较困难,而且患者需要接受较大照射量的X线,最好在检查之前应做到目标明确;④密度分辨率较低,对组织密度差别较小的部位不能显示足够清晰的图像;⑤CR和DR虽在图像的清晰度方面较传统X线检查更好,对某些结节性病变具有更高的检出率,但对肺间质和肺泡病变的显示效果仍与传统胸片差别明显,而且该方法的成本也会更高;⑥钼靶X线摄影是根据各种组织对X线存在不同吸收量的原理,可将脂肪、肌肉和腺体等密度差距不大的组织在X线片上形成良好对比的影像,该方法多用于对软组织形态及病理变化的观察

1.2 CT成像检查

CT成像检查是X线与计算机技术联合形成的医学影像系统,具有较高的密度分辨率,可对人体进行断层扫描并重建非常清晰的图像,在临床上多用于头颈部、胸部、肝肾胰脾、腹盆腔、四肢关节以及软组织的病变影像检查。主要特点有以下几个方面:①在进行不用对比剂的普通扫描情况下,在不同病例的病变发现以及定位定性诊断方面都可作为对X线检查的可靠补充,可为多种疾病的诊断提供依据;②在快速静脉注射碘对比剂之后进行的动态增强扫描或CT灌注扫描,可对疾病是否属于血管性病变做出鉴别,同时对了解在病变状态下的供血情况以及鉴定病变的良、恶性情况也很帮助,具备较高的诊断价值;③高分辨率CT扫描技术是集合了薄层扫描和高空间分辨率图像重建算法的医学影像检查技术,在对病灶细微结构的观察方面具有比较突出的价值;④高分辨率多层面螺旋CT扫描即是在运用X线进行扫描的过程中,通过旋转一并获得多层面图像数据的医学影像系统,该技术实现了对病灶的多角度观察,而且具有一定的结构分析功能和成像功能。

1.3 核磁共振成像

磁共振成像(MRI)是根据人体组织含水量的不同而开发出的一种非介入性的探测技术,对人体无电离辐射影响,所获得的图像非常清晰,能更客观更具体地显示人体内的解剖组织和相邻关系,更好地对病灶进行定位和定性,对人体多系统疾病的诊断,尤其对早期肿瘤的诊断具有很高的临床价值。

1.4 超声成像(USG)

该技术利用了声波的穿透和界面反射特性,无创伤和辐射,操作简便,并可获得患者器官的任意断面图像。随着该成像技术的发展,目前来看,其超声造影、谐波成像以及多普勒组织成像技术已在临床广泛应用。该技术对于胸部表浅部位的病变诊断有一定价值,在与X线摄影结合检查的情况下,可提高乳腺癌的早期检出率。

2  医学影像综合应用讨论

以上对几种常见的医学影像技术进行了阐述,综合来看,每一种检查方法都各具特点和优势,同时也都存在一定的局限性。在具体的临床诊断过程中,应充分考虑各方面的因素,做到优势互补。虽然CT、MRI、超声等医学影像检查都具有一定的优越性,但作为多种影像检查的基础,X线检查依旧是众多方法的首选。另外,在临床应用中,需避免检查的盲目性,尽量遵循效果价格的比值原则进行成像方法的优选,让患者在疾病诊断的环节中少走弯路,及时获得快速而准确的诊断。

参考文献

[1]夏泽民. X射线在医学影像诊断中的发展与应用[J].中国医药指南,2012,6:420.

篇3

关键词:影像新技术;教学;改革

中图分类号:G642.0?摇 文献标志码:A 文章编号:1674-9324(2014)10-0242-02

现如今,如何使学生在掌握必要的基础理论、基本知识的同时,提高对影像的独立分析与判断能力,为今后更好地胜任临床工作打下扎实的基础,是我们面临的重要课题。医学影像学是一门以影像为主的实践性很强的医学学科,是介于基础医学与临床医学之间的桥梁,从形态学到功能、分子影像学,从静态到动态,从二维到三维,从定性诊断到定量诊断,从单纯诊断到诊断治疗并重,现代医学影像与传统医学影像学相比,有许多新特点、新领域。近几年来,随着科学技术日新月异的发展,医学影像学成为临床医学中发展较快的一门学科,在临床工作中的地位也越来越重要。近20年来,从传统X线诊断学到现代医学影像诊断学经历了巨大的发展和变化,该课程的教学不再是一本教材一支笔就可以完成的,传统的教学模式已不能满足21世纪教学的需要。因此,医学影像学的教学改革势在必行,如何高质量地完成现代医学影像学的教学成为摆在我们面前的一项艰巨的任务。

一、教学内容与教学重点

学习现代医学影像学不仅要掌握丰富的专业内容,而且要具备一定的物理、数学、计算机知识,有扎实的解剖、病理、生理、生化甚至分子生物学基础,同时也要了解和掌握内、外、妇、儿等临床相关学科知识与技能。现代医学影像学借助普通放射、CT、MRI、DSA、USG和ECT等不同的成像原理与方法,使人体内部解剖和器官成像,以了解人体解剖、生理功能状况及病理变化,在影像监视下采集标本或对某些疾病进行治疗,达到活体诊断和介入治疗的目的。其获取影像、处理影像、分析与利用影像的深度和广度都是传统放射学科无法比较的。随着计算机技术在医学影像学中的广泛应用,医学影像诊断已从显示宏观结构发展到反应分子、生化水平的变化;从显示形态改变到反映功能变化;从单纯诊断向治疗方面发展。尤其超声医学在现代医学四大影像诊断技术(CT、MRI、同位素扫描和超声医学)中发展更为迅速,在各种影像诊断学中,以其仪器体积小、便于移动、价格相对便宜、对人体无创伤以及可以重复检查等优点,受到医学界的高度重视。仅靠四五年系统学习与实习很难系统掌握全部内容。在现有学制的情况下,强调专业知识的培养,必然影响基础理论和相关临床知识的学习,使学生知识面过窄,影响学生的发展空间和发展潜力。反之,会造成学生专业知识少,一时难以适应影像科工作,又会影响学校和学生的声誉,甚至影响学生就业。因此,基础理论、专业知识、临床相关学科知识,及专业本身各内容如何合理安排和突出重点,需要组织医学影像学专家、老师、有相当工作经验的影像毕业生及在校学生进行深入讨论,改变医学影像学专业学生的学制与培养方法。随着影像诊断技术不断提高,目前医学影像学在临床应用日趋广泛,且临床地位日趋重要,专职从事医学影像学诊断的医务工作者和工程技术人员队伍也日益壮大。

二、医学影像学发展与教学内容更新

自伦琴1895年发现X线,放射学形成到现在,影像专业虽然只有百年历史,但其发展着实令人惊叹。不仅CT、MRI软硬件的更新令人目不暇接,数字影像给普放、介入崭新的发展机遇,现在几乎人体每个系统都与影像有着密切的关系;DSA、CT、MRI、USG等导向下的治疗更使介入治疗“无孔不如、无孔也入”,各种微创治疗在国内外开展得如火如荼;现代影像学已不再单纯是反映人体解剖和病理改变的经验学科。它不单可提供质的诊断,还可区分量的差别,已深入到活体功能研究(脑、心、肝、肾等功能成像)、反映活体生化代谢及分子生物学改变等领域,分子影像学已经悄然兴起。现在世界上每年都会涌现许多新的影像成果和专著。而我们的影像学教材,尽管不断改版与更新内容,仍然明显落后于医学影像学的发展。一些内容没掌握已经过时,一些内容学了临床已不再应用,一些临床常用的内容反而没学的现象经常遇到。因此,医学影像学教师加强学习与交流十分重要,这样既利于及时补充学术界公认的重要内容、删除过时内容,也利于启发学生探索学习新知识的兴趣。

三、基础理论学习与学习能力培养

现代医学影像学横跨诸多学科,在知识时代不仅本身随影像设备和检查技术不断发展,相关学科的进步也在有力地推动着影像学学科的发展。学生时代再长、学生再用功,掌握的内容仍然是有限的。这就使得培养学生的学习能力尤为重要;这就使解剖、病理、生理、生化等专业基础学科显得尤为重要,它们不仅是影像的基石,而且知识更新相对较慢。只有医学基础扎实,自学与终生学习能力较强者,才能最终成为医学影像学科的佼佼者。

四、讲授式教学与启发式教学

随着计算机软硬件的飞速发展,多媒体教学已逐渐为各大院校采纳。教学模式概括起来可分为讲授式教学与启发式教学两种,前者教师先讲授基本原理、概念、定义,如龛影、充盈缺损的定义及影像征象,附以图像、文字说明加深基本知识的理解,以使学生有效地学习。后者教师先提出问题,由学生通过计算机网络的影像教学系统及手头资料,进行检索、学习,教师可及时回答个别问题,也可通过投影仪呈现共同存在的问题,进行归纳和总结。讲授式教学教师主动、学生被动,学时易控制,适合基本原理、概念和定义等内容的学习。启发式教学应学生主动、教师引导,注重学习过程,利于提高学生对影像知识的分析能力、自学能力及运用能力。实际教学过程中哪些内容适合讲授式教学,哪些内容适合启发式教学,两种方法如何相互结合,达到相得益彰的效果尚需在影像多媒体教学中不断探索提高。

五、知识考核与能力考核

传统的考核多注重考核学生掌握知识的多少,而不是学习知识能力的大小;注重考核学生技能掌握的多少,而不是学习技能能力的高低。学校以此判定教师工作的好坏,医院以此评价学生的优劣。这种考核只能反映一定时期的教、学结果,不能反映学生学习新知识、新技能的本领,难以适应医学影像快速发展的需要,这不仅使教师的教学方法陷于陈旧古板,而且使一些再学习能力、发展潜力大、动手能力强的学生长期得不到有效的锻炼和培养。因此,如何将传统的考核知识与技能与考核学生掌握新知识、新技能的本领相结合,也已成为学校和医院教学中关注的问题之一。总之,现代医学影像学涵盖学科领域广、知识更新速度快、学生学习任务重,目前确实有必要站在发展的角度,从学校培养学生的近期和远期效果综合审视现代医学影像学的教学内容、教学方法及教学目的与考核机制。

六、加强医学影像学学科建设与课程体系的改革,促使优化课程群的形成

21世纪医学影像学专业教学大纲和教学计划的修订必然涉及到教学内容的更新。为了适应我国目前各影像学科或从事这些学科的技术人员专业独立性的特点,应该加强医学影像学科建设和课程体系的改革,以满足培养新世纪高级医学影像学专业人才的需要。通过整合优化课程体系,更新教学内容,在放射诊断学课程建设的基础上形成医学影像学课程群,并形成以放射诊断学为核心、以多媒体教学为主要教学手段的医学影像学课程体系。

实践证明,多媒体教学是一种顺应现代教学发展潮流的有效的教学模式。随着计算机技术的不断发展和教学经验的进一步的积累,多媒体教学必将更好地促进医学各学科教学改革的深入开展,加速医学教育现代化进程。

总之,医学影像学的发展日新月异,医学影像学教育也面临更大的挑战,旧的教学内容和模式已不能适应新的要求,面对21世纪医学影像的发展,我们要顺应时代,推陈出新,总结经验,不断地探索一些好的教学手段和方法,用新的内容与知识充实学生,以培养更多的医学影像学专业人才。

参考文献:

[1]吕发金,谢鹏,罗天友.分子影像学及其对医学影像学的影响[J].重庆医学,2005,34(5):775.

[2]刘璐,刘扬,王宇,等.多媒体教学促进核医学教学改革的探讨[J].中国医学教育技术,2003,17(2):92?鄄94.

篇4

【关键词】超声医学 教学改革

【基金项目】本研究得到河南省科技厅科技攻关项目(项目编号152102210339)、河南省教育厅基础前沿研究(15A180056)的资助。

【中图分类号】G420 【文献标识码】A 【文章编号】2095-3089(2016)35-0253-01

一、目前超声医学教学中存在的问题

超声医学是影像技术专业的必修课程,是影像医学的重要组成部分、生物医学工程、医疗器械等专业也有超声医学的相关内容,它是临床医学中必不可少的影像诊断技术。随着现代医学的迅猛发展,超声诊断已成为常规诊断手段,但根据我们对一些医学高校相关课程的调查了解,发现超声医学在教学中存在不少问题,有必要进行改革,这些问题表现在以下几个方面 :

1.教材内容滞后,介绍新知识的教材比如三维重建、介入治疗超声等新技术的较少。

2.超声医学相关课程学时较少,有的院校影像技术专业超声医学课时比例仅占总专业课10%左右,一本四百多页超声医学课本仅有48学时,很难保证教学效果。同时课程设置也较少,目前广泛开展的课程仅有医学影像设备学、超声诊断学等。

3.教学方法与手段比较单一,大都是满堂灌,考核重知识轻能力,动手能力不足训练方面缺乏,学生操作技能还有待提高。

二、超医学教学改革措施

以上现状一定程度上制约了学生综合能力的提高,我们学校和附属医院相关专业教师从积极转变学生培养模式 ,充分利用先进的信息系统和设备开展教学,狠抓实践教学等方面积极进行改革,丰富教学方法及教学手段,取得了显著成效:

1.完善课程设置

完善的课程设置是超声教学的关键所在。在基础课教学的基础上,应加强医学影像物理学、医学电子技术等与现代医学影像学关系密切的教学,以上知识若欠缺,对超声医学专业课学习影响较大,超声中常见同病异征,单纯依靠超声知识在很难提高疾病的诊断率,必须附加实验室检查结果加以鉴别。将来超声仪器可能会向微型、智能化方向发展,因此,所以加强学生的医学物理学、电子学学习非常重要。

2.利用先进超声设备开展教学

在超声医学教学过程中,应充分利用超声典型图像信息系统进行教学 。把在日常工作中发现的典型病例图像进行保存 ,积累各系统有价值的超声影像资料,充分利用学生在医院进行见习时机,让他们通过工作站调阅并查获感兴趣的病例,并进行系统学习,促进学生把超声检查知识与临 床 知识有机地结合起来,培养学生的临床思维能力。建立影像教学网络教室,利用网络教室的服务器直接调取影像数据,可直接在网络教室开展案例教学。通过利用先进的信息系统,提高了教学效果。引进实时三维/四维B超,在教学过程中安排实时超声检查的体验课,系统讲解实时超声的技术原理、功能、可以开展的项目等等,选取较为典型的案例,利用实时三维/四维彩超的动态录制功能,把检查的整个过程录下来,让学生近距离观摩到老师操作的手法。邀请部分积极有兴趣的学生参与一些科研项目,进一步加深对相关专业超声医学知识的理解。

3.侧重能力培养,实习实行导师制度

为了突出能力培养,可以成立超声技能培训中心,并指派老师负责超声检查操作技能培训,使学生可以进行见习操作和得到带教老师的解惑,从而使理论教学与实践教学实现无缝衔接。导师制是保证实习质量的关键。既往由于没有专人管理,出现了人人都管,最后人人都不管的混乱局面。导师制是指由大影像各科具有高级职称的医师组成导师组,导师组共同制定实习生的大影像轮转计划,最后指定1名负责管理和考核实习生,实习中加强学生德育,培养良好医德。

4.采用PBL教学法[1]

超声医学教学方法仍然处于传统的填鸭式教学模式,几乎不涉及以问题为基础的(PBL,Problem-based Learning)教学法,传统的教学方法己经滞后于高等教育,严重影响教学效果和质量,所以我们提倡采用PBL教学方法。

三、总结

我们从以上四个方面对超声医学教学进行了初步探索,随着大数据时代的到来将促使未来的超声医学向多学科相融合的方向不断发展,超声教学也必须不断加大改革创新力度,提高教学质量和效果,以适应社会发展,为国家培养出更多更有用的超声医学检验诊断技术人才。

参考文献:

[1]徐贵平,金晨望,强永乾.医学影像学教学改革策略与趋势的探讨[J].西北医学教育,2013(40):818-819.

篇5

医学影像学作为医学领域中知识更新最快的学科之一,其在临床工作中的作用也变得越来越举足轻重,超声诊断学作为医学影像学的重要组成部分,正向着定量化、功能化、微观化、数字化、信息化方向发展,新技术、新设备日新月异[1]。学科的发展带来了对教学的更高要求,在要求学生具有一定的医学知识结构和综合分析解决问题的素质能力的同时,更要求教师能够以新的教育理念和方法使教学内容、教学方法更合理、更高效,有利于培养学生理论与实践相结合、临床思维与影像知识相结合的能力,使其成为顺应二十一世纪发展需求的创新型医学人才

1 现状分析

目前,医学影像学已经成为非影像学专业医学生的必修课之一,充分体现了影像医学在医疗过程中的重要地位。超声诊断学作为影像医学的重要组成部分,其重要性也越来越得到充分体现。由于整个超声诊断学的教学课时数相对较少,而教学内容又比较多,传统的教学模式主要是以粉笔、黑板为主体的填鸭式教学,把大量现成的知识一股脑地灌输给学生,抽象且难以理解。用这种教学方法教出的学生,虽然理论知识可能较好,能够“背住”重要的知识点,但缺乏形象思维能力,无法将学到的知识很好地运用到临床工作中,更谈不上运用超声医学知识

来分析和解决临床问题[2]。近年来,多媒体教学的普及使得超声影像教学有了飞跃,大多数教师都采取了教科书加多媒体的教学方式。这种教学方式,让学生直观地看到了图片、视频,使其对知识点的理解更加形象、生动,取得了较好的效果。但是,讲授内容多是以解剖为基础,病理为依据,超声表现为重点,辅以超声图片或动态图像来加深学生理解,学生建立的仅是从因到果的单向思维过程。然而,在临床实际工作中,往往需要医生根据病人的超声检查结果来判断其病情、病因以及可能的病理生理改变,即需要从果到因的逆向思维。因此,要求教师探讨出一种全新的教学模式来培养学生建立起这种临床思维

2 纵贯式立体化超声影像教学模式的构建

立体化创造性教学就是充分利用各种教学资源,适当运用教学策略,鼓励学生运用想象力,增进其创造性思维,本文由收集整理增强学生的感性认识,激发学生的学习兴趣,拓展学习思路,灵活运用所学各科基础及临床医学知识,达到培养学生自主学习能力、创新能力和实践能力的目的[3]

纵贯式立体化的超声影像教学模式的核心就是帮助学生建立良好的临床思维模式。所谓纵贯式,就是一种“提出问题-分析问题-解决问题”的方法;立体化,是指在教学活动中将解剖学、生理学、病理学、病理生理学及临床各学科的知识综合在一起,针对某一疾病或病理表现给学生建立一个全方位的立体知识模型。在实施过程中,授课教师给学生留出将要讨论和讲授的内容,要求学生在课余时间查阅相关资料。课堂上,尽量模拟真实病例的超声诊断过程,给出患者主诉,查体结果,相关化验结果以及超声表现,然后学生分组讨论。老师主要对各组思维过程的正确与否进行点评,引导学生从病因、病理、病理生理方面去推论,鼓励学生展开联想,将教师的主导作用充分体现在帮助学生将无序的知识整理为有序的知识,将错误的知识修正为正确的知识。这一过程提高了学生的学习兴趣,锻炼了学生自主学习的能力,提升了归纳总结的水平,为良好临床思维的建立打下了坚实的基础

3 教学过程的管理和教学模式的实施

3.1 深入了解教学对象

教学活动中,教师只有很好的了解学生的状况才能因材施教,取得较好的教学效果。授课时,学生已经完成了解剖学、病理学、病理生理学等基础学科的学习,同时在进行诊断学、内科学、外科学、妇产科学、儿科学等临床科目的学习,超声诊断学是这两种学科的良好的衔接,起到了桥梁作用。此时的以病例为中心的纵贯式立体化的教学模式的建立更有助于调动学生的学习积极性,提高学习兴趣,从而达到良好的学习效果

3.2 落实备课环节

备课,包括选取病例是教学工作中的重要环节。授课教师平时要细心收集临床病例资料,以教学大纲为中心,选择典型病例,将病例资料合理的应用到课堂教学中。多媒体课件制作在影像学教学中至关重要,教师借助于交互式的课程设计与组织,多种图、文、声并茂的多重感官刺激,生动形象地展示所讲授的知识,建立丰富的教学情境,拓展教学时间和空间,增强学生感性认识,提高其学习兴趣和积极性。但其运用必须恰当合理,应文字简洁,重点突出,图片清晰,动画生动,起到多层次、多角度地模拟动态过程,很好地体现超声检查的实时特点的作用,使深奥抽象的理论具体化、形象化,便于学生理解和掌握[4]

3.3 引导学生融会各学科知识分析解决问题

超声医学是建立在解剖学和生理学基础上,研究活体组织器官形态、结构以及功能状态的学科。而发现异常的前提是必须熟悉正常,在正确把握人体解剖的基础上,才能使学生头脑内完成由立体活体组织到平面图像、由大体解剖到影像解剖的认识。正常的影像解剖是识别病理性改变的前提,因此,教师要将解剖学、生理学、病理生理学、诊断学以及内科学、外科学等学科的知识较好地融合到教学中去,使学生在理解和掌握各器官解剖及生理特征的基础上,熟知各系统常见病的病理生理改变,更好地理解和分析其超声影像特征,为学生建立正确的临床思维模式打下良好基础。这一过程不仅仅是正确的思维模式的培养,更重要的是充分调动了学生的学习积极性,诱发了学生的学习兴趣,为学生创造了特有的知识再发现的环境,推动学生作为学习者主体参与知识建构活动

转贴于

3.4 行启发式和讨论式教学

授课过程中注重各学科知识的横向联系和纵向贯通,让学生明确超声影像诊断不单纯是“看图”,更需要综合分析,即要结合病人的临床表现及其他辅助检查资料来综合分析;讲解“同病异影”、“异病同影”的诊断及鉴别诊断思路,提高学生的立体临床思维能力;充分调动学生的学习积极性,课前布置题目,让学生带着问题上课,建立以学生为主体,教师为主导的教学模式,促进学生从记忆型、模仿型向思考型、创新型转变[5]。运用启发式教学法,在每一系统常见病的影像图片上提出问题,由学生组织讨论,发表诊断意见。通过启发学生思考、开发学生记忆,培养学生的参与意识和综合分析、独立思考问题的能力

3.5 鼓励学生涉猎本学科的新知识

超声医学是声学、医学和电子工程技术相结合的一门新兴的综合学科[6]。随着计算机软硬件技术的飞速发展和医学水平的不断提高,超声诊断新技术、新知识不断涌现,教师应成为学生自主学习的引导者和促进者,帮助他们运用新的信息技术去获取新的知识,指导学生形成良好的学习习惯,掌握学习策略和发展认知能力。 同时,教师对学生获取新知识过程的关心应甚于对他们掌握 新知识结果的关心,对学生掌握新知识方法的关心应甚于对他们掌握新知识量的关心,以不断增强学生的学习热情和主动性,为他们日后临床工作中能够充分自如地运用超声诊断手段,并建立正确的临床思维模式打下良好基础

篇6

1.1比较影像学概念

比较影像学是指以不同的成像设备为手段,以临床应用为导向,对疾病不同的影像检查进行综合比较,从而采用最有诊断价值的、最优先的影像检查方法。比较影像学教学模式是在医学影像学教学中,以医学影像学为中心,从临床应用的角度出发,将疾病相关的基础学科(如解剖、病理和生理)、临床学科、影像技术学和影像诊断学等相关学科有机结合起来的综合教学方法。

1.2医学影像学见习引入比较影像学教学模式的必要性

不同的影像检查技术其成像原理是完全不同的,这导致各种影像学方法具有其特有的优势及劣势。因此,针对不同疾病,甚至是同一种疾病不同的发展阶段,其影像检查方法的选择不尽不同。在以往教学过程中,教师常过分强调影像学中某一种方法的优势,而忽视了其他影像检查方法的特长,使学生所获取的影像诊断知识比较片面,在日后的临床实践中面对各种影像检查技术出现选择困难。因此,我们在讲授时应注意比较教学法的应用,强调各种影像检查技术在不同疾病诊断中的优势和不足。比如,冠心病的影像诊断技术包括超声、冠脉CTA、冠脉造影、SPECT等。冠脉CTA和冠状动脉造影都可以了解冠状动脉有无狭窄、闭塞等形态学改变,不同的是CTA不仅可以了解狭窄程度,还可以评价斑块的情况,不足之处是假阳性率较高和不能进行治疗。DSA是诊断冠脉狭窄的金标准,同时可以进行介入治疗,但该检查方法具有创伤性且不能观察斑块情况。这两种检查方法共同的缺陷是不能反映心肌局部的血流灌注与心肌细胞的活性,而SPCET(单光子发射型计算机断层)心肌灌注显像不仅可以诊断有无心肌缺血,还有助于判定缺血是可逆性或不可逆性,以及冠状动脉的贮备功能,但无法评估冠脉形态学改变,包括管腔和管壁斑块。不同的影像学检查对不同疾病,甚至同一种疾病的不同阶段具有不同的敏感性和特异性,可优势互补但不能相互替代。比如同样是脑出血,不同出血时期影像学检查的敏感性不同。在超急性期和急性期,CT是首选的检查方法;而在亚急性期和慢性期,MRI检查的敏感性和特异性更高。在影像学实习中采用比较影像学的教学方式,不仅能使医学生了解到不同影像检查在不同疾病或同一疾病不同发展阶段的诊断价值,更重要的是在走向工作岗位后,医生针对不同的患者选择更为合理准确的影像检查方法,既能考虑患者的经济承受能力,又能对疾病进行确诊及定位。

2传统影像学诊断学见习模式的弊端

既往我院医学影像学见习多采用传统模式,以典型的影像教学胶片和观片灯为主要教具,先复课理论知识,然后学生分组阅片、讨论。近年来,各种影像设备飞速发展,影像新技术及新方法层出不穷,影像诊断涉及的教学内容随之越来越广。一方面,传统的胶片因数量有限,已无法承载现代医学影像所蕴含的大量影像学信息,无法让学生充分理解“同病异征”和“异病同征”等抽象的影像学概念。另一方面,比较影像学教学模式需要从临床应用角度出发,要求学生将不同的影像技术所产生的图像、相关临床表现、实验室检查及病理等信息结合起来,综合分析,从而更好地了解疾病的发生和发展。而传统的教学模式中,检查申请单上相关的信息非常有限,学生无法获取更多的相关信息,无法实施比较影像学,不能充分调动学生的主观能动性,更好地培养学生综合分析能力。此外,传统教学胶片一些固有的缺陷,如大小固定,难以保证每个学生都能看清图像,使部分学生失去学习的积极性。

3PACS/RIS在影像见习教学中的作用及优势

PACS-RIS(picturearchivingandcommunicationsystems/RadiologyinformationSystems,影像存储及传输系统/放射科管理信息系统)是以高速计算机设备及海量存储介质为基础,以高速传输网络连接各种影像设备和终端,管理并提供、传输和显示原始的数字化图像及相关信息。我院PACS主要由服务器、集线路及各种工作站组成,为系统提供图像的主要科室包括放射科(X线、CT及MRI)、病理科、超声科、核医学可和内窥镜室等,同时该系统与放射信息系统(RIS)和医院信息系统(HIS)实行无缝连接,从而方便检索其他相关信息。PACS-RIS系统一方面在临床诊疗方面发挥重要作用,另一方面极大地方便了影像教学工作,主要体现在以下几方面:(1)PACS网络能够同时显示多种影像检查结果,如X线,CT,MRI,便于学生比较多种影像学技术的优势与不足,通过同一疾病多种检查技术优选,提高学生的比较影像学诊断水平和综合分析能力。(2)PACS网络教学具有实时、多样化特点,而且病例丰富,资料完整。(3)PACS网络可为典型教学图片的收集提供全新的数字化图像,从而快速便捷地为多媒体教学课件的制作提供原始素材。(4)PACS网络采用电子化格式存档影像诊断报告,便于学生查询、比较以往影像学资料。

4.借助PACS/RIS实现比较影像学的见习教学模式

现代化大型医院基本上都完成数字化建设,一个医院就是一个局域网。PACS所采集、传输的医学影像信息占医院信息的80%,同时PACS又与RIS、HIS无缝连接,使在影像科实习的同学有机会接触到患者所有的影像及临床资料,引导学生借助医院网络进行学习,提高临床综合诊断能力。

4.1同一种疾病不同影像学方法间的比较

同一患者在我院所做的所有影像学资料均可在PACS系统中检索到。在影像科实习的同学,就可以运用影像比较的方法找出该疾病不同影像表现的相似点和不同点,包括x片、CT、MRI、超声、核医学及DSA,了解不同影像检查的成像基础和相应的影像表现所反映的解剖、病理、生化等信息间的联系,然后有针对性地剖析为什么会出现这种影像表现,促使学生从本质上分析疾病,同时多角度分析疾病的成因、发展及预后等相关影像学表现,最终全面认识某一疾病。

4.2同一种疾病不同患者间、不同发展过程的比较

同一种疾病所有的影像学征象很难在一个病例中全部体现,往往需要通过不同的病例来观察其各种影像学特征。通过PACS系统实习同学很容易检索出患同一疾病的所有患者。比如在实习胶质瘤的影像学特征时,学生可以在PACS上输入“胶质瘤”,就可以检索到特定时间段所有胶质瘤患者影像资料,从而可以学习不同类型、不同病理级别的“胶质瘤”的影像学表现及特征,通过比较理解“同病异影”,全面有效掌握胶质瘤的影像学表现。利用PACS-RIS系统可对同一疾病在不同发展阶段的影像检查资料进行比较。比如肺结核病程长,病理改变多样,从渗出、增殖到变质往往进行多次X线平片和或CT检查。对于实习同学,这些图像图片资料均可在网络上搜索到,通过PACS的多幅显示功能,就可以比较病变不同阶段的影像变化,从而了解疾病在整个进展和转归过程中的病理、生理及临床等方面的变化。

4.3影像学表现与临床表现、实验室检查和病理之间的比较

“异病同影”的存在使得影像学诊断往往需要结合患者的临床表现和实验室检查,而这些信息在影像检查申请单很难全面反映。作为影像科实习的同学,在阅读完影像资料后,往往需要了解更多的临床资料,此时我们就可以进入HIS,搜索相关资料,综合分析。重要的是,通过PACS/RIS系统可以查询病理结果,作为实习同学就可以通过病理结果验证影像诊断,通过影像-病例对比分析,提高疾病的影像学诊断和鉴别诊断技能。

5结语

篇7

1 复习解剖及病理学知识

人体的解剖结构是超声诊断学的基础,只有较好地了解正常的大体解剖和断层解剖,才能正确认识正常组织的超声图像和鉴别异常图像,并能对病变做出准确定位和诊断。因此,应对解剖知识进行复习,使学生迅速建立整体和空间概念,为深入理解超声图像打下基础。同一种疾病不同的病理结构是超声图像不同的依据。因此,在讲述每一种疾病时,应结合病理学,加深学生对图像理解的深度。

超声诊断学涉及内科、外科、妇科、儿科和五官科等多方面的临床知识,它的基础是物理诊断学及病理学。在教学的过程中:首先,对总论即物理诊断基础部分作详细的讲解,让学生充分理解,否则会造成“知其然不知其所以然”的局面。其次,讲解图像内容要结合大体的病理知识及临床诊断知识。例如:讲授门脉性肝硬化时,要对其中的知识点做引导式讲解,肝脏回声粗糙,形态缩小是由于肝小叶被破坏,假小叶形成及结缔组织组织增生所致。门脉增宽、脾肿大是由于肝内血液循环障碍使门脉高压所致。当肝功能减退及门脉系统毛细血管内流体静压增高使胆囊壁水肿呈现“双边影”。这样既复习了学过的基础理论,又做到基础和临床相关联。使学生能够融会贯通,增强其横向思维能力,用联系的、发展的观点看待疾病,增强对疾病的整体认识,并加深对所学内容的理解和掌握。

超声诊断学入门较难,精通更难,一个好的超声诊断医师必须了解各科有关疾病的临床表现、主述、体征、病程、实验室检查,才可避免出现漏诊、误诊,并及时地做出相应的诊断。

我们在讲解图像内容时结合临床诊断知识,这样既复习了学过的理论知识,又和临床结合,使学生能够很快融会贯通,很容易理解各种疾病不同的超声图像表现。

2 归纳总结,化繁为简

超声诊断学内容繁杂,比较难于理解和记忆,有一些内容很混淆。在教学中,我们帮助学生归纳总结,化繁为简,比较相同点和不同点,提高其学习效率。例如:肾囊肿、肝囊肿及胰腺囊肿,它们的基本图像都相同:即囊肿的声像图。但因他们生长于不同的脏器,又造成不同的继发病变,因此继发的声像图又都有所不同,这样引导学生进行分类、比较,使几种不同疾病的超声诊断既容易记忆,又容易区分。

3 丰富教学内容、学生理解快

超声检查具有以下的特点:超声图像是随着探头方向、位置而变化,所有诊断均在图像动态显示的过程中进行,而一些疾病的诊断往往具有多种显示方式,例如肾动脉狭窄的诊断就需要使用二维、彩色多普勒血流图、频谱多普勒、能量多普勒等多种的显示方式的图像来进行综合判断。因此,在教学过程中就存在学生对图像的判断相对来说更觉得抽象,理解难度更大,学生靠死记硬背遗忘率高,以致教学效果较差等问题的出现。多媒体辅助教学手段的应用较好地解决了单纯使用文字及静态图片讲解较易使内容过于枯燥和抽象,学生听讲后仅凭想象难以理解而对课程提不起兴趣, ,教师也因难以表达清楚讲解费时更多的问题,多媒体课件上机带教具有图、文、声并茂的特点,它甚至可以有活动影像;超声检查中的动态声图像,可以在多媒体课件中得到充分展示,使教师在讲解图像中让学生觉得更直观,从而可很快建立起形态学思维,亦可很快理解。例如在静脉血栓形成的超声诊断中,是在二维图像的基础上增加彩色多普勒血流显像及多普勒频谱分析。学生通过多媒体课件就能如检查医师一样直观地看到静脉有无管壁的增厚、有血栓形成,动脉管腔有无狭窄甚至完全闭塞,还可以从彩色多普勒血流显像及多普勒频谱分析上来判断血流方向、速度、范围及有无血流紊乱、中断及侧支循环的开放等等,充分理解血管中血流速度和频谱曲线的变化。上机带教让他们有亲身的体验和感受。同时对操作所得图像和临床检查结果作相应的讨论和分析。这样做不仅能对书本上的知识进一步巩固,同时能进一步培养学生的思维方法及临床应变能力。使他们思维灵活不拘泥于书本。为他们迈向临床打下良好的基础,有利于综合素质的培养。

以上是我们通过多年的临床教学实践,得出的关于超声诊断教学中的一些经验与体会,应用多媒体技术,以解剖学为基础,以病理学为诊断依据,掌握临床医学知识,重视前沿技术,科学选用教材,适合各个层面教学要求。

参考文献

篇8

关键词:医学影像学;现状;未来;综述

【中图分类号】R473【文献标识码】A【文章编号】1672-3783(2012)04-0140-01

随着医学影像学飞速发展,它在临床医学中的地位不断提高,由X线、超声、放射性核素显像、CT、数字减影血管造成影及介入装置、磁共振成像所组成的医学影像学家族已经成为临床主要的诊断和鉴别诊断方法、医院现在化的重要标志、科学研究的主要手段及医院重要的经济收入来源。现将医学影像学的发展与展望综述如下。

1 医学影像学技术发展的历史回顾

1895年11月8日德国物理学家伦琴发现了一种新型射线(a kind of new rays)。并于11月22日为夫人拍摄了一张手部x线照片,也是人类第一张x线影像。随后,x线被广泛的应用于对疾病的诊断和治疗,形成了放射诊断学和放射治疗学。x线还用于疾病的预防、康复和预后随访。在医学之外,还用于x线衍射分析和工业探伤等多种用途。因此,x线的发现对人类作了重大贡献。1971年亨氏菲尔德发明了CT,将传统的X线的直接成像转变为间接成像,从而奠定了现在影像学的基础,随后出现的MRI、正电子发射型体层摄影术等影像学技术,以及近期出现的分子成像和光成像,使医学影像学在显示形态学状态之外,还能完成组织器官功能检查,并最终在分子和细胞水平显示组织、器官的化学成分和代谢变化。

2 医学影像学现状

曾经在我国长期使用用的x线透视检查的应用逐年减少, 大型医院或者发达地区的中小医院已逐步取消透视, 而代之 以x线摄影检查, 且以DR检查占主导地位。传统 X线造影检查被多排螺旋CT和磁共振成像所取代 首先是 X线脊髓造影检查被 MRI所取代;其次是多排螺旋CT和MRI结合光学内镜逐步取代 X线消化道造影、经静脉肾盂造影和胆道造影等检查;然后是 DSA的诊断性血管造影检查逐步被CT血管成像和MR血管成像所取代。 伴随设备的逐步普及,CT已经成为临床(尤其急诊)最重要的影像检查方法。MRI具有无创伤、 无射线辐射危 害,成像参数多、获得的信息量大,软组织对比度最佳等显著优点,是最活跃的影像学研究手段,已经成为很多重要疾病的确证诊断方法。超声以其设备普及、价格低廉、无创伤、无射线辐射危害、可在病床旁边实施和便于复查等优点, 成为目前临床应用最主要的影像学筛选检查技术。以早年的CT为起点,CT、MRI等设备开始提供横断层面影像。同时,得益于计算机技术的进步,今天已经可以在较短时间内把上述的信息“重组”(reformation)为三维的、分别显示兴趣结构的、带有仿真色彩的,甚至以内窥镜的信息模式显示的“直观信息”。举例说,一个重度创伤的病人可能会有骨折、颅脑损伤、内脏损伤、血管损伤及其他并发症。今天,只需用CT从头到脚在数十秒钟内完成采集,病人即可回病房作急症处理,而放射科医师可使用一次采集的信息分别显示出骨骼、颅脑、内脏、血管等结构与病变,并给急症医师提供“直观的”兴趣结构的三维的、彩色仿真的诊断信息。这样的信息已经超越了大体解剖学的可视能力,达到了即使在手术刀或解剖刀下都不可能完全洞察的水平。

3 医学影像学技术的发展趋势

各种医学影像学设备向小 型化、专门化、高分辨力和超快速化方向发展,MRI和CT的全器官灌注成像得到临床普及应用。虽然目前MSCT主要生产厂家的设计理念和主攻方向不一致,导致彼此设备的差异巨大,但是可以预测,在不远的将来,CT机的构造(包括发生器、X线球管的结构和数量、探测器种类和排数等) 将发生实质性变改, 也许球管和探测器的旋转速度更快,使MSCT的时间分辨力突破50 ms大关,使心脏得到真正的“冻结”,而探测器材质的改进能显著提高MSCT的空间分辨力。 各种介入治疗成为常规有效的治疗方法。集诊断与治疗一体化的医学影像学设备也在不断成熟和普及, 使疾病的诊断更加及时、 准确,治疗效果更佳。应用计算机仿真技术设计外科手术方案、 由影像导航 系统直接引导外科手术入路、确定手术切除范围,并在术中直接应用MRI对病灶切除范围进行现场评价会逐渐普及应用。在影像学网络化的基础上,医学图像处理将成为常规,而服务器软件取代工作站,实现多点同时后处理,并使图像后处理的自动化程度进一步提高。 伴随远程影像学的普及和宽频带网络的应用,医学影像学图像的远程传输更为快捷,图像更加清楚,影像学科医生可以在家里或者在出差旅途中完成诊断报告。

分子成像是医学影像学的热点研究方向之一,伴随分子成像的研究进展,会有多种组织、器官特异性对比剂问世,这些新型对比剂能显示特定基因表达、 特定代谢过程、特殊生理功能,其毒副作用更小、对比增强效果更佳、诊断的特异性更强,真正实现疾病早期诊断。开发疗效监测对比剂(或称分子探针),以在最短时间得到治疗的反馈信息, 在分子水平上进行疾病的靶向治疗。除PET外, 其他医学影像学技术也能直接用于药物的研发和监测疗效,在活体早期、连续观察药物或基因治疗 的机制和效果,以利于药物筛选和新药开发。此外,分子成像方法和图像后处理技术将得到持续改进,并开发出用于分子成像的影像学新技术。 医学影像学技术的进展还将导致影像学科内部人员构成发生变化,物理师、数学家、生物医学工程师、计算机专家和循证医学专家占影像科室人员的比例越来越高,针对某种重大疾病可以组建包含内、外科和影像学医生的新型科室。医学影像学检查不仅在诊断与治疗的环节发挥作用,而且可以在疾病预防、健康体检、重大疾病筛查、健康管理、早期诊断、病情严重程度评估、治疗方法选择、疗效评价、康复等环节发挥越来越大的作用,医学影像学科的地位必将不断提高。参考文献

[1] 贺延莉,王亚蓉,殷茜,等.T-PACS在医学影像学实践教学中的应用和优势[J].中国医学教育技术,2011,25(6):657-659

[2] 刘卫宾,韩冬.浅析普通X射线摄影及其应用[J].中国卫生产业,2011,8(11):115-115

[3] 蒋震,沈钧康,宦坚,等.医学影像学研究生读书报告的方法学探讨[J].中华医学教育探索杂志,2011,10(10):1179-1181

[4] 高艳,李坤成,杜祥颖,等.医学影像学教学中比较影像学的重要性[J].中国高等医学教育,2011(11):79-80

篇9

关键词:产前诊断;超声检查;教学

超声诊断学是医学影像学的重要组成部分,它集基础医学、临床医学、病理学和超声图像为一体,将各学科有机地结合,从观察图像的角度来认识各种病变,理解病变的发生和发展规律,从而提示疾病的本质[1],最终协助临床医师进行诊断和治疗产科超声诊断隶属于超声诊断学。而产科超声在产前诊断中具有举足轻重的作用,关系到围产期死亡率和围产期发病率的高低。北京市已颁布了超声产前诊断和产前筛查等技术规范,严格规范了产前超声检查技术。目前,从事产前超声检查医师的技术水平良芳不齐,因此,对这些医师进行产前超声检查技术的培训非常重要。如何能够更好地进行产科超声的教学,提高教学效果?是提升产前超声筛查技术水平的关键。但在产科超声诊断教学中应尽量避免一些误区。比如:(1)忽略正常结构,一味强调异常结构;(2)课件制作过于繁琐,重点不突出; (3)缺乏总结等。针对这些误区及在产科超声教学中应该注意的一些问题进行几点总结。

一、正确认识胎儿的正常解剖结构是产科超声检查的基础

人体解剖学是超声诊断学的基础,只有很好地了解人体正常的断层结构,才能正确认识超声图像中的组织结构,有利于鉴别异常图像,就如一座高楼需要一个坚实的地基一样,正常胎儿结构的超声图像是进行产科超声筛查和诊断的基础。如果对胎儿的正常结构不了解,就有可能对异常的结构不认识,或者将正常的结构误认为异常结构。比如:我们经常会遇到这样的情况,孕妇妊娠20周左右,在外院超声诊断为“脑积水”,而我们的超声检查显示颅内结构正常。这是因为胎儿在20周前,大脑实质的回声呈低回声,有时甚至呈无回声,如果不了解这一点,同时将大脑侧裂误认为侧脑室的外侧壁,则会造成“脑积水”的错误诊断。因此,在产科超声诊断教学中,正常胎儿的超声图像应该占有重要地位,避免一味强调异常结构而忽视正常结构的辨析。只有正确认识正常胎儿的超声滋床医学或序图像,才能够在检查的过程中有目的地进行分析比较,避免误诊和漏诊。

二、用多媒体课件作为教学手段

多媒体教学方式是利用计算机、投影仪、网络等现代媒体技术进行授课的一种教学方式 [2],是医学教学中必不可少的教学工具。超声影像医学在某种程度上讲是一门解剖学和形态学的学科 ,强调从观察脏器图像的角度来认识各种病变。因此,动态多媒体在超声教学中显得非常重要 [3]。如在讲解中晚期妊娠胎儿的超声表现时,利用多媒体教学可以使学生直观地观察到胎儿在宫内躯干及肢体活动情况、心脏跳动、张嘴吞咽等 [4]。尤其是在讲解胎儿心脏时,多媒体动态教学能把实时心脏运动的动态过程清晰完整地显示出来,学生能短时间内建立起形态学的思维 ,这样对胎儿心脏的超声诊断容易理解 [5]。总之,胎儿是一个在母体内不断活动的完整个体 ,我们利用超声仪器及图文工作站对正常胎儿及典型的畸形胎儿图像进行存储 ,并通过计算机对图像进行动画和文字编辑等处理 ,使胎儿的扫描过程清晰地展现在学生面前,有利于理解,并可弥补实习或进修时操作机会不够及疾病种类不全的缺陷。

三、与病理和临床相结合 ,加深印象

胎儿在不同发育阶段受多种因素的影响,可发生不同的畸形,病种繁多,比如:心脏异位 ,既可发生于胸内 ,也可发生于胸外 ,甚至位于脐带中部。目前,虽然对胎儿畸形的认识和诊断积累了不少经验 ,但需要更多人投入更多的精力 ,对其进行更加深入的研究 ,这就需要我们在工作中注重临床随访,并对典型病例进行存档 ,对引产的胎儿进行病理解剖来印证超声诊断,将病理图片与超声图像进行对比分析,制作成多媒体进行教学,从而加深印象。另外,要成为出色的产科超声诊断医生,必需熟练掌握产科疾病的临床知识,才能对病变进行分析,并在整体观察的基础上重点观察胎儿的某个器官或系统。如: 对羊水过少的孕妇,要重点观察胎儿肾脏、输尿管、膀胱、下尿道、肾上腺及肾动脉等情况,看胎儿是否有泌尿系统畸形 ,在扫查中,切勿将平卧的肾上腺当成肾脏,此时,可通过肾动脉是否缺如进行鉴别。由此可见,临床知识在产科疾病诊断和鉴别诊断中尤其重要。

参考文献:

[1] 熊秀勤,杜文华.产前超声诊断教学的体会[J].临床超声医学杂志, 2007,(12)。

[2] 谢红宁.胎儿出生缺陷超声检查的形态学基础[J].中国实用妇科与产科杂志, 2005,(09)。

[3] 刘晓宇,王巍,谭篪.超声检查在胎儿畸形诊断中的临床应用[J].青海医药杂志, 2009,(05)。

[4] 门永忠,陈新燕,李金生,王晨星.超声诊断胎儿产前畸形[J].医药论坛杂志, 2005,(14)。

[5] 邓远琼,斯轶凡,张志娟,刘贞.超声产前诊断胎儿畸形[J].中国介入影像与治疗学, 2008,(06)。

[6] 黄艳. 39例胎儿畸形产前B超诊断结果分析[J].邯郸医学高等专科学校学报, 2005,(06)。

篇10

【关键词】医学影像技术

医学影像技术主要是应用工程学的概念及方法,并基于工程学原理发展起来的一种技术,其实医学影像技术还是医学物理的重要组成部分,它是用物理学的概念和方法及物理原理发展起来的先进技术手段。医学影像信息包括传统X线、CT、MRI、超声、同位素、电子内窥镜和手术摄影等影像信息。它们是窥测人体内部各组织,脏器的形态,功能及诊断疾病的重要方法。随着医疗卫生事业的发展,以胶片为主要方式的显示、存储、传递X-ray摄像技术已不能满足临床诊断和治疗发展的需求,医疗设备的数字化要求日益强烈,全数字化放射学、图像导引和远程放射医学将是放射医学影像发展的必然趋势。

1 传统摄影技术在摸索中进行

1.1 计算机X线摄影

X射线是发展最早的图像装置。它在医学上的应用使医生能观察到人体内部结构,这为医生进行疾病诊断提供了重要的信息。在1895年后的几十年中,X射线摄影技术有不少的发展,包括使用影像增强管、增感屏、旋转阳极X射线管及断层摄影等。但是,由于这种常规X射线成像技术是将三维人体结构显示在二维平面上,加之其对软组织的诊断能力差,使整个成像系统的性能受到限制。从50年代开始,医学成像技术进入一个革命性的发展时期,新的成像系统相继出现。70年代早期,由于计算机断层技术的出现使飞速发展的医学成像技术达到了一个高峰。到整个80年代,除了X射线以外,超声、磁共振、单光子、正电子等的断层成像技术和系统大量出现。这些方法各有所长,互相补充,能为医生做出确切诊断,提供愈来愈详细和精确的信息。在医院全部图像中X射线图像占80%,是目前医院图像的主要来源。在本世纪50年代以前,X射线机的结构简单,图像分辨率也较低。在50年代以后, 分辨率与清晰度得到了改善,而病人受照射剂量却减小了。时至今日,各种专用X射线机不断出现,X光电视设备正在逐步代替常规的X射线透视设备,它既减轻了医务人员的劳动强度,降低了病人的X线剂量;又为数字图像处理技术的应用创造了条件。随着计算机的发展数字成像技术越来越广泛地代替传统的屏片摄影现阶段,用于数字摄影的探测系统有以下几种: (1)存储荧光体增感屏[计算机X射线摄影系统(computer Radiography.CR)]。

(2)硒鼓探测器。(3)以电荷耦合技术(charge Coupled Derices.CCD)为基础的探测器 。(4)平板探测器(Flat panel Detector)a:直接转换(非晶体硒)b:非直接转换(闪烁晶体)。这些系统实现了自动化、遥控化和明室化,减少了操作者的辐射损伤。

1.2 X-CT

CT的问世被公认为伦琴发现X射线以来的重大突破,因为他标志了医学影像设备与计算机相结合的里程碑。这种技术有两种模式,一种是所谓“先到断层成像”(FAT),另一种模式是“光子迁移成像”(PMI)。

1.3 磁共振成像

核磁共振成像,现称为磁共振成像。它无放射线损害,无骨性伪影,能多方面、多参数成像,有高度的软组织分辨能力,不需使用对比剂即可显示血管结构等独特的优点。

1.4 数字减影血管造影

它是利用计算机系统将造影部位注射造影剂的透视影像转换成数字形式贮存于记忆盘中,称作蒙片。然后将注入造影剂后的造影区的透视影像也转换成数字,并减去蒙片的数字,将剩余数字再转换成图像,即成为除去了注射造影剂前透视图像上所见的骨骼和软组织影像,剩下的只是清晰的纯血管造影像。

2 数字化摄影技术

数字X射线摄影的成像技术包括成像板技术、平行板检测技术和采用电荷耦合器或CMOS器件以及线扫描等技术。成像板技术是代替传统的胶片增感屏来照相,然后记录于胶片的一种方法。平行板检测技术又可分为直接和间接两种结构类型。直接FPT结构主要是由非品硒和薄膜半导体阵列构成的平板检测器。间接FPT结构主要是由闪烁体或荧光体层加具有光电二极管作用的非品硅层在加TFT阵列构成的平板检测器。电荷耦合器或CMOS器件以及线扫描等技术结构上包括可见光转换屏,光学系统和CCD或CMOS。

3 成像的快捷阅读

由于成像方法的改进,除了在成像质量方面有明显提高外,图像数量也急剧增加。例如随着多层CT的问世,每次CT检查的图像可多达千幅以上,因此,无法想象用传统方法能读取这些图像中蕴含的动态信息。这时在显示器上进行的“软阅读”正在逐渐显示出其无可比拟的优越性。软拷贝阅读是指在工作站图像显示屏上观察影像,就X线摄影而言这种阅读方式能充分利用数字影像大得多的动态范围,获取丰富的诊断信息。

4 PACS的广阔发展空间

随着计算机和网络技术的飞速发展,现有医学影像设备延续了几十年的数据采集和成像方式,已经远远无法满足现代医学的发展和临床医生的需求。PACS系统应运而生。PACS系统是图像的存储、传输和通讯系统,主要应用于医学影像图像和病人信息的实时采集、处理、存储、传输,并且可以与医院的医院信息管理系统放射信息管理系统等系统相连,实现整个医院的无胶片化、无纸化和资源共享,还可以利用网络技术实现远程会诊,或国际间的信息交流。PACS系统的产生标志着网络影像学和无胶片时代的到来。完整的PACS系统应包含影像采集系统,数据的存储、管理,数据传输系统,影像的分析和处理系统。数据采集系统是整个PACS系统的核心,是决定系统质量的关键部分,可将各种不同成像系统生成的图象采入计算机网络。由于医学图像的数据量非常大,数据存储方法的选择至关重要。光盘塔、磁带库、磁盘陈列等都是目前较好的存储方法。数据传输主要用于院内的急救、会诊,还有可以通过互联网、微波等技术,以数据的远距离传输,实现远程诊断。影像的分析和处理系统是临床医生、放射科医生直接使用的工具,它的功能和质量对于医生利用临床影像资源的效率起了决定作用。综上所述,PACS技术可分为三个阶段,(1)用户查找数据库;(2)数据查找设备;(3)图像信息与文本信息主动寻找用户。

5 技术----分子影像

随着医学影像技术的飞速发展,在今天已具有显微分辨能力,其可视范围已扩展至细胞、分子水平,从而改变了传统医学影像学只能显示解剖学及病理学改变的形态显像能力。由于与分子生物学等基础学科相互交叉融合,奠定了分子影像学的物质基础。Weissleder氏于1999年提出了分子影像学的概念:活体状态下在细胞及分子水平应用影像学对生物过程进行定性和定量研究。

分子成像的出现,为新的医学影像时代到来带来曙光。基因表达、治疗则为彻底治愈某些疾病提供可能,因此目前全世界都在致力于研究、开创分子影像与基因治疗,这就是21世纪的影像学。 新的医学影像的观察要超出目前的解剖学、病理学概念,要深入到组织的分子、原子中去。其关键是借助神奇的探针--即分子探针。到目前为止,分子影像学的成像技术主要包括MRI、核医学及光学成像技术。一些有识之士认为;由于诊治兼备的介入放射学已深入至分子生物学的层面,因此,分子影像学应包括分子水平的介入放射学研究。

6 学科的交叉结合

交叉学科、边缘学科是当今科学发展的趋势。影像技术学最邻近的学科应为影像诊断学。前者致力于解决信息的获取、存储、传输、管理及研发新的技术方法;后者则将信息与知识、经验结合,着重于信息的内容,根据影像做出正常解剖结构的辨认及病变的诊断。两者相辅相成,互为依托。所以,影像技术学的发展离不开影像诊断学更密切地沟通与结合将为提高、拓展原有成像方式及开辟新的成像方式做出有益的贡献。医用影像诊断装置用于详细地观察人体内部各器官的结构,找出病灶的位置毫克大小,有的还可以进行器

官功能的判断 。还有医用影像诊断装备情况,已成了衡量医院现代化水平的标志。

7 浅谈医学影像技术的下一个热点

医疗保健事业在经济上的窘迫使得90年代以来,成为一个没有大规模推广一种新的影像技术的、相对沉寂的时期,延续了一些现有影像技术的发展,使得他们中至今还没有一种影像技术能对影像学产生巨大的影响。随着科技的发展,最近逐渐发展起来的一批有希望的影像技术。如:磁共振谱(MRS),正电子发射成像(PET)单光子发射成像(SPECT),阻抗成像(EIT)和光学成像(OCT或NRI)。他们有可能很快成为大规模应用的影像技术,将为脑、肺、及其他部位的成像提供新的信息。

7.1 磁源成像

人体体内细胞膜内外的离子运动可形成生物电流。这种生物电流可产生磁现象,检测心脏或脑的生物电流产生的磁场可以得到心磁图或脑磁图。这类磁现象可反映出电子活动发生的深度,携带有人体组织和器官的大量信息。

7.2 PET和SPECT

单光子发射成像(SPECT)和正电子成像(PET)是核医学的两种CT技术。由于它们都是接受病人体内发射的射线成像,故统称为发射型计算机断层成像(ECT)。ECT依据核医学的放射性示踪原理进行体内诊断,要在人体中使用放射性核素。ECT存在的主要问题是空间分辨率低。最近的技术发展可能促进推广ECT的应用。

7.3 阻抗成像(EIT)

EIT是通过对人体加电压,测量在电极间流动的电流,得到组织电导率变化的图像。 目的在于形成对体内某点阻抗的估计。这种技术的优点是,所采用的电流对人体是无害的,因而对成像对象无任何限制。这种技术的时间分辨率很好,因而可连续监测实际的应用,已实现以视频帧速的医用EIT的实验样机。

7.4 光学成像(OTC或NIR)

近期的一些实质性的进展表明,光学成像有可能在最近几年内发展成为一种能真正用于临床的影像设备。它的优点是:光波长的辐射是非离子化的,因而对人体是无伤害的,可重复曝光;它们可区分那些在光波长下具有不同吸收与散射,但不能由其它技术识别的软组织;天然色团所特有的吸收使得能够获得功能信息。它正在开辟它的临床领域。

7.5 MRS