量子力学对科技的影响范文

时间:2023-11-17 17:47:53

导语:如何才能写好一篇量子力学对科技的影响,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

量子力学对科技的影响

篇1

关键词:量子力学 量子计算机

中图分类号:TP39 文献标识码:A文章编号:1007-3973 (2010) 02-106-01

1量子力学对计算机技术发展的影响

自1646年第一台电子计算机问世以来,其芯片发展速度日益加快。按照芯片的摩尔定律 ,其集成度在不久的将来有望达到原子分子量级。在享受计算机飞速发展带来的种种便利的同时,我们也不得不面临一个瓶颈问题,即根据量子力学理论,在芯片发展到微观集成的时候,量子效应会影响甚至完全破坏芯片功能。因此,量子力学对计算机技术发展具有决定性作用。

1.1量子力学简介

量子力学是近代自然科学的最重要的成就之一. 在量子力学的世界里,一个量子微观体系的状态是由一个波函数来描述的,而非由粒子的位置和动量描述,这就是它与经典力学最根本的区别。

1.2量子力学与量子计算机

量子力学的海森堡测不准原理决定了粒子的位置和动量是不能同时确定的()。当计算机芯片的密度很大时(即很小)将导致很大,电子不再被束缚,产生量子干涉效应,而这种干涉效应会完全破坏芯片的功能。为了克服量子力学对计算机发展的限制,计算机的发展方向必然和量子力学相结合,这样不仅可以越过量子力学的障碍,而且可以开辟新的方向。

量子计算机就是以量子力学原理直接进行计算的计算机.保罗•贝尼奥夫在1981年第一次提出了制造量子计算机的理论。量子计算机的存储和读写头都以量子态存在的,这意味着存储符号可以是0、1以及它们的叠加。

2量子计算机的优点

近年来的种种试验表明,量子计算机的计算和分析能力都超越了经典计算机。它具有如此优越的性质正在于它的存储读取方式量子化。对量子计算机的原理分析可知,以下两个个特性是令量子计算机优越性的根源所在。

2.1存储量大、速度高

经典计算机由0或1的二进制数据位存储数据,而量子计算机可以用自旋或者二能级态构造量子计算机中的数据位,即量子位。不同于经典计算机的在0与1之间必取其一,量子位可以是0 或者1,也可以是0和l的迭加态。

因此,量子计算机的n个量子位可以同时存储2n个数据,远高于经典计算机的单个存储能力; 另一方面量子计算机可以同时进行多个读取和计算,远优于经典计算机的单次计算能力。量子计算机的存储读取特性使其具有存储量大、读取计算速度高的优点。

2.2可以实现量子平行态

由量子力学原理可知,如果体系的波函数不能是构成该体系的粒子的波函数的乘积,则该体系的状态就处在一个纠缠态,即体系的粒子的状态是相互纠缠在一起的。而量子纠缠态之间的关联效应不受任何局域性假设限制,这使两个处在纠缠态的粒子而言,不管它们离开有多么遥远,对其中一个粒子进行作用,必然会同时影响到另外一个粒子.正是由于量子纠缠态之间的神奇的关联效应, 使得量子计算机可以利用纠缠机制,实现量子平行算法,从而可以大大减少操作次数。

3量子计算机发展现状和未来趋势

3.1量子计算机实现的技术障碍

到目前为止,世界上还没有真正意义上的量子计算机,它的实现还有许多技术上的问题。

量子计算机的优越性主要体现在量子迭加态的关联效应. 然而,环境对迭加态的影响以及迭加态之间的相互作用会使这种关联效应减弱甚至丧失,即量子力学去相干效应.因此应尽量减少环境对量子态的作用。同时,万一由于相干效应引入了错误信息,必需能及时改正,这需要进一步的研究和实验。

另一方面,量子态不能复制,使得不能把经典计算机中很完善的纠错方法直接移植到量子计算机中来.由于量子计算机在计算过程中不能对量子态测量, 因为这种测量会改变量子态, 而且这种改变是不可恢复的,因此在纠错方面存在很多问题。

3.2量子计算机的现状

由于上述两种原因,现在还无法确定未来的量子计算机究竟是什么样的, 目前科学家门提出了几种方案.

第一种方案是核磁共振计算机. 其原理是用自旋向上或向下表示量子位的0 和1 两种状态,重点在于实现自旋状态的控制非操作,优点在于尽可能保证了量子态和环境的较好隔离。

第二种方案是离子阱计算机. 其原理是将一系列自旋为1/2 的冷离子被禁锢在线性量子势阱里, 组成一个相对稳定的绝热系统,重点在于由激光来实现自旋翻转的控制非操作其优点在于极度减弱了去相干效应, 而且很容易在任意离子之间实现n 位量子门。

第三种方案是硅基半导体量子计算机. 其原理是在高纯度硅中掺杂自旋为1/2的离子实现存储信息的量子位,重点在于用绝缘物质实现量子态的隔绝,其优点在于可以利用现代高效的半导体技术。

此外还有线性光学方案, 腔量子动力学方案等.

3.3量子计算机的未来

随着现代科学技术的发展,量子计算机也会逐渐走向现实研制和现实运用。量子计算机不但于未来的计算机产业的发展紧密相关,更重要的是它与国家的保密、电子银行、军事和通讯等重要领域密切相关。实现量子计算机是21 世纪科学技术的最重要的目标之一。

参考文献:

[1]胡连荣. 速度惊人的量子计算机[J].知识就是力量

[2]付刚.“量子计算机”解密[N].中安在线-安徽日报

[3]谭华海.量子计算机研究的最新进展[J].教育部科技发展中心内刊.

篇2

这项计划将由谷歌的量子人工智能(Quantum Artificial Intelligence)研究小组来实施。谷歌在博客中透露,美国加州大学圣巴巴拉分校的一个研究小组也加入了这项计划。

谷歌去年的研发开支达到80亿美元。为了在互联网搜索和在线广告等市场保持领先地位,谷歌目前正在开发一些新的计算机技术。在科技行业中的一些人看来,量子技术是计算机进行海量数据分析的一种革命性方式。这种新技术对谷歌的主要业务尤其有帮助,对它的新项目――如联网设备和联网汽车――也是有用的。

“在一个硬件研发团队的协助下,量子人工智能研究小组现在能够落实新的设计并测试新的产品。”谷歌在博客中写道。

在整理和分析海量数据方面,量子计算机将具有比传统计算机更快的解决速度。谷歌量子人工智能小组成员马苏德・莫森(Masoud Mohseni)曾经与人合作撰写过具有领先学术水平的量子技术论文。谷歌也一直被视为这一新技术革命的领导力量之一。

此外,谷歌的竞争对手微软也在进军这个新领域,并建立了一个名为“量子架构和计算(Quantum Architectures and Computation Group)”的研究小组。

探秘量子计算机

量子计算机,早先由理查德・费曼提出,一开始是从物理现象的模拟而来的。可他发现当模拟量子现象时,因为庞大的希尔伯特空间使资料量也变得庞大,一个完好的模拟所需的运算时间变得相当可观,甚至是不切实际的天文数字。理查德・费曼当时就想到,如果用量子系统构成的计算机来模拟量子现象,则运算时间可大幅度减少。量子计算机的概念从此诞生。

从物理层面上来看,量子计算机不是基于普通的晶体管,而是使用自旋方向受控的粒子(比如质子核磁共振)或者偏振方向受控的光子(学校实验大多用这个)等等作为载体。当然从理论上来看任何一个多能级系统都可以作为量子比特的载体。

从计算原理上来看,量子计算机的输入态既可以是离散的本征态(如传统的计算机一样),也可以是叠加态(几种不同状态的几率叠加),对信息的操作从传统的“和”,“或”,“与”等逻辑运算扩展到任何幺正变换,输出也可以是叠加态或某个本征态。所以量子计算机会更加灵活,并能实现并行计算。

量子计算机或不再遥远

据外媒报道,美国普林斯顿大学研究人员近日设计出一种装置,可以让光子遵循实物粒子的运动规律。现存的计算机是基于经典力学研发而成的,在解释量子力学方面有很大局限性。量子计算机(quantum computer)是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。

研究人员制作出一种超导体,里面有1000亿个原子,在聚集起来之后,众多原子如同一个大的“人工原子”。科学家把“人工原子”放在载有光子的超导电线上,结果显示,光子在“人工原子”的影响下改变了原有的运动轨迹,开始呈现实物粒子的性质。例如,在正常情况下,光子之间是互不干涉的,但是在这一装置里,光子开始相互影响,呈现出液体和固体粒子的运动特性,光子的这种运动“前所未有”。

现存的计算机是基于经典力学研发而成的,在解释量子力学方面有很大局限性。量子计算机(quantum computer)是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。研究人员称,在改变光子的运动规律之后,量子计算机的发明也许不再遥远。

就我国量子计算机而言,相关研究也一直处于世界领先水平。早在2013年12月30日,美国物理学会《物理》杂志就公布了2013年度国际物理学领域的十一项重大进展,中国科学技术大学潘建伟教授及其同事张强、马雄峰和陈腾云等“利用测量器件无关量子密钥分发解决量子黑客隐患”的研究成果位列其中。

《物理》杂志以“量子胜利的一年――但还没有量子计算机”为题报道了中国科学家成功解决量子黑客隐患这一重要成果。

尽管量子计算机仍然是遥远的未来,但2013年科学家们却报道了一系列量子信息和量子通信领域的胜利。在量子密码方面,两个独立的研究组报道了一种新的加密手段,可以提供绝对的安全性,以解决量子黑客隐患。

篇3

经典物理的产生一般认为从文艺复兴时期开始,前期经过许多科学家,特别是伽利略、笛卡尔、惠更斯等先贤的努力,建立起力学的实验基础。牛顿总结前人的成果,确立了经典力学的基本理论体系,麦克斯韦、玻尔兹曼等确立了经典统计力学和电磁场理论。经典物理经过几百年的不断发展和完善,形成了自然科学中唯一有完整的理论、思想、数学推理和研究方法体系的学科。牛顿力学和麦克斯韦电动力学号称经典物理的两大支柱,牛顿和麦克斯韦在物理学界的位置,可以相比于中医学的先圣张仲景。

现代物理从20世纪初始兴起,由爱因斯坦、玻尔为代表的众多科学家的杰出工作,创立了相对论和量子力学,开创了物理学的新局面。以相对论和量子力学标志的、研究微观、高速物理现象的新的理论和方法体系,统称现代物理学。现代物理学在原子、分子、固体、原子核、天体力学和宇宙学、等离子体、激光技术、基本粒子、半导体、超导的研究中得到了广泛的应用。

有人称相对论和量子力学的创立是“物理学上的一次革命”。更多的局外人则认为现代物理是一种全新的理论,完全推翻和取代了经典物理学,经典物理已经完成了自己的历史使命,现代社会已经不再需要她。这其实是一种误解。如果我们从历史和现实的的角度重新审视事实,就会发现,经典物理没有被抛弃,她不仅是现代物理产生的温床、理论与方法的启示、研究的工具,更是现代社会的顶梁柱,仍在现今众多高科技领域中发挥着不可替代的作用。下面,我从以下三个方面讨论现代物理与经典物理的关系,从而说明重视经典是物理发展的需要,是现代科学、社会发展的需要。

1 现代是经典恰当的扩展

爱因斯坦在创立狭义相对论时,提出了两个基本假定:相对性原理和光速不变原理[1]。首先我们注意到,爱因斯坦的相对性原理与伽利略相对性原理惊人地相似,比较一下就可以看到:

伽利略相对本文由收集整理性原理(由伽利略等人经过反复多次的实验检验而提出):一个相对于惯性参照系做匀速直线运动的系统,其内部所发生的一切力学过程,都不受系统运动的影响,或一切惯性系统都是等价的。

爱因斯坦假定,不仅力学过程,所有的物理过程都不受系统运动的影响,即:

物理学的基本规律在相互作匀速运动的一切参照系中都是相同的;或:一切惯性系统都是等价的。

从中我们不仅看出,爱因斯坦对伽利略的相对原理有着非常深刻的、超出常人的理解,已经达到了熟能生巧的地步,自然会有如此随手拈来、为我所用的“上工”境界;也看出创造经典的先贤们的超前意识和睿智之魅力所在。

再看光速不变原理,只要对经典电磁理论稍有了解的人都会发现,麦克斯韦的电磁理论完全可以给出明确的关于光速不变的预言。这是因为,只要从著名的麦克斯韦方程组出发,利用简单的数学推演,可以毫不困难地导出电磁场波动方程,不仅预言了电磁波的存在,还给出了电磁波在真空中的传播速度。用c表示电磁波在真空中的速度,c的大小是:

c=■≈3.0×10■米秒

其中μ■为真空磁导率,ε■为真空介电常数,由于μ■和ε■数值的大小固定,与参照系的选择无关,换句话说,与系统的运动状态无关,这正是光速(光属于电磁波)不变原理。

爱因斯坦在创立狭义相对论时,对当时著名的、能够证明光速不变的迈克耳孙光干涉实验并不知晓,他能参考的资料只有经典电动力学,麦克斯韦方程组和电磁场波动方程表达的深刻内涵才是他提出光速不变假设的根据。

2 现代是对经典的包容而非否定

无论是相对论和量子力学,都无法否定经典物理,也没有否定经典的企图。相反,所有的新理论都试图找到和经典的联系,如果找不到应有的联系,这样的新理论有可能破产。所以,相对论和量子力学实际都包含了经典。这与所有的后世中医大家,在发表自己的新见解时,都要证明自己的观点与《内经》、《伤寒论》有内在联系如出一辙。

相对性原理最著名的数学表示即洛仑兹变换,具体表述如下:设两个相对有匀速运动,速度为v参照系统,它们沿v方向各自建立的直角的坐标系分别为x,y,z,t和x’,y’,x’,z’,t’,若初始时,两坐标原点重合,两坐标系由以下变换公式[1]联系:

x′=■ y′=y z′=z t′=■

式中 c 是前面提到的光速,具体数值为30万公里每秒。我们通常能见到的物体运动速度,如汽车、火车、飞机,能达到1公里每秒的速度并不多见,宇宙飞船的速度,也最多达到10几公里每秒,即使将来提高100倍,与光速相比仍显得微不足道。而上式表明,当系统的相对速度v远远达不到光速的时候,(日常中大量事实正是如此)上面的公式就变成伽利略变换:

x′=x-vt y′=y z′=z t′=t

说明洛仑兹变换与经典的伽利略变换并没有矛盾,前者包含了后者,后者用更加广泛。

再看量子力学,量子力学的基本原理是测不准关系[2]。其典型的表述是:粒子的位置和动量不能同时确定。它们在某一方向上不确定量的乘积大于或等于h/2。即

δx?誗δpx≥■, h=6.62×10-32焦耳秒

可以看出,h是一个很小的量,小到什么程度呢?小数点后面有34个0!是6的百亿亿亿亿分之一。一般气体分子够小

转贴于

的了,如氧气分子质量为10-23的数量级,常温下速度大约为102的数量级,则动量为10-21的数量级,和h相比大了10万亿倍,完全可以不考虑测不准关系的影响。所以,当我们研究的对象系统中物理量的数量级远远大于普朗克常数时,不确定度数值相对来讲,必然微不足道,量子力学很自然地回归到经典力学。也可以说,测不准关系包容了经典力学,后者应用更为广泛。

3 现代对经典的接收和继承

现代物理不是空中楼阁,它是采用经典的材料和艺术,一砖一瓦构建的绝美珍品。在现代物理学中,经典的概念、定义、研究方法无处不在,发挥着主导的、关键的作用。在相对论力学中,我们可以看到力、加速度和动量以及它们的矢量形式,能量、拉格朗日量、哈密顿量等在经典中熟知的力学量。这些力学量全部统一到了满足洛仑兹协变的四维形式中去。至于经典电磁理论中所有规律,由于自然地满足相对性协变,几乎很少更改地进入相对论,成为相对论的重要的组成部分。

在量子力学中,同样采用了经典力学的所有量,只是为了描述测不准关系、描述系统的状态需要,力学量在不同的表象中可以有不同的形式,可以是标量、矢量、张量算符。如在坐标表象中,动量具有梯度矢量的算符形式,哈密顿量则包含了拉普拉斯算符。量子力学的创立者之一海森堡更是心有灵犀,他把测不准关系表示成为力学量的对易关系[2]:

q■p■δ■■i■

这很容易想到经典力学中的泊松括号

q■p■δ■■

篇4

关键词:凝聚态物理;关联区;量子态;理论方法

中图分类号:O469 文献标识码:A

凝聚态物理学是当今物理学中最大也是最重要的分支学科之一,它是从微观角度出发,研究凝聚态物质的物理性质、微观结构以及它们之间的关系,因此建立起既深刻又普遍的理论体系,是当前物理学中最重要、最丰富和最活跃的学科,在许多学科领域中的重大成就已在当今高新科学技术领域中起了关键性作用,为发展新材料、新器件和新工艺提供了科学基础。凝聚态物理一方面与粒子物理学在概念上的发展相互渗透,对一些最基本的问题给出启示;另一方面为新型材料的研发和制备提供理论上和实验上的支持,与工科的技术学科衔接构成科学上最有实用性的拓新领域。那么,当今凝聚态物理主要研究哪些分支内容?使用什么样的理论方法?这些研究在哪些方面有所成就?

一、凝聚态物理当今主要研究的一些分支内容

凝聚态指的是由大量粒子组成且粒子间有很强相互作用的系统。固态和液态是最常见的凝聚态,低温下的超流态、超导态、玻色-爱因斯坦凝聚态、磁介质中的铁磁态、反铁磁态等,也都是凝聚态。凝聚态物理是属于偏应用的交叉学科,研究方向和分支很多,基本任务是阐明微观结构与物理性质的关系。传统的凝聚态物理主要研究半导体、磁学、超导体等,现今凝聚态物理学研究的理论内容十分广泛,以下是其中较活跃的几个分支:

1.固体电子论中的关联区

研究固体中的电子行为,是凝聚态物理的前身固体物理学的核心问题。按电子间相互作用的大小,固体中电子的行为分成3个区域,它们分别是弱关联区、中等关联区和强关联区。弱关联区的研究基于电子受晶格上离子散射的能带理论,应用于半导体和简单金属,构成了半导体物理学的理论基础;中等关联区的研究包括一般金属和强磁性物质,是构成铁磁学的物理基础;强关联区则涉及电子浓度很低的不良金属,诸如莫脱绝缘体、近藤效应、巨磁电阻效应等,它们的物理性质问题尚未得到很好地解决。

现今对固体电子论的研究比较注重的是强关联系统。

2.宏观量子态

用量子力学描述宏观体系的状态称为宏观量子态,如超导中电子的库珀对。超导现象是电阻在临界转变温度Tc以下突然降为零,磁通全部被斥,成为完全抗磁体,超流现象是当液氦(4He)的温度降到2.17K时,由正常流体突然转变为具有一系列极不寻常的性质的“超流体”。宏观量子态具有典型的量子力学性质,如势垒隧道穿越和位相相干等。当前量子力学研究的重要课题是退相干现象和耗散现象。

3.介观物理与纳米结构

介观是介于宏观与微观之间的一种体系,处于介观的物体的尺寸可以说是宏观的,因而具有宏观体系的特点;但是由于其中电子运动的相干性,会出现一系列新的与量子力学相位相联系的干涉现象,这又与微观体系相似,故称“介观”。介观物理学所研究的物质尺度和纳米科技的研究尺度有很大重合,所以这一领域的研究常被称为“介观物理和纳米科技”。

为获取更优异的物理性能,凝聚态物理界从20世纪中期开始注重将材料按特定的结构尺度组织成复合体,若结构尺度在1nm~100nm范围内,即为纳米结构,它在基础研究中发挥的重要的作用是:在两维电子气中发现了整数量子霍尔效应、分数量子霍耳效应和维格纳晶格,在一维导体中验证了卢廷格液体的理论,在一些人工的纳米结构中发现了介观量子输运现象。在未来的一段时期内,纳米电子学和自旋电子学将成为固体电子学和光子学的发展主流。

4.软物质物理学

1991年被提出的软物质也被称为复杂液体,它是介于固体与液体之间的物相,一般由大分子或基团组成,诸如液晶、聚合物、胶体、膜、泡沫、颗粒物质、生命体系物质诸如DNA、细胞、体液、蛋白质等都属于这类物质,它们中大多数都是有机物质,在原子的尺度上是无序的,在介观的尺度上则可能出现某种规则而有序的结构。软物质在变化过程中内能的变化很微小,熵的变化却很大,因而其组织结构的变化主要是由熵来驱动,和内能驱动的硬物质不同。有机物质中的小分子和聚合物的电子结构与电子性质现在正受到重视,因此有机发光器件和电子器件正在研制开发中。

二、当今凝聚态物理研究的一些现象及其理论方法

固体物理学的一个重要的理论基石为能带理论,它是建立在单电子近似的基础上的。而凝聚态物理学的概念体系则渊源于相变与临界现象的理论,植根于相互作用的多粒子理论。凝聚态物理学的理论基础是量子力学,基本上已经完备且成熟。

当前常用的一些理论方法:第一性原理(特指密度泛函理论计算),蒙特-卡洛方法,玻尔兹曼模型,分子动力学模拟,伊辛模型,有效场,平均场等等。

当前被研究的一些现象:光谱,超导,霍尔效应,弱相互作用,电阻(巨磁电阻,庞磁电阻),磁性研究(磁阻,微磁学,铁磁性,巨磁阻抗效应,相图),多向异性,子晶格,态密度,能隙,强关联、激发态,量子通信,冷原子、物理进展等等。

第一性原理方法是根据原子核与电子相互作用及其基本运动的规律,运用量子力学原理从哈密顿量出发,近似处理后进行求解薛定谔方程的方法,它能给出体系的电子结构性质等相关信息,能描述化学键的断裂、重组,以及电子的重排而被很多人多热衷。

蒙特-卡罗方法也被称统计模拟方法,是以概率统计理论为基础的使用随机数来进行数值计算的方法一类数值计算方法,它是以事件出现的频率估算随机事件的概率,并将这个结果作为问题的解。

伊辛模型是描述分子之间有较强相互作用的系统发生相变情况的模型。通常使用有效场理论、平均场理论和蒙特・卡罗方法来研究它。

三、当今凝聚态物理研究的一些成就

凝聚态物理当今在器件方面取得的两方面主要成就是太阳能电池和纳米器件。在材料方面取得的一些成就有:纳米材料,电子陶瓷材料,拓扑绝缘材料,碳材料(石墨烯,石墨炔,碳化锗薄膜等),复合热电材料,自旋液体、超导体,超材料,薄膜材料。

上边所列的这些成就中,拓扑绝缘体的边界或表面总是存在导电的边缘态,这有望于制造未来新型电脑芯片等元器件。自旋液体描述物质中的一种特殊自旋排布状态,材料的作用能支持某些奇异的超导性或将一些像粒子一样拥有电荷的实体组织起来。石墨烯是目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机,而且它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。当今对石墨炔衍生物的研究逐渐成为研究热点,研究者们积极地设计可能的石墨炔衍生物并预测其物理性质。如研究BN掺杂的石墨炔系列结构的稳定性与电子结构,发现它的性质与硼氮元素掺杂的浓度和位置紧密相关;N掺杂石墨炔可充当氧还原反应的无金属电催化剂;氟化作用可调节石墨炔带隙宽度,这使得石墨炔在纳米电子设备的使用上使其有灵活性;分别在石墨二炔和α-石墨炔中掺入硅和锗的结果是碳硅元素以及碳锗元素之间可以形成稳定的炔键结构,并且其带隙值明显加宽。总之,设计实现这些新的碳锗材料,不仅可以丰富碳相关材料的数据库,而且可以为电子设备、气体分离薄膜、储能材料、锂离子电池电极材料等方面提供可选的对象。

还有,利用粒子的隧道效应可制备隧道结这类夹层结构,诸如半导体隧道二极管、单电子超导隧道结、库珀对超导隧道结。利用与自旋相关的隧道效应,则已制出具有隧道磁电阻的磁存储器。半导体量子阱已用来制备快速晶体管和高效激光器。量子点可用以制备微腔激光器和单电子晶体管。利用铁磁金属与非磁金属可制成磁量子阱,呈现巨磁电阻效应,可用作存储器的读出磁头等等。

结论

有人说:“没有量子力学就没有手机和电脑,就没有现今互联网的普及。”从这句话中可以看出更确凿的事实:基础科学一直是科学技术发展的基础和推手,凝聚态物理在理论上的发展一方面诠释客观物质世界存在的现象,一方面又能预测人类将能解决的客观问题;而它在实验上的发展则是根据其理论上建立的模型给予验证并因此揭示客观事物的实质与规律,且据此来建立并整合理论结果和实验结果与实用技术之间的联系,使得这些客观事物及其规律最终为人类所利用。

参考文献

篇5

关键词:微电子;半导体物理;教学质量;教学方法

作者简介:汤乃云(1976-),女,江苏盐城人,上海电力学院计算机与信息工程学院,副教授。(上海200090)

基金项目:本文系上海自然科学基金(编号:B10ZR1412400)、上海市科技创新行动计划地方院校能力建设项目(编号:10110502200)的研究成果。

中图分类号:G642.0     文献标识码:A     文章编号:1007-0079(2012)13-0059-02

随着半导体和集成电路的迅猛发展,微电子技术已经渗透到电子信息学科的各个领域,电子、通信、控制等诸多学科都融合了微电子科学的基础知识。[1]作为微电子技术的理论基础,半导体物理研究、半导体材料和器件的基本性能和内在机理是研究集成电路工艺、设计及应用的重要理论基础;作为微电子学相关专业的特色课程及后续课程的理论基础,“半导体物理”的教学直接影响了后续专业理论及实践的教学。目前,对以工程能力培养为目标的微电子类相关专业,如电子科学与技术、微电子、集成电路设计等,均强调培养学生的电路设计能力,注重学生的工程实践能力的培养,在课程设置及教学上轻视基础理论课程。由于“半导体物理”的理论较为深奥,知识点多,涉及范围广,理论推导复杂,学科性很强,对于学生的数学物理的基础要求较高。对于没有固体物理、量子力学、统计物理等基础知识背景的微电子学专业的学生来说,在半导体物理的学习和理解上都存在一定的难度。因此需要针对目前教学过程中存在的问题与不足,优化和整合教学内容,探索形象化教学手段,结合科技发展热点问题,激发学生的学习兴趣,提高半导体物理课程的教学质量。

一、循序渐进,有增有减,构建合理的教学内容

目前,国内微电子专业大部分选用了电子工业出版社刘恩科等编写的《半导体物理学》,[2]教材知识内容体系完善,涉及内容范围广、知识点多、理论推导复杂、学科交叉性强。该教材的学习需要学生有扎实的固体物理、量子力学、统计物理以及数学物理方法等多门前置学科的基础知识。但是在以培养工程技术人员为目标的微电子学类专业中,国内大部分高校均未开设量子力学、统计物理学及固体物理学等相应的前置课程。学生缺少相应固体物理、统计物理与量子力学等背景知识,没有掌握相关理论基础,对半导体物理的学习感到头绪繁多,难以理解,容易产生畏学和厌学情绪。

在课程教学中教师必须根据学生的数理基础,把握好课程的内容安排,抓住重点和难点,对原有的教材进行补充更新,注意将部分量子力学、统计物理学、固体物理学等相关知识融合贯穿在教学中,避免学生在认识上产生跳跃。例如在讲解导体晶格结构内容前,可以增加2-3个学时的量子力学和固体物理学中基础知识,让学生在课程开展前熟悉晶体的结构,了解晶格、晶胞、晶向、晶面、晶格常数等基本概念,掌握晶向指数、晶面指数的求法,了解微观粒子的基本运动规律。在讲解半导体能带结构前,增加两个学时量子力学知识,使学生了解粒子的波粒二象性,掌握晶体中薛定谔方程及其求解的基本方法。在进行一些复杂的公式推导时,随时复习或补充一些重要的高等数学定理及公式,如泰勒级数展开等。这些都是学习“半导体物理学”必备的知识,只有在透彻理解这些基本概念的前提下,才能对半导体课程知识进行深入地学习和掌握。

另一方面,对于微电子学专业来讲,侧重培养学生的工程意识,“半导体物理”课程中的部分教学内容对于工科本科学生来说过于艰深,因此在满足本学科知识的连贯性、系统性与后续专业课需要的前提下,大量删减了涉及艰深物理理论及复杂数学公式推导的内容,如在讲述载流子在电场中的加速以及散射时,可忽略载流子热运动速度的区别及各向异性散射效应,即玻耳兹曼方程的引入,推导及应用可省略不讲。

二、丰富教学手段,施行多样化教学方法,使教学形象化

半导体物理的特点是概念多、理论多、物理模型抽象,不易理解,如非平衡载流子的一维飘移和扩散,载流子的各种复合机理,金属和半导体接触的能带图等。这些物理概念和理论模型单一从课本上学习,学生会感觉内容枯燥,缺少直观性和形象性,学习起来比较困难。为了让学生能较好地掌握这些模型和理论,需要采用多样化的教学方法,充分利用PPT、Flash等多媒体软件、实物模型、生产录像等多种信息化教学手段,模拟微观过程,使教学信息具体化,逻辑思维形象化,增强教学的直观性和主动性。同时,教师除开展启发式、讨论式等教学方法调动学生学习的主动性、积极性外,[3,4]还可以应用类比方法帮助他们理解物理概念或模型。如讲半导体材料中的缺陷及跃迁机制时,为了帮助学生理解,可以做一个类比:将阶梯教师里单位面积的座位数比做晶格各能级上的电子能态密度,把学生当作电子,一个学生坐在某一排的某个座位上,即认为这个电子被晶格束缚。当有外来学生进入教室,在教室过道上走动时,可类比为间隙式缺陷;而当外来学生取代现有学生的座位时,可类比为填隙式缺陷等等。通过类比,学生对半导体内部的点缺陷的概念的理解就清楚形象多了。

三、结合微电子行业领域的迅速发展,以市场为导向,培养学生兴趣

微电子技术的发展历史,实际上就是固体物理与半导体物理不断发展和创新的过程,[5]1947年发明点接触型晶体管、1948年发明结型场效应晶体管以及以后的硅平面工艺、集成电路、CMOS技术、半导体随机存储器、CPU、非挥发存储器等微电子领域的重大发明,都与一系列的固体物理、[6]半导体物理及材料科学的重大突破有关。纵观微电子工业的发展,究竟是哪些半导体理论推动了微电子技术的发展,哪些科学家推导并得出了这些理论?他们在理论推导的同时遇到了哪些困难?这些理论规律又起源于哪些实验?到了21世纪,也就是今后50年微电子技术的发展趋势和主要的创新领域,[5,6]即以硅基CMOS电路为主流工艺,系统芯片SOC(System On A Chip)为发展重点,量子电子器件和以分子(原子)自组装技术为基础的纳米电子学;[7]与其他学科的结合诞生新的技术增长点,如MEMS,DNA Chip等,也都于半导体科学相关。这些新的微电子发展趋势主要涉及半导体物理中的哪些知识?涉及哪些领域等?

针对以上问题,教师在讲授半导体物理的基础上,对教材进行补充更新。在保持基础知识体系完整性的同时,避免面面俱到,删减课本中一些不必要的内容,大量加入近几十年来发展成熟的新理论、新知识,突出研究热点问题,力求做到基础性和前瞻性的紧密结合,使学生在掌握基础知识的同时对微电子发展历史中半导体技术的发展趋势有一个清晰地认识,让学生能从中掌握事物的本质,促进思维的发展,形成技能;同时注重与信息化技术相结合,将近几年半导体技术的最新研究成果,如太阳能电池等半导体光伏发电技术在国家绿色能源战略上的地位,半导体光电探测器在国家航天战略上的应用等,使学生能及时掌握半导体技术前沿发展趋势。将这些问题分成若干个相关的专题分派给学生,学生自行查阅和搜集资料,他们在课堂上讲述该专题,教师加以引导和帮助。这种方式不仅充分调动课堂气氛,加深他们对所学知识的理解,同时也让学生学习了半导体物理课程在微电子专业中课程体系的作用,在科学意识上加深了半导体物理课程的重要性,激发学习兴趣和欲望。

同时,为帮助学生了解学术前沿,培养专业兴趣,还可邀请校内外的专家做讲座,学生可以利用课余时间,根据自己的兴趣选择听取,加深对半导体物理课程的了解,培养专业学习兴趣。

四、总结

总之,“半导体物理学”是微电子技术专业重要的专业基础课,为后续专业课程的学习打下理论基础。在“半导体物理”教学过程中,应积极采用现代化教学手段提高学生积极性,在教学过程中合理安排教学内容,与时俱进引入科技热点,削弱传统的课本知识与市场需求的鸿沟,培养适应社会需求的微电子人才。

参考文献:

[1]张兴,黄如,刘晓彦.微电子学概论[M].北京:北京大学出版社,2000.

[2]刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:电子工业出版社,

2008.

[3]陈国英.《半导体器件物理基础》课程教学的思考[J].常州信息职业技术学院学报,2007,(6):56-57.

[4]王印月,赵猛.改革半导体课程教学融入研究性学习思想[J].高等理科教育,2003,(1):69-71.

[5]王阳元,张兴.面向21世纪的微电子技术[J].世界科技研究与发展,

1999,(4):4-11.

篇6

2015年度国家自然科学一等奖

2016年1月8日,潘建伟院士、彭承志教授、陈宇翱教授、陆朝阳教授、陈增兵教授组成的5人团队获得了2015年度国家自然科学一等奖,并在人民大会堂接受颁奖。5位老师均来自中国科学技术大学,他们是该奖项历史上最年轻的获奖团队,其中潘建伟、彭承志、陈增兵3位老师为70后,而陈宇翱和陆朝阳两位老师为80后。

国家自然科学一等奖是中国自然科学领域的最高奖项,很多耳熟能详的老一辈科学家都名列其中。但是因2014年获奖的“透明计算”存在较大争议,2015年急需一个众望所归的团队来重新树立该奖项的声誉。恰好2015年初潘院士团队作为最大热门参加了该奖项的评选,并最终毫无悬念地获奖。

这次潘建伟院士团队获奖的项目名称为“多光子纠缠和干涉度量学”。“多光子纠缠”顾名思义就是让多个光子产生纠缠,这是利用光子做量子比特传送和量子计算的必要前提;而“干涉”就是实验上实现多光子纠缠的手段。潘建伟院士团队在量子通信和量子计算等多个方向上都取得了世界领先的科研成果,“多光子纠缠和干涉度量学”就作为其核心研究内容之一,贯穿始终。

潘建伟院士的团队是世界上量子信息研究的领军者之一,在量子通信领域更是世界最强。与以往的历届国家自然科学一等奖相比,潘建伟团队在顶级论文数量和国际影响力上都更为出类拔萃。截止到2015年,该团队成果3次入选美国物理学会评选的“年度物理学重大事件”,2次入选英国物理学会评选的“年度物理学重大进展”。2015年年末更是被物理世界网站(Physics world)评选为“2015年世界物理学十大进展”第一名,这在中国物理学界史无前例。

量子纠缠

介绍“多光子纠缠和干涉度量学”,首先需要介绍一下什么是量子纠缠。量子力学中最神秘的就是叠加态,而量子纠缠就是多粒子的一种叠加态。以双粒子为例,一个粒子A可以处于某个物理量的叠加态,同时另一个粒子B也可以处于叠加态,当两个粒子发生纠缠,就会形成一个双粒子的叠加态,即纠缠态:无论两个粒子相隔多远,只要没有外界干扰,当A粒子处于0态时,B粒子一定处于1态;反之,当A粒子处于1态时,B粒子一定处于0态。

随着量子信息学的诞生,量子纠缠已经不仅仅是一个基础研究,它已经成为量子信息科技的核心:例如,利用量子纠缠可以完成量子通信中的量子隐形传态,可以完成一次性操作多个量子比特的量子计算。让更多的粒子纠缠起来是量子信息科技不断追寻的目标。

多光子纠缠和干涉度量学

“多光子纠缠和干涉度量学”就是通过干涉度量的方法实现多光子的量子纠缠。如果这种把双光子干涉产生纠缠的方法层层累加,扩展到更多的光子,就可以形成更多光子的纠缠。针对量子信息处理尤其是光量子计算的需求,纠缠的光子数自然是越多越好。但是随着产生纠缠的光子数越多,干涉和测量的系统也就越复杂,实验难度也就越大。

潘建伟团队从2004年开始,通过在国际上原创的多光子干涉和测量技术,一直保持着纠缠光子数的世界纪录。2004年在世界上第一个实现了5光子纠缠,2007年在世界上第一个实现了6光子纠缠,2012年在世界上第一个实现了8光子纠缠,并且保持该纪录至今。

每增加一个纠缠光子,光学干涉系统就要复杂一倍,纠缠产生的难度会随着光子数呈指数上升。这个8光子纠缠光路就像“潘神的迷宫”一样复杂,精巧,困难重重,但又引人入胜。

量子计算的应用

1. 量子叠加态的计算魅力。在经典物理学中,物质在确定的时刻仅有确定的一个状态。量子力学则不同,物质会同时处于不同的量子态上。因为处于叠加态,这就意味着,量子计算一次运算就可以处理210=1024个数(从0到1023被同时处理一遍)。以此类推,量子计算的速度与量子比特数是2的指数增长关系。一个64位的量子计算机一次运算就可以同时处理264=18446744073709551616个数。如果单次运算速度达到目前民用电脑CPU的级别(1GHz),那么这个64位量子计算机的数据处理速度将是世界上最快的“天河二号”超级计算机(每秒33.86千万亿次)的545万亿倍。

量子力学叠加态赋予了量子计算机真正意义上的“并行计算”,而不像经典计算机一样只能并列更多的CPU来并行。因此在大数据处理技术需求强烈的今天,量子计算机越来越获得互联网巨头们的重视。

2. 肖尔算法――RSA加密技术的终结者。1985年,牛津大学的物理学家戴维・德意志提出了量子图灵机模型的概念。随后贝尔实验室的彼得・肖尔于1995年提出了量子计算的第一个解决具体问题的思路,即肖尔因子分解算法。

我们今天在互联网上输入的各种密码,都会用到RSA算法加密。这种技术用一个很大的数的两个质数因子生成密钥,给密码加密,从而安全地传输密码。由于这个数很大,用目前经典计算机的速度算出它的质数因子几乎是不可能的任务。但利用量子计算的并行性,肖尔算法可以在很短的时间内通过遍历算法来获得质数因子,从而破解掉密钥,使RSA加密技术不堪一击。

量子计算机会终结任何依靠计算复杂度的加密技术,但这不意味着从此我们会失去信息安全的保护。量子计算的孪生兄弟――量子通信,会从根本上解决信息传输的安全隐患。

3. 格罗弗算法――未来的搜索引擎。肖尔算法提出一年后的1996年,同在贝尔实验室的洛夫・格罗弗提出了格罗弗算法,即通过量子计算的并行能力,同时给整个数据库做变换,用最快的步骤显示出需要的数据。

量子计算的格罗弗搜索算法远远超出了经典计算机的数据搜索速度,这也是互联网巨头们对量子计算最大的关注点之一。量子信息时代的搜索引擎将植根于格罗弗算法,让我们更快捷地获取信息。

4. 量子计算机与人工智能。英国物理学家罗杰・彭罗斯把依靠经典计算机的人工智能称为“皇帝新脑”(即像皇帝的新衣一样)。他认为人脑不会像经典计算机那样以确定的方式处理信息,但量子测量会赋予人脑随机性,同时量子叠加态还会赋予人脑全局观(一个一个像素处理的经典计算做不到全局观)。因此彭罗斯等人认为,人脑可能是一台量子计算机。也许量子计算机的研究能在某个量子和经典的交汇点上给出答案,解答人类意识和智慧的起源。那样,量子计算机就会成为实现真正的人工智能的关键。

篇7

关键词 物理学 分析 前景

中图分类号:G642.0文献标识码:A

Physics Professional Analysis

ZENG Daimin[1], LI Yong[2]

([1]Physics Department, Physics College, Chongqing University, Chongqing 400040;

[2]State Intellectual Property Bureau Patent Examination Coordination Center, Beijing 100190)

AbstractThis paper combine with the cultivation of students in Physics professional, takes a professional analysis on Physics major, including Physics professional direction settings, course setting, and cultivating specification as well as employment prospects of the students.

Key wordsPhysics; analyse; prospects

物理学是研究物质运动和相互作用的规律的科学,是除数学外最基本的一门学科。物理运动是自然界最普遍的一种现象,因此物理学研究的对象和内容就是宇宙间各种物质的性质、存在状态、各种物理运动形式及其转化现象、物质的内部结构及这些内部结构的组成部分,物理领域的各种基本相互作用及其规律。由于一切物理现象都在时间、空间中表现出来和发生运动和转化,所以物理学也要研究时间和空间的性质、联系等。 进行物理学研究,首先是观察各种客观物理现象,再从许多表象性的现象中,揭示基本规律,建立较为系统的理论。物理学研究除了要依靠好的科学方法外,还要取决于认知工具。工具越先进,研究效率越高,成果越显著。 物理学在发展过程中形成了一套完整的科学方法,它对其他学科的研究,乃至哲学发展,都有重要意义。①重庆大学物理学专业从2008年开始正式招生,到现在,第一届学生即将进入大四。通过这几年对物理学专业学生的培养,我们有一些体会,与同行共勉。

1 专业方向设置

1.1 理论物理方向

理论物理学从各类物理现象的普遍规律出发,运用数学理论和方法,系统深入的阐述有关概念,现象及其应用。理论物理是从理论上探索自然界未知的物质结构、相互作用和物质运动的基本规律的学科。理论物理的研究领域涉及物理学所有分支的基本理论问题。理论物理是在实验现象的基础上,以理论的方法和模型研究基本粒子、原子核、原子、分子等物质运动的基本规律,从而解决学科本身和在高科技探索中提出的基本理论问题。重庆大学物理学院理论物理方向目前包括:高能物理、引力波、天体物理、量子信息与量子通信等几个分支。

1.2 凝聚态物理方向

凝聚态物理学是从微观角度出发,研究由大量粒子(原子、分子、离子、电子)组成的凝聚态的结构、动力学过程及其与宏观物理性质之间的联系的一门学科。凝聚态物理是以固体物理为基础的外向延拓。凝聚态物理的研究对象除晶体、非晶体与准晶体等固相物质外还包括从稠密气体、液体以及介于液态和固态之间的各类居间凝聚相,例如液氦、液晶、熔盐、液态金属、电解液、玻璃、凝胶等。经过半个世纪的发展,目前已形成了比固体物理学更广泛更深入的理论体系。特别是上世纪八十年代以来,凝聚态物理学取得了巨大进展,研究对象日益扩展,更为复杂。一方面传统的固体物理各个分支如金属物理、半导体物理、磁学、低温物理和电介质物理等的研究更深入,各分支之间的联系更趋密切;另一方面许 多新的分支不断涌现,如强关联电子体系物理学、无序体系物理学、准晶物理学、介观物理与团簇物理等。从而使凝聚态物理学成为当前物理学中最重要的分支学科之一。由于凝聚态物理的基础性研究往往与实际的技术应用有着紧密的联系,凝聚态物理学的成果是一系列新技术、新材料和新器件,在当今世界的高新科技领域起着关键性的不可替代的作用。

2 主干课程设置

重庆大学物理学专业的主干课程有力学:使学生比较系统地掌握力学基础知识,且能比较灵活加以应用。培养学生独立分析问题与解决问题能力,初步培养学生的唯物主义世界观。主要内容有质点运动学、牛顿运动定律、动量守恒定律和动量定理、功和能与碰撞问题、角动量、刚体力学、振动和波。热学:使学生掌握物质热运动形态的规律性和热运动与机械运动,电磁运动等其它基本运动形式之间转化的规律性。掌握统计规律性和统计的方法以及物性方面的知识,培养学生分析问题和解决问题的能力。主要内容有热力学第零、第一、第二定律和熵、分子运动论、输运过程、固体和液体及相变。电磁学:使学生全面地、系统地了解和掌握电磁运动的基本现象、基本概念和基本规律,具有一定的分析和解决电磁问题的能力,为后继课程奠定必要的基础。主要内容有静电场、静电场中导体和电介质。稳恒电流、稳恒磁场、电磁感应、磁介质、交流电初步、麦克斯韦电磁理论和电磁波、电磁单位制。光学:使学生比较系统地掌握光学的基本知识,主要讲授几何光学、波动光学、量子光学初步和光学应用。原子物理学:使学生掌握原子结构的性质和一般规律,掌握和了解核的性质与核能利用,了解粒子的基本性质。讲授卢瑟福模型、氢原子的玻尔理论、量子力学初步、原子的精细结构、多电子原子、X射线、原子核物理概论。理论力学:使学生掌握力学的基本理论,培养学生理性思维能力。讲授质点力学、质点组力学、刚体力学、非惯性系动力学与分析力学等基本理论。热力学与统计物理:使学生掌握物质的热运动规律及热运动对物质宏观性质的影响。讲授热力学的基本定律,热力学函数、平衡及稳定条件,相平衡及化学平衡,不可逆过程热力学,最可几统计法――玻尔兹曼分布、费米分布、玻色分布,气体和固体的热容量理论,金属中的电子气体、平衡辐射,系统理论,热力学的统计表达式,非理想气体态式,涨落理论,非平衡态统计物理简介。电动力学:使学生掌握电磁场的基本属性及运动规律以及它和带电物质之间的相互作用。讲授电磁现象的普遍规律,静电场和稳定电流磁场,电磁波的传播,电磁波的辐射,狭义相对论及带电粒子和电磁场的相互作用。量子力学:了解微观客体运动特点,初步掌握量子力学的基本原理和方法。课程内容包括波函数、薛定鄂方程,量子力学中的力学量,态和表象理论,微扰理论等。固体物理:初步掌握固体物理的基本原理和特点。课程内容包括晶体、晶体的缺陷和扩散、晶体振动、相图、能带论、金属和半导体电子论、固体的磁性和介电性等。数学物理方法:掌握有关复变函数、复变函数的积分、幂级数展开、留数定理、傅里叶级数、积分变换、数学物理方程定解问题、分离变数法、二阶常微分方程的级数解法、本征值问题、球函数、柱函数、格林函数、积分变换法等数学物理方法的基本知识。

3 培养规格及要求

通过四年的物理学专业学习,要求学生掌握数学的基本理论和基本方法,具有较高的数学修养;掌握坚实的、系统的物理学基础理论及较广泛的物理学基本知识和基本实验方法,具有一定的基础科学研究能力和应用开发能力;了解相近专业的一般原理和知识;了解物理学发展的前沿和科学发展的总体趋势;了解国家科学技术、知识产权等有关政策和法规;掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;具有一定的实验设计,创造实验条件,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。具有计算机应用的基本技能。较熟练地掌握一门外国语言,具有良好的听、读、写作和会话能力,能够较顺利地阅读本专业的外文资料。

4 学生就业前景分析

重庆大学物理学专业的培养目标是:培养具有宽厚扎实的物理学基础、综合素质优秀,并且具有良好数学基础和实验技能,能在物理学或相关科学技术领域中从事科研、教学、技术和相关管理工作的高素质专门人才;培养良好的创新意识和科学的思维方式,以及分析和解决实际问题的能力以适应学科交叉和社会的各种需要。

物理学专业学生毕业后主要从事以下一些行业:(1)继续物理方向的深造,成为一名物理学家、物理教师。(2)从事与物理相关的一些工作,如技术工程师、发明家、研究助理等。(3)与物理关系不大的一些行业,如公务员、管理人员等。就业领域主要是:科研院所、高等院校、企事业单位、政府机关等。

总之,重庆大学成立物理学专业的主要目的是发现与培养真正热爱物理的好苗子,让他们打好基础,再继续深造,为物理学的发展做出贡献。在学习的过程中,有部分同学发现自己并不是很适合学物理,可以申请转专业,找到适合自己发展的方向。最后留下来的绝大部分同学都会继续读研深造,向着他们心中神圣的物理殿堂继续努力。实践表明,物理学专业的学生物理基础打得非常坚实,为将来的继续深造做好了准备,即将毕业的学生将有部分保送到中国科学院及各大高校,其余的同学也成为了本校硕士生导师争抢的对象。物理学专业的培养是成功的,并且也已经成为重庆大学的一个优势特色专业,它将为全国培养和输送更多、更好的物理方面人才。

基金项目:重庆大学人才引进科研启动基金(0903005104675)资助

篇8

【关键词】思想实验科学素养

利用科学发展史知识对于培养学生的科学素养具有重要的意义,如何利用科学史中的有关思想实验史料来培养学生的科学素养是个值得研究的问题,对于思想实验,有些老师往往只重视了思想实验的知识功能,对于其丰富的思想内涵则较少进行挖掘,特别是它对于培养学生科学素养的意义。本文试图对此进行探讨。

1什么是思想实验

根据中国大百科全书可知,思想实验 (thought experiment)是一种按照实验程序设计的并在思维中进行的特殊论证方法。它既不同于真实实验,也有别于形式逻辑的推理。是按照假想的实验手段和步骤,进行思维推理,得出合乎逻辑的结果。在物理学发展的历史过程中伽利略、爱因斯坦等许多科学大师都曾经借助思想实验延伸其理论的触角。

从科学思想实验发展的历史,我们可以看到思想实验主要特点。

1.1 可操作性。思想实验不是实际进行的实验,但是它是按照实验的格式展开的,是可操作的。

1.2 严密的逻辑性。思想实验的操作过程,既是想象自由展开的过程,又是逻辑运动的过程。在这中间,逻辑起着主导作用,它引导、控制着想象,保证想象既是丰富的.又不是胡思乱想。

1.3 高度的创造性。科学家做思想实验的目的,是为了揭示事物内部的规律性。因此其探索是前无先例的,带有高度的创造性。

2什么是科学素养

科学素养(scientific literacy)概念的形成与发展经历了长期的演进过程,并且随着科学技术的发展和变革,概念的含义也将不断变化。本文采用以下观点。科学素养的基本要素包括以下几个方面。

一是科学知识与技能,是人们在科学实践中获得的关于客观世界的各种事物的本质及规律性的认识程度和实际操作本领。

二是科学方法与能力,是人们在认识和改造客观世界的实践中总结出来的,并能在实践中正确运用的思维和行为方式,以及把握事物本质的策略与熟练程度。

三是科学行为与习惯。科学习惯是长期积累和科学行为的定型。

四是科学精神、态度与价值观。科学精神是指人所具有的科学的意识、思维活动和一般心理状态,其中以推动并指引一个人采取决定和行动的科学的原则、信念和标准组成的科学价值观为核心。科学态度则指个体在科学价值观的支配下,对某一对象所持的评论和行为倾向。

我国在制定中学"科学"标准时,认为科学素养还应该涉及科学、技术与社会的关系方面。这些都是科学素养所包含的重要内容。

3利用思想实验培养学生的科学素养的途径

思想实验可以对所研究的过程设想出真实实验暂时不可能或原则上不可能达到的实验条件,进行逻辑论证。在这个过程中,不仅包含有丰富的科学知识与技能,体现了物理学研究事物的方式与方法,而且也蕴含着人类认识事物,研究事物时所伴随的丰富的科学精神和人文精神。这些对于提高学生的科学素养都是具有重要意义的,都是值得挖掘与充分利用的。

3.1 挖掘科学史中思想实验提高学生科学素养

伽利略是第一位思想实验大师,他重视实验对理论的检验作用,但由于外部环境的恶劣、实验条件的简陋以及哲学思想的影响,因此思想实验是一个常用的方法,并依此获得许多重要的发现与结论。

重力作用下的落体运动在伽利略的力学中占据着中心位置,他在关于落体运动的讨论中仍然运用了他早先提出的"落体佯谬",对亚里士多德的落体定律提出诘难,然后逐步显示出他的研究的全部丰富内容,在这个思想实验中,他已把早先所说的密度相同而大小不同的物体改变成重量不同的物体。对话是这样进行的:

"如果让两块石头(其中之一的重量十倍于另一块的重量)同时从比如说100腕尺高处落下,那么这两块石头下落的速率便会不同,那较重的石块落到地面时,另一块石头只不过下落了10腕尺。"

"如果我们取天然速率不同的两个物体,显而易见,如果把那两个物体连接在一起,速率较大的那个物体将会因受到速率较小物体的影响其速率要减慢一些,而速率较小的物体将因受到速率较大的物体的影响其速率要快一些。……但是,如果这是对的话,并假定一块大石头以8的速率运动,而一块较小的石块以4的速率运动,那么把二者连在一起,这两块石头将以小于8的速率运动;但两块连在一起的石头当然比先前以8的速率运动的更重。可见,较重的物体反而比较轻的物体运动的慢,而这个效应同你的设想是相反的。"

这个佯谬不仅揭示了亚里士多德理论的破绽和逻辑混乱,同时也表明了,运用这种思想实验的推理法,比起永远可能被人挑剔的真实实验,有时会更有说服力的一个包含着错误的理论。

在这个过程中,不仅说明了重力作用下的落体运动规律,而且体现了物理学研究问题的方法,如认真观察现象,提出要研究的问题,并对问题提出猜想与假设,然后进行论证。更蕴含了丰富的科学精神与科学态度,对于前人的观点不是盲目的接受,而是具有怀疑精神,敢于提出问题,实事求是地面对科学并勇于坚持。这些都是科学素养的范畴,因此,从物理学的重大发现中吸取营养,对提高学生的科学素养是大有裨益的。

3.2利用物理学方法中的思想实验提高学生科学素养

如果所设想的条件是完全理想化的,如绝对真空、绝对光滑等,在这种条件下所进行的论证称为理想实验法,它是思想实验的一种重要形式。

这一部分在中学的物理教学中涉及的知识很多。如牛顿运动定律等。真正代表近代科学方法论精神的伽利略与牛顿。伽利略最先倡导并实践了实验加数学的方法,但是他所谓的实验并不是培根意义上的观察实验,而是理想化实验。地球上的任何力学实验都不能避免摩擦力的影响,但是认识基本的力学规律,又要从观念上排除这种摩擦力,这就需要全新的概念体系来支撑将做得实验,包括设计、实施和解释实验结果,只有这种理想化的实验才可能与数学处理相配套。伽利略的研究程序可以分为三个阶段:直观分解、数学演绎、实验证明。牛顿在吸收前人经验的基础上做了进一步完善,牛顿的方法可以称之为"归纳-演绎"法,并且认为演绎的结果必须重新诉诸实验确证。牛顿运动定律就是这些过程的直接结果。

牛顿运动定律不仅内容上说明了自然界的重要定律,他的研究方法、研究思想同样也具有重要的价值。它是以观察和实验中了解到的资料作为出发点,把自然现象合理简化并建立起恰当的物理模型;运用思想实验,即在绝对简化理想条件下,运用思维中的逻辑演绎推理导出某种科学结论,再去接受科学实践的检验的过程。

从这个研究的过程本身我们可以发现其中不仅包括科学知识,而且还涉及一种比较完善的物理学的研究方法,这对后人进行进一步的研究具有重要的借鉴意义。发现过程本身也暗含了牛顿对于科学的浓厚兴趣和科学探究的整个过程。这些都是培养科学素养的重要素材,应该给予充分利用。

3.3利用现代物理学研究中的思想实验部分提高学生科学素养

新课程强调科学与社会,技术的联系,必须看到,现代科技已经逐渐渗透到了我们生活的方方面面,因此需要学生对于现代物理学有些初步的认识。如中学物理课本加入了关于爱因斯坦的相对论和一些量子力学的简单介绍。但是现代物理学的研究,无论在微观还是宏观上越来越多地进入了不能完全直接靠实验证实或证伪的领域。相对论和量子力学是现代物理学的两大支柱,其中都包含有丰富思想实验的部分。

1961年诺贝尔物理学奖获得者美国物理学家霍夫斯塔斯曾说过:"我相信任何一个喜欢自然的人都应该学习量子力学,并不是他的数学而是他的思想"。进入21世纪,无论是中学生或者是全体公民都应该不同程度的知道一点什么是量子力学,量子力学的基本概念,基本思想,量子力学有什么作用,已经起到了什么作用,这些都是很必要的。

使学生能了解科学与技术的区别与联系,初步认识科学推动技术进步、技术又促进科学发展的相互关系,初步认识社会需求是科学技术发展的强大动力等科学、技术与社会的关系。同时能使学生增长见识,激起学生的好奇心,培养科学精神。这也是培养学生科学素养的一个重要方面。

4进行思想实验教学时的注意事项

4.1 处理好思想实验与真实实验的关系

思想实验是一种理性的思维活动。但不是脱离实际的主观臆想,而是以实践为基础.按照实验的格式操作展开,对实际过程做出更深入一层的抽象分析,其推理过程是以一定的逻辑法则为根据的。而这些逻辑法则,都是从长期的社会实践中总结出来且为实践所证实了的。

思想实验和真实实验又是紧密联系和互补的。科学中的理论、规律是从大量实验事实中总结概括出来的,科学中的假设、争论也有赖于真实实验的验证。

有时两者往往密不可分地穿插在一起,真实实验为思想实验提供经验材料,思想实验对经验材料进行理性加工,并为真实实验提供理论指导。从伽利略发现落体定律和惯性定律的活动中,可以明显地看到这一点。

4.2不能忽略物理学史中被证实为错误的思想实验

在科学研究中,通过再多的科学实验都不能完全证实一个理论,这是归纳法的本质所决定的,但是一个否定例证就足以证伪一个理论。在物理学的思想实验中,有的已被否定,但不能因此就贬低它的作用,那些被证伪的思想实验往往是一个新理论产生的重要基石,如伽利略在给出著名的"落体佯谬"的最初说法时,他所说的是同样材料而不同大小的物体,并非指所有的物体,其前提是错误的,结论也是有局限性的,但是他的过程本身是非常有意义的,为他后来得出普遍的结论提供了重要的基础。这些过程都是需要进一步挖掘的,这样才能让学生明白科学研究的真实过程,对于培养学生的科学素养是具有丰富的教育意义的。

4.3 思想实验是一种相对独立的科学方法

在科学研究中,思想实验能够成为一种不替代的科学方法,是由于思想实验以其科学思维的严密性、精确性补充了真实实验的不足。比如,验证广义相对论的某些实验条件,或者某些条件在任何时代都不能被满足,比如,验证牛顿第一定律所需要的无摩擦力的平面。但是,这些条件在逻辑上是可以实现的,这样,人们可以避开实际的技术困难。在思维中把这些条件制作出来,或者对现在条件进行理想化抽象,在想象中实现这些条件。进而在头脑中展开类似于真实实验的"仿真"过程,推断被研究事物的内部规律。

必须看到,思想实验中包含有丰富的思想内涵,有利于进行积极的科学文化教育,而且思想实验作为一种科学方法将在更广阔的领域中应用。

参考文献

[1] 顾志跃.科学教育概论[M] 北京:科学出版社,1999.2.

[2]杨仲耆 申先甲.物理学思想史[M]长沙:湖南教育出版社,1993

[3]潘传增等.简明物理学史教程[M]济南:山东科学技术出版杜,1999.

[4]李艳平、申先甲.物理学史教程[M]北京:科学出版社,2003

[5]查有梁等.物理教学论[M]广西:广西教育出版社,1997

篇9

关键词:时间之矢;演化;熵

从古至今,关于时间方向问题的探讨一直困扰着哲学家和物理学家。在传统物理学中,时间没有方向,它仅仅是作为运动的一个外部参量存在的,用可逆的物理方程描述客观世界,忽略了不可逆性的真实过程的理论近似,这就在本质上否定了自然界的演化与历史性,因此受到了恩格斯与波普尔等人的深刻批判。20世纪80年代普利高津提出了“时间之矢”的概念,并科学论证了时间是有方向的,“熵”概念的引入使时间之矢开始从外部走向内部,把自然界的各种规律统一了起来,使自然界的演化获得较好的解释,为科学的发展提供了方法论支持,因此, “时间之矢”概念的探讨具有了非常深刻的理论与现实意义。

一、时间之矢的概念及内涵

唯物辩证法认为一切事物都是发展变化的。同样,人们对时间问题的认识也是在不断发展变化的。在科学史上,牛顿是第一个给时间以科学定义的人。但在他的物理学中时间是均匀恒定的流逝的,它仅仅是描述物质运动的一个外部参量,与物质运动的性质没有任何内在的必然的联系;坚信时间具有同时性,是对称的可逆的,过去、现在和未来是完全相同的,这在本质上就否定了自然界的演化或历史性——时间失去了方向。20世纪初,相对论的诞生超越了牛顿的绝对时空观,引入了时间、空间等概念,强调了事物的整体性、时空与物质的不可分性,指出时间和空间随物体运动的速度变化而变化。但此时由于牛顿“绝对时空观”长期对人们思想的禁锢,使人们难以走出“时间反演对称性”的桎梏,正如爱因斯坦所说“过去、现在与未来之间的分别只不过有一种幻觉的意义而已”(1)。显然,爱因斯坦的相对论时间虽然在时间观念上引起了一次伟大的革命,但它对人们理解时间的方向、演化的不可逆性却毫无帮助——时间仍然没有方向。20世纪70年代英国宇宙学家霍金提出了“虚时间”的概念,拓宽了时间的含义,但此时时间仍是可逆的没有方向,80年代普利高津提出了“时间之矢”的概念,并科学论证了时间是有方向的;自然界中发生的所有过程都是不可逆的,并且指出时间的不可逆性是无条件的绝对的而时间的可逆性是相对的。由此,时间有了方向。人们最终在一定层面达成了共识:时间之矢是指时间的流逝,是指时间的单向性或不可逆性,亦即时间对称的破缺,或世界演化的不可逆性。到目前为止人们已经在热力学、统计物理学、生物学、电磁学、量子力学、宇宙学、心理学等领域证实了时间之矢的存在。

热力学的时间之矢即熵增加的时间方向,它来自热力学第二定律,指向无序;生物学中的时间之矢是生物进化的时间方向,是一个从简单到复杂从低级到高级的不可逆过程,它指向有序;电磁学以时间之矢是振动电磁产生的电磁波的传导方向;量子力学时间之矢是原子的自发辐射的时间方向;宇宙学时间之矢指向宇宙膨胀的方向;心理学时间之矢在我们人类的经验中是最显著的,我们觉察到的并记住的总是过去而不是将来。当然它们之间亦存在着千丝万缕的联系,史蒂芬?霍金在《时间简史》中曾做过详尽的阐述。总之,许多学者都认为自然界所有过程的不可逆性都来自宇宙的原始爆炸和随后发生的宇宙膨胀。他们认为,宇宙中最根本的方程是可逆的引力场方程,加上大爆炸的初始条件就选择了宇宙膨胀这个解,从而产生了宇宙学之矢。以后在宇宙膨胀的不同阶段,相继产生了电磁学之矢、热力学之矢、生物学之矢等,而心理学时间之矢是在我们头脑中由热力学时间之矢所决定的。

二、时间之矢与自然演化

在传统物理学与经典力学中没有进化与历史,时间仅仅是一个描述运动的几何参量,世界演化的方向仅由经验决定而不是由理论来描述的。正如柏格森在《创造进化论》中指出,经典力学中“变化不是别的,而是对演化的一种否认”。对此普利高津认为,尽管相对论与量子力学自身相当革命,却仍因袭了牛顿物理学的思想:一个静止的宇宙,即一个存在着的、没有演化的宇宙。然而把时间之矢同自然演化联系在一起时就突现了时间的质的规定性,使时间同方向真正地、内在地统一起来,进而使自然演化的程度可以用时间来度量。当然在演化的基础上对时间之矢加以科学的系统的阐述则是在非平衡系统自组织理论提出“内部时间”之后。

自然演化有两个特定的方向:进化与退化,进化与退化从哲学上讲同有序与无序、可逆与不可逆、对称与破缺等范畴有十分密切的联系。自然界的变化表现为过程,其有可逆与不可逆之分。可逆与不可逆是自然科学在研究变化过程中遇到的一种普遍现象。科学家用“熵”的增减来说明演化过程的方向。英国物理学家爱丁顿就把熵看作“时间之矢”,并坚信时间之矢的方向就是物质系统的演化过程的方向。熵增就意味着系统从有序向无序演化。

“熵”的提出是19世纪的重大成就之一,它出自于热力学,并经过玻尔兹曼的统计解释被移植到其它多门学科。爱因斯坦在与里兹的争论中曾说过:热力学箭头是由熵增原理定义的,时间箭头是完全同热力学关系联系在一起的。自然界里绝大多数是开放的系统,与外界有能量和物质的交换,即外界与系统之间有熵流,因此也就有熵流与负熵流之分。事实也说明生命过程与负熵联系着,负熵是导致生物进化的一个必要条件。薛定谔在《生命是什么》一书中提到,生命似乎是物质的有秩序和有规律的行为,它不是完全以其从有序转向无序的倾向为基础的,而是部分地基于那种被保持着的现存秩序,即生命有机体是依赖负熵为生的,负熵是开放系统从无序向有序的进化过程的“时间之矢”。虽然熵并非能够完美的对时间进行标度——在与平衡态相距很远的非平衡态中,熵的概念不再存在,——但它已足够说明时间的方向性。 转贴于

在热力学第二定律提出后,达尔文提出了生物进化论学说,将演化的观点带入科学界,但人们很快发现经典热力学与达尔文生物学发现的单向过程并不一致。经典热力学中“时间之矢”朝下,趋向于无序状态和随机性;而在生物进化论中“时间之矢”朝上,趋向于在一定结构和功能方面的组织性更高层次。对此不同的科学家们有不同的价值取向,并据此提出了不同的理论与观点,为自然演化的进程做出了巨大的理论贡献。1969年普利高津发现,在不违反热力学第二定律的前提下,自然系统可以经过自组织过程从无序演化为有序。从而使人们明白进化与退化的两种时间之矢的冲突仅仅是一种表面现象,进化的系统是一开放系统,宇宙过程并不将时间之矢指向宇宙热寂状态。但不可否认的是在生物的进化中也有退化——局部的退化。

三、时间之矢的现实意义

首先,正确理解“时间之矢”有利于人们树立正确的世界观和方法论,防止伪科学的产生。“时间之矢”实质就是对经典物理学中对称性的突破,对决定论的否定,它促进人们的思维发生了一场彻底的革命。非决定论代替了决定论使其描述的自然图景更负有科学性与时代性。这是科学发展的必然结果,是我们在认识世界的过程中追求新的平衡新的对称性的必然结果,是人类认识史上的一次巨大飞跃。但我们并不否认对其的误用亦使世界文化充斥着浓厚的相对主义与多元主义色彩,为伪科学的产生提供了基础。

其次,把时间之矢纳入科学描述之中,有利于对科技的正负效用产生正确的认识,防止对待科学技术的极端化倾向,有利于更加合理的使用科技造福人类,做到防患于未然。长期以来,由于受确定性的影响人们坚信科学规律是永恒不变的绝对真理,人们对科技关注的焦点也在于科技为人们所带来的福利,而对于科技所附有的负面作用要么视而不见,要么认为科学能解决一切。然而事实证明了如果将时间之矢排除在科学的描述之外,表面上我们是获得了确定的知识,但实际上他并不符合自然法则。当然不确定性并不意味我们完全无知,科学规律显示了它的相对真理性与内在的不确定性,是确定性与不确定性的辨证统一。所以对待科技我们既不能盲目的乐观也不能盲目的悲观。时间之矢观念的加强可以使我们正确认识科学规律的不确定性是实质,从而防止对科技作用的无限夸大,认为科技能包揽和解决一切。当然时间之矢意识的加强也有助于防止因科学规律本身的随机性而陷入彻底的相对主义,进而盲目悲观。

再者,时间之矢的确立能促进自然科学反省由近代科学所造成的人与自然相分离的关系格局。时间之矢的遗忘使人们把整个未来与整个过去都包含在现在之中,人的主体性地位被空前提高,人与自然严重分离,从而带来了哲学上主体与客体的分离,也导致了科技文化与人文文化的不相容,所有这些都是与我们当今所倡导的和谐、可持续发展的道路相违背的,所以科技与人文的融通已迫在眉睫。

总之,人类的发展与自然的演化是不可能脱离时间之矢而独自进行的,任何否定时间之矢的行为其实质都是企图将世界演化的历史性、生命的根源等排除于科学之外;都是要否定不确定性与随机性的存在,而一味的追求单纯,追求单一性。事实上“大自然喜爱单纯,不爱过多因素的繁华。”(2)这仅仅是科学家们的一相情愿。而要真正走出科学确定性的迷雾,正确认识时间的真谛与世界的演化,并在认识自然与改造自然的科技活动中能自觉保持人与自然的动态平衡与和谐,牢牢树立时间之矢的观念是必不可少的。

注释:

[1] 许良英等译:《爱因斯坦文集》第三卷,商务印书馆,1979年版,第507页

[2] 彼得、

参考文献:

[1] 陈其荣.自然哲学.复旦大学出版社,2005(2).

篇10

【关键词】后现代科学/现代科学范式/后现代知识

【正文】

近年以来,后现代主义沸沸扬扬,“后现代科学”也成为一个时髦的名词。似有“忽如一夜春风来”,后现代科学也如“梨花”盛开。问题是,后现代科学真能如此“盛开”吗?本文首先考察现代科学具有什么样的范式;其次,考察后现代科学有什么样的特征,它的依据是什么,这些依据是否使现代科学范式渐趋式微?科学还要“返魅”吗?如若不然,后现代科学又是在何种意义上有其价值?

1现代科学范式

1.1自近代以来,科学与哲学发生分离,科学与宗教神学发生决裂。经过以伽利略、牛顿为代表的第一次科学革命和以能量守恒与转化定律、电磁学理论为标志的第二次科学革命,到19世纪末,确立了近代科学的基本范式。与两次科学革命相对应,发生了两次工业革命,推动了科学制度、经济制度和社会制度的创新,到19世纪末,欧洲、北美基本上实现了现代化,它们为世界不发达国家展示出崭新的未来前景。

正是在这样一种氛围中,值19—20世纪之交的时刻,许多著名科学家认为经典物理学的大厦业已建立,只需对大厦作一些修补工作,晴朗的天空仅有两朵乌云,殊不知,这两朵乌云却引发了20世纪初相对论、量子力学的诞生。在世纪之交早就为科学家彭加勒注意到的初始条件的敏感性,也引发了60—80年代的混沌学的诞生。相对论、量子力学和混沌学是同一水平的革命,同属于第三次科学革命,它们从三个方面给牛顿力学施加了限制。如一位物理学家说:相对论排除了绝对空间和时间的牛顿幻觉;量子论排除了对可控测量过程的牛顿迷梦;混沌则排除了拉普拉斯决定论的可预见性的狂想。〔1〕可见,第三次科学革命否定了机械自然观。但是,第三次科学革命并没有摧毁由第一、二次科学革命确立的科学范式,而且,它们共同构建了现代科学范式。

需要指出的是,在我国一般把20世纪之前的科学称为近代科学,20世纪之后的科学称之为现代科学。但是,在西方,则通称为现代科学。西方没有近、现代之分,只有现代(modern)一词。正如现代化研究专家罗荣渠指出:“在英文里(法文、西班牙文、德文、俄文等也同样),‘现代’一词至少有两层含义:一层是作为时间尺度,它泛指从中世纪结束以来一直延续到今天的一个‘长过程’;一层是作为价值尺度,它指区别于中世纪的新时代精神与特征”。〔2〕

1.2我们首先看一下“范式”这一概念。范式(paradigm)是由科学哲学家库恩(T.Kuhn)在《科学革命的结构》一书提出来的。库恩没有给范式下一个明确的定义,解释不一。大体上是指科学共同体成员共有的研究传统、理论框架、理论上和方法上的信念、科学的模型和具体运用的范例等,还包括指导和联系理论体系与心理认识的自然观或世界观,后来他又称之为专业基质(disciplinarymatrix)。在库恩看来:“‘范式’一词,无论实际上还是逻辑上都很接近于科学共同体这个词;反过来说,也正是由于他们掌握了共有的范式才组成了这个科学共同体”。〔3〕“科学共同体”指的是在科学发展的某一历史时期该学科领域中持有共同的基本观点、基本理论和基本方法的科学家集团。大体讲,库恩所指的“范式”包含两方面的涵义:(1)从心理上讲,它是指科学共同体所共有的信念;(2)从理论与方法上讲,它是指科学共同体所共同具有的模型或框架。科学共同体还可分为许多级。全体自然科学家成为一个最大的科学共同体。

1.3我们认为,现代科学范式由以下部分组成:(1)近、现代自然科学家所共同拥有的信念(如科学目标、科学的社会规范、自然观等);(2)建构科学理论所必须遵从的规范和方法论原则;(3)还包括科学与技术、经济、社会、文化、宗教神学等的关系规范。大体讲,现代科学范式的具体内容主要有:

1.3.1关于科学的目标。到18—19世纪,人们普遍形成了无误论的观点,即认为科学是由真命题构成的系统。科学无误论认为科学目标是追求真知识,即绝对确定的可证明的知识。到20世纪,逻辑实证主义认为,科学是具有一定预言值的命题系统,科学的目标旨在追求高概率的理论(命题)。波普尔则认为科学的目标旨在提高理论的逼真度,追求逼真度更大的理论。而在者看来,科学目标是与真理问题相联系的。科学是一项理性的事业,其目标是科学真理,而且科学真理是相对真理与绝对真理的统一。科学的目标是不断向绝对真理逼近。

1.3.2关于建构科学理论所必须遵从的规范或原则。这一规范凸显了科学理论与其它理论(或知识)相区别的根本性特征。就科学理论所遵从的规范而言,大致有预设主义和相对主义两类观点。预设主义是合理性的传统模式,它以逻辑推理作为合理性的形式,其次以经验检验作为合理性的最终标准。譬如,逻辑经验主义认为,理论的评价或选择与这个理论的形式结构和它引出的经验证据有关。相对主义认为预设主义观点极为片面。历史主义者库恩就说,逻辑形式与观察实验不能决定相对立的理论或范式,因为范式各方面的支持者都有一套彼此相异的评判标准。

尽管预设主义与相对主义相对立,但是或多或少可以接受的共同评价规范还是有的。至少,狭义地讲,科学是一个陈述系统,该系统满足一些基本规范。这些规范构建了科学不同于其它人类知识的典型特征,可以称之为建构科学理论体系的基本原则。这些原则具体包括:内在一致性(理论的逻辑无矛盾),可检验性(经验实证性),解释性(预见性,特别是能预见新的不同类的科学事实),逻辑简单性等。这些原则实际上反映了科学理性的基本内核。

1.3.3关于构建科学理论的方法论原则。为什么要选择这样一种方法或规则,而不选择别的?这关涉到科学方法的根据。预设主义坚持方法论的一元论,认为科学方法论作为科学的逻辑是一套对科学进行逻辑分析的元科学,它给出一切理论都应具有的永恒不变的公理结构,即注重逻辑形式而不关注内容。与此相反,相对主义坚持方法论的多元论。历史主义认为,重要的不是科学形式,而是科学的内容,其原因在于科学的一切随社会文化条件而转移。我们认为,科学方法论应当在一元与多元、变与不变之间保持适当的张力。虽然科学方法随科学的发展而变化,但是一些基本的科学方法却没有多大的变化,只是在科学发展的不同时期凸现了不同的科学方法。科学愈向高级阶段发展,其抽象性愈高,假设一演绎法愈受到重视。

1.3.4关于科学的社会规范。科学的社会规范支配着所有从事科学活动的人,同时成为科学活动的行为规范。倘若没有这些规范,就无法产生重要的科学问题,无法评价科学活动的成果,奖励卓有成效的科学家。科学的社会规范主要有:普遍性、竞争性、公有性、诚实性和合理的怀疑性。科学的社会规范被默顿(R·Merton)称之为科学的精神气质。他指出:“科学的精神气质是有感情情调的一套约束科学家的价值和规范的综合。这些规范用命令、禁止、偏爱、赞同的形式来表示。它们借助于习俗的价值而获得其合法地位。这些通过格言和例证来传达、通过法令而增强的规则在不同程度上被科学家内在化了,于是形成了他的科学良心”。〔4〕科学的社会规范构成了科学区别于人类其它活动的基本特征。

1.3.5关于科学与宗教神学之间的关系。尽管科学与宗教神学之间的关系较为复杂,但是科学体系与上帝、神毫无关系。现代科学是与“自然的祛魅”(disenchantment)相联系的。所谓“自然的祛魅”,按后现代主义者格里芬(D·R·Griffin)的说法,“它意味着否认自然具有任何的主体性、经验和感觉”。〔5〕虽然人类文明初期的许多知识被宗教神学家篡改,为其神学目的服务,但是,具体的宗教教义是和相关科学的结论或原理相冲突的。罗素指出:“神学与科学的冲突,也就是权威与观察的冲突”。〔6〕科学与宗教的本质区别在于科学的实证性与宗教的信仰性,二者是难以简单调和的。

1.3.6关于科学与政府之间的关系。自近代科学以来,科学与政府的关系日趋紧密。特别是20世纪以来,科学已向人类社会的各个领域全面渗透,知识经济的来临,科学技术成为第一生产力,科学与政府权力日益整合。科学的问题在很大程度上已是一个政府的问题。没有政府的赞助,科学难以发展。政府的不正当要求也会使科学迷失方向,甚至堕落。因此,科学的合法发展要由合法性的政府来规范。但是,当代合法的政府却存在合法性危机(如政治危机、经济危机和文化危机等等),为此,需要各国政府和国际社会一道制定合理的规范制约政府的行为,保证科学的合理合法的发展,保证科学指向人类进步的向度。

以上我们仅论及了现代科学规范的几个主要方面,其中1.3.1、1.3.2、1.3.3三节构成了科学的内在规范,1.3.4、1.3.5、1.3.6三节构成了科学的外在规范。内在规范中1.3.2,即“建构科学理论所必须遵从的规范或原则”凸显了科学理论与其它人文知识的本质区别,界定了科学理论的本质规定性,换言之,它是现代科学范式的核心,是硬核,难以改变。科学的内在规范是科学范式的主要方面,对科学的发展起决定性作用;外在规范是次要方面,非本质的。但是,在一定条件下,外在规范也可能对科学的发展起决定性作用。

2后现代科学可以成立吗?

2.1西方发达资本主义国家自50年代向后工业社会过渡,60年代出现了后现代主义思潮。90年代在我国,后现代主义也大行其道。当代主要后现代主义哲学家的理论各有特点,虽有冲突,但是,他们主要从哲学层面出发,其共同点体现在:反对(否定、超越)传统形而上学、体系哲学、心物二元论、基础主义、本质主义、理性主义、人类中心主义、一元论和决定论等,可称为否定性或解构性的后现代主义。与此相反,格里芬等人则从人与世界、人与自然的关系问题,在很大程度上是从科学的层面出发,探讨更为广泛的问题,倡导建设性的后现代主义,主张人与世界、物质与意识、价值与事实、真与善与美的统一,主张科学应当“返魅”(reenchantment)。这些观点较为集中地反映在由格里芬主编的《后现代科学—科学魅力的再现》一书中。参加此书撰写的学者既有科学家,也有从事神学、灵学研究的学者。其中包括著名物理学家大卫·玻姆(DavidBohm)。凡了解量子力学的读者一定会知道玻姆,他的思想极为深刻。比如,在著名物理学家爱因斯坦与玻尔关于量子力学是否完备的论战中,爱因斯坦等人于1937年提出了一个关于坐标与动量关联的理想的EPR实验来反驳玻尔。50年代玻姆则从自旋的三个分量着手提出了具有可操作性的自旋EPR实验方案。目前EPR的检验仍然是物理学的前沿之一,直接涉及到量子力学是否完备这一重大问题。(参见吴国林《从微观物质开放性角度审视ERP佯谬》,《科学技术与辩证法》,1997年第1期)。

2.2近年来后现代主义之所以能够迅速传播,就在于人们对现代性愈来愈不满足。譬如,当代有人口问题、资源问题、环境问题、两次世界大战带来的巨大灾难等等。就中国而言,自1978年改革开放以来,一方面,经济高速增长,经济“软着陆”成功;另一方面,中国的生态环境迅速恶化。随着计划经济向市场经济转变,人们的思想观念也发生了相当大的变化。对外开放使外域之风也迅速吹向国内。总之,种种因素使后现代主义在我国迅速传播,这也表明了国人对我国正在进行的现代化运动的急切关注和深思。

无疑,外域之风并非都是清新馨香的,保持谨慎的批判态度是必要的,只有如此,我们才能更好地建设我国的现代化与信息化。实际上,许多西方学者早就注意到,晚期资本主义文化领域完全渗透了资本和资本的逻辑,渗透了商品的逻辑,而且,晚期资本主义文化正向全球蔓延,对于经济落后的第三世界国家极为不利。西方者杰姆逊(F·Jameson)就指出:“中国读者也应该抵制后现代社会的某些特征,其实也就是晚期(资本主义),但同样是彻头彻尾的资本主义文化逻辑的一部分,这些特征从内容到形式完全溶入到商品生产和消费中,尽管具有新的类型”。〔7〕

2.3在当代,科学或知识或信息的作用日益凸显。80年代经济学家罗默(P·Romer)、卢卡斯(R·Lucas)等人提出了新经济增长理论,知识成为内生变量,知识内在地推动经济发展。1996年经合组织第一次明确提出了知识经济是以知识为基础的经济,人类将步入一个以知识资源的占有、配置、生产、分配和消费为最重要因素的经济时代。我国业已制定的《技术创新工程》、《211工程》,《知识创新工程》正处于试点阶段。无疑,推动经济增长最重要的知识是科学知识,其根源是科学。所谓科学,就是系统化的知识;反过来,知识则不一定是系统化的。知识包括人文知识与科学知识。一般所指的科学,是指自然科学。自然科学具有实证性。科学与知识的区别在于,科学是系统化的实证性的知识,而且如前所述现代科学已形成了自身的范式,这一范式也没有因为后现代主义思潮发生突变。

2.4虽然,早在19世纪之前就发生过反现代运动,如始于19世纪初的浪漫主义者和卢德派的反现代运动。1755年卢梭在其专著《论人类不平等的起源和基础》一书中对科学和艺术,进而对整个人类的文明进步,都持否定态度。本世纪法兰克福学派也对科学技术进行过批判。他们把科学技术看作新的意识形态,认为科学技术具有压抑人、统治人的功能。马尔库塞主张要彻底否定科学技术成果。但是,当前后现代主义的反现代情绪比以往任何时候都要普遍和强烈。如果说后现代主义可以概括为格里芬所言:“它指的是一种广泛的情绪而不是任何共同的教条——即一种认为人类可以而且必须超越现代的情绪”。“后现代世界是一种新的科学、一种新的精神和一种新的社会”。〔8〕那么,具有严格规范要求的“科学”如何可能与后现代主义“情绪”相调适呢?

2.4.1在格里芬等人看来,后现代科学应当有什么特征呢?他们反对科学必然和一种“祛魅”的世界观相联盟,其中没有宗教意义和道德价值,即顽固的自然主义。主张灵活的自然主义,即认为“自由、价值的客观实在性,神在世界中作用(通过它的作用,价值才得以在我们生活中产生影响)、生态伦理以及对泛心理学,如超感观视觉、心灵感应以及中国气功师的外气发放等问题的研究,甚至死后生命问题等等,都占有一席之地”。〔9〕一言以蔽之,后现代科学的特征大致可概括为:整体论和有机论。

2.4.2在格里芬看来,后现代科学背离了与现代科学密切相关的机械论和还原论的世界观,根源于科学本身实质性的进展。的确,玻姆发展了一种隐变量的量子理论,提出了一个包含环境信息的量子势概念,由此他认为:“世界不能真正分解成彼此分离的部分,而必须把它看成一个不可分的统一体,其分离部分的出现,只是作为一种仅仅在经典极限下才有效的近似”。“从量子尺度看,宇宙是一个不可分的整体,它不能真正看成是由彼此分离的独立部分构成的。”〔10〕从物理上讲,这是正确的。后来,他又提出了显序和隐序概念,他认为,整体包含于每一部分之中,部分被展开成为整体。无疑,这已是物理哲学的概括了。在玻姆看来,“后现代物理学,广而言之,后现代科学”,“不应将物质与意识割裂开来,因而也不应将事实、意义及价值割裂开来”。〔11〕这只能是更有哲学意味了。诚然,近代科学以机械论、还原论为特征,现代科学以整体论为特征。且不说,在西文意义上,近代科学与现代科学是同一概念,仅以科学史来看,是先有科学实验、科学发现、科学理论,后有科学世界观。换言之,还原论、整体论都是从近现代科学中抽象出来的,它只能看作科学理论的次级意义或社会意义。事实上,还原论、整体论也只能算作科学的外在规范,是非本质的,并不能构成对科学内在规范(核心)的重大冲击。而且整体论也不是抛弃还原论的整体论,而是建立在还原论基础上的整体论。当代科学发展的客观事实是,实践中的科学家在某种意义上都是还原论者,进行还原尝试的方法仍然极富成果。〔12〕

2.4.3后现代的有机论认为,所有原初的个体都是有机体,都具有哪怕是些许的目的因。原初的有机体可以被组织成两种形式:(1)一个是复合的个体,它产生于一个无所不包的主体,(2)一个是非个体化的客体,它不存在统一的主体性。动物属第一类。石头属第二类。后现代的有机论认为,不存在什么本体论的二元论,但存在着一种组织的二元论。〔13〕我们认为这一观点是站不住脚的。按后现代的有机论看来,宇宙的原初总应当看作一个有机体吧!总应包含些许的目的因吧!但是,描述宇宙原初的物质状态,是用宇宙波函数表达的。宇宙波函数仅有引力场和物质场。当代著名的理论物理学家、宇宙学家霍金(S·W·Hawking)发展的“无边界”量子宇宙学已粗略地给出了宇宙的创生与演化过程。实质上,它否定了任何目的论、否定了上帝或神秘力量的存在。正如卡尔·萨根在为霍金的名著《时间史之谜》一书中所做的“导言”中指出:“这还是一本关于上帝……或许关于上帝不存在的书”。“正如霍金明确指出的,他试图理解上帝的思想。这使他的努力所得的结论越加出人意料之外,至少到目前为止是如此:一个没有空间边缘、没有时间起点或终点,以及没有上帝可做事情的宇宙”。〔14〕

2.4.4克里普纳(S·Krippner)在《灵学与后现代科学》一文中说:“不仅量子论指出无法区分一个‘观察者’和一个‘被观察者’,而且它还可以通过将意识完全并入科学研究的主流中来而得到解释”。虽然在量子力学的观察者与被观察者关系上有许多争论,但是,观察者也没有将自己的意识并入量子过程中。事实上,观察者是宏观物体,量子过程是微观过程,两者之间有本质区别。量子现象是微观客体与宏观外界共同作用的结果。物理学家玻姆曾明确指出:“我不认为精神对原子有重要的效应,至少人类精神对原子没有影响”。〔15〕与玻姆长期合作的海利(B·Hiley)教授认为:“我不明白为何在现阶段需要把精神引入到物理学中来”。现在用量子势来表达,就不会陷入量子理论的多宇宙解释所造成的精神介入困境。〔16〕

2.4.5格里芬认为,自然的祛魅的一个深刻而主要的特征是否认“远距离作用”。韦伯在形容祛魅一词时,含有“驱除魅力”的含义。机械论的中心内容就是否定自然事物有任何吸引其它事物的隐匿(神秘)的力量。〔17〕事实上,从已有的关于EPR实验的结果来看,绝大多数支持量子力学是完备的,这也意味着量子力学中波函数之间的联系是瞬时的,也即是远距离作用;玻姆倡导的非定域的量子势概念也是远距离作用的。可见,从物理上讲,微观客体可以存在“远距作用”,尽管现代物理学(如粒子物理学)仍然建立在近距作用基础上。科学的一个基本原则是用自然说明自然,否认任何神秘作用。由EPR实验所表征的“远距作用”与灵学中的超心理现象、心灵致动、“中国大气功师”所宣称的“他心通”、“遥视”等“特异功能”的“远距作用”具有本质区别。科学坚持重复检验原则,一个科学事实是可以在相同的实验条件和实验程式下重复出现,至少存在相当高的概率。一个事实不能得到较高概率或重复出现就不能被证认为科学事实。〔18〕灵学中宣称的心灵感应、气功中的“特异功能”几乎没有在科学的严格规范下重复出现,“大师”们也没有显出比常人有更大的本领。然而灵学家、大气功师们却把结果的不可重复归因于:心不诚则不灵,有人干扰气场,没有进入气功状态等,无疑这是遁词。可见,科学不是简单肯定或否定远距作用,科学必须建立在具有可重复性检验的科学事实上。不可重复的事实,其真伪性无法判定,由此彰显了科学与灵学的区别。

2.5如果说后现代科学是可能的,那么后现代科学的范式是什么呢?格里芬在《论心与分子:心身相关宇宙中的后现代医学》一文中有所表达。在他看来,二元论和唯物论是17世纪以来统治现代社会的两种范式,可具体归纳为:客观论、现象论、移动论、机械决定论、还原论和感觉论,这样一来,世界的基本构成要素是“空洞的实在”,全然不存在内在的实在、感知或经验、主观性、目的以及一切的内在的生成。但是,这种论点是可疑的。由此,格里芬提出了后现代范式的依据——泛经验论,用以表述后现代科学的基本性格和方向。

2.5.1格里芬的泛经验论建立在怀特海和哈茨霍恩哲学的基础之上,是一种后现代的有机选择论。泛经验论的具体要点可概括为:(1)每一实际存在都是一个实际活动,亦被称为一个经验活动。(2)自为的经验是一个作为主体的事件。事件作为主体,它被涉入一个简短的生成过程中。作为主体的经验活动将感受(肉体性)与自决(精神性)结合在一起。(3)一个客体就是一个原本实质上的主体事件,主体与客体的不同仅表现在时间上。(4)“心”与“分子”是一系列先主体后客体的事件。它们之间的差异只是程度上的差异,而不是是否具有经验这种绝对的差异。(5)每一种永恒的事物都是一个由一系列迅速发生的事件所组成的时间上的“群集”。事件是最基本的个体。一个事件的“运动”不是移动,而是内部生成。(6)内部生成是第一性的,移动是派生的。(7)每一新的经验都是产生于许多经验之上的集合体。合众为一是经验的终极实质。实际上,它就是宇宙的终极原因。(8)实在是完完全全群集的,不存在只保持其本来面目的永恒的实在,存在的仅是事件和事件的群集。(9)每一层次的个体都是有机体的一个层次。心理学和生物学研究较高层次的有机体。人类是具有等级结构的有机体:是有机体的有机体的有机体。〔19〕据此,格里芬断言,心会受到身体内一切活动的影响,同时,身体内的一切活动也会受到心的影响——这是与现代范式截然不同的看法。

2.5.2不难看出,泛经验论是有一定启发意义的,是一种后现代性质的本体论。正如格里芬自己承认:“当然,泛经验论是有一种未被证实的假设”。但是他又认为:“低级存在不具有任何形式的经验的观点亦未被证实。验证每一假设的途径只能是考察这一假设所导致的结论”。〔20〕中国几千年的气功实践,无疑证明了心和身是相关的,但是,要把人类具有的经验内涵泛化到分子也具有经验,显然是外延太大了。不仅在逻辑上是不成立的,而且在科学实践中也没有被证实。我们知道,一个科学理论除了满足逻辑一致、经验实证性和解释性之外,还有一个重要的标志:科学理论必须能够预见新的不同类的科学事实,而且愈多愈好。比如,爱因斯坦的广义相对论,首先预言了光线弯曲,这与“光线为直线”的日常经验不一致,是一类新的经验。后来,广义相对论还预见了雷达回波延迟、黑洞等新的物理现象。那么,泛经验论的推论又预见了什么新的事实呢?用泛经验论可以解释医学中业已存在的心身相关问题,并没有什么特别之处,它能否在物理、化学等无生命物质世界逻辑地预见一个新的事实呢?显然,目前没有这样的事例。我相信,今后也不会出现。因此,泛经验论也只能是一种哲学思辨式的无根的假设,而不是一个具有可检验性的科学假设。可见,企图建立于泛经验论这一基础之上的后现代科学,无异于空中楼阁。不仅结不了果,甚至连花也开放不了。

2.6后现代科学空疏的根本原因在于,现代科学范式没有突变,现代科学没有发生危机。

2.6.1牛顿的第一次科学革命确立了机械论自然观思想,第二次科学革命确立了世界是联系的发展的辩证的自然观,第三次科学革命否定了机械论自然观、否定了自然的不变性和预成性,否定了决定论和确定性,代之以世界的生成性和不确定性,凸显了不确定性的重要地位。虽然从第一次、第二次到第三次科学革命,自然观上有较大的变化,也就是说,现代科学的某些外在规范发生了变化,但是,科学的内在规范——现代科学范式的核心部分(如建构科学理论的规范或原则等)——却没有受到冲击,经受住了科学发展的检验。

2.6.2就现代科学自身而言,特别是带头科学——物理学与生物学,它们不仅没有危机发生,反而生机一片,有力地促进了信息社会、知识经济时代的来临。按照库恩的科学发展模式:常规科学危机科学革命新的常规科学……。只有现代科学发生危机,科学革命才能发生。如果说现代科学有危机发生,至多只能说有危机的征兆(主要是指外在规范问题),而没有冲击现代科学范式的内在规范。既然现代科学范式没有本质的危机,那么科学革命就不可能发生,亦即不可能发生从旧范式向新范式的过渡。

2.6.3仅仅依持科学规范发生的某些变化,仅仅停留在“祛魅”、“返魅”、“物质有痛苦”、“磁石有灵魂”等词语的编排上,显然是不可能符咒般地呼唤出后现代科学。既然如此,又为何极力呼喊后现代科学呢?难道我们还不能洞见到文化中渗透了商品的逻辑吗?

2.7我们认为,在后现代主义思潮中,后现代科学更多的是一种哲学观念。例如,玻姆在《后现代科学和后现代世界》一文中,提出了后现代物理学。他说,相对论与量子力学的共同点是同意宇宙是一个完整的整体,量子论的数学定律可以被理解为对整体运动的描述,在这一整体运动中,部分被展开为整体。后现代物理学应从整体出发。〔21〕可见,玻姆的后现代物理学也只是一个思路,没有具体的操作意义,对量子力学的重新理解也不过是变换了一个视角。法国哲学家利奥塔(J·F·Lyotard)在《后现代状态——关于知识的报告》一书中也谈到后现代科学,他说:“后现代科学本身发展为如下的理论化表述:不连续性、突变性、非矫正性以及佯谬。后现代科学对以下事物关切备至:不可决定的、精确控制的极限、以不完全信息表征的冲突、破碎的、突变和语用学悖论等”。〔22〕这些特征是与量子力学、突变论、混沌学、耗散结构论等有明显的联系,但是,这些学科却都是属于现代科学,而不是后现代科学。因此,我宁愿把现在所谓的“后现代科学”称之为“后现代知识”,即在现代科学范式下可以合理存在着后现代知识,后现代知识以不确定性为标志。其原因在于:科学是一种严格的体系,有一定的稳定性和确定性,而知识则不一定,可以没有体系要求。目前所称的“后现代科学”更没有什么体系可言,只是一种哲学式的假设罢了。从科学的角度看,后现代知识可以从1927年量子力学不确定性原理的提出作为肇始的标志。到50年达资本主义国家向后工业社会过渡之时,后现代知识才成为浩浩江河,特别是90年代知识经济的出现,后现代知识已势不可挡。〔23〕

3结语

尽管后现代科学难以成立,但是,后现代科学力图克服现代科学种种弊端,以达澄明之境;后现代科学对人类发展所表现出的深切关怀和焦虑,因此,它是有意义的。然而,有意义的东西不一定要冠之以“科学”称谓,不如称之为“后现代知识”。要使后现代科学真正成为可能,不仅需要哲学家、宗教学家等人文学者的努力,而且更重要的是,现代科学自身已发生了危机、发生了范式嬗变;不仅要有概念变革的先行,而且要有实践运作的科学具体操作层面的突变,要有科学方法的变革。目前看来,后现代科学所具有的意义,或许从观念逐渐浸润的视角加以评价更为恰当些,而操作意义上的工作还远没有展开。而这种展开目前看不见明显的征兆。

在我看来,在现代科学范式下,人类仍有现实的可行策略,即通过“立法”——制度创新——来化解现代科学带来的弊端,减少现代科学带来的不确定性。在科学如此发达的今天,人类可以通过各国政府及政府间的合作达成某些共识,利用人类文化(包括宗教、伦理等)的精粹,构建若干科学规范——“科学法”——规导现代科学,使科学更好地为人类社会的可持续发展服务。〔24〕从某种意义上讲,这或许是一种现代科学范式下的“后现代知识”状态。也正是中国当前所需要的有益的“后现代”策略。

【参考文献】

〔1〕詹姆斯·格莱克:《混沌,开创新科学》,上海译文出版社,1990,6。

〔2〕罗荣渠:《现代化新论》,北京大学出版社,1993,5~6。

〔3〕库恩:《必要的张力》,福建人民出版社,1980,291。

〔4〕默顿:科学的规范结构,《科学与哲学》,1982,(4):121。

〔5〕〔8〕〔9〕〔11〕〔13〕〔17〕〔19〕〔20〕〔21〕格里芬编,《后现代科学》,中央编译出版社,1995,2,中译本序言,中译本序言,76,28,3,199,193,85。

〔6〕罗素:《宗教与科学》,商务印书馆,1982,6。

〔7〕杰姆逊:《后现代主义与文化理论》,北京大学出版社,1997,自序。

〔10〕美玻姆:《量子理论》,商务印书馆,1982,192,193。

〔11〕格里芬编,《后现代科学》,中央编译出版社,1995,2,中译本序言,中译本序言,76,28,3,199,193,85。

〔12〕黄顺基等主编,《科学技术哲学引论》,中国人民大学出版社,1994,322—323。

〔14〕斯蒂芬·霍金著:《时间史之谜》,上海人民出版社,1991,导言。

〔15〕〔16〕英戴维斯,布朗合编,《原子中的幽灵》,湖南科技出版社,1992,106,129。

〔18〕吴国林:以概率确证审视气功“特异功能”之真伪,《气功与科学》,1998,(1),14。

〔22〕J·F·Lyotard,ThePostmodernCondition:AReportonKnowledge,theUniversityofMinnesota,1984,pp.60。