风能与动力工程范文
时间:2023-11-17 17:46:55
导语:如何才能写好一篇风能与动力工程,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
由于风电产业的飞速发展,高等学校的专业设置显得相对滞后,导致风电相关技术人才匮乏,同时这方面的专业教育资源和专业的高级人才也相当缺乏。风电产业的可持续发展、风电领域核心技术的突破很大程度上依赖我国风电本科人才培养。伴随着产业规模的日益扩大、风力机组单机容量的进一步增加以及风电科技的快速发展,人才短缺的问题日益凸显。风电本科教育始于2006年,教育部相继批准华北电力大学、河海大学、长沙理工大学、兰州理工大学、内蒙古工业大学、东北电力大学和沈阳工业大学等少数高等院校开办“风能与动力工程”本科专业。国内设置风能与动力工程专业的院校,如兰州理工大学主要依托能源与动力工程学院,华北电力大学主要依托可再生能源学院,沈阳工业大学主要依托新能源工程学院,培养计划偏重于动力机械;专业设置侧重于风力发电的只有河海大学,由原电气工程学院与水利水电工程学院部分学科专业调整合并组建了能源与电气学院,并设置了新能源系,但是也成立于2009年,其人才培养和课程体系也属于摸索阶段。目前,设置本专业的高校因发展基础和办学定位等方面的差别,所制定的培养方案也存在一定差别和侧重,对于风电这个新兴产业对人才的需求及风电人才培养缺乏系统的、深入的研究。
师资短缺是新办专业普遍面临的问题,之前没有这方面的人才储备,也缺乏这方面的专业教育资源,现有的少数高级人才相对集中在一些科研单位。教师除部分从事过与新专业相关科研项目的骨干教师外,一般都对新专业课程体系缺乏总体掌握,在转行教师中常出现的问题是教学内容组织缺乏面向新专业的针对性。对于骨干教师应注意的问题是科研成果向教学中的转化问题,将风能最新技术进展融入到课堂教学中。结合我国风电行业发展的现状和趋势,从人才现实需求和高等教育衔接的角度立足于内蒙古的资源优势、地域特色及毕业去向,构建以风能与动力工程专业为核心,形成创新型、实践型为主的风电人才培养体系,不求规模的最大化,但求优势和特色的互补。在横向对比其他院校风能与动力工程专业人才培养的基础上构建创新人才培养体系,将培养创新能力和工程实践能力视为风能与动力工程专业的主要人才培养模式,同时培养学生具备到边远艰苦地区工作的身体素质和意志品质。
二、风能与动力工程专业课程体系设置规划
风力发电系统是一个综合电机制造、空气动力学、电力电子、电力系统、先进控制理论等多学科知识的高度交叉的新技术系统工程,现有风能与动力工程专业的教材缺乏系统性、实用性和时效性,同时复合型师资和教育资源有所欠缺,各学科交叉联合攻关研究的学术氛围不浓。在调研其他院校风能与动力工程专业课程体系的基础上,本着学以致用的思想,立足内蒙古风电大发展的现实,面向风电制造企业和风电场,秉承服务社会的理念,优化整合教学资源,既要保证理论知识的掌握又要提升学生实际动手能力,构建科学合理、特色鲜明的以风力发电为主体专业课程体系。在完善风电人才教育体系的基础上构建了内蒙古工业大学风能与动力工程专业选课指导,如图1所示。
课程体系设置以综合素质教育为核心,实践能力和创新精神培养为重点,要求学生具备较宽广的电气学科工程技术基础和风能与动力工程领域专业知识,接受风能开发利用技术的基本科研和工程训练,具有分析和解决风能利用方面问题的基本能力,能把握电机电器、电力系统、电力电子、自动控制与风力机械和风电场的有机结合,强化多学科交叉融合与实际工程应用能力的紧密联系。其专业主干课程主要包括:工程力学、机械制图、电路原理、电子技术基础、电力电子技术、自动控制理论、电机学、电力拖动自动控制系统、风力机空气动力学、风资源测量与评估、风电机组控制技术、风电场电气工程、风力发电系统建模与仿真、风电机组测试与维护、太阳能发电技术、可再生能源。
风能与动力工程专业作为一个工科专业,要求很强的实践性,需要配备良好的实验环境和实践基地。由于开办时间短、缺少相关的教学实验设备,加之风电机组的安装条件等因素,高校虽然拥有良好的育人环境,但是教学资源和实践基地的缺失已经严重制约了风电人才的培养。目前国内只有少数单位开发了演示性风电实验装置。为弥补实验设备不足的问题,可以采用建立校企产学研合作的方式,充分利用地区优势,与内蒙古范围内的风力发电企业建立实习基地。
目前我国正式出版的风能技术书籍不少,但其中能直接用于本科教学的书籍较少。主要是由于这些书籍集中于以下三类:第一类为技术培训类教材,理论性和知识的系统性不足;第二类为理论性专著,偏重理论性,有深度,很多内容源自作者的学位论文或技术报告,部分章节的难度远超本科生的理解能力;第三类是各国风电行业标准和操作规程,可作为教学辅助用书,但同样不适于课堂教学。由于以上问题,内蒙古工业大学在没有进行专业师资培训的前提下,教师们通过自身科研和刻苦自学克服了很多实际困难,采取自编校内讲义和其他近似参考教材相结合的方式开出了风能与动力工程专业所有大纲要求的专业课程,如风力发电系统建模与仿真、风电机组测试与维护、无功补偿技术等专业课程,计划在经过两到三届的试用和修改补充后正式出版一些教材。
三、结语
篇2
人们的生活离不开能源的开发。能源是自然中能够进行能量传递,同时转换为人们需要的能量。自然中的能源,能为人类社会带来基础物质。动力工程中研究的问题,就是将能源进行最大限度转化和利用的问题,使有限的能源在利用过程中,能够提升其使用效率,减少污染物的排放,促进自然于人类的可持续发展。传统的能源与动力工程,主要是针对传统能源进行利用,对新能源进行开发的过程。提升能源的利用率,可以从两方面着手。第一,提升对煤炭等传统能源的利用效率。第二,开发风能、核能等新型能源。这两方面都涉及到我国科技领域中的节能技术。
2节能技术在能源与动力工程中的应用分析
(1)在传统能源工程中的应用。节能技术在传统能源工程的应用中,主要针对的是煤炭资源。我国的煤炭资源产量丰富,煤炭中也含有十分高的能量。但是,煤炭的燃烧会产生许多对人类有害的碳化物和硫化物,同时,煤炭资源内部含有的硫元素排放到空中容易形成酸雨,对环境造成污染。因此,节能技术在其中的应用,主要是对煤炭资源进行改造。改造中要求对开采出的煤炭资源进行脱硫处理。处理后的煤炭不仅可以减少对空气与环境的污染,还能够提升资源的利用效率。另外,节能技术中要求,使用煤炭资源的企业,需要设立气体收集系统。其主要目的是及时的对排放气体进行检测,收集对大气有害的气体,提升节能减排的效果。(2)在石油能源中的应用。石油能源的使用历史虽然没有煤炭资源的使用历史悠久。但是,石油能源在现代也被广泛的应用于各行各业中,具有超乎想象的能源功效。然而不得不肯定的是,石油资源同样属于一次能源。石油资源会随着人类社会需求量的增多而不断减少,最后导致石油能源枯竭。因此,这就要求人们在使用石油能源的同时,对石油能源进行保护,具有节能意识。与煤炭能源不同,石油能源属于清洁能源,其燃烧后的产物不会对环境造成实质性的影响。针对此类能源,可以寻找其能源的替代品。比如甲醇和乙醇等。替代物是可以通过人为来生产的,符合节能技术中的持续发展思想。(3)在新能源开发中的应用。对于新能源的开发和应用,是当今社会的一个必然趋势,也是一项艰巨的任务。新能源的开发,可以有效解决能源短缺问题,是经济发展的重要前提。当今已经开发出的能源种类很多,包括风能、太阳能、潮汐能等。每种能源的使用,需要符合当地生产情况进行有效率的使用。同时,节能技术在其中的应用,需要动力工程技术能够将其矿产资源和新能源,转化为人们需要的热能、核能等,再通过相应的技术,将其转换为动能。
3节能技术在能源与动力工程中的应用前景
在我国经济发展迅猛的几年来,牺牲的是我国的资源和环境。为了尽快扭转这一局势,致力于减少环境的污染,提升能源的利用率等工作刻不容缓。良好的生活环境,是当今人们的基本要求。面对此种形势,我国必须加大对节能技术的应用和研究。另外,还要大力开发新能源,环节我国环境污染问题,改变能源短缺的现状,将我国的科技与经济齐头并进。如今,我国已经投入大量的人力和物理,对能源的开发与使用进行了研究。许多新型能源的开发也得到了国内各大企业的支持,新能源将慢慢普及到人们的日常生活中。随着社会的发展,以及可持续发展理念的传播,能源与动力工程节能技术,将大程度的改变环境污染,使能源利用效率大幅度的提升。
4结论
节能技术在能源与动力工程中的应用,可以极大节约各企业的生产成本和效率,对社会的发展也具有不可估量的作用。本文针对节能技术在能源与动力工程中的应用研究,是从能源与动力工程概述入手,对节能技术在能源与动力工程中的应用进行了分析,包括在传统能源工程中的应用、在石油能源中的应用、在新能源开发中的应用等重要内容。最后,本文对节能技术在能源与动力工程中的应用前景展开了论述。希望本文的研究,能为提升我国节能技术应用水平提供一份借鉴,使节能技术能够在我国大力发展。
作者:周林元 单位:新疆工程学院
参考文献:
[1]卢利平.知名的化学工程、燃料电池专家我国燃料电池技术的奠基者和开拓者之一“十一五”节能与新能源汽车专家组成员中科院大连化物所研究员、燃料电池工程中心总工程师大连新源动力股份有限公司董事长中国工程院院士——衣宝廉[J].功能材料信息,2010(04):3-6+2.
[2]唐易达,唐莉.建筑环境与能源应用工程专业《建筑节能技术》课程教学方法的思考[J].科技展望,2015(28):19-20.
篇3
[关键词]热能 动力工程 热电厂
中图分类号:TK 文献标识码:A 文章编号:1009-914X(2014)11-0245-01
能源动力工程是涉及国家多个领域高新技术的集成性产业,同时也是我国国防建设和国民经济发展的支柱型产业和重要基础,在我国社会的发展与国家经济建设中占据着相当重要的地位。热电厂不仅能够发电,还能在发电的同时进行供热,实现“电热联产”。热电厂的这种“电热联产”形式在节能、环保方面有着相当重要的意义。本文从以下几个方面阐述了热能与动力工程在热电厂中的巧妙运用,希望能给予相关人士一些参考性意见或者建议。
一、减少湿气的损失
热电厂能耗损失的重要组成部分之一则为湿气损失,热能与动力工程在热电厂中的有效运用必须以减少湿气损失为前提。经过分析发现,引起湿气损失的主要原因包括:蒸汽的流动速度要远远大于部分水珠的流动速度,在这些水珠的牵绊下,许多动能被消耗掉,造成湿气损失,或者湿蒸汽过冷;在湿蒸汽开始产生膨胀现象的过程中,蒸汽会产生部分凝结作用,使得湿气量损失。湿气损失的直接影响就是会损伤动叶进气的边缘,尤其是叶顶端背弧处,所受到的冲蚀更为严重。因此,必须采取措施减少湿气损失情况。在热电厂中,可以采取以下措施减少湿气在运行中的损失:可以运用带有吸水缝的喷灌,也可以提高机组的抗冲蚀能力,还可以运用中间再热循环,或者运用去湿装置等等,以上措施都能够很好地减少在热电厂运行过程中湿气的损失。在运行汽轮机的过程中,除外要克服支撑轴承与推力轴承之间的摩擦力,还应该启动主油泵和调速器,以上动作的实现都需要消耗一定量的能力,即机械损失。在这种情况下,就可以考虑应用轴流式汽轮机,从一端将高压蒸汽引入,从另外一端将低压蒸汽排除出去,无形中就实现了高压向低压的指向力,减少了能量的消耗,确保了热能与动力工程在热电厂中的运用的可靠性。
二、降低调压调节的损失
调压调节不仅增加了机组对自身运行的可靠性,同时还增加了机组对负荷的适应性,实现了机组在部分负荷之下经济性的提高,是热能与动力工程在热电厂中运用的基础条件。但与此同时,调节调压本身也存在一些问题,比如在高负荷压力之下实行滑压调节违背了经济性要求,在动叶栅内的大机组蒸汽做功之后,就会转化机械能,会导致斥气损失、鼓风损失与余速损失等。在调节调压过程中产生的这些损失,也即是热能与动力工程在热电厂中的运用损失,需要我们加以关注,采取措施尽量降低。分析后可以发现,这部分损失并不是简单的由人为失误或者系统故障产生的,在很大程度上是由于机组的运行机理而造成的。由此,若想降低调压调节的损失,就必须引进较为先进的工艺技术,依靠技术上的突破来尽量降低这部分损失。
三、开展较为有效的节流调节工作
在节流调节中没有调节级一说,通常情况下,在第一级就可以实现全周进汽,在工况出现变化时,由于各级的温度变化较小,这种现象使得其具备较好的符合适应性,适用于小容量机组和基本负荷大机组。但变工况会产生节流损失,使得热能与动力工程在热电厂中的运用的经济效益不高。因此,必须在热电厂的运行中展开较为有效的节流调节工作,减少节流损失。在热电厂的实际运行中,可以运用弗留格尔公式确保热能与动力工程在热电厂中的运用的可靠性。结合弗留格尔公式的运用条件,就以同流量之下各级的压差和焓降加以推算,进而确定相关零部件的功率效率和受力的基本情况,同时监视汽轮机是否正常流通,也即在已知流量的前提下,将运行汽轮机时组前的各级压力的公式的符合度作为依据,判断流动部分的面积的相应变化情况。
四、恰当的工况变动与调配选择
1、恰当的工况变动。汽轮机工况的变化和焓降的变化有着密切的关系,当全开第一阀工况的流量增加时,其压力也会随着增大,调节级与焓降相比较要减小;而当流量减少时,其压力也会随着减小,调节级与焓降相比较则会增大。在全开第一阀,关闭第二阀时,跟焓降相比,调节级要达到最大中间级,如果在这种情况下工况发生恰当的变动,那么各中间级的焓降不会发生变化,各中间级的压力比也不会发生变化。实际工况的调节就有了现实性的依据,我们可以在结合所需要得到的焓降的变化的基础上,展开恰到好处的工况变化,实现热能与动力工程在热电厂中的运用的需求。
2、恰当的调配选择。除此之外,由于外界负荷的变化导致并网运行机组在遇到不断变动的电网频率时会依据自身的差异动态特性自动启动增减负荷,维持电网周波,这个过程被称作一次调频。一次调频负荷的增量由负荷功率随频率的下降而自动减少和调速器作用使发电机有功出力增加两个方面共同调节来平衡。一次调频是有差调节,只能将频率控制在一定范围内。一次调频的主要特点就是频率的调速非常快,然而发电机组会随着不同的调整量而存在特定的差异性,且这个调整量较为有限,这就给值班调度控制人员带来了工作难度。且当负荷存在比较大的变化或者在电力系统发出电力时,选用一次调频很难恢复常规频率,在这种情况下,就需要选用二次调频的方法。通常情况下,二次调频包括两种调频形式,一种为自动调频方式,另外一种为手动调频方式。在热电厂运行中,对提高其自身的运行效率与水平方面来说,选择恰当的调频方式十分有必要且相当重要。因此,恰当调配方式的选择要立足于正确认识并掌握并网运行机组,以防因选择了错误的调配方式而导致热能与动力工程在热电厂中的运用效率的低下。
五、合理、科学利用重热现象
在多级汽轮机内上一级损失中的一小部分可以在以后各级中得到利用,这种现象被称之为多级汽轮机的重热现象。将各级的理想焓降之和比汽轮机理想焓降部分多出来的值所占汽轮机理想焓降的比例叫做重热系数。由于合理、科学利用重热现象能够使得整体的效率要大于各级的平均效率,但是它的实现是以降低级效率为前提的,因此只能回收热损失的一部分,所以重热系数并不是越大越好,通常重热系数维持在0.04-0.08之间为最佳。基于此,在热电厂中要想实现合理、科学利用重热现象,则必须选取恰当的重热系数。在实际运用中,要在结合自身动力工程与热能的基础上,确定较为合理、科学的重热系数,进而确保机组的最佳运行状态,在热电厂中实现更加完美的运行服务。
结语
在热电厂中利用、转换能量除了风能、潮汐能和水力等极少数能源之外,大部分都是直接利用热能或者将热能转化为其它形式的能量进行多种形式的间接利用。本文主要从减少湿气的损失、降低调压调节的损失、展开较为有效的节流调节工作、恰当的工况变动与调配选择以及合理、科学利用重热现象等五方面论述了热能与动力工程在热电厂中的巧妙运用,仅供参考。
参考文献
[1] 沈晓艳.论热电厂中热能与动力工程的有效运用[J].黑龙江科技信息,2013(01).
篇4
【关键词】能源与动力工程 课程体系 教学内容
【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2013)09-0253-02
能源动力是国民经济的支柱产业。进入21世纪,世界经济迅猛发展,化石能源日趋枯竭,能源短缺以及环境问题日益严峻。提高能源利用效率,保护环境,开发新能源和可再生能源,保证能源的可持续供应,对能源科技提出了新的挑战。能源科技发展需要一大批合格的专门人才。高等学校能源与动力工程专业应不断进行课程体系改革和教学内容优化,为能源动力行业培养出满足行业要求的专门人才。根据高等教育教学改革的要求以及行业发展趋势,中国矿业大学能源与动力工程专业在人才培养模式、课程体系设置和教学内容优化等方面进行了一系列改革,积累了一些经验,在此成文,与同行交流。
一、能源与动力工程专业课程体系改革面临的挑战
1.能源动力学科领域的拓展对人才知识结构提出了新要求
2012年,教育部对本科专业的招生门类、专业目录进行了调整,热能与动力工程专业更名为能源与动力工程。从2013年起,全国本科专业将按照2012版教育部新颁布的本科专业目录招生。专业名称的改变,并不仅仅是改变了称谓,而是随着时代的发展,该专业内涵发生了很大的改变。原来的热能与动力工程强调的是热能与动力的转换,而现在能源与动力工程专业涵盖的范围则更宽广了,由过去传统的能量转化与利用领域,发展到今天的能源生产、燃烧污染治理、新能源的开发与利用等多个领域,与化学、环境工程等学科的交叉关系越来越密切。近些年来,新能源与可再生能源的开发利用方兴未艾,形成了庞大的研究队伍和产业,如太阳能、风能、垃圾发电,脱硫脱硝等行业,为毕业生提供了广阔的就业市场,急需高校能提供这方面的人才。现有的专业培养方案中课程设置和教学内容已经不能满足能源动力行业时展的要求,需要做出相应的调整。然而,在目前培养计划中总学分压缩、课程门数减少的情况下,增加新领域课程,必将会对原有的课程设置造成冲击。
2.人才培养的“宽口径”和“零距离”之间存在矛盾
能源与动力工程专业是一个宽口径专业,涵盖了原来的热能工程、热能工程与动力机械、热力发动机、制冷及低温工程、流体机械与流体工程、水利水电动力工程、工程热物理、能源工程和冷冻与冷藏等,这些专业在内涵上存在很大的差异。“宽口径”培养模式避免了过去那种专业面过于狭窄的问题,使人才具有宽广的知识面,增强了就业的适应性,这也直接产生了不利的方面。在目前专业课程门数和学时都有限的情况下,毕业生在哪一方面都不专,不能满足企业对人才知识结构的要求,在工作现场还要经过很长时间的理论学习和实习过程,很难满足用人单位的要求。由于缺乏完善的岗前培训和有效的继续教育制度,我国国有大中型企业一般不乐意接受“宽口径”的毕业生,希望毕业生一毕业能尽快胜任工作岗位,甚至是“零距离”对接[1]。
3.课程体系设置模式不能满足大学生的个性化发展需求
大学生在成长的过程中,形成了不同的人生观、价值观,对自己未来所从事的职业有喜好厌恶,如有的喜欢动力机械,有的喜欢制冷空调,还有的喜欢热力发电;另外,对个人的发展方向也有不同选择,如有的要考研,有的要就业,还有的要创业。高等教育应该支持大学生个性化发展,在培养方案和课程体系设置上应该提供他们可以自主选择的空间,使他们能够按照自己的兴趣爱好去选择发展方向和未来从事的职业。目前课程体系设置模式单一,所有学生四年学习的课程几乎都一模一样,教学内容差别不大,学生几乎都是一个培养模式,不能满足不同类型学生的需求,限制了学生的个性发展,也不利于创新精神的培养。
4.实践教育环节与课程教学之间存在冲突
为全面落实《国家中长期教育改革和发展规划纲要(2010-2020)》,深入贯彻总书记在清华大学建校100周年上的讲话精神,为了培养具有较强实践能力和创新精神的高素质人才,高校强化了实践教学环节,内容不断丰富,形式不断拓展,在实践育人工作总体规划、深化实践教学方法改革、系统地开展社会实践活动、加强实践育人基地建设等方面取得了很大的成绩。但是实践育人特别是实践教学依然是高校人才培养中的薄弱环节,与培养拔尖创新人才的要求还有差距。在总学分和学时减少的情况下,如果一味地强化实践教学,增加实践教学学分,则不得不压缩理论课程的学分和学时,甚至得减少理论课程门数,这样培养的人才很难做到“厚基础”, 违背了人才培养目标。另一方面,实践教育环节和理论教学环节相脱节,必然影响实践教育环节的效果。此外,在教学内容方面,也应及时更新。国外高水平大学能及时更新教学内容,反映本学科新的研究领域和前沿技术。如美国佐治亚理工学院将MEMS技术引入了换热器课程,将先进的能量转化技术,如燃料电池、生物质能转换、热电转换等引入了热力学课程。和国外相比,我们教学内容就显得陈旧,不利于人才培养。
二、课程体系构建与教学内容优化措施
1.增设新领域核心课程,完善人才知识结构
能源与动力工程专业课程体系改革,要根据能源动力学科新的拓展领域,广泛深入调研,充分了解能源动力专业的发展趋势以及涉及的主要学科领域,掌握新领域的学科内涵和新兴行业对人才培养的需求,以确定未来人才必备的知识结构。在满足总学分和学时限制的条件下,补充完善培养方案中的课程设置,优化教学内容,将新领域的课程与原专业课程整合,制定适应学科领域扩展、满足未来人才市场需要的课程体系,使毕业生具有完善的知识结构,增强毕业生就业竞争力。
2.按专业大类统一基础课程设置,分设专业方向模块
在课程体系设置中,为了解决学生专业知识结构宽泛而不专的问题,还是要分设专业方向[2]。但为了防止回到以前的老路,防止专业面过于狭窄,不同专业方向的通识教育课和专业大类基础课程应统一设置。在此基础上,根据不同的专业方向设置不同的模块化课程,每个专业模块化课程的门数不宜过多,设3-4门,10个学分左右即可,同时设置大量应用性强的专业选修课,强化实践环节,这样就解决了“宽口径”和“零距离”之间的矛盾。
3.建立柔性的课程体系,满足大学生的个性化发展需要
建立柔性的课程体系,使课程体系构建多样化、课程设置分层次,以满足不同类型学生的个性发展需求[3]。通过设置不同的专业方向模块,学生可以按照自己对未来从事行业预期和职业喜好加以选择。培养计划分研究型和应用型。“研究型”培养计划的学时分配适当向基础课、专业基础课倾斜,实践教育环节要注重学生创新能力的培养。“应用型”培养计划的学时分配应适当向传授专门应用技术的专业课倾斜,实践教育环节注重培养学生应用所学专业知识的能力。同时,增加选修课程门数,选修课程也分研究型和应用型,满足毕业生继续深造和就业的不同需要。
4.优化教学内容和方法,理论教学和实践环节相结合
在强化实践环节的同时,一定要保证理论课程有足够的学分和学时。在总学分减少和实践学分增加的前提下,可以适当压缩德育课程学分,保证专业基础理论课程学分。同时,改革应用性很强的专业技术课程的教学内容和方法,这类课程都设置课程设计环节,学生在课程学习的同时开展课程设计,通过工程设计将理论教学和实践环节有机结合起来。另外,及时修订教学大纲,与时俱进,及时将本学科最新的研究领域、前沿技术在教学内容上得到反映。
三、结束语
课程体系改革和教学内容优化是一项长期艰巨的任务,需要在高等教育实践中不断探索、完善。能源与动力工程专业人才培养要解决的问题,有和其它专业共性的方面,也有其特殊性。能源与动力工程专业课程体系改革要满足国家高等教育人才培养目标的总体要求,可以借鉴其它专业成功的改革经验,还要结合专业自身的特点,探索出更多行之有效的措施。
参考文献:
[1]张力,杨晨. 能源动力类专业工程教育改革初探,中国电力教育,2011,(21):152-154
[2]于娟, 吴静怡. 能源动力专业的高等工程教育研究与实践,中国电力教育,2011,(27):158-160
[3]方文彬. 试论大学课程体系个性化,黑龙江高教研究,2010,(5):131-133
篇5
关键词:新能源科学与工程;风力发电;太阳能发电;人才需求;课程体系
中图分类号:G642.3 文献标识码:A 文章编号:1007-0079(2014)26-0046-02
新能源属于我国战略性新兴产业,也是国民经济发展的基础性产业。面对环境污染与能源危机的双重压力,全球都在加快推进新能源产业发展。规模化开发与利用太阳能、风能、生物质能、地热能等为代表的新能源,实现我国传统化石能源过渡为清洁、可再生能源为主的能源结构是必然之举。中国将大力推动新能源产业的发展,在加大水电、核电、太阳能和风能设施建设的同时,计划在2020年前使新能源消费比例达到15%。特别是近年来风力发电和太阳能发电作为新能源电力的两支主力军迅猛发展,出现并驾齐驱的局面,新能源电力产业的蓬勃发展对新能源专业人才提出迫切需求。在这种形势下,怎样培养适应新能源产业需求的人才,既有巨大的机遇,也有很大的挑战性。
为适应我国战略性新兴产业的需要,自2006年以来我国相继有华北电力大学、河海大学、长沙理工大学等多所高等院校开办风能与动力工程本科专业;2010年教育部紧急下达《关于战略性新兴产业相关专业申报和审批工作的通知》,自2011年开始,我国部分高等院校设置了新能源科学与工程、新能源材料与器件等新能源产业相关的本科专业。但怎么样才能更好地为国家发展新能源产业起到人才培养的支撑作用,培养什么样的新能源产业人才以及如何培养,怎么样结合学校自身的特色与资源优势开设专业方向和课程体系,是当前面临的主要课题。
一、我国新能源电力产业的发展形势
自2007年,我国风电装机容量呈高速增长趋势。2010年,我国(不包括台湾地区)新增风电装机1893万千瓦,累计风电装机容量4473万KW,超过美国跃居世界第一位。至2012年底,全国新增安装风电机组7872台,装机容量1296万KW;累计安装风电机组53764台,装机容量达到7532万KW;风电并网总量达到6083万KW,发电量达到1004亿千瓦时,风电已超过核电成为继煤电和水电之后的第三大主力电源。2013年我国风电又新增风电并网容量1492万千瓦。2014年我国风电发展目标为1800万千瓦。根据2014年国家能源局印发“十二五”第四批风电项目计划显示,列入“十二五”第四批风电核准计划的项目总装机容量为2760万千瓦(27.6GW)。从2011年开始,我国为把握风电发展节奏,促进产业健康有序发展,国家能源局开始制定风电项目核准计划,前三批风电核准规模分别为2683万千瓦、1676万千瓦(后又增补852万千瓦)和2797万千瓦。至此,“十二五”以来拟核准的风电项目规模累计已超过1亿千瓦。
在风电大规模发展的同时,自2009年以来我国太阳能光伏发电也迅速扩张。截至2012年底,我国累计光伏装机容量达到7.5GWp;截至2013年底,中国光伏发电新增装机容量达到10.66GWp,光伏发电累计装机容量达到18.16GWp。2013年全球光伏新增装机39GWp,比2012年增长28%。2013年,就新增光伏装机而言,中国、日本和美国成为世界上最大的三个市场,而德国则退居第四。中国2014年光伏发电的发展目标是全年新增光伏装机14GWp。根据《太阳能发电“十二五”规划》,中国光伏发电装机容量与发展目标如表1所示。
在太阳能光伏发电快速成长的过程中,全球太阳能光热发电也正以惊人的速度发展。截至2013年底为止,美国已有5座大型太阳能光热发电站投入运行,规模都在100MW以上。其中美国NRG能源公司联合Google、Brightsource公司投资22亿美元在加州莫哈维沙漠建设的太阳能发电站于2013年成功发电,装机规模为392MW,这是目前世界上规模最大的塔式电站。美国能源部SunShot计划光热发电的研发目标是到2020年实现75%的成本削减,在不依赖政策补贴的前提下将光热发电推至每千瓦时6美分甚至更低的水平。欧洲早在2009年12家跨国公司在德国慕尼黑签署协议,计划投资4000亿欧元在北非建立太阳能热发电厂,10年后开始供电,据估计到2050年,该项目在北非的发电厂将满足欧洲15%的用电需求,这也是目前世界上拟建中太阳能发电厂同类中最大的太阳能项目。此外,西班牙、南非、印度、智利、摩洛哥、以色列、沙特、阿联酋、科威特以及澳大利亚都已经开始了大规模光热发电的兴建,印度已有50MW规模的电站并网运行。中国在北京延庆县八达岭建设了首个规模为1MW的太阳能热发电示范电站,于2012年8月成功发电,但还没有商业化规模电站。可以预见,随着国外太阳能光热发电公司进入中国和国内太阳能光热发电技术的研究进展,中国未来十年将在太阳能光热发电方向上大有作为。
二、新能源科学与工程专业人才培养的定位
2012年,教育部将原风能与动力工程和新能源科学与工程合并统一改为新能源科学与工程。相应地,风动专业也将面向更宽广意义的新能源产业需求,需要对专业培养方案进行调整;特别是更名为新能源科学与工程,就业的主战场不能较好地定位,致使专业课程体系达不到市场的期望值,对该专业课程体系怎样设计仍需继续研究探讨。从用人单位和学生自身需求上来看,专业课程设置和职业能力培养占有很重要的位置。其主要原因有两个:一是我国经济水平还欠发达,从读大学所付出的成本上来看,大多数学生期望接受到职业技能方面的训练;二是用人单位企盼招收到适合于工程技术需要的、能够尽快进入工作角色的应用型、技能型、复合型人才。
对于专业设置,国内其它专业的普遍做法是根据就业渠道下设专业方向。专业必须有支撑产业为基础才会有生命力。因此,本文提出“以学科为基础设置大类专业,以产业为支撑开设专业方向”的观点。新能源科学与工程专业应该在强化“工程实践能力培养”的基础上,必须以风力发电、太阳能发电作为就业主战场,分别面向风电机组设计与制造、风电场工程、太阳能发电工程三个主要领域,设置各具特色的专业方向的课程体系。
三、新能源科学与工程专业课程体系的优化
新能源科学与工程专业自2010年教育部批准开设以来,全国已有34所高校开设此专业。2013年5月19日,“首届全国新能源科学与工程专业建设研讨会”在华北电力大学召开,指出课程体系是否合理、课程内容是否先进直接关系到人才培养的质量。现阶段我国系统培养新能源科学与工程专业本科生、研究生的工作才刚刚起步,对于相应课程体系的构建正处于探索阶段。
根据国内部分高校新能源科学与工程专业公布的培养方案,其课程体系设置与专业定位(如表2所示)。总体上来看,各高校的课程体系呈现自由发展、特色发展的局面,这有利于各学科交叉融合,促进新能源产业发展,但同时应注意一些专业基础课程的共性、相通性问题。课程体系可以大致分为两大类:一类是遵循厚基础、宽口径的原则,强调能源类基础理论课程教学(A类),但专业核心课程各高校有所偏重;另一类则是专业方向针对性较强,更强调职业能力培养(B类)。例如风动方向加强了力学、机械、电气方面的课程模块,太阳能方向则强调了半导体物理、材料科学的课程模块,但缺少光学、热学、电气工程方面的教学。
表2 国内部分高校新能源科学与工程专业的课程设置与专业定位
学 校 专业课程体系 专业定位
A类:
浙江大学、华中科技大学、西安交通大学、中南大学、重庆大学、上海理工大学等 专业基础课程:工程热力学、工程流体力学、传热学、应用电化学、固体与半导体物理、材料科学基础、工程制图、机械设计基础、电工电子技术、自动控制原理等
专业核心课程:可再生能源和新能源概论、太阳能电池原理与制造技术、太阳能光伏发电系统与应用、太阳能热利用原理与技术、风力发电原理、生物质能转化原理与技术、核能发电概论、氢气大规模制取的原理和方法、能源与环境、燃料电池概论、薄膜材料与器件、半导体材料、新能源材料、热泵技术、能源低碳利用技术、Matlab及其工程应用、CFD软件应用等 具备热学、力学、电学、机械、自动控制、能源科学、系统工程等理论基础,掌握可再生能源与新能源专业知识
B类1:
华北电力大学、河海大学、长沙理工大学、沈阳工业大学等 专业基础课程:理论力学、风力机空气动力学、材料力学、机械设计基础与CAD、、画法几何与机械制图、电机学、电路原理、模拟电子技术、数字电子技术、电机学、电力电子技术、自动控制原理、微机原理与接口技术等
专业核心课程:新能源与可再生能源概论、风力发电原理、风资源测量与评估、风电机组设计与制造、液压与气压传动、风电场电气工程、风电机组控制与优化运行、风力机组状态监测与故障诊断、风电机组测试与认证、风电场施工与管理、风电场建模与仿真、风力机设备材料、新能源材料、近海风力发电、风能与其它能源互补发电系统、风电场并网、风力发电机组计算机辅助设计、风电场规划与设计等 面向风电机组设计与制造、风电场工程等
B类2:
福建师范大学 理论物理基础、材料科学基础、固体物理学、材料分析方法与技术、材料热力学、单片机技术、电工电子技术、工程制图、磁性材料与器件、光电子材料与技术、太阳电池物理、光伏工程与技术、光热工程与技术、固体发光材料、半导体材料、电化学基础、磁熵变材料与磁制冷技术、传感材料及其传感技术、X射线分析技术、储能材料与技术、先进功能材料、光电薄膜与器件、锂离子电池原理与技术、材料设计与模拟计算、纳米材料与应用、新型能源材料与技术、太阳能光热转换理论及设备、太阳能热利用、薄膜材料与技术、光源设计与应用技术等 面向太阳电池及其它新能源材料技术研发
应当指出,大学的专业课程体系不可能完全为企业的需求而量身定做;即使课程体系相同,但由于学校资源的差别和培养方式、途径及方法的不同,人才培养的类型、质量与层次也会存在很大的差别。因此新能源本科专业教育主要考虑人才质量的基础性、技能型、创新型、复合型与可拓展性。专业基础课应该以能源科学为基础,兼顾高校各自的资源优势,设定各具特色的专业课程。
以长沙理工大学(以下简称“我校”)新能源科学与工程专业为例,应针对风机制造、风电场、太阳能发电站三个就业领域,结合学校现有学科与专业优势,培养目标定位于既具有较宽广、厚实的专业基础,又有专业方向的特长。为此,针对新能源产业的发展需求和我校的学科优势,新能源科学与工程专业可增设太阳能发电工程方向。主要面向太阳能光伏、光热发电站及并网工程,同时兼顾太阳能领域的技术研发,为太阳能光热发电储备人才,开设材料科学、光学、热学、电气工程等模块的课程,主干学科为材料科学、电气工程,使学生具有材料科学、光学、热学理论基础,具备电气工程的职业能力。目前我校已有的材料科学与工程、光电信息科学与工程、热能与动力工程、电气工程及自动化专业为太阳能方向的开设奠定了基础。
四、结论
当前,我国风电、光伏发电呈规模化发展的趋势,太阳能光热发电也未雨绸缪。为适应新能源电力产业蓬勃发展的需要,新能源科学与工程专业应该“以学科为基础设置大类专业,以产业为支撑开设专业方向”。在风力发电、太阳能发电专业方向上,遵循厚基础、宽口径的原则,在强化“工程实践能力培养”的基础上,分别面向风机制造、风电场工程、太阳能发电工程三个主要领域,专业基础课应以能源科学为基础,兼顾高校各自的资源优势,设定各具特色的专业课程体系。新能源产业属于国家战略性新兴产业,也是国民经济发展的基础性产业;面对环境污染与能源危机的双重压力,全球都在加速发展新能源产业。应当抓住这一有利时机,整合各校相关的资源优势,推动新能源科学与工程专业人才培养的发展,打造新能源专业品牌。
参考文献:
[1] 熊怡.论道学科学专业建设,共话新能源人才培养――首届全国新能源科学与工程专业建设研讨会综述[J].中国电力教育,2013,
(21):26-28.
[2] 熊怡.我国新能源人才培养的道与术[J].中国电力教育,2013,
(21):38-41.
[3] 陈建林,陈荐. 新能源科学与工程本科专业人才培养模式探究[J].中国电力教育,2013,(22): 20-25.
[4] 杨晴,陈汉平,杨海平,等.华中科技大学:新能源科学与工程专业建设探索与实践[J].中国电力教育,2013,(21):29-31.
篇6
关键词:能源问题;传统能源;核能;太阳能;未来展望
引言
随着世界人口的持续增长及发展中国家人民生活水平的逐步提高,化石燃料的消耗将会加快,对环境造成的压力与日俱增。化石燃料的储备是有限的而且它的形成是一个长期的过程,需要几百年的时间,因此又是一种不可再生资源。据观察、研究表明,今天在地下已没有煤和石油在形成。化石燃料如此珍贵,而人类又在毫无节制的使用,因此在可以预见的未来,可能是一两百年时间内化石燃料将会消耗殆尽。因此,可再生能源和清洁能源将会越来越被重视。
其中太阳能与核能因为成本低、利用效率高以及可再生而被广泛看好。
核能(或称原子能)是通过转化其质量从原子核释放的能量,产生核能的方式有两种,核聚变与核裂变。裂变早已经进入商用化的阶段,而聚变由于过程的难以控制,暂时还处于研发阶段。世界范围内有大量的核资源,只要利用得到,面临的能源问题可以充分解决。
太阳能一般指太阳光的辐射能量,则是一种更为清洁的能源,取之不尽用之不竭。它存在于自然之中,可以被人类好好利用。广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等等。目前对太阳能的电池或者说太阳能吸收元件的研究进入了瓶颈,提高吸收效率的同时会大幅增加生产成本,这是解决利用太阳能的技术的当务之急。
1 全世界能源问题
1.1 经济发展使能源消耗量激增
随着世界经济规模的不断增大,世界能源消费量持续增长。过去30年来,世界能源消费量年均增长率为1.8%左右。如此之高的年增长率使得本就有限的资源储备日益捉襟见肘。2011年,全球能源消费呈现了自1973年以来最大的增长量,几乎各种能源的增长率都超出过去10年平均增长率的1倍以上.截至2011年年底,全球石油储量约为1.653万亿桶,若按照现在全球每天非常非常保守0.8亿桶的消耗速度来看,当前的世界石油储量可供全球消费54年[1]。
1.2 能源供需关系总体紧张
进入21世纪后的绝大部分时间里,能源供应趋紧。在这期间,尽管在世界范围内石油供需总体上保持平衡,供略大于求,但这一平衡十分脆弱。往往由于自然灾害、气候变化、局部战争、社会动乱、恐怖活动等原因,在某些国家和地区、某些季节或某一时间段、某些石油品种出现断档,致使某些国家和地区不时发生油荒、电荒等能源供应紧张局面。
1.3 化石燃料仍是能源消费主体
化石燃料仍是目前能源消费的主体,占一次能源消费总量的86%。在世界一次能源消费结构中,石油占33.6%,天然气占23.8%,煤炭占29.6%,核能占5.2%,水电占6.5%,可再生能源占1.3%。石油仍是最主要的能源,但所占比重连续11年下降。天然气的比重在显著提高[2]。
天然气的发展引人注目,非常规天然气堪称异军突起。截至2010年底,世界天然气探明储量增至187.1万亿立方米,同比增加5000亿立方米。
煤炭产量增长主要来自非OECD国家。2010年,世界煤炭产量为72.73亿吨,同比增长6.3%。其中,中国煤炭产量位居世界第一,达32.4亿吨,占全球产量的48.3%;美国煤炭产量位居世界第二,印度位居世界第三,澳大利亚和俄罗斯分别位居第四和第五。
水电和核能也实现了2004年以来的最大增长。2010年是自1990年以来平均降雨量最大的一年,因此水电实现了有史以来最大的增长。全球水力发电量达到7.756亿吨油当量,增幅为5.3%。核能实现了2%的增长。其中,3/4的增长来自OECD国家,法国核电增量位居全球第一,增幅为4.4%。
生物能源等其他可再生能源也有所发展。中国和美国是世界可再生能源发展的主力,两国贡献了全球风能增长的近70%。
2 未来能源的展望
随着人类文明社会的高度发达,经济生活的大力发展,能源问题日益显现,且必将伴随着人类文明持续存在。当前解决能源问题没有一劳永逸的方法。我们能尽的努力分为两方面:一方面,想方设法延长现有能源的使用时间-提高能源转化率;研发节能产品。另一方面,开发和使用新能源。
在可以预见的未来,化石燃料包括煤、石油、天然气消耗殆尽的一天即将到来。我们必须做好应对的措施。不然真会如一则故事说的那样:我的父亲使用骆驼作为交通工具,儿子是飞机和汽车,我的孙子又会再次使用骆驼作为交通工具。故事虽有夸张的成分,但揭示的问题不容忽视。
个人觉得人类未来能源的结构是以核能为主,太阳能与氢能为辅的情况。这三种能源的共性是取之不尽用之不竭,且都是清洁能源(核聚变终会取代核裂变的),人类不仅可以大规模的使用,而且没有后顾之忧,不用担心会给环境带来危害。
核能为主是因为核能是高能量的燃料,1千克铀可供利用的能量相当于燃烧2050吨优质煤。氘和氚都是氢的同位素。1千克氘和氚燃料,至少可燃以抵得上4千克铀料或l万吨优质煤燃料。正是如此,核能才一定会成为最主要的能源。电厂发电终会是利用核能,来为千家万户以及工厂生产提供电,取代化石燃料成为主导能源。
氢能储量丰富,蕴藏在浩瀚的海洋之中,若把海洋中的氢能提取出来,燃烧产生的热量是地球上矿物燃料的9000倍;适用范围广,清洁无污染也是氢能的优点;获得渠道丰富,可以通过电解水得到,也可在海洋中开采。电解水获得的氢能比消耗的电能还要多,这是一个技术问题,相信在不久的将来可以技术攻关。
太阳能以无成本无污染分布广而备受推崇,但其局限性成为不可避免的缺点。因此也是一种辅助能源,随着太阳能电池技术的不断进步,有望进一步被人类利用。
可以想象,在不远的未来。经历了化石燃料枯竭之后。我们使用这三种能源并辅以地热能、风能等能源可以应付所有的需求。核能负责发电以及为军用设备例如潜艇、导弹提供动力。但是日常出行的汽车、飞机,家里面烧菜做饭这是不适合用核能的,不仅安全性是个问题,而且也很难如此普及,很难想象开着一辆小汽车还得装着一个核反应装置。所以我认为在这些方面氢能可以取代核能,氢能热值高,安全性好,为汽车等提高动力,为家用提供燃料都是不错的选择。汽车以氢为燃料,既不会有尾气污染,也比电池为燃料的汽车更有动力感,自然可靠。太阳能则应用在各个领域,充分利用它的无成本分布广的特点。太阳能电池、太阳能路灯、太阳能手电、太阳能手机、太阳能助力车等均可以大力普及。因为太阳能时间地点的局限性,使其只能成为一种辅助能源,不过它的种种优点使得人类可以在日常领域(即对连续性要求不强)广泛应用,这样可以节省很多能源,并且方便实用。剩下的风能、地热能则是锦上添花,普及率不会很广,只能作为新能源的尝试与研究、在核能利用不了的时候作为储备能源使用。
综上所述,未来的能源结构体系是以核能为主,太阳能与氢能为辅,风能、地热能等锦上添花。
参考文献
[1]魏一鸣.我国能源报告( 2006):战略与政策研究[M].北京:科学出版社,2006.
篇7
关键词:核电;核专业发展;专业建设
作者简介:杜晓超(1976-),女,河北保定人,三峡大学理学院,讲师;袁显宝(1974-),男,湖北宜昌人,三峡大学理学院,副教授。(湖北 宜昌 443002)
中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)17-0038-02
2012年2月教育部公布《教育部关于公布2011年度高等学校本科专业设置备案或审批结果的通知》,批准三峡大学核工程与核技术专业自2012年9月开始招生。自此,全国开设核类本科专业的高等院校达到了37所,开设核工程与核技术专业的有28所。后福岛时代中国核电的发展何去何从,核电专业发展面临怎样的挑战和机遇,这是值得进一步深入探讨的问题。
一、发展核电的重要意义
从1954年前苏联建成第一座核电站至今,人类利用核能的历史还不足60年。为应对全球气候变化和保持可持续发展,人们对发展核能的需求日益增加。传统能源常指煤、石油、天然气等,与之相比,核电无污染、碳排放几乎为零,利于减排和能源结构调整的实施,因此成为我国实现减排目标的必然选择。现提倡“低碳社会”,对环境保护来说核电的清洁性可以说优势明显。与传统能源相比,核电的另一优势是能耗少,1千克铀裂变时释放的能量相当于燃烧2500吨标准煤。核电有着传统能源无法比拟的巨大经济价值。一座100万千瓦的火电站每年耗煤300万~400万吨,而相同功率的核电站每年仅需铀燃料30~40吨,还能在很大程度上缓解交通紧张等问题。
正如所有的稳态系统,人类发展必将走向一个可持续的能源结构,其中核能和可再生能源将占据相当大的比重。对全球能源结构预测,未来30年综合各类能源的原料成本、运行和维护成本以及收益将是三分之一的化石燃料发电、三分之一的可再生能源(风、太阳能、生物质、水电)和三分之一的核能发电。
二、世界核电发展介绍
1.核电技术
自1954年前苏联建成世界上第一座核电站到目前,核电的发展历经近60年的历程。核电技术越来越先进,安全设施也愈加完备。根据反应堆所使用的慢化剂和冷却剂不同,目前各国所使用的核反应堆可归纳为轻水堆、重水堆、石墨堆和快堆等。其中轻水反应堆根据冷却剂的工作状态又分为压水堆和沸水堆。我国以浙江秦山核电站和广东大亚湾核电站为代表的绝大多数核电所采用的核反应堆都是压水堆。大家熟知的美国三厘岛核电站也是压水堆,苏联切尔诺贝利核电站是石墨水冷堆,日本福岛核电站属于沸水反应堆。
从时间上看核电的发展历程:20世纪50年代建造的原理型机组结构简单,功率小,安全设施薄弱,称为第一代核电站;20世纪60年代和70年代建造的商业运行机组功率大,安全设施完备,称为第二代核电站。目前世界上商业运行的400多座核电机组大部分是第二代核电机组;第三代核电技术的概念始于20世纪90年代,在第二代核电技术基础上增加了先进的设计理念和安全设施,又被称为先进型核电厂;进入21世纪后,从经济性、安全性、减少核废物和防止核扩散的角度出发,西方国家提出新一代核电厂研究开发计划,推出第四代核电厂潜在堆型,有超高温堆、气冷快堆、超临界水冷堆、钠冷快堆和熔盐堆等六种反应堆。第四代堆的安全性和经济性将更加优越,废物量极少,无需厂外应急,并具备固有的防止核扩散的能力。
2.核电站建设
根据国际原子能机构的统计,截至2010年10月底全球共有441台核电机组运行,总装机容量约为3.7亿千瓦,核电发电量占全球总发电量的16%,其中法国核电占全国发电总量的75.2%,日本为29.2%,美国为20.2%,中国核电比例只有2.57%,全世界有18个国家和地区核电发电量占总发电量的比例超过了20%。
2011年3月,日本发生的福岛核事故几乎让全球核电行业陷入奄奄一息的状态之中。日本在灾后关闭了所有的核电站;德国、意大利、瑞士等国家宣布放弃发展核电;美国、英国、俄罗斯等国家表示不放弃发展核电;印度、韩国、印度尼西亚、菲律宾、马来西亚等国纷纷规划自己的新核电项目;部分无核国家包括捷克、白俄罗斯、阿联酋等也启动或开始建设一批核电站项目。国际原子能机构预测,全球有60多个国家计划发展核能,包括30个无核国家,今后20年全球的核能发电量将会提高一倍。[1]
今年3月,在日本福岛核泄漏事故发生两年后,法国核能巨头阿海珐集团将重新向日本运送混合氧化物核燃料,接收核燃料表明日本政府或有意重启更多核反应堆。包括原本主张弃核的德国,在逐步发展新能源的同时却在吞噬着德国的自然环境。风能、太阳能、生物能源等的利用要以付出自然储备为代价,使其备受国内核能界的问责。
在美国,五家新核电厂有望于2019年年底之前并网发电;英国正式批准建设英国近20年来第一座新核电站的计划,在2025年前在英国建设新一代核电站的计划。在全球范围内,70家核电厂已列入建设规划。种种迹象表明核行业正在重获增长的动力。
3.国内核电发展现状
日本福岛核电站事故之后,中国政府作出积极反应,全面组织核设施安全检查,抓紧编制核安全规划,调整完善核电长期发展中长期规划,并暂停审批核电项目。但中国发展核电的决心和安排不变。[2]目前国内在建机组24台,在建规模世界第一。至2012年12月28日福建宁德核电站一期1号机组首次并网发电,中国目前已运行的核电机组达到18台,核发电量占我国总发电量不足3%,这与核电占电力总量16%的世界平均水平相比仍有很大差距。
只有最大限度地防范核安全风险,提高核电站的安全性和可靠性,我国核电产业才能实现持续、安全、高效发展。[3]目前我国运行的核电站均是二代改进型反应堆,核电技术水平和安全性显著提高;引进的三代核电技术在安全问题上具有更高的水准,中国未来发展核电的政策着力于第三代核电站的设计和建设。
最近国家核电技术公司宣布,全球第一台AP1000三代核电机组将于2014年10月份在我国浙江三门正式发电。目前三代核电设备供应链体系已形成,正在由设备国产化向设备自主化迈进,国家重大专项CAP1400设计研发取得新的重要进展,我国三代核电技术自主化工作取得积极进展。
三、核专业人才培养
核能产业的蓬勃发展离不开核电专业技术和相关辅助学科的发展,在各大高等院校核专业及相关专业的发展就是一面镜子。专业发展除了会受到该学科对应的科学发展的影响之外,还受到社会发展需要的影响以及国家的学科政策和大学的学术管理体系制度等等一系列外在因素影响。鉴于核电的特殊性,专业方向除了包括核电技术研发、统筹设计、设备制造、工程建设、人员培训、电站管理、核燃料生产和制造和乏燃料后处理等多方面问题外,还要考虑其经济性、安全性、防止核的扩散及环境保护等。
纵观全国各大高校近年来开设核学科相关专业的高校越来越多,开设的专业有核科学与技术、核工程与核技术、核反应堆工程、核化工与核燃料循环、辐射防护与环境工程等。福岛事故之后,国际社会对核安全问题的重视程度不断提高,中国也高度重视核安全问题,不断提高自身核安全能力,确保核材料、核设施安全。小概率事件的严重事故,例如堆芯熔化事故,往往发生概率非常非常低。在福岛事故之前,包括国际上大部分核专家在内,认为低概率事故是不太可能发生的事件。通过福岛第一核电站堆芯熔化最后导致核泄漏事件的发生明确了低概率事故是可能发生的事件。所以严重事故的预防和缓解将是核科研中一个非常重要的研究方向,目前还没有设置该方面的专业。
部分高校还成立了核工程与技术学院。特别地,清华大学专设核能与新能源技术研究院(简称“核研院”)。核研院不仅是科研基地,也是人才培养基地,是清华大学下属的最大研究实体,涉及自然、科学、技术、工程多个领域,并努力实现科技成果的产业化,致力于通过高水平的科技创新协助应对国家在能源、环境和资源领域所面临的挑战和发展。
四、三峡大学核工程与核技术专业建设
三峡大学是一所水电特色与优势比较明显的省属综合性大学,是国家水利部和湖北省共建高校。长期以来,学校积极进行学科调整以适应国家能源产业发展方向,在新能源学科方向目前已涉足太阳能、风能、生物质能等多个领域。“十二五”期间,根据国家新能源发展现状和发展趋势,学校计划组建水利与能源工程学科群,设立新能源关键技术(风电、太阳能光伏发电、生物质能发电、核电等)研究及利用研究方向。因此在符合学校专业发展规划和学科发展方向的前提下开办核工程与核技术专业,旨在培养适应我国核工业建设的需要、具有坚实的数理基础、具备热能与动力工程及核反应堆工程技术等专业知识、具有较强的实践能力和良好发展潜力的高级核工程与核技术专门人才。
目前该专业下设两个培养方向:核反应堆工程、辐射防护与环境保护。课程体系设置分为三大板块,即学科平台课程、工科平台课程、专业方向课程。学科平台课程包括高等数学(含概率统计、线性代数)、大学物理(实验)、微机原理与技口技术、原子核物理学、核辐射物理与防护、核物理实验等课程。工科平台课程包括工程力学、电工学、机械制图、机械设计基础、自动控制原理、工程基础训练等课程。专业方向课程为专业核心课程,包括传热学、工程热力学、工程流体力学、核反应堆物理分析、核反应堆热工分析、核电厂系统与设备、核电站综合仿真实验、核反应堆热工水力综合实验。另外,还为该专业学生开设一系列专业选修课程,包括核反应堆安全分析、核反应堆的控制与保护、核电站运行、泵与阀门、汽轮机原理、专业英语、核放射化学、专业课程设计等课程。
课程体系为人才培养方案服务,培养目标要求核工程与核技术专业学生不仅具备扎实的自然科学基础、专业工程技术理论知识,还要熟悉和掌握本专业领域中的热能与动力工程、核反应堆工程方向的专业知识,了解其学科前沿和发展趋势,并获得核工程的实践训练,使毕业生能胜任核电厂的运行、维护、管理及技术支持、辐射防护和核环境治理工作,也能胜任核电工程公司的技术咨询与管理、核电设备制造企业的技术开发工作以及国家相关规划部门、经济管理部门的规划管理等工作。
“十二五”规划纲要明确提出“十二五”期间实现非化石能源占一次能源消费的11.4%,到2020年中国非化石能源将占一次能源的15%,其中核电不少于4%。根据中国发展核电产业、建设核电的需求,核工程方向技术人员的需求存在缺口。虽然福岛事故发生后,核专业招生和就业稍显遇冷,但是应对核电的复苏,人才储备特别是高层次的人才将推动另一波就业。确定的“在确保安全的基础上高效发展核电”的方针同样给了核电专业发展的方向和目标,因此核工程与核技术专业迎合社会需求具有较强的发展潜力。
参考文献:
[1]叶奇蓁.后福岛时期我国核电的发展[J].中国电机工程学报,2012,(11).
篇8
关键词:SWOT分析法;能源与环境系统工程专业;农业院校
作者简介:简秀梅(1977-),女,广东广州人,华南农业大学工程学院农业工程系,讲师;蒋恩臣(1960-),男,黑龙江富锦人,华南农业大学工程学院农业工程系,教授,博士生导师。(广东 广州 510640)
基金项目:本文系2011年华南农业大学教育教学改革与研究项目资助课题“能源与环境系统工程专业应用型人才培养目标、定位、模式及方法的探索与实践”的部分研究成果。
中图分类号:G642.0?????文献标识码:A?????文章编号:1007-0079(2012)33-0051-02
随着经济的飞速发展,能源与环境成为当今经济发展的两大主要瓶颈。能源的供需矛盾日益激化,尤其是一次能源的大量消耗而对环境带来的二次污染问题引起了全社会的普遍关注。[1]2001年,岑可法院士对“热能工程”专业提出改革,自2003年以来浙江大学、上海工程技术大学、江苏大学等许多高等院校纷纷对原有的热能与动力工程等相关专业进行改革,并申办了能源与环境系统工程本科专业。[2]能源与环境系统工程专业包含的知识综合了动力工程与工程热物理、环境科学与工程、控制科学与技术三个一级学科,是一个典型的多学科交叉本科专业。如何在专业建设上既能充分体现农业院校专业培养特色,又能很好地满足广东对能源专业应用型人才的需求,是一个值得深入思考和系统分析的问题。
一、农业院校建设能源与环境系统工程专业的SWOT分析
SWOT分析法又称为态势分析法,是20世纪80年代初由美国旧金山大学的管理学教授韦里克(Weihrich)提出来的,其运用系统学原理并能较客观而准确地分析和研究一个单位现实情况的方法。SWOT四个英文字母分别代表:优势(Strength)、劣势(Weakness)、机会(Opportunity)、威胁(Threat)。从整体上看,SWOT可以分为两部分:第一部分为SW,主要用来分析内部因素;第二部分为OT,主要用来分析外部因素,从而根据研究结果制定相应的发展战略、计划以及对策。目前,该分析方法已经被应用于多个领域。
现在很多高校成立了能源与环境系统工程专业(以清洁能源生产、可再生能源利用、能源环境保护、新能源开发为主,以复合型高级工程技术应用型人才为目标),然而,就目前来看全国农业院校中开设该专业的院校极少。因而,本文首次采用SWOT分析法对影响农业院校建设能源与环境系统工程专业的内部因素和外部因素进行了分析,列出了能源与环境系统工程专业的优势、劣势,以及面临的机遇和威胁,并构建了能源与环境系统工程专业的SWOT矩阵图,做出最优决策。[3,4]
1.影响农业院校建设能源与环境系统工程专业的内部因素
(1)优势(Strength)。能源与环境系统工程专业具有鲜明的特色、宽阔的专业知识面,是一个能源、环境与控制三大学科交叉的复合型学科。[5]其中涉及力学、材料科学、机械制造、环境科学、计算机科学、自动控制科学、系统工程科学等专业领域。且华南农业大学学科门类齐全,专业覆盖农业机械化工程、生态环境学、土壤学、遗传育种、植物栽培、微生物学、生物化学、农学、发酵工程、化学工程等学科,拥有设置能源与环境系统工程学科较完整的相关专业和研究力量,为多学科教学与合作研究创造了条件。
华南农业大学(以下简称“我校”)能源与环境系统工程专业以从事清洁能源生产、可再生能源利用、能源环境保护、新能源开发为主,以复合型高级工程技术应用型人才为培养目标。[6]而华南农业大学本专业依托的华南农业大学生物质能源研究所、广东省普通高校生物质能源重点实验室和农业部能源植物资源与利用重点实验室,目前已配备满足生物质能源学科所涉及的分子生物学、微生物学、遗传育种、发酵工程、酶工程等学科科研的仪器设备。另外,“能源植物良种选育与生物燃料转化和综合利用”获得了华南农业大学“211工程”三期建设项目的支持。以上这些工作均为我校建设能源与环境系统工程专业的优势。
(2)劣势(Weakness)。农业发展随人类社会发展而衍化,其基本规律是从单纯的种植、养殖业等拓展到社会经济各个领域,大学的发展也遵循着这样的基本规律,即从专科性学院慢慢发展成为多科性院校,并朝综合性大学发展。[7]我国的高等农林教育起源于19世纪初,建国后建立了独立设置的高等农林院校,主要是单科性的高等农林院校承担高等农林教育任务。[8]现在,我国38所普通本科农林院校已经在朝综合性大学发展,覆盖学科门类一般都达到7个以上,全部覆盖了农学、工学、理学和管理学四个学科门类,开设专业均在50个以上,有的甚至超过80个专业,但相应支撑的硬件和软件很难满足要求,不可避免会影响人才培养的质量。[7]
2.影响农业院校建设能源与环境系统工程专业的外部因素
(1)机会(Opportunity)。开发利用可再生能源成为世界能源可持续发展战略的重要组成部分,政府的政策支持、社会的认可以及中国丰富的可再生资源,使得我国的新能源产业发展前景十分广阔。[1]我校立足于沿海发达地区广东省,同时广东经济快速发展,能源需求不断增长,能源约束瓶颈进一步凸显,电力短缺,煤炭、石油供应紧张局面相继出现。[9]近年来,在国家“节能减排”政策的引导下,能源类企业纷纷花巨资添置各类环保设备,但现有的能源和环保技术人才数量和质量难以适应国民经济的飞速发展,造成很多设施处于闲置或使用不当状态,给企业和国家造成了巨大的损失。[10]因此,我国面临严重的能源与环境系统工程应用人才不足的问题。
同时,能源与环保产业的发展还将催生一系列新生职业,如为整个能源和环保业发展做出整体规划的能源管理师,对企业环境做出评估的环境评价工程师,还有资本运作能力较强的环保经纪人等等。基于这些发展机遇,将会有新的行业、新的工种、新的岗位群不断涌现。所以,能源与环境系统工程专业应顺应社会的发展趋势和人才市场需求的变化,发挥其专业优势不断调整专业方向,向相近相关专业渐进拓展。[2]
(2)威胁(Threat)。尽管我国在部分新能源产业领域已具备相当规模,但与发达国家相比,在资源评价、技术水平、成本控制、市场机制等多个方面还存在较大差距,新能源发展过程中的许多障碍和瓶颈仍未消除。[11]如:水电面临着项目前期储备不足、移民和环境保护成本增加等问题;新能源面临着装机容量大而发电量少,发展速度快而效益低,资源、资金浪费严重以及并网难、消纳难、调峰难等问题;目前政策支持的重点和补贴对上游研发和下游应用补贴较少,对新能源产业的可持续发展产生了不利影响。以上一系列的因素,导致了新能源企业的投资回报率相比其他行业偏低,使得新能源企业的发展受到了一定的障碍。
同时,社会对于复合型能源与环境系统工程人才的过度需要,使得课堂教学对于人才的培养形成固定化的模式,缺乏创新,忽视了对基本实践和应用能力的训练。能源与环境系统工程专业的跨学科特征,复合型知识体系难以在课堂一一得到实践。
二、农业院校建设能源与环境系统工程专业的SWOT矩阵分析(见表1)
表1 SWOT矩阵分析
三、能源与环境系统工程专业建设的定位与探索
我校与第一所设立能源与环境系统工程专业的浙江大学在培养模式上是有区别的,[12]我校是农林院校,培养目标定位是以复合型高级工程技术应用型人才为目标,且就目前来看全国具有该专业的农林院校极少,如何在课程体系设置上既能充分体现专业培养特色,又能很好地满足复合型高级工程技术应用型人才培养模式的需求,这在课程体系设置过程中是一个值得深入思考和系统分析的问题,关于此方面我们在课程体系设置中作了一些尝试和探索。
1.培养目标的定位
人才培养目标是各高校根据学校的特色、生源及就业去向、市场需求等情况而确定的。人才培养模式是在培养目标的基础上,随社会需求的变化而动态发展的。[2]高等农林院校应根据自己的类型、办学定位、特色和地方社会需求,确立人才培养目标,选择人才培养模式,培养社会发展所需要的各类人才。[13]
本专业旨在培养掌握能源利用和环境系统工程开发和设计知识的,具备从事清洁能源生产、可再生能源利用、能源环境保护、新能源开发等工程设计、试验鉴定、选型配套、设备维护、技术推广、经营管理等能力的复合型高级工程技术应用型人才。该专业不仅具备了多学科交叉的优势,而且其培养目标也完全顺应了创新型人才的培养方向和社会的发展方向。
2.培养要求的制定
学生学习可再生能源和新能源的基本理论,掌握各种能量转换与有效利用及环境保护与能源开发利用的理论与技术,受到现代工程师的基本训练,具备进行相关可再生能源和新能源工程及设备的设计、优化运行、研究创新与生产管理的综合能力。
毕业生在业务培养方面将获得以下几方面的知识和能力:掌握本专业方向所必须的数学、化学、力学、机械学等方面的基础理论知识;掌握工程热力学、传热学、电工电子学、自动控制理论、机械设计、化工原理等基本理论或基本知识;掌握以可再生能源、新能源开发利用和能源环境保护相关课程等为主要内容的专业知识;具有熟练的外语与计算机应用能力,具有进行科学研究和技术创新所必须的工程技术能力;具有进行科学研究、科技开发的初步能力和一定的组织管理能力。
3.课程体系的设置
在课程体系设置上,建立跨学科、文理渗透和以探究精神为基础的综合性课程体系,在开设专业课的基础上,增加一些通识课程,以开阔学生的视野,陶冶学生的情操。课程体系设置主要包括以下几方面:[14,15]
第一,通识教育课程:如思政、军体、计算机、英语必修课程及通识教育选修课程。
第二,基础教育课程:如“高等数学”、“大学物理”、“无机化学”、“有机化学”、“微生物学”、“电工与电子技术”、“工程制图与计算机绘图”、“工程力学”、“机械设计基础”等必修课程。
第三,专业教育必修与必选课程:如“能源与环境系统工程专业概论”、“生物质资源学”、“生物质能源工程”、“能源生物技术”等专业必修课程;“现代仪器分析”、“风能利用工程”、“光伏科学与工程”、“环境生态学”、“能源经济管理”等专业必选课。
第四,专业选修模块课程:如生物质能源选修模块,包含“沼气工程”、“发酵工程和能源材料学”;如可再生能源选修模块,包含“风力发电原理与应用”、“流体力学及其工程应用”和“太阳能利用技术”;节能减排选修模块,包含“节能技术”、“清洁生产”和“企业节能审计与评估”。
第五,实践环节课程:实验、实习、课程设计和毕业设计等实践教学环节。
总之,培养出符合社会需要的能源与环境人才是构建创新型能源与环境人才培养模式的思路的出发点和落脚点。要求农林院校建设能源与环境系统工程专业时,应充分发挥自身优势,利用社会对能源与环境保护人才的迫切需求的良好机会,构建将能源与环境系统工程的理论学习与实践应用相结合的教学模式,综合运用产学研平台,培养出复合型高级工程技术应用型人才。
参考文献:
[1]李建新.应用型人才培养模式下能源与环境专业教学改革的探索[J].现代企业教育,2009,(2):174.
[2]王丽丽,李文哲,王忠江.能源与环境系统工程专业优势及其未来发展[J].高等农业教育,2010,(6):54-56.
[3]张素萍.山西医科大学汾阳学院卫生信息管理专业教育的SWOT分析[J].基础医学教育,2011,(12):1068-1069.
[4]王蓓.基于SWOT的《商务交际》课堂教学现状分析和改革探析[J].考试周刊,2011,(80):10-11.
[5]能源与环境系统工程专业的建立相关资料[EB/OL].http:///chinese/633753497059375000.pdf.
[6]专业介绍:能源与环境系统工程[EB/OL].http:///HTML/ReadNews_zsgz_zyjj.asp?SID=00741.
[7]张金山,林文雄.对农林院校人才培养科学定位的思考[J].高等农业教育,2011,(6):10-12.
[8]周迎萍.基于农林院校学科专业特色的舞台艺术教育[J].时代教育(教育教学),2012,(1):92.
[9]彭丽频.广东省能源与环境双重约束下的经济增长[J].中国市场,
2011,(2):145-147.
[10]佟庆伟.创新型人才的基本特征及其培养途径[J].实验技术与管理,2008,(5):15-18.
[11]闫强,陈毓川,王安建,等.我国新能源发展障碍与应对:全球现状评述[J].地球学报,2010,(5):759-767.
[12]浙江大学宁波理工学院机电与能源工程分院能源与环境系统工程专业介绍[J].宁波节能,2008,(3).
[13]朱军,肖朗.高等农林院校本科人才培养模式的研究与思考[J].中国电力教育,2011,(10):17-18.
篇9
论文关键词:热动专业;人才培养;教学质量;监控体系
1 热动专业人才培养的背景和意义
能源与环境是当今世界两大热点问题。目前,中国已经把能源与环境问题提升到基本国策的高度,是国家中长期科学和技术发展规划纲要中的重要内容。未来20年,中国将在保证全面实现小康社会和保障国家能源安全的前提下,最大程度地降低能源生产与消费带来的环境成本,保护公众健康和良好的自然环境,减缓全球温室气体的排放,实现能源与环境的可持续发展。因此,社会需要一大批的优秀人才,致力于能源与环境问题的研究。
随着油价的连续上涨,能源行业的职位需要节节迈进。在国际油价上涨的背后,实质是日益增长的能源需求,以及各种新能源发展的机会。除了传统的煤炭、石油,水电、火电以外,核电、风能发电都因为有国家政策的推动,呈现快速发展的趋势,开发利用可再生能源也成为世界能源可持续发展战略的重要组成部分,政府的政策支持、社会的认可以及中国丰富的可再生资源,使得我国新能源产业发展前景十分广阔。因此,确保热动专业人才培养质量对国民经济的发展具有十分重要的意义。
2 构建热动专业教学质量监控体系的必要性
2.1 教学质量监控是确保人才培养质量的重要环节教学
质量是指在教学过程中,在一定的时间和条件下,学生的发展变化达到某一标准的程度以及不同的公众对这种发展变化的满意度。
教学质量是教学工作的生命线,提高教学质量和人才培养质量是教学工作的永恒主题。而教学质量监控是确保人才培养质量的重要手段。人才培养质量的高低,是由师资状况、生源质量、教学设施、教学管理等多个因素构成的,其自身条件及相互关系将对人才培养的质量产生直接或间接的影响,必须对这些主要影响因素进行实时监测和量化评估,以便及时的发现问题,分析问题,采取必要的措施,协调各方面的关系,确保人才培养的目标。
2.2 目前热动专业教学工作中存在的不足
由于生源质量较差,经费投入不足,师资队伍有待优化,教学条件(特别是实验条件)有待完善,教学管理人员较少,在这些情况及问题下,有必要加强热动专业教学质量监控机制,确保在有限的条件和低投入的情况下,确保教学质量的稳步提高。
目前热动专业教学工作中存在的不足:
比如,师资队伍建设,为了学院发展的需要,必须引进高层次人才,但现在引进的人才往往只注重高文凭高学历,而忽视了教学能力;教师团队教学方法不统一,不规范,各有特色,同课不同卷,同卷不同评分标准等。特别是教师的科研冲击教学,致使教师的教学精力投入不足。
产学研相结合是目前高等院校广泛提倡的一种技术创新模式,指科研、教育、生产不同的部门在功能与资源优势上的协同与集成化,是技术创新上、中、下游的对接与耦合,是科技成果转化和产业化的有效实现形式和途径。高等院校和科研机构的高新技术资源通过合作流向企业,与企业的制造技术相结合,实现技术的新组合;通过合作及科技人员之间,科技人员和管理人员、市场营销人员及生产工人之间的互相沟通与交流,实现了人才的新组合;产学研各方面掌握的各种信息包括最新科技动态,新技术研制生产过程、生产供需和政策法规信息,通过产学研相结合汇集一起,实现了信息的有效组合与综合利用,产学研各方共同建立的新经济技术实体,为知识与技术创新提供了新的组织资源,提高企业组织的整体有效性,保证了创新所需技术、人才、信息等资源的稳定供给和有效组合。
但是从另一个角度来看,由于教师要花很多的时间进行科学研究,时常要到现场进行调研,出现了科研冲击教学的情况,调课申请增多,教学组织随意性大,出现了大量的换课、停课现象。
综上所述,有必要在建立健全教学质量监控体系方面进行一些有益的研究和探索。确实提高管理水平和教学质量,保障人才培养目标的实现。
2.3 如何构建热动专业教学质量监控体系
衡量教学质量的主要标准是毕业生能适应社会发展的需要。它具体体现在培养计划规定的培养目标上,要求培养学生德、智、体全面发展、认识和行动相统一,知识能力素质相统一、智力因素和非智力因素相协调发展。影响学院教学质量的内部因素主要是教师水平、学生素质、教学条件和教学管理水平。教学质量管理和监控主要是针对这些因素加以协调、评估和控制,建立通畅的信息反馈网络,从而营造并维护良好的育人环境,达到最佳教学效果。
教学质量监控是热动专业建设教学质量管理工作的重要环节。任何一项管理工作,其过程均由计划、组织、领导、监控四项基本活动所构成。控制确保了各种活动按计划进行,避免产生不必要的偏差。此外,通过反馈,能够时时刻刻对过程进行分析与评价,保证在有限的投入下取得最佳的教学效果。具体实施过程:在考察分析热动专业教学质量存在问题的基础上,根据质量管理理论设置初始的各项指标与各目标函数的关系,采用模块化思想构建合理的教学质量监控系统,利用优化决策的思路不断的对系统进行滚动优化。首先,比较分析国内外先进的教学管理理论和管理理念;其次,对热动专业现在的教学质量现状与问题进行剖析;第三,构建热动专业教学质量监控体系;第四,用实践对构建的系统进行验证;最后,通过验证结果对监控体系不断地进行优化,形成一套行之有效的教学质量监控体系。
3 构建热动专业教学质量监控的方法与措施
3.1 开展教学法活动
每次教学法活动应有明确的中心议题。每学期要集体研究和布置有关教学工作,期末要进行总结。教学法活动的内容主要包括:教学法研究,专业、学科建设,专业课程设置,讨论教学大纲、教学计划的执行情况;研究教学重点和难点,讨论在教材建设、教学内容、教学方法、教书育人等方面的内容,贯彻落实学校、学院的教改任务等。通过定期开展教学法活动,可以紧扣教学进程,及时发现问题、总结经验,交流思想、理清思路,落实整改、夯实基础,真正起到推进教学的作用。
3.2 成立教学工作指导委员会
为保证正常教学秩序,加强教学质量监控,推动教育教学改革,促进热动专业教学管理决策的民主化、科学化,不断提高我院的教学质量和办学水平,学院成立教学工作指导委员会。学院教学指导委员会为院长领导下的学院本科教学工作研究、指导和监督机构。由学院聘请教学经验丰富、学术水平较高、熟悉教学规律、热心教学改革的学科资深教师和实验室主任等组成,其主要任务是推进专业、课程、实验、教材、教学管理与教学研究以及教师队伍等方面的建设和改革,对学院教学改革与发展的重要问题进行理论研究、咨询、监督和指导。协助院长处理日常工作,并负责与校教学指导委员会联系。
3.3 完善互相听课制度
学院教学指导专家组每学期听院内教师和学生班级的课。应组织教师听课,教师应坚持人均每学期听课3次/人,并作为年终业绩考核内容。听课时,要求老师遵守课堂纪律,时间至少1节/1次,并做好听课纪录,填写意见,参与教学法活动,是保证教学质量和教学秩序的一个重要措施。
3.4 实施辅导答疑制度
为了更好地培养学生自主学习、独立思考的良好习惯,帮助学生及时解决学习过程中的疑难问题,在教师中树立“以学生为中心”的教学思想,促进教师不断探索和更新教学手段,提高教学效果,热动专业制定了教师辅导答疑制度。辅导答疑是实现分层教学的最好方法。由于学生的基础存在较大的差距,如果采用同一种方法、同一个教学进程来教育学生,显然是不科学,对学生是不负责的,其教学效果也很难达到理想程度。因此,有必要针对学生实际情况在课堂教学之外,采取辅导答疑的手段,实现分层教学。培育优秀的,辅导中游的,扶持较弱的。这样不仅可以使成绩优异者得到充分发展,更使相对薄弱生在愉悦中逐渐赶上大队伍,实现共同提高。
- 上一篇:如何保护海洋生态环境
- 下一篇:逻辑思维培养的重要性