半导体材料发展特性范文

时间:2023-11-17 17:46:40

导语:如何才能写好一篇半导体材料发展特性,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

半导体材料发展特性

篇1

关键词:半导体,超晶格,集成电路,电子器件

 

1.半导体材料的概念与特性

当今,以半导体材料为芯片的各种产品普遍进入人们的生活,如电视机,电子计算机,电子表,半导体收音机等都已经成为我们日常所不可缺少的家用电器。半导体材料为什么在今天拥有如此巨大的作用,这需要我们从了解半导体材料的概念和特性开始。

半导体是导电能力介于导体和绝缘体之间的一类物质,在某些情形下具有导体的性质。半导体材料广泛的应用源于它们独特的性质。首先,一般的半导体材料的电导率随温度的升高迅速增大,各种热敏电阻的开发就是利用了这个特性;其次,杂质参入对半导体的性质起着决定性的作用,它们可使半导体的特性多样化,使得PN结形成,进而制作出各种二极管和三极管;再次,半导体的电学性质会因光照引起变化,光敏电阻随之诞生;一些半导体具有较强的温差效应,可以利用它制作半导体制冷器等;半导体基片可以实现元器件集中制作在一个芯片上,于是产生了各种规模的集成电路。这种种特性使得半导体获得各种各样的用途,在科技的发展和人们的生活中都起到十分重要的作用。

2.半导体材料的发展历程

半导体材料从发现到发展,从使用到创新,也拥有着一段长久的历史。在20世纪初期,就曾出现过点接触矿石检波器。1930年,氧化亚铜整流器制造成功并得到广泛应用,使半导体材料开始受到重视。1947年锗点接触三极管制成,成为半导体的研究得到重大突破。50年代末,薄膜生长技术的开发和集成电路的发明,使得微电子技术得到进一步发展。60年代,砷化镓材料制成半导体激光器,固溶体半导体材料在红外线方面的研究发展,半导体材料的应用得到扩展。1969年超晶格概念的提出和超晶格量子阱的研究成功,使得半导体器件的设计与制造从“杂志工程”发展到“能带工程”,将半导体材料的研究和应用推向了一个新的领域。90年代以来随着移动通信技术的飞速发展,砷化镓和磷化铟等半导体材料得成为焦点,用于制作高速、高频、大功率及发光电子器件等;近些年,新型半导体材料的研究得到突破,以氮化镓为代表的先进半导体材料开始体现出其超强优越性,被称为IT产业新的发动机。

3.各类半导体材料的介绍与应用

半导体材料多种多样,要对其进一步的学习,我们需要从不同的类别来认识和探究。通常半导体材料分为:元素半导体、化合物半导体、固溶体半导体、非晶半导体、有机半导体、超晶格半导体材料。不同的半导体材料拥有着独自的特点,在它们适用的领域都起到重要的作用。

3.1元素半导体材料

元素半导体材料是指由单一元素构成的具有半导体性质的材料,分布于元素周期表三至五族元素之中,以硅和锗为典型。硅在在地壳中的含量较为丰富,约占25%,仅次于氧气。硅在当前的应用相当广泛,它不仅是半导体集成电路、半导体器件和硅太阳能电池的基础材料,而且用半导体制作的电子器件和产品已经大范围的进入到人们的生活,人们的家用电器中所用到的电子器件80%以上元件都离不开硅材料。锗是稀有元素,地壳中的含量较少,由于锗的特有性质,使得它的应用主要集中于制作各种二极管,三极管等。而以锗制作的其他器件如探测器,也具备着许多的优点,广泛的应用于多个领域。

3.2化合物半导体材料

通常所说的化合物半导体多指晶态无机化合物半导体,即是指由两种或两种以上元素确定的原子配比形成的化合物,并具有确定的禁带宽度和能带结构的半导体性质。化合物半导体材料种类繁多,按元素在元素周期表族来分类,分为三五族(如砷化镓、磷化铟等),二六族(如硒化锌),四四族(如碳化硅)等。如今化合物半导体材料已经在太阳能电池、光电器件、超高速器件、微波等领域占据重要的位置,且不同种类具有不同的性质,也得到不同的应用。。

3.3固溶体半导体材料

固溶体半导体材料是某些元素半导体或者化合物半导体相互溶解而形成的一种具有半导体性质的固态溶液材料,又称为混晶体半导体或者合金半导体。随着每种成分在固溶体中所占百分比(X值)在一定范围内连续地改变,固溶体半导体材料的各种性质(尤其是禁带宽度)将会连续地改变,但这种变化不会引起原来半导体材料的晶格发生变化.利用固溶体半导体这种特性可以得到多种性能的材料。

3.4非晶半导体材料

非晶半导体材料是具有半导体特性的非晶体组成的材料,如α-硅、α-锗、α-砷化镓、α-硫化砷、α-硒等。。这类材料,原子排列短程有序,长程无序,又称无定形半导体,部分称作玻璃半导体。非晶半导体按键合力的性质分为共价键非晶半导体和离子键非晶半导体两类,可用液相快冷方法和真空蒸发或溅射的方法制备。在工业上,非晶半导体材料主要用于制备像传感器、太阳能电池薄膜晶体管等非晶半导体器件。

3.5有机半导体材料

有机半导体是导电能力介于金属和绝缘体之间,具有热激活电导率且电导率在10-10~100S·cm的负一次方范围内的有机物,如萘蒽、聚丙烯和聚二乙烯苯以及碱金属和蒽的络合物等.其中聚丙烯腈等有机高分子半导体又称塑料半导体。有机半导体可分为有机物、聚合物和给体-受体络合物三类。相比于硅电子产品,有机半导体芯片等产品的生产能力较差,但是拥有加工处理更方便、结实耐用、成本低廉的独特优点。目前,有机半导体材料及器件已广泛应用于手机,笔记本电脑,数码相机,有机太阳能电池等方面。

3.6超晶格微结构半导体材料

超晶格微结构半导体材料是指按所需特性设计的能带结构,用分子束外延或金属有机化学气相沉积等超薄层生产技术制造出来的具有各种特异性能的超薄膜多层结构材料。由于载流子在超晶格微结构半导体中的特殊运动,使得其出现许多新的物理特性并以此开发了新一代半导体技术。。当前,对超晶格微结构半导体材料的研究和应用依然在研究之中,它的发展将不断推动许多领域的提高和进步。

4.半导体材料的发展方向

随着信息技术的快速发展和各种电子器件、产品等要求不断的提高,半导体材料在未来的发展中依然起着重要的作用。在经过以Si、GaAs为代表的第一代、第二代半导体材料发展历程后,第三代半导体材料的成为了当前的研究热点。我们应当在兼顾第一代和第二代半导体发展的同时,加速发展第三代半导体材料。目前的半导体材料整体朝着高完整性、高均匀性、大尺寸、薄膜化、集成化、多功能化方向迈进。随着微电子时代向光电子时代逐渐过渡,我们需要进一步提高半导体技术和产业的研究,开创出半导体材料的新领域。相信不久的将来,通过各种半导体材料的不断探究和应用,我们的科技、产品、生活等方面定能得到巨大的提高和发展!

参考文献

[1]沈能珏,孙同年,余声明,张臣.现代电子材料技术.信息装备的基石[M].北京:国防工业出版社,2002.

[2]靳晓宇.半导体材料的应用与发展研究[J].大众商务,2009,(102).

[3]彭杰.浅析几种半导体材料的应用与发展[J].硅谷, 2008,(10).

[4]半导体技术天地.2ic.cn/html/bbs.html.

篇2

【关键词】半导体;材料与器件;教学改革

0 引言

《半导体材料与器件》是信息显示与光电子工程本科专业的专业基础课程,旨在使学生理解并掌握半导体材料的物理学的理论体系及基本器件的功能和应用,了解半导体器件的特性以及相应的仪器检测方法,仪器测试原理,以及相关理论;了解半导体物理学发展的前沿及发展动态。同时,使学生学习本课程领域内专业知识的同时,提高专业英语的听说读写能力,全面提高中英文专业水平,为社会输送高质量人才。

1 优质教学资源建设

合适的教材是保证双语教学能够顺利进行的前提,拥有外文原版教材是双语教学的必要条件。目前,在国内找不到一本合适的半导体材料与器件方面的教材;相关教材,如刘恩科等编著的《半导体物理学》、孟庆臣等编著的《半导体器件物理》、田敬民编著的《半导体物理问题与习题》,邓志杰等编的《半导体材料》,杨树人等编《半导体材料》,但能同时满足《半导体材料与器件》教学要的教材还没有。通过对网络资料搜索,我们找到了相关的英文原版教材《Semiconductor Materials and Device Characterization》,是由美国Arizona State University 的Dieter K. Schroder教授等著作的,这本书系统地介绍了半导体材料与器件的基本参数、特性、测试仪器以及测试方法和原理,是一本优秀的教材,先后在美国、加拿大、德国等地出版。在国内,尚未有出版发行,亦没有影印版可以借鉴。另外,还有一些地道的英文原版教材,如University of Florida的Franky So等编著的《Organic Electronics Materials Processing Devices and Applications》,Robert F. Pierret等编著的《Semiconductor Device Fundamentals》。通过充分整合这些优秀教材,建立教材库,供教学使用,将为半导体材料与器件教学提供有力保障。

2 新型双语教学模式的探索

2.1 传统“填鸭式”教学方式的改进

传统的“填鸭式”教学方法,一个最大的优点是可以在极短的时间内,传授完大部分的课本知识,节省时间。但是,其缺点也显而易见,不利于学生消化、吸收新知识,造成“左耳进、右耳出”的现象。为避免这种现象,我们针对《半导体材料与器件》这门课的教学方式特作改进。以知识点串讲的方式取代传统的逐章逐节的讲解模式,做到一半以上的时间用英语讲解,对重点、难点分别用中、英文对译;穿插师生互动环节,课堂提问,鼓励学生用英语作答,营造双语学习环境。考虑到这门课的开设,设置在第6个学期,学生经过近3年的大学英语学习,应该具备一定的英文阅读写作能力,可以安排一些调研性内容,以报告或小论文的形式体现。对于个章节中专业词汇和专业术语,提前发放给学生自学,以减轻课堂负担。根据循序渐进的原则,讲解的时间逐渐缩短,点到为止,启发式教学。另外,还可以穿插一些最新的研究动态,使学生对知识的应用以及科学前沿有所了解,提高学习兴趣,树立科技知识不断更新进步的理念。

2.2 学生讲授课程的探索

在吃透半导体材料与器件这门课的基础上,精炼教学内容,简化PPT课件,在保证不减少知识点的以及课程进度的前提下,适当添加一些学生讲授课程的比例,激发学生内在的学习潜能,培养其知识获取、内化、表达的能力,内容以课本知识点为主,形式上可以多样化,如分组讨论、随机抽查、即兴演讲等;给学生表现自己才能的机会,营造口语表达的环境,解决“开口难”的难题。条件许可的情况下,邀请外籍老师来听课、指导工作。考虑到学生之间的差异,针对英语基础较差和化学背景比较薄弱的同学,可以单独进行辅导,开开“小灶”,做到因材施教。

3 考核方式的探索

加大平时分所占的比例。现有的考核方式为(30%)平时分 + (70%)期末考试卷面分数,这不利于公平评价学生双语课的成绩,因为听、说能力没有得到体现。既然这样,就应该在平时的表现中体现出来,如,可以将平时分提高到40%,甚至50%,将学生平时在课堂上的听、说、读、写等表现情况也纳入平时分的考核中来,在双语课程考核中,增加这么一条;当然,平时分还应包括出勤率、课堂表现、习题作业完成情况等,一并纳入到平时分的考核中来,这样的考核方式应该更客观、有效。对于平时的习题,任课老师要做到及时评阅,及时发现问题,对错误之处要进行评述,习题必须用英语表述,包括老师对习题的评阅,也必须用英语,错误之处要用英语纠正,起到示范作用。

4 考试题型多样化,增加赠分题

考试题型多样化,除了常见的五大题型,即选择题、填空题、名词解释、简答题、论述题,可以试探性的增加赠分题。赠分题应该是一些难度较大的综合题,以激励那些优秀的学生深入学习科技知识、施展才艺,同时拉开不同层次学生之间的距离,体现层次,进一步充分做到优生优培,因材施教。

5 结论

双语课的教学是一项巨大而漫长的人才培养工程,要遵循渐进的原则。本文就《半导体材料与器件》这门课的双语教学过程中出现的问题做出了讨论,试探性的提出了新的双语教学模式、优质课程建设以及评价方式的变革,以便更好地为社会需求培养高素质人才。

【参考文献】

篇3

电子工业的“脊梁”

1871年,俄国化学家门捷列夫在总结元素周期表时,认为在锌元素后面,铝元素下面应该还有一个未被发现的元素,其性质与铝元素相近,他称之为“类铝元素”。1875年,法国化学家布瓦博德兰从闪锌矿中找到了这个“类铝元素”,他以Gallia(高卢,拉丁语中对法国的称呼)一词将该元素命名为Gallium,元素符号定Ga,中文名为“镓”。

在一定的条件下,镓能与硫、硒、碲、磷、砷、锑等发生反应,从而生成镓的系列化合物,它们都是优质的半导体材料,被广泛应用于光电子领域和微波通信领域,被誉为是电子工业的“脊梁”。目前,消耗在半导体行业的金属镓资源大约占到了总消费量的80%~85%。随着电子信息工业的发展以及镓应用领域的拓展,金属镓的战略地位也越来越凸显。我国于2011年将镓列为战略储备金属,并开始重视对镓的战略储备。

砷化镓是继硅半导体材料之后的又一个应用最为广泛的半导体材料。砷化镓的最大特点是具有很好的光电性能,即在光照或外加电场的条件下,电子激发可以释放出光能来,并且其光发射效率也要比其他半导体材料高一些。20世纪80年代,砷化镓被广泛应用到微波器件、激光器和发光二极管等产品中,被人们认为是最有发展前途的半导体材料。

磷化镓是制作半导体发光元件的又一个优质材料。20世纪70年代,科学家先后用磷化镓作为基板开发出了可以发黄色、橙色和绿色光的发光二极管。到了80年代,砷化铝镓的应用导致了第一代高亮度发光二极管的诞生。到了90年代初,四元素半导体材料磷化铝镓铟的采用,使得发光二极管的发光效率有了很大的提高。用磷化铝镓铟制成的超高亮度红色、橙色、黄色和绿色发光二极管,可以应用于户外显示领域。

氮化镓是Ⅲ-Ⅴ族半导体材料中最具有希望的宽禁带光学材料,曾于20世纪90年代初成就了蓝色LED的辉煌。而蓝色LED的推出,又带来了白光LED照明的新纪元。目前,LED照明技术路线主要有三条,分别为蓝宝石、碳化硅和硅衬底氮化镓基LED技术路线。其中,前两条技术路线分别是以日本和美国为主发展起来的,而第三条技术路线是由我国发展起来的,有力地提升了我国LED技术在国际上的地位。我国科学家研制的硅衬底高光效氮化镓基蓝色发光二极管获得2015年度国家技术发明一等奖。

如今,氮化镓材料的研究与应用已成为全球半导体领域的前沿和热点,并成为研制微电子器件、光电子器件的第三代半导体材料。较宽的直接带隙、较强的原子键、较高的热导率以及较稳定的化学性,使其在光电子、高温大功率器件以及高频微波器件等方面有着广阔的应用前景。

太阳能电池中的“明星”

镓的化合物半导体材料做成的太阳能电池,可以把太阳能直接转变成电能,并且具有比较高的效率。随着太阳能电池材料的不断发展,人们对太阳能电池材料提出了更高的要求。比如,半导体材料的禁带宽度要适中,光电转化效率要高,材料制备过程和电池使用过程中不能存在环境污染,并且材料生产要能规模化等。在这样的背景下,薄膜太阳能电池引起了人们的重视,并成为了科技工作者的研究重点。现在,铜铟镓硒(CIGS)薄膜太阳能电池作为多元化合物薄膜电池的重要一员,其转化效率是所有薄膜太阳能电池中最高的。

在铜铟镓硒薄膜太阳能电池中,通过掺入适量镓替代部分同族的铟,并可以调节CIGS的禁带宽度,这是CIGS材料优于硅系光伏材料的根本所在。同时,CIGS材料的吸收系数很高,还具有较大范围的太阳光谱的响应特性。

铜铟镓硒薄膜太阳能电池具有转换效率高、材料来源广、生产成本低、污染小、无光衰、弱光性能好等显著特点,有望成为新一代有竞争力的商业化薄膜太阳能电池。

医学领域的“奇才”

在医疗领域中,镓合金主要是用作医疗器件和医用材料。例如,用镓合金作为牙齿填充材料,它是一种不含汞的牙体材料,其生物学性能明显优于银汞合金。在医疗诊断领域,镓的化合物也有用武之地。例如,枸橼酸镓注射液可用于肿瘤和炎症的定位诊断和鉴别诊断。

金属镓的熔点为29.75℃,金属铟的熔点为156.61℃,当它们以一定的配比制成合金后,在室温下就可以呈现液态了,因而有很好的流动性。利用镓铟液态合金制作的新型体温计,可作为环保型温度计取代水银温度计。

2015年6月,我国科学家宣布在世界上首次应用液态金属“缝合”了牛蛙断裂的坐骨神经,进而刷新了人们对人体神经连接与修复难题的认知。这种液态金属为镓铟锡合金。镓铟锡合金在常温下为液态,借助注射器可以进入到神经管道中进行“搭桥”,其信号传导效果几乎与未受伤的神经一样。结果,牛蛙一侧坐骨神经在遭受刺激时所产生的电信号,准确无误地传递到了另一侧的神经。这说明镓铟锡液态金属搭建的神经之“桥”几乎达到了完美的程度。这种完美的效果取决于镓铟锡液态合金杰出的导电性能。

镓铟锡液态合金不仅能保证断裂的神经末梢在“搭桥”连接下的快速联通,而且镓铟锡液态合金性能稳定,不与体液、周围器官组织发生反应,因此在X射线的照射下会呈现出极高的影像对比度。如果修复的神经恢复良好,那么可以把液态金属从体内抽离出来,不留任何痕迹。

尖端领域的“新秀”

2013年12月,我国科学家引入气流控制下的液态金属喷墨原理,可在任意表面上绘制电路。这种液态金属“墨水”是以金属镓为主要成分的合金组合,在室温下可以自由流动。

在现代电子工业中,印刷电路板已经不是什么新鲜事儿了。然而,利用液态金属喷墨电子打印方法来“绘制”电路可是一项十分新奇的发明。传统的印刷电路板制作流程通常需要经过电镀、蚀刻等工序,具有高能耗、高污染、高耗时等缺点,并且很难适应各种不同的基底表面。利用液态金属喷墨原理进行的电子打印方式可以在各种复杂的基底表面上“绘制”出任意的电路。

更令人惊奇的是,镓元素还被用于“液态金属机器”的制作呢!这里的“液态金属”通常是指熔点比较低的金属或合金材料,镓、镓铟合金以及镓铟锡合金等在室温下呈现液态,因此都属于“液态金属”。2015年4月,我国科学家在实验中发现,一个直径约为5毫米的液态镓金属球,在电解液中吞食了0.012克铝之后,能以每秒5厘米的速度前进。科学家认为,液态镓金属球的行为类似于自然界的简单软体动物的习性,能够把“吃”进的食物转化为能量,并且具有自主运动的能力,难怪科学家把它称为“液态金属软体动物”或“液态金属机器”。进一步的研究认为,“液态金属机器”之所以能从铝中获得自主运动的能量,是因为“液态金属”和活泼的铝形成原电池反应,从而产生电荷的运动,继而引起“液态金属”表面张力的不平衡,对易于变形的“液态金属”产生强大的推力。同时,在上述电化学反应过程中产生的氢气也对“液态金属”的马达行为施加了影响。

尽管基于镓及镓合金的“液态金属机器”的功能还是非常有限的,但是它带给人们的启示和影响却是十分深远的。比如,“液态金属机器”的自主变形和运动等特性,为人们研制实用化的智能马达、血管机器人以及流体泵送系统提供了思路和模板。随着“液态金属机器”的日趋完善和升级,想必会在执行高难度操作等方面取得新的突破,并有望在医疗、科研以及军事等领域发挥巨大作用。

不断拓展的“领地”

由于镓具有“热缩冷胀”的性质,因此具有比较好的铸造性,可以用其来制造铅字合金,这样可使字体更加清晰。利用镓的低熔点形成的含镓易熔合金,可应用于电路熔断器和各种保险装置以及自动灭火装置。利用镓与铜、镍、锡、金等成分可制成冷焊剂,以解决异型薄壁等难以焊接的难题。尽管镓的熔点非常低,但是它的沸点却非常高(2070℃)。利用镓的这个特性可以用其来制造测量高温的温度计,用这种温度计可以测量炼钢炉、反应炉、原子反应堆的温度。

篇4

关键词半导体材料量子线量子点材料光子晶体

1半导体材料的战略地位

上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

2几种主要半导体材料的发展现状与趋势

2.1硅材料

从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。

从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smartcut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。

理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

2.2GaAs和InP单晶材料

GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。

目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的2-3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI-GaAs发展很快。美国莫托罗拉公司正在筹建6英寸的SI-GaAs集成电路生产线。InP具有比GaAs更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP单晶的关键技术尚未完全突破,价格居高不下。

GaAs和InP单晶的发展趋势是:

(1)。增大晶体直径,目前4英寸的SI-GaAs已用于生产,预计本世纪初的头几年直径为6英寸的SI-GaAs也将投入工业应用。

(2)。提高材料的电学和光学微区均匀性。

(3)。降低单晶的缺陷密度,特别是位错。

(4)。GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技术。

2.3半导体超晶格、量子阱材料

半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。

(1)Ⅲ-V族超晶格、量子阱材料。

GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(HEMT),赝配高电子迁移率晶体管(P-HEMT)器件最好水平已达fmax=600GHz,输出功率58mW,功率增益6.4db;双异质结双极晶体管(HBT)的最高频率fmax也已高达500GHz,HEMT逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40Gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。

虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nmInGaAs带间量子级联激光器,输出功率达5W以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。

为克服PN结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年InGaAs/InAIAs/InP量子级联激光器(QCLs)发明以来,Bell实验室等的科学家,在过去的7年多的时间里,QCLs在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士Neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的QCLs的工作温度高达312K,连续输出功率3mW.量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120K5μm和250K8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。

目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的MOCVD中心,法国的PicogigaMBE基地,美国的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(2)硅基应变异质结构材料。

硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米Si/SiO2),硅基SiGeC体系的Si1-yCy/Si1-xGex低维结构,Ge/Si量子点和量子点超晶格材料,Si/SiC量子点材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。

另一方面,GeSi/Si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止频率已达200GHz,HBT最高振荡频率为160GHz,噪音在10GHz下为0.9db,其性能可与GaAs器件相媲美。

尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,Motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs外延薄膜,取得了突破性的进展。

2.4一维量子线、零维量子点半导体微结构材料

基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。

目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所MBE小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的MBE小组等研制成功的In(Ga)As/GaAs高功率量子点激光器,工作波长lμm左右,单管室温连续输出功率高达3.6~4W.特别应当指出的是我国上述的MBE小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1W时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。

在单电子晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本NTT就研制成功沟道长度为30nm纳米单电子晶体管,并在150K观察到栅控源-漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年Yauo等人采用0.25微米工艺技术实现了128Mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的应用方面迈出的关键一步。目前,基于量子点的自适应网络计算机,单光子源和应用于量子计算的量子比特的构建等方面的研究也正在进行中。

与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料科学重点实验室的MBE小组,在继利用MBE技术和SK生长模式,成功地制备了高空间有序的InAs/InAI(Ga)As/InP的量子线和量子线超晶格结构的基础上,对InAs/InAlAs量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。

王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如ZnO、SnO2、In2O3和Ga2O3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的LarsSamuelson教授领导的小组,分别在SiO2/Si和InAs/InP半导体量子线超晶格结构的生长制各方面也取得了重要进展。

低维半导体结构制备的方法很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。目前发展的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。

2.5宽带隙半导体材料

宽带隙半导体材主要指的是金刚石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶体等,特别是SiC、GaN和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,III族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(LED)和紫、蓝、绿光激光器(LD)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年GaN材料的P型掺杂突破,GaN基材料成为蓝绿光发光材料的研究热点。目前,GaN基蓝绿光发光二极管己商品化,GaN基LD也有商品出售,最大输出功率为0.5W.在微电子器件研制方面,GaN基FET的最高工作频率(fmax)已达140GHz,fT=67GHz,跨导为260ms/mm;HEMT器件也相继问世,发展很快。此外,256×256GaN基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本Sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸GaN单晶材料,这将有力的推动蓝光激光器和GaN基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重视,这是因为它们在长波长光通信用高T0光源和太阳能电池等方面显示了重要应用前景。

以Cree公司为代表的体SiC单晶的研制已取得突破性进展,2英寸的4H和6HSiC单晶与外延片,以及3英寸的4HSiC单晶己有商品出售;以SiC为GaN基材料衬低的蓝绿光LED业已上市,并参于与以蓝宝石为衬低的GaN基发光器件的竟争。其他SiC相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。

II-VI族兰绿光材料研制在徘徊了近30年后,于1990年美国3M公司成功地解决了II-VI族的P型掺杂难点而得到迅速发展。1991年3M公司利用MBE技术率先宣布了电注入(Zn,Cd)Se/ZnSe兰光激光器在77K(495nm)脉冲输出功率100mW的消息,开始了II-VI族兰绿光半导体激光(材料)器件研制的。经过多年的努力,目前ZnSe基II-VI族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之GaN基材料的迅速发展和应用,使II-VI族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。

宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如GaN/蓝宝石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。

目前,除SiC单晶衬低材料,GaN基蓝光LED材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如GaN衬底,ZnO单晶簿膜制备,P型掺杂和欧姆电极接触,单晶金刚石薄膜生长与N型掺杂,II-VI族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。

3光子晶体

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,Campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。

4量子比特构建与材料

随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。1994年Shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥Rivest,Shamir和Adlman(RSA)体系,引起了人们的广泛重视。

所谓量子计算机是应用量子力学原理进行计的装置,理论上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是Kane最近提出的一个实现大规模量子计算的方案。其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mK的低温下。

这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29Si)的硅单晶;减小SiO2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。

5发展我国半导体材料的几点建议

鉴于我国目前的工业基础,国力和半导体材料的发展水平,提出以下发展建议供参考。

5.1硅单晶和外延材料硅材料作为微电子技术的主导地位

至少到本世纪中叶都不会改变,至今国内各大集成电路制造厂家所需的硅片基本上是依赖进口。目前国内虽已可拉制8英寸的硅单晶和小批量生产6英寸的硅外延片,然而都未形成稳定的批量生产能力,更谈不上规模生产。建议国家集中人力和财力,首先开展8英寸硅单晶实用化和6英寸硅外延片研究开发,在“十五”的后期,争取做到8英寸集成电路生产线用硅单晶材料的国产化,并有6~8英寸硅片的批量供片能力。到2010年左右,我国应有8~12英寸硅单晶、片材和8英寸硅外延片的规模生产能力;更大直径的硅单晶、片材和外延片也应及时布点研制。另外,硅多晶材料生产基地及其相配套的高纯石英、气体和化学试剂等也必需同时给以重视,只有这样,才能逐步改观我国微电子技术的落后局面,进入世界发达国家之林。

5.2GaAs及其有关化合物半导体单晶材料发展建议

GaAs、InP等单晶材料同国外的差距主要表现在拉晶和晶片加工设备落后,没有形成生产能力。相信在国家各部委的统一组织、领导下,并争取企业介入,建立我国自己的研究、开发和生产联合体,取各家之长,分工协作,到2010年赶上世界先进水平是可能的。要达到上述目的,到“十五”末应形成以4英寸单晶为主2-3吨/年的SI-GaAs和3-5吨/年掺杂GaAs、InP单晶和开盒就用晶片的生产能力,以满足我国不断发展的微电子和光电子工业的需术。到2010年,应当实现4英寸GaAs生产线的国产化,并具有满足6英寸线的供片能力。

5.3发展超晶格、量子阱和一维、零维半导体微结构材料的建议

(1)超晶格、量子阱材料从目前我国国力和我们已有的基础出发,应以三基色(超高亮度红、绿和蓝光)材料和光通信材料为主攻方向,并兼顾新一代微电子器件和电路的需求,加强MBE和MOCVD两个基地的建设,引进必要的适合批量生产的工业型MBE和MOCVD设备并着重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基蓝绿光材料,InGaAs/InP和InGaAsP/InP等材料体系的实用化研究是当务之急,争取在“十五”末,能满足国内2、3和4英寸GaAs生产线所需要的异质结材料。到2010年,每年能具备至少100万平方英寸MBE和MOCVD微电子和光电子微结构材料的生产能力。达到本世纪初的国际水平。

宽带隙高温半导体材料如SiC,GaN基微电子材料和单晶金刚石薄膜以及ZnO等材料也应择优布点,分别做好研究与开发工作。

(2)一维和零维半导体材料的发展设想。基于低维半导体微结构材料的固态纳米量子器件,目前虽然仍处在预研阶段,但极其重要,极有可能触发微电子、光电子技术新的革命。低维量子器件的制造依赖于低维结构材料生长和纳米加工技术的进步,而纳米结构材料的质量又很大程度上取决于生长和制备技术的水平。因而,集中人力、物力建设我国自己的纳米科学与技术研究发展中心就成为了成败的关键。具体目标是,“十五”末,在半导体量子线、量子点材料制备,量子器件研制和系统集成等若干个重要研究方向接近当时的国际先进水平;2010年在有实用化前景的量子点激光器,量子共振隧穿器件和单电子器件及其集成等研发方面,达到国际先进水平,并在国际该领域占有一席之地。可以预料,它的实施必将极大地增强我国的经济和国防实力。

篇5

自上世纪中期投入应用以来,半导体已经深入到人们的生活、学习和工作的方方面面,给电子工业带来革命性的影响。但是这个时刻陪伴身边的半导体究竟是什么?

中国科学院王占国院士同半导体打了一辈子交道,他这样回答:半导体是介于导体和绝缘体之间的一类材料。它有四个特点:热敏性,与金属不同,半导体的电阻与温度变化是相反的,电阻越小温度越高;光敏性,光一照,它的电导就发生变化;光伏效应,光照产生光电压;整流效应,从A端到B端是通的,从B端到A端就不通了。

半导体的特性为我们带来了无穷益处:“如发射一吨重的卫星,假如用晶体管代替电子管重量可减轻100千克,就可以节省9吨的燃料。它不仅广泛应用在航空航天、人造卫星等高科技领域,而且是我们生活中不可或缺的:医学上的核磁共振仪,日常用的收音机、电视机、洗衣机、微波炉、电冰箱、电子表、手机……里面核心控制的设备都是半导体。半导体应该说是无孔不入、无处不在。”

硅作为半导体材料的代表,现在已经成为微电子技术的基础材料,我们用的电子元器件和电路的90%都是硅材料。使用硅材料做集成电路,产值已达到每年约3000亿美元,由硅材料做成的器件和电路可以拉动几万亿美元的电子产业,半导体硅材料可以说是信息时代的基础。

追随一生的半导体

王占国1938年12月29日生于河南镇平。1962年毕业于南开大学物理系,同年到中科院半导体所工作。从那时起,他的人生脚步,就没有离开过半导体这个领域。

参加工作以后,王占国致力于半导体材料光电性质和硅太阳电池辐照效应研究。其中,硅太阳电池电子辐照效应研究成果为我国人造卫星用硅太阳电池定型(由PN改为NP)投产起了关键作用。

1971~1980年,他负责设计、建成了低温电学测量和光致发光实验系统,并对GaAs和其它III-V族化合物半导体材料的电学、光学性质进行了研究。其中,体GaAs热学和强场性质的实验结果以及与林兰英先生一起提出的“GaAs质量的杂质控制观点”,对我国70年代末纯度GaAs材料研制方向的战略转移和GaAs外延材料质量在80年代初达国际先进水平贡献了力量。

1980~1983年,经黄昆和林兰英两位所长推荐,他赴国际著名的深能级研究中心瑞典隆德大学固体物理系,从事半导体深能级物理和光谱物理研究。在该领域权威H.G.Grimmeiss教授等的支持和合作下,做出了多项有国际影响的工作:提出了识别两个深能级共存系统两者是否是同一缺陷不同能态新方法,解决了国际上对GaAs中A、B能级和硅中金受主及金施主能级本质的长期争论;提出了混晶半导体中深能级展宽和光谱谱线分裂的物理新模型,解释了它们的物理实质;澄清和识别了一些长期被错误指派的GaAs中与铜等相关的发光中心等。

1984~1993年,在半导体材料生长及性质研究中,提出了GaAs电学补偿五能级模型和电学补偿新判据,为提高GaAs质量、器件与电路的成品率提供了依据。与人合作,提出了直拉硅中新施主微观结构新模型,摒弃了新施主微观结构直接与氧相关的传统观点,成功地解释了现有的实验事实,预示了它的新行为;与龚秀英等同事合作,在国内率先开展了超长波长锑化物材料生长和性质研究,并首先在国内研制成功InGaAsSb,AlGaAsSb材料及红外探测器和激光器原型器件。

他协助林兰英先生,开拓了我国微重力半导体材料科学研究新领域,首次在太空从熔体中生长出GaAs单晶并对其光、电性质作了系统研究,受到国内外同行的高度评价。

他于1986年任半导体所研究员,材料室主任;1990年任博士生导师,1991~1995年担任副所长;1995年当选为中国科学院院士。1991~2001年任国家高技术新材料领域专家委员会委员、常委、功能材料专家组组长,因对863计划做出突出贡献,2001年863计划实施十五周年时,被科技部授予先进个人称号;1996~2000年任国家S-863计划纲要建议软课题研究新材料技术领域专家组组长;2003年任国家材料中长期科技发展战略研究新材料专家组组长;1997~2002年和2006~2009年任国家自然科学基金信息学部半导体学科评审专家组组长等。此外,还有多种学术兼职。

任863专家委员会委员期间,他积极推动了我国全固态激光器的研发和半导体照明事业的发展。如今,我国的半导体白光照明已经处于国际先进水平,极大地促进了节能环保事业的发展。

从上世纪90年代起,他工作的重点已集中在半导体低维结构和量子器件这一国际前沿研究方面,先后主持和参与负责十多个国家863、973,国家重点科技攻关,国家自然科学基金重大、重点和面上项目以及中科院重点、重大等研究项目。

他和MBE组的同事一起,在成功地研制了国内领先、国际先进水平的电子迁移率(4.8K)高达百万的2DEG材料和高质量、器件级HEMT和P-HEMT结构材料的基础上,又发展了应变自组装In(Ga)As/GaAs,InAlAs/AlGaAs/GaAs, InAs/InAlAs/InP和InAs/InGaAs/InP等量子点、量子线和量子点(线)超晶格材料生长技术,并初步在纳米尺度上实现了对量子点(线)尺寸、形状和密度的可控生长;首次发现InP基InAs量子线空间斜对准的新现象;成功地制备了从可见光到近红外的量子点(线)材料,并研制成功室温连续工作输出光功率达4瓦(双面之和)的大功率量子点激光器,为当时国际上报道的最好结果之一;红光量子点激光器和 InGaAs/InAlAs、GaAs/AlGaAs量子级联激光器与探测器材料及其器件的研究水平也处在国际的前列;2001年,他作为国家重点基础研究发展计划973项目“信息功能材料相关基础问题”的首席科学家,又提出了柔性衬底的概念,为大失配异质结构材料体系研制开辟了一个可能的新方向。

上述研究成果曾获国家自然科学二等奖和国家科技进步三等奖,中国科学院自然科学一等奖和中国科学院科技进步一、二和三等奖,何梁何利科学与技术进步奖,国家重点科技攻关奖以及优秀研究生导师奖等十多项;从1983年以来,先后在国外著名学术刊物180多篇,培养博士、硕士和博士后百余名。

新科技革命的起点

硅集成电路的器件尺度不可能无限减小,摩尔定律在硅器件尺寸减小到一定程度的时候,会遇到量子效应、功耗问题、隧穿问题等等,这就限制了现有模式的继续发展。国际上预计,2022年硅集成电路器件的最小尺寸将达到10纳米左右。

篇6

关键词 LED芯片;光学模拟;Tacacepro

中图分类号TU7 文献标识码A 文章编号 1674-6708(2014)113-0126-02

0引言

目前科学技术日益进步,人民的生活水平不断的提高。人们对家具生活得舒适程度也要求越来越高。现在国内外一些发展快速的城市的住宅用的灯具、景观灯已经大马路上面用的照明路灯已经大部分都开始采用新型的LED节能灯了。但是由于LED灯的制作成本较高,导致LED在市场占领方面略显迟缓。目前国内外著名学者和一些研究机构以及一些大型的企业正在夜以继日的不断探索,希望可以研究出一些新型的LED材料,减小LED制作的成本,使得LED灯的普及率更加高些。

1 LED灯的发光原理和LED的光学参数

1.1 LED灯的发光原理

Light emitting diode的英文缩写就是LED。LED的基础结构是在一小片的发光半导体材料上面,放置一个电极的引线架子,接着在架子的周围用环氧树脂固定并密封。这样子可以起到保护电机芯线和半导体的作用,这样子制作出来的LED抗震性非常好,且具有一定的防水作用。

LED发光二极管的主要部分是有由两片N型的半导体和P型半导体背对背制作而成的芯片。因为P型半导体材料和P型半导体材料上面都带了载流子,这两种不同的半导体的交界面之间会形成一个空间电荷存储区间。也就是我们常说的PN结。在给半导体材料的正负极之间加上电压的情况下,PN结之间就会形成电场,PN结中的空子和电子就会在电子的作用下发生运动,并结合在一起。在空子和电子的结合过程中,会产生多余的能量,则这些能量会以发光的方式释放出来。最终实现电能向光能的转换。LED的发光原理图图1所示。给LED加上正向电压,也就在半导体的P极接上正极,在半导体的N极接上负极。在LED的两极之间就会形成电流,电流从正极流向负极,这样子在空穴跟电子的结合过程之间就会发出不同颜色的光。LED间通的电流大小决定了Led的发光亮度。而LED的发光颜色主要是由半导体材料里面参杂的荧光粉的材料来控制的。

1.2 LED的光学参数

为了鉴别一个LED的好坏,经常会有一些参数来描述LED。常用的LED的光学参数有光通量、发光强度、亮度、色温、显色性以及光效等参数。

光通量是指在正常情况下人眼可以感觉到的光的辐射功率。它等于在单位时间里面一束光的辐射的能量与该束光所对应的相对视率的成绩。由于人眼对不同的光的灵敏度不一样,所以当光的辐射功率相等的时候,并不能代表光通量也是相同的。发光强度又叫光强,它是指发光体在一个固定的立体单元里面传输的光通量与该立体单元的面积的商,这个商就代表了单位体积的光通量。亮度是指光源在给定的一个方向里面单位体积上面的光束的发光强度。而光效而是指光源的发光效率。也就是光源的总光通量与该发光体所消耗的能量的商。发光体的发光效率越高,代表了该照明设备将电能转化成光能的能力越强。也代表了在同能的能量的情况下,该设备的照明性能越强,也就是该设备所能达到的亮度越大。显色性是指光源对物体颜色的分辨程度。也就是对颜色的逼真效果。发光设备的显色性能越高,则该设备对颜色的在线能力越强,而我们看到的颜色也就越接近于其本来的颜色。而显色性能较差的设备,则对颜色的能力在线能力越差,我们所看到颜色也与越来的颜色相差越大。

尽管LED灯功率小,占用空间小,易于调色,颜色可操作性强。但是LED光源也存在一些缺陷。主要缺陷表现在以下几个方面:LED发光功率小、LED的成本价格太高、制作工艺要求高。

2 LED芯片的测试

由于LED技术发展迅速,LED市场也发展快速。目前不少企业正逐渐把大量的资金都投入到LED行业当中,并成立的相应的企业。然而当中却存在一些唯利是图的商人,他们利用人们对LED技术的缺乏的弱点,都宣称自己企业的生产的LED灯的寿命可以达到60000小时以上,有的商家甚至说明自己的产品可以达到110000小时以上。为此如何才能正确的区分出那些产品是合格产品,那些产品的质量真的就像商人所描述的那样子,现在已经逐渐成为一个困扰使用者的巨大问题。为此,本文提供一个简单的测试办法:测试方案的电路图如下图2.首先,我们采用积分球来记录相应LED二极管在正向导通的情况下的导通压降。接着根据这个导通压降和电路的电流,确定和相对应二极管电路回路电阻值的大小。以确保二极管不被烧坏。接着在测试之前,对二极管进行校准,确保二极管寿命测试的准确性。然后测量每个二极管在不同的工作电流下的发光量是多大以及正向导通压降是多大,并通过光谱分析仪器来确定每个二极管的最初光谱是什么。为了保证测量的精度,对每个二极管都测试5次以上,并取平均值。最后记录该数据。最后在每个月的固定时间段对每一颗的LED都进行测试,测试其的光通量,并给LED同上三种不同的电流,并记录此时的LED的光通量,根据不同电流下的LED的光通量值绘制出相应二极管的光通量变化曲线。根据绘制的二极管的光通量变化曲线就可以大致的计算出二极管的实际工作时间。通过二极管的频谱分析仪可以知道二极管的色度漂移情况。

3 LED芯片及LED灯具的光学模拟

传统的LED灯的照明设计都是通过大量实验得到的,尽管所测得的结果比较准确,但是这个测试结果只有在灯具的外观已经制作完成以后才可以进行大量实验。要是测试的结果不能和原先设计的一样,就需要重新设计LED的外观,浪费大量的人力和财力。本文以Tacacepro光学模拟软件为核心,对LED灯具的外观不断修改,对LED灯的数量和阵列方式不断的改进,通过模拟的方式,并进行了大量的仿真,终于得出了LED灯排列方式对LED灯总体发光效率以及空间照明的影响规律。并最终设计出了一种发光效率高,节约能源的LED灯具。LED的模拟过程如下;首先运用Tacacepro对LED灯具进行建模,所建的模型如图3。并通过软件设置LED芯片的光源属性等参数。接着定义LED灯具的各种材料特性。并定义光源的波长以及光源的阀值等不同的参数。最后运用软件对LED的光学设计模型模拟。

参考文献

[1]严萍,李剑清.照明用LED光学系统的计算机辅助设计.半导体光电,2004,25(3):181-183.

[2]安连生,王自强.照明光学系统计算机辅助设计中光源的数学模型.灯与照明,1999,23(6):29-31.

篇7

关键词:光电探测器 光电导效应 光电导器件

光电探测器是一种利用半导体材料的光电导效应制成的能够将光辐射转换成电量的器件,它利用这个特性可以进行显示及控制的功能。光探测器可以代替人眼,由于具有光谱响应范围宽的特点,光探测器亦是人眼的一个延伸。光电探测器利用被照射材料由于辐射关系电导率发生改变的物理特点,在红外波段中的应用主要在红外热成像、导弹制造及红外遥感等一些方面;在可见光或近红外波段中的应用主要在在工业自动控制、光度计量及射线测量和探测等方面。随着电子科学技术的日趋成熟,光电探测器的应用将更加广泛。

1、光电探测器的发展

1873年,英国W.史密斯发现硒的光电导效应,但是这种效应长期处于探索研究阶段,未获实际应用。第二次世界大战以后,随着半导体的发展,各种新的光电导材料不断出现。在可见光波段方面,到50年代中期,性能良好的硫化镉、硒化镉光敏电阻和红外波段的硫化铅光电探测器都已投入使用。60年代初,中远红外波段灵敏的Ge、Si掺杂光电导探测器研制成功,典型的例子是工作在3~5微米和8~14微米波段的Ge:Au(锗掺金)和Ge:Hg光电导探测器。60年代末以后,HgCdTe、PbSnTe等可变禁带宽度的三元系材料的研究取得进展。

在60年代初以前还没有研制出适用的窄禁带宽度的半导体材料,因而人们利用非本征光电导效应。Ge、Si等材料的禁带中存在各种深度的杂质能级,照射的光子能量只要等于或大于杂质能级的离化能,就能够产生光生自由电子或自由空穴。非本征光电导体的响应长波限λ由下式求得λc=1.24/Ei式中Ei代表杂质能级的离化能。

到60年代中后期,Hg1-xCdxTe、PbxSn1-xTe、PbxSn1-xSe等三元系半导体材料研制成功,并进入实用阶段。它们的禁带宽度随组分x值而改变,例如x=0.2的HG0.8Cd0.2Te材料,可以制成响应波长为 8~14微米大气窗口的红外探测器。

2、光电探测器的工作原理

光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。

所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象,它光是内光电效应的一种。当照射的光子能量hv等于或大于半导体的禁带宽度Eg时,光子能够将价带中的电子激发到导带,从而产生导电的电子、空穴对,这就是本征光电导效应。这里h是普朗克常数,v是光子频率,Eg是材料的禁带宽度(单位为电子伏)。因此,本征光电导体的响应长波限λc为λc=hc/Eg=1.24/Eg(μm)式中c为光速。本征光电导材料的长波限受禁带宽度的限制。

光电导器件:利用具有光电导效应的半导体材料做成的光电探测器称为光电导器件,通常叫做光敏电阻。在可见光波段和大气透过的几个窗口,即近红外、中红外和远红外波段,都有适用的光敏电阻。光敏电阻被广泛地用于光电自动探测系统、光电跟踪系统、导弹制导、红外光谱系统等。

光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一种电流放大器件。尤其是光电倍增管具有很高的电流增益,特别适于探测微弱光信号;但它结构复杂,工作电压高,体积较大。光电倍增管一般用于测弱辐射而且响应速度要求较高的场合,如人造卫星的激光测距仪、光雷达等。

硫化镉CdS和硒化镉CdSe光敏电阻是可见光波段用得最多的两种光敏电阻;硫化铅PbS光敏电阻是工作于大气第一个红外透过窗口的主要光敏电阻,室温工作的PbS光敏电阻响应波长范围1.0~3.5微米,峰值响应波长2.4微米左右;锑化铟InSb光敏电阻主要用于探测大气第二个红外透过窗口,其响应波长3~5μm;碲镉汞器件的光谱响应在8~14 微米,其峰值波长为10.6微米,与CO2激光器的激光波长相匹配,用于探测大气第三个窗口(8~14微米)。

3、光电探测器的结构

第一支InGaAs光电探测器在1978年就被报道,略晚于第一支InGaAsP光电探测器。这些探测器都可以通过改变组分含量从而达到需要的波长响应,一种典型的InGaAsP光电探测器结构图如下图所示:

图 一种典型的InGaAsP光电探测器结构图

利用异质结构以In0 6qGa0 31As0 66P0 34作为本征吸收层,以In0.7:Ga0.22As0.47P0.53为P型表面入射窗,得到了峰值响应波长为1.36 gm的窄的频谱响应。为了制作方便,一股将这种光电探测器做成台面结构。

InGaAsP光电探测器中,表面钝化层、载流子产生复合及隧穿等都会引起暗电流。通过优化表面钝化层可以使表面漏电流密度小到IlA/cm量级。

s.R.Forrestt等人指出,在较低偏压下载流子产生复合对暗电流起主导作用,只有当偏压大于100V时隧穿电流才变得显著。即使由产生复合引起的小的暗电流也会对光电探测器灵敏度产生不利影响,因此应合理设计结构使暗电流最小。

为了制作方便,将这种光电探测器做成台面结构,包括外延生长,扩散及离子注入等方法。然而这些台面不利于集成,难以实现光电子集成回路(OEIC),因此人们又做出了各种平面结构,这些平面结构类似于上图所示,同时这种平面结构有助于因表面漏电流引起的暗电流。

4、光电探测器的种类

篇8

关键词:有机废水处理 电化学 羟基自由基 电Fenton试剂 电解氧化 半导体光电催化

近年来,浓度高且结构稳定的有机废水不断出现,如何有效地去除这些难降解的有机废水已经成为水处理的热点问题。羟基自由基(·OH)因其有极高的氧化电位(2.8V),其氧化能力极强,与大多数有机污染物都可以发生快速的链式反应,无选择性地把有害物质氧化成CO2、H2O或矿物盐,无二次污染[1]。目前国内外有不少研究者进行利用·OH处理有机废水的研究。产生·OH的途径较多,主要有Fenton法[2]、氧化絮凝法[3]、臭氧法[4]、超声降解法[5]和光催化法[6]。近年来应用电化学法产生·OH处理有机废水获得了较大的进展,在降解和脱色上卓有成效。下面就对电生·OH的途径及其在有机废水处理中应用的最新进展进行评述。

1.电Fenton法

工艺上将Fe2+和H2O2的组合称为Fenton试剂。它能有效地氧化降解废水中的有机污染物,其实质是H2O2在Fe2+的催化下产生具有高反应活性的·OH。目前,Fenton法主要是通过光辐射、催化剂、电化学作用产生·OH。利用光催化或光辐射法产生·OH,存在H2O2及太阳能利用效率低等问题。而电Fenton法是H2O2和Fe2+均通过电化学法持续地产生[7],它比一般化学Fenton试剂具有H2O2利用率高、费用低及反应速度快等优点。因此,通过电Fenton法产生·OH将成为主要途径之一。

应用电Fenton法产生·OH处理有机废水多数是以平板铁为阳极,多孔碳电极为阴极,在阴极通以氧气或空气。通电时,在阴阳两极上进行相同电化当量的电化学反应,在相同的时间内分别生成相同物质的量的Fe2+和H2O2,从而使得随后生成Fenton试剂的化学反应得以实现[8]。

溶液的pH值对氧阴极还原获得H2O2的反应有很大的影响[9]。研究表明,溶液的pH值不仅对阴极反应电位和槽电压有影响,还将决定着生成H2O2的电流效率,进而影响随后生成·OH的效率及与有机污染物的降解脱色反应。

然而,电解氧化法工业化应用仍存在着一些问题,如电流效率仍然偏低、能耗大、电催化降解反应器的效率较低、电化学催化降解有机污染物的机理还需要进一步探讨等[21]。加强对上述问题的研究,是该法今后发展的方向。

3. 半导体电催化法

由于某些半导体材料有良好的光化学特性和活泼的电化学行为,近年来,利用半导体材料制成电极在有机废水中的研究应用已引起众多研究者的重视[22]。

半导体催化材料在电场中有“空穴”效应[23],即半导体处于一定强度的电场时,其价带电子会越过禁带进入导带,同时在价带上形成电激空穴,空穴有很强的俘获电子的能力,可以夺取半导体颗粒表面的有机物或溶剂中的电子发生氧化还原反应。在水溶液发生的电催化氧化反应中,水分子在半导体表面失去电子生成强氧化性的·OH,同时半导体催化剂和电极产生的H2O2等活性氧化物质也起协同作用,因此,在电催化反应体系中存在多种产生强氧化因子的途径,能有效地提高了催化降解的效率。在半导体电催化反应中,电压和电流强度都要达到一定的值。一般来说,随着外加电压的升高,体系产生·OH的速率增大,有机物的去除效率提高[24]。但也有研究发现,当外加电压达到一定值时,进一步升高电压会抑制自由基的生成,降低了催化效率[25]。

半导体电催化法在有机废水处理中的研究,主要以在掺杂半导体电极和纳米半导体材料电极作为阳极产生·OH处理有机废水。董海等[26]采用掺锑的SnO2粉制成的半导体电极,研究了含酚废水的电催化降解反应,对酚的降解率达90%。

4. 半导体光电催化法

在紫外光等照射下,并外加电场的作用下TiO2半导体内也会存在“空穴”效应,这种光电组合产生·OH的方法又称光电催化法。TiO2光电组合效应不但可以把导带电子的还原过程同价带空穴的氧化过程从空间位置上分开(与半导体微粒相比较),明显地减少了简单复合,结果大大增加了半导体表面·OH的生成效率且防止了氧化中间产物在阴极上的再还原,而且导带电子能被引到阴极还原水中的H+,因此不需要向系统内鼓入作为电子俘获剂的O2[27]。

由于上述优势,光电催化技术在有机废水的研究工作得到了迅速发展,戴清等[28]利用TiO2薄膜电极作为工作电极,建立了电助光催化体系,以含氯苯酚(例如4-氯苯酚和2,4,6-三氯苯酚)废水作为降解对象,进行光电催化研究。 Cheng 等[29]用三维电极光电催化降解处理亚甲基兰废水,研究表明,其脱色率和COD的去除率分别为95%和87%。Waldne等[30]用TiO2半导体光电催化法进行降解4-氯苯酚的研究,取得较好处理效果。

目前,光电化学反应的研究工作还大多局限于实验室阶段,应用纳米TiO2半导体电极光电催化法处理大规模工业有机废水的报道还不多,主要是由于TiO2半导体重复利用率不高和光电催化反应器光电催化效率降低。因此,把TiO2经过改性、修饰制备成高效且能重复使用的电极,如在TiO2材料表面上进行贵金属沉积、掺杂金属离子、复合半导体、表面光敏化剂等[31],已成为以TiO2为半导体电极进行光电催化降解有机污染物研究的热点。此外,这项技术的实用化必然涉及到反应器的结构和类型的确定,开发高效重复使用且费用较低的工业化光催化反应器,也将是纳米TiO2工业化应用的关键。

5.展望

尽管国内外电化学法处理有机废水技术已有了很大的发展,其中不少已达到工业化应用的水平,但电化学作为一门能在净化环境中有所作为的学科,还在不断发展中。电生·OH在有机废水处理中有其独特的特点,其应用的前景是很乐观的。但仍存在一些问题需要解决:

(1)目前,电Fenton法的研究还不是很成熟,电流效率低,设计合理电解池的结构和寻找新型的电极材料将是今后研究的方向。

(2)通过电解氧化法产生·OH处理有机废水处理,其降解效率受阳极材料和结构、电流密度、电解质及其传质能力等多种因素的影响。目前电解槽的传质问题影响电流效率的提高,如果要应用到实际生产中,还需提高产生·OH的电流效率,降低成本。因此,加强电解催化的机理的研究,研制开发各种高效电解催化反应器和高电化学活性及性能稳定的电极材料等,是今后急需解决的问题。

(3)用纳米半导体光电催化氧化法是目前研究的热点,如何获得并提高半导体材料光电催化活性,开发高效、稳定能重复使用、价格低廉的半导体电极材料和工业光电催化反应器是今后在该领域研究的热点,也是使纳米TiO2应用于工业化的关键。

[6] 许宜铭,陈文星,朱志杰. 苯酚及氯代苯酚化合物TiO2催化光致降解[J]. 环境科学,1990,9(6):13-18.

[9] 陈震,陈晓,郑曦,等. 溶液pH值及电流浓度对电化学生成羟基自由基的降解机制的影响[J].环境科学研究,2002,15(3):42-53.

[10] Hsiao Y ,Nobe K . Oxidative reactions of phenol and chlorobenzene with in situ electrogenerated fenton’s reagent[J]. Chem. Eng. Commom.,1993,126(1):97-110.

[11] 郑曦,陈日耀,兰瑞芳,等. 电生成Fenton试剂及其对染料降解脱色的研究[J].电化学,2003,9(1):98-103.

[12] 张乃东,彭永臻,李宁. 阳极氧化与 Fenton 法结合的可行性[J]. 中国环境科学,2004,24(1):68-71.

[13] Brillas E ,Calpe J C ,Casado J .Mineralization of 2,4-D by advanced electrochemical oxidation processes[J].Water Res,2000,34(8): 2256-2262.

[16] 宋卫峰,吴斌,马前,等. 电解法降解有机污染物机理及动力学的研究[J].化工环保,2001,21(3):131-136.

[17] 何春,安太成,熊亚,等. 三维电极电化学反应器对有机废水的降解研究[J].电化学,2002,8(3):327-332.

[18] 熊蓉春,贾成功,魏刚. 二维和三维电极法催化降解染料废水[J].北京化工大学学报,2002,29(5):34-37.

[19] 崔艳萍,杨昌柱. 复极性三维电极处理含酚废水的研究[J].能源环境保护,2004,18(1):23-26.

[21] 陈卫国,朱锡海.电催化产生H2O2和· OH机理及在有机物降解中的应用[J].水处理技术,1997,23(6):354-357.

[22] Dohrmann J K ,Chuan M ,Schaaf N S . Photocalorimetry at semiconductor electrodes:theory,technique and applications[J].Solar Energy Materials and Solar Cells,1996,43(3):273-296.

[23] 申哲民,王文华,贾金平,等. 电催化氧化中的三种催化材料处理酸性红B染料的比较研究[J].环境污染治理技术与设备,2001,2(1):55-58.

[24] 陈卫国,朱锡海. 电催化产生H2O2和·OH及去除废水中有机污染物的应用[J].中国环境科学,1998,18(2):148-150.

[25] Candal. Titanium-supported titania phtoelect-trodes made by sol-gel processes[J].J.Environ. Engin.,1990,10:906-912.

[26] 董海,郑志坚,郑成法,等. SnO2电极电催化降解废水中酚[J].复旦学报,1998,37(3):287-290.

[27] 郝晓刚,李一兵,樊彩梅,等. TiO2光电催化水处理技术研究进展[J].化学通报,2003,5:306-311.

篇9

[关键词]金刚石薄膜;肖特基势垒二极管;整流比

中图分类号:TN545 文献标识码:A 文章编号:1009-914X(2015)43-0331-02

1 引言

肖特基势垒二极管(SBD)是利用金属电极与半导体材料接触后形成的整流特性制作的一种二极管器件。与传统的PN结二极管相比较,SBD的势垒高度较小,其开启电压和导通压降均较小。此外,SBD的正向电流是由半导体中的多数载流子流入金属电极所形成的,不存在少数载流子的注入和存储问题,反应恢复时间短,开关速度快(比PN结二极管高出4个数量级左右)。目前大部分SBD是由单晶硅材料制作的,随着硅工艺的发展,其二极管性能已逐渐逼近硅材料的极限值。为了满足高温、高压和大功率工况下的应用需求,需要选择更为合适的半导体材料制作SBD,如宽带隙半导体材料。与传统的宽带隙半导体材料如SiC、GaN等相比,金刚石具有更大的带隙宽度(~ 5.5 eV)、高的饱和载流子迁移率(空穴3800 cm2/V・s和电子4500 cm2/V・s)、大的击穿电场(~ 107 V/m)、高的热导率以及极高的化学惰性和力学性能等,是一种替代硅材料制作SBD的理想材料[1,2]。

近年来,各国研究人员在金刚石SBD方面开展了大量的开创性工作,已利用同质外延掺硼单晶金刚石薄膜制作了多种结构的SBD,并通过优化金刚石材料的缺陷以及二极管制作工艺获得优异地二极管性能[3-8]。然而,同质外延所用的HPHT单晶金刚石基体价格昂贵,且尺寸较小(通常为3 × 3 mm),不利于金刚石SBD的大规模广泛使用。近年来,大量研究表明异质外延沉积的高度织构化取向的多晶金刚石薄膜的诸多物理性质与同质外延单晶金刚石非常接近;然而,与同质外延沉积技术相比,异质外延沉积技术即经济通用又能大面积制备,这将为以高度织构化取向的异质外延金刚石SBD的广泛应用提供可靠的技术保障。

针对以上应用需求,本文结合所制备的织构化取向掺硼多晶金刚石薄膜的膜厚和晶粒尺寸大小,设计了一种新颖的交叉“指”状的平面型SBD并成功制作,所制备的SBD展现了较低的开启电压、低的反向漏电流和高的整流比等特性,有望在大功率和开关器件等领域应用。

2 实验

2.1 SBD的设计

本实验中所使用的半导体材料是采用微波等离子体化学气相沉积(MPCVD)法,通过独特的形核-刻蚀-生长循环沉积工艺所制备的(110)织构化掺硼多晶金刚石薄膜(如图2中的100步骤),其工艺参数及结果详见文献[9]。尽管高度织构化的掺硼多晶金刚石薄膜物理性质类似于单晶金刚石薄膜,但与单晶金刚石相比,由于多晶薄膜内存在大量的晶界和位错等缺陷,它们不可避免地会对二极管的性能造成影响;同时,考虑到金刚石的柱状晶生长机制,金刚石薄膜的成核面缺陷密度远高于生长面,且生长面的晶粒尺寸随膜厚的增加而增加,所以生长面的晶粒尺寸也较大。为了将缺陷对二极管性能的影响降低对最小化,我们设计了如图1所示的“叉指状”平面型二极管结构,该二极管为在高度织构化掺硼多晶金刚石薄膜的生长面同侧制作呈交叉指状分布的欧姆和肖特基接触电极,其中欧姆接触电极以及肖特基接触电极的宽度在0.008 ~ 0.1 mm之间可调,且两个相邻“指”电极之间的间距也在0.072 ~ 0.9 mm范围内可调;欧姆接触电极为Ti/Au,而肖特基接触电极为Au。

2.2 SBD的制作

在综合考虑金刚石薄膜特征以及现有的设备等因素后,本项目采用传统的匀胶-光刻-蒸镀-溶胶等微电子加工工艺制作SBD,其流程如图2所示。在进行光刻胶匀胶步骤(图2中200步骤)之前,我们需要对金刚石薄膜表面进行湿化学氧化预处理,这是因为MPCVD沉积的金刚石薄膜表面多为氢终止状态(C-H键为主),一般氢终止表面具有良好的表面导电性和负的电子亲合势,会导致降低肖特基接触势垒高度,且会在肖特基接触Au电极与表面形成导电通道,从而使器件的漏电流增大[10],因此我们首先将金刚石薄膜置于在浓硫酸和浓硝酸的混合溶液(体积比为 3:1)中煮沸30分钟,然后去离子水清洗即可,测量薄膜表面接触角发现其值从89°降低到19°,表明金刚石薄膜表面氧终止化已成功;随后采用匀胶机在金刚石层表面形成均匀的光刻胶(正胶)膜,厚度约为4 ?m,并在100 ?C下保温30分钟,以去除胶膜中的溶剂(图2中200步骤);在欧姆接触电极光刻掩模板的保护下,采用254 nm紫外光曝光,丙酮显影后将未被曝光的光刻胶溶解(步骤300),形成欧姆接触电极图案;利用电子束蒸发镀膜技术蒸镀金属Ti膜,移走曝光光刻胶区域后形成图案化的Ti电极,并在氮气气氛下于550?C下快速退火20分钟(步骤400);随后,在肖特基接触电极光刻掩模板的保护下,二次匀胶并光刻制得所需要的图案(步骤500);最后通过电子束蒸发镀膜,一步原位同时在金刚石表面形成肖特基接触Au电极和在Ti电极上形成欧姆接触Au电极(步骤600),并在氮气气氛下于600?C下退火1小时已形成保证Ti/Au层的良好欧姆接触和Au层的稳定肖特基势垒。图3为制作好的SBD的(a)欧姆接触电极、(b)整体接触电极以及(c)封装后SBD的实物图。

3 结果与讨论

在本实验中,我们选用了四种不同硼掺杂浓度的(110)织构化多晶金刚石薄膜制作了相同结构的SBD,从而考察薄膜内硼掺杂浓度对SBD性能的影响。表1为四个金刚石薄膜的B/C比、载流子浓度以及电阻率等电学参数特性。可以看出,在所采用的四个金刚石薄膜样品中,其载流子浓度和电阻率分别呈指数的下降和上升,基本上覆盖了目前MPCVD法制备掺硼金刚石的浓度变化范围,具有较好的代表性和可比性。

待器件封装完毕后,我们对以上四个SBD进行电流-电压(I-V)整流特性测试,其结果如图4所示,其中二极管内欧姆接触电极和肖特基接触电极的宽度和相邻两电极之间的间距均取最优化值,分别为0.01 mm(电极宽度)和0.08 mm(极间距)。由图4a可以看出,当金刚石薄膜内B/C比为10000 ppm时,即重掺杂时,SBD的I-V特性几乎为一条直线,呈现为电阻特性,无任何二极管特性,表明在重掺杂容易导致贯穿隧道效应,Ti/Au电极和Au电极与金刚石之间的势垒高度很低,空穴很容易穿过势垒,使得器件表面金属与半导体接触时,形成了良好的欧姆接触,而非肖特基接触。从图4b可以看出,2#金刚石薄膜样品所制备的SBD展现了一定的二极管特性,但是反向漏电流较大,这可能是由于高硼浓度掺杂导致金刚石薄膜内的晶界和缺陷密度过高有关,因为从金刚石的沉积过程来看,增加掺硼浓度有利于降低金刚石的晶粒尺寸,从而导致晶界和其他缺陷含量增加[11]。当进一步降低金刚石薄膜中B/C比至2000 ppm时(3#样品),所制备的SBD呈现了较好的二极管整流特性,其中开关电压约为1.85 V(如图4c所示)。当金刚石薄膜内B/C比将至400 ppm时,所制备的SBD在-5 V ~ 5 V之间展现了良好的二极管整流特性,其反向漏电流更小,约为10-10 A,其整流比达到约103量级(如图4d所示)。与3#金刚石样品所制备的SBD相比,4#金刚石样品的正向电流更小(~ 103量级差),同时开启电压也更高(增加了约0.8 V),这主要是由于4#金刚石薄膜样品的电阻率比3#样品的高所致。从以上结果可以看出,欲获得性能优异的金刚石SBD器件,需要合理地控制硼的掺杂量,若过高的话,SBD的势垒过低,整流特性较差;然而过低的话,会使SBD器件的内阻较大,作为功率器件的话能耗过大。

4 结论

(1)针对(110)织构化掺硼多晶金刚石薄膜的特点,设计了一种新型的“叉指状”平面型SBD;

(2)采用传统的微电子器件制作工艺成功实现了基于金刚石薄膜的SBD制作,其中金属电极宽度和电极间距在一定范围内均可控;

(3)在较低掺硼浓度时,SBD整流比可达103左右,反向漏电流约为10-10 A量级,但SBD的内阻较大导致正向电流值较小,开启电压较大等不足之处。

参考文献

[1] BLANK V D, BORMASHOV V S, TARELKIN S A, et al., Diamond & Related Materials, 2015, in press.

[2] TRAORE A, MURET P, FIORI A, et al.,Applied Physics Letters, 2014, 104(5): 052105.

[3] UMEZAWA H, TATSUMI N, KATO Y,et al.,Diamond & Related Materials,2013, 40: 56-59.

[4] FIORI A,TERAJI T, KOIDE Y,.Applied Physics Letters, 2014, 105(13): 133515.

[5] UMEZAWA H,SHIKATA S I, Japanese Journal of Applied Physics 2014, 53: 04EP04.

[6] TERAJI T,KOIDE Y, ITO T, Thin Solid Films, 2014, 557: 241-248.

[7] ACHARD J,SILVA F, ISSAOUI R, et al.,Diamond & Related Materials, 2011, 20: 145-152.

[8] ALMAVIVA S, MARINELLI M, MILANI E, et al.,Diamond & Related Materials, 2010, 19: 78-82.

[9] 熊鹰,王兵,楚士晋,择优取向掺硼金刚石(BDD)薄膜的制备及表征,安全与环境科学,出版中。

[10] XIONG Y(熊鹰),WANG B(王兵),LI(代丽), et al.; Physica Status Solidi A, 2014, 211: 2744-2748.

[11] ZHUANG H, FU H Y, JIANG X, Surface & Coating Technology, 2014, 259: 526-531.

篇10

商务谈判调研报告篇01第五组

组长:吴晓平

成员:何艳霞

张 莉

董蓝娟

关春燕

张瑞芳

郑芳丽

顿 丹

郭 露

谈判背景资料:

天津半导体工厂欲改造其生产线,需要采购设备、备件和技术。适合该厂的供应商在美国,日本各地均可找到两家以上。正在此时,香港某生产商的推销人员去天津访问,找到该厂采购人员表示可以为该厂提供所需的设备和技术。由于香港客商讲中文,又是华人,很快关系就熟悉了。工厂表示了采购意向,但由于香港生产商的知名度较低,天津半导体工厂对其产品一直存有疑虑,于是答应安排一次谈判,对相关事宜进行商谈。我们第五组在主谈人员吴晓平的带领下,与第六组即香港供应商进行谈判。下面是我们在与其谈判前做的调查工作: 公司企业背景资料:

天津中环半导体股份有限公司是一家集科研、生产、经营、创投于一体的国有控股高新技术企业,拥有独特的半导体材料-节能型半导体器件和新能源材料-新能源器件双产业链。该公司是在深圳证券交易所上市的公众公司,股票代码002129。注册资本482,829,608元,总资产达20.51 亿。年销售额超过2亿元,产品行销全国并远销海外18个国家和地区。高压硅堆产销量居世界第1位,国际市场占有率达到43%,国内市场占有率达到57%。微波炉用高压硅堆国际市场占有率达到55%。 在单晶硅材料领域,形成了以直拉硅棒、区熔硅棒、直拉硅片、区熔硅片为主的四大产品系列,是中国硅单晶品种最齐全的厂家之一, 区

熔硅单晶的国内市场占有率在65%以上,产量和市场占有率已连续5年居国内同行业首位,产销规模居世界第三位 , 公司现有专利技术15项,专有技术200多项,形成了一系列自主知识产权。公司致力于半导体节能和新能源产业,是一家集半导体材料-新能源材料和节能型半导体器件-新能源器件科研、生产、经营、创投于一体的国有控股企业,拥有全球独特的双产业链,是天津市高新技术企业,拥有1个博士后科研工作站、2家省部级研发中心。 且凭借独特的产业链优势、持续不断的技术创新能力和友好的商业界面,进一步完善以节能型产品和新能源产品为导向的产业格局,为股东、合作伙伴、员工创造最大价值,实现企业、社会、环境的可持续发展。

、市场环境调研:

自20xx年天津滨海新区纳入国家xx规划和国家发展战略,并批准滨海新区为国家综合配套改革试验区,天津的经济重新展现出活力,并被誉为中国经济第三增长极20xx年3月22日国务院常务会议,将天津完整定位为国际港口城市、北方经济中心、生态城市 ,从此京津之间的北方经济中心之争,终于落下帷幕。20xx年起,开始落户天津举办,汇聚了数千全球政界、商界和学界精英人士参与讨论世界经济议题,而夏季达沃斯论坛的永久会址位于建设中的北塘国际会议中心。截至20xx年,世界500强跨国公司已有150家在天津落地生根,投资项目共396个,合同外资额达81亿美元。[10] 中国社会科学院在

二、市场需求调研:

由于城镇居民收入水平大幅提高,居民消费水平也显著提高。20xx年天津市人均消费支出11,141元,比20xx年增长了57.5%。城镇居民的消费结构正在向享受型和发展型转变,故人们的消费观念也会随之提高,对高档品的需求会越来越高,所以该产品市场需求空间很大。

三、市场竞争状况:

公司单晶硅品种齐全,其中区熔系列单晶硅产品产销规模全球排名第三、国内市场份额超过70%,产量和市场占有率已连续多年居国内同行业首位;直拉单晶及硅片技术和产销规模方面居国内前列;抛光片产业采用国际一流的新技术、新工艺流程,独立开发具有自主知识产权的大直径硅抛光片生产技术,研发和产业化水平处于国内领先位置;太阳能硅材料产业经过产业化生产验证,与国内同行业相比单位兆瓦直拉晶体生长投资下降了33%以上,生产效率提高了60%以上,生产成本降低了25%以上;半导体整流器件产业经过多年技术创新的积淀,掌握了从芯片到封装的全套核心技术;节能型半导体功率器件产业在净化间设计、动力配套、装备水平、产品品种、产品技术方面均处于国内同行业领先水平。所以该公司潜力很大,能为它提供设备和技术的供应商有很多。如:1)罗姆(ROHM)半导体集团是全球著名半导体厂商之一,创立于1958年,是总部位于日本京都市的跨国集团公司。品质第一是罗姆的一贯方针。我们始终将产品质量放在第一位。历经半个多世纪的发展,罗姆的生产、销售、研发网络遍及世界各地。产

品涉及多个领域,其中包括IC、分立半导体、光学半导体、被动元件以及模块产品。在世界电子行业中,罗姆的众多高品质产品得到了市场的许可和赞许,成为系统IC和最新半导体技术方面首屈一指的主导企业。罗姆十分重视中国市场,已陆续在全国设立多家代表机构,在大连和天津先后开设工厂,并在上海和深圳设立技术中心和品质保证中心提供技术和品质支持。在天津进行晶体管、二极管、LED、半导体激光、LED显示器的生产、在大连进行电源模块、热敏打印头、多线传感头、光电模块的生产,作为罗姆半导体集团的主力生产基地,源源不断地向中国国内外提供高品质产品。 2)美国国家半导体公司(National Semiconductor)简称国半或者国家半导体,成立于1959年,是著名的模拟和混合信号半导体制造商,也是半导体工业的先驱。公司总部设在美国加州。国半公司致力于利用一流的模拟和数字技术为信息时代创造高集成度的解决方案。它的生产网点遍布全球,在美国德克萨斯州、缅因州和苏格兰建有晶片制造厂,在马来西亚和新加坡建有检验中心和装配厂。美国国家半导体是先进的模拟技术供应商,一直致力促进信息时代的技术发展。该公司将现实世界的模拟技术与先进的数字技术结合一起,并利用这些集成技术致力开发各种模拟半导体产品,其中包括电源管理、图像处理、显示驱动器、音频系统、放大器及数据转换等方面的独立式设备及子系统。该公司主要以无线产品、显示器、个人计算机与网络,及各种不同的便携式产品为市场目标。NS(美国国家半导体公司)是推动信息时展的领先模拟技术公司。国半将真实世界的模拟技术和完美工艺的数字技术相结合,专注基于模拟技术的半导体产品,包括电源管理、图像技术、显示驱动器、音频、放大器和数据转换等领域的独立元件和子系统。国半关键的目标市场包括无线应用、显示器、PC、网络和各种便携式应用。 3)天津市环欧半导体材料技术有限公司是从事半导体材料硅单晶、硅片的生产企业。拥有40余年的生产历史和专业经验,形成了以直拉硅单晶、区熔硅单晶、直拉硅片、区熔硅片为主的四大产品系列,是中国硅单晶品种最齐全的厂家之一。

四、企业内部环境:

公司试验室具有SEM显微镜分析、X射线、SRP测试等高端分析设备和HTRB、PCT、热电阻等可靠性试验设备,能够满足半导体产品的大部分可靠性测试试验。公司还拥有版图设计、工艺与器件仿真等软件平台,可以提高新品开发的效率。功率器件事业部与国内外多家原材料供应商、光刻版制造公司、设计公司、封装/测试公司、设备制造商,等建立了长期的战略合作关系,可以为产品研发进行新产品的试作、量产等提供丰富的资源和强有力的支持,大大缩短研发流片周期,提高研发效率;

公司的高压硅堆优势明显:1)CRT电视机及显示器市场,公司市场占有率为60%,其余市场主要被日本富士电机公司、日本三肯公司、日本日立公司和江苏皋鑫电子有限公司等公司占据,在该领域公司在技术和市场方面具有绝对优势;

2)微波炉市场,公司占据了43%的市场份额;3)在CRT电视机、显示器以外的市场,日本公司具有传统形成的市场优势。国内主要同行厂家有:江苏如皋皋鑫电子有限公司、乐山无线电股份有限公司、重庆平洋电子有限公司、鞍山市电子电力公司。而公司20xx年的年销量达到7.3亿支,超过以上四个同行厂家年销量总和的一倍以上,规模优势明显。

单晶硅及硅片:公司与同行业竞争的优势主要表现在以下几个方面:1)多

晶硅供应有保障、区熔单晶硅具备全球意义的强大综合竞争力;2)直拉单晶硅具备国内意义的较强竞争力;3)拥有具有重大商业价值的专利及专有技术;5)产品品种齐全。公司与同行业竞争的劣势主要表现在产业规模小和资金投入少。

原料优势:从20xx年公司存货中的原材料情况看,主要为多晶硅、硅片和单晶硅棒,三项合计3879.49万元,占原材料总额的77.18%。多晶硅、单晶硅、硅片是公司生产的重要原材料。近年来,硅材料市场价格上涨,供不应求,拥硅为王已成业内共识,自20xx年初,公司开始增加硅储备。这是公司的一大明显优势,但是也是一个短期优势。

但是面对严峻的市场竞争状况,该公司仍然面临巨大的挑战,需要居安思危,具备忧患意识才能胜出。

五、谈判对象:

香港隆通设备有限公司,该公司刚成立不久,虽然可以提供我方所需的设备被和技术,但是知名度较低,公司的信誉和产品的质量都有待调查和研究。香港隆通有限公司的优势是发展迅速,有很大的发展前景。

商务谈判调研报告篇02:谈判实习报告本次的商务谈判实习,使我受益良多。首先就是让我明白了一个团队的重要性,个人的发展离不开团队。其次,通过商务谈判实习,使我对谈判有了更深刻的理解,这也为以后打下了良好的基础。最后,通过对商务谈判的实习也更加磨练了自我,增加了个人经历和阅历,学会了如何与团队合作与分享。

我在此次谈判中所扮演的角色是河南第一建筑集团有限责任工程的技术总监。技术总监一般负责一个企业的技术管理体系的建设和维护,制定技术标准和相关流程,能够带领和激励自己的团队完成公司赋予的任务,实现公司的技术管理和支撑目标,为公司创造价值!一个好的技术总监不仅要自身具有很强的技术管理能力,同时,也要有很强的技术体系建设和团队管理的能力,要对企业所在行业具有深入理解,对行业技术发展趋势和管理现状具有准确的判断。 同时作为一个技术总监,我认为不仅要对本公司的产品感兴趣,非常了解,还要博览其他公司的产品,不断创新,努力奋斗,为公司作出更大的贡献。

作为一个技术总监,我在这几天的实习过程中,通过对各个钢铁产品公司的产品与技术的对比,让我明白了,作为一个技术总监,对公司的产品富有重要责任,一个公司的产品质量必须合格,技术人员必须认真负责,技术的重要性对公司非常重要。同时也让我明白了,沟通的重要性,一个优秀的技术人员不仅需要过硬的技术,还必须有良好的沟通能力,协调各个部门,才能顺利的发展产品,才能更好的研发出更好的产品。

本次谈判让我感触最深的就是一个团队的合作精神。我们这个团队是一群有能力,有信念的人在特定在商务谈判的团队中,为了一个 共同的目标相互支持合作奋斗的。我们的团队可以调动团队成员的所有资源和才智,并且会自动地驱除所有不和谐现象。我们这个团队大家经过努力迸发出强大的力量。我们谈判组的总经

理,财务总监,采购部部长,总经理助理,法律顾问和技术总监,大家这个团队努力合作,各有分工,且分工明确,通过大家不懈的努力,通过资料不断的汇总,然后大家在一起不断的修改,再努力,技术分析报告,采购策划书,合同等资料相互总结,最终形成了一份完美的谈判策划书。

我们这个团队充分发扬了团队精神,通过实习让我明白了团队精神的意义和重要性,在一个组织或部门之中,团队合作精神显得尤为重要,在一个组织之中,很多时候,合作的成员不是我们能选择得了的,所以,很可能出现组内成员各方面能力参差不齐的情况,如果作为一个领导者,此时就需要很好的凝聚能力,能够把大多数组员各方面的特性凝聚起来,同时也要求领导者要有很好地与不同的人相处与沟通的能力。要加强与他人的合作,首先就必须保证集体成员是忠诚的,有责任心的,有意志力的,而且,还要有着对于自身团队的荣誉感,使命感。必须信任团队的所有成员,彼此之间要开诚布公,互相交心,做到心心相印,毫无保留;要与团队的每一个成员紧密合作,直到整个团体都能紧密合作为止;分析每一个成员完成工作的动机,分析他们的能力,针对我们每个人的问题,集思广议,多听听大家的建议,同时,我们相互谈论,谈判工作上工作上对大家有一定要求,做好团队成员之间的沟通和协调工作,使整个团队像一台机器一样,有条不紊地和谐运转。

所以,学会与他人合作,发挥团队精神在具体生活中的运用,可以使我们团队收到事半功倍的效果,使我们的谈判工作更加良好地向前发展。也为谈判做了更好的准备。