量子力学的核心范文

时间:2023-11-17 17:46:07

导语:如何才能写好一篇量子力学的核心,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

量子力学的核心

篇1

【关键词】光速不变;单链式;定向振荡

1.引言

物理学是一门研究物质运动变化规律的科学,牛顿从宏观物体的运动变化中总结出了三大运动定律,创立了经典力学,成为物理学的开山鼻祖。麦克斯韦研究电场和磁场运动变化的规律,在前人的基础上总结出了电磁场理论。爱因斯坦研究光运动变化的规律,在麦克耳孙和莫雷的干涉实验以及光行差实验等的基础上,发现了光速不变原理,并创立了相对论。

普朗克通过研究黑体辐射中不同频率的电磁波运动变化的规律,发明了量了论,后来的物理学家们在此基础上发展出了量子力学和量子电动力学,创建并完善了标准模型理论。很多物理学家穷其一生,试图把相对论和量子理论结合起来,建立大统一理论。然而,相对论和量子理论就像一头大象的鼻子和尾巴,它们不但形象各异,而且总是各朝一方,即便免强拼凑在一起也并不是一头完整的大象。

2.相对论和量子理论的局限

爱因斯坦是在光速不变原理的基础上创立相对论的,但爱因斯坦并不能解释光速为何不变。一些相对论专家说光速不变是四维时空的一种自然表现,这种说法有点牵强。四维时空观是爱因斯坦在研究有关光速不变的实验后形成的一种观念,这些实验都只涉及到光波,至今为止,人类还没有办法把一些实物粒子,如电子、原子、分子等,加速到光速, 也就不知道这些实物粒子的速度能不能达到或超过光速。我们不能因为还没有办法把一个电子加速到光速就断定电子的速度不能达到光速,人类目前还做不到的事情并不意味着未来的人类也做不到,未来总是充满各种可能性的。既然我们还没有法办把实物粒子加速到光速,我们就无法知道光速不变原理是否适用于实物粒子,还是只适用于光子,更无法知道光速不变原理是否适用于宏观的物体。

光速不变原理提出,在每个惯性系中,真空中的光速各向同性,与光源的运动无关,也与光的频率无关。一艘在水面上静止或匀速运动的船可以作为一个惯性系,倘若这艘船 永不停息地做毫无规则可言的运动,船的速度和方向总是在不停地变化,那么,这艘船就不能作为惯性系了.在微观世界中,每一个物质粒子如电子、原子、分子等,都在永不停息地做毫无规则可言的运动,没有一个粒子相对于另一个粒子是静止或匀速运动的,只有粒子本身相对于粒子是静止的,用来描述宏观世界的惯性系在微观层次上根本就不存在。我们都知道,激发光的是电荷,吸收或反射光的也是电荷,我们之所以能够看见光,就是因为光驱动了我们视觉神经中的电荷。我们不可能选择一个电荷来做惯性参考系,而电荷激发出的光必须与另一个电荷相互作用才能被观察到。爱因斯坦从宏观的角度来研究光运动变化的规律,认为从光源激发出的光传到物体上的过程就像从大炮发射出的炮弹射到物体上的过程一样,这是错误的。光的本质是在电荷之间传播的电场力波(即电磁波)。要想弄清楚光速不变的真正原因,就必须弄清楚电场力的产生机理和传递方式。

相对论和量子理论都认为光是从光源发射出去的一种物质,就像炮弹从大炮中发射出去那样,之所以得出这样的观点,是因为相对论和量子理论的创立者们都没有认识到,一个电荷和它的电场实际上是一个独立于其它电荷和电场的具有无限延伸性的不可分割的整体。我们不可能把一个电荷从它的电场中分离出来,一个电荷无论如何运动,这个电荷的电场都不会脱离这个电荷被发射出去,一个电荷的电量是恒定不变的。从本质上来讲,一个电荷的电场是由无数与电荷有关联的物质在宇宙空间中延绵分布形成的一个具有无限广延性的不可分割的物质体系,光速不变是是电荷的电场具有无限广延性的一种表现[1]。

电荷电场的广延性与引力场的广延性类似。两个物体之间,无论距离有多远,它们都处在对方的引力场中,都受到对方的引力作用。同样地,两个电荷之间无论距离多远,它们都处在对方的电场中,都受到电场力的作用。量子理论认为,引力是质点间互相交换引力子产生的,电场力则是电荷之间互相交换光子产生的。这种观点并不正确。假设有N个质点与质点A的距离相等,质点A与这N个质点同时有引力作用,即质点A有N个引力子同时与这N个质点交换。当与质点A距离相等的质点增加到2N个时,质点A就必须拥有2N个引力子同时与这2N个质点交换。无论与质点A的距离相等的质点增加到多少个,质点A与这些质点之间都同时存在引力相互作用。以此类推,任何一个质点都同时拥有无穷多个引力子,显然,这是错误的。

电荷电场的广延性使得任何一个电荷都可以同时与无数个电荷产生电场力,假如电场力是电荷之间互相交换光子产生的,那么,每一个电荷都必须同时拥有无数个光子,显然,这是不正确的。

无论是相对论还是量子理论,都没能正确地解释电场力的产生机理。

电场力是电荷和它的电场原来的平衡状态被引入电场中的电荷打破,导致构成该电荷电场的所有物质都有以引入该电荷电场中的电荷为中心重新分布的趋势产生的一种力,是大量构成电荷本身电场的物质对电荷直接产生的力。任何一个电荷受到的电场力都是通过构成该电荷本身电场的物质来传给电荷的,而电荷的电场是随着电荷一起运动的。在没有外力的作用下,或是合外力等于零的情况下,电荷和它自身的电场总能保持步调一致的运动状态,这时,可认为电荷和它的电场是相对静止的。从宏观的角度来看,在每一个惯性系中,每一个电荷和它的电场都可以保持步调一致的运动状态,每一个电荷相对于它的电场都是静止的,这必然导致在每一个惯性系中,每一个电荷接收到的电场力波即光波在真空中的速度各向同性,即光速不变。

由上述可知,电荷电场的广延性是我们观察到的真空中的光速恒定不变的原因。

3.定向振荡电流与单链式电磁波

与引力波类似,电磁波本质上并不是从波源中发射出的一种物质,而是在电荷之间传播的电场力波。无论是电场还是磁场,或是交替变化的电磁场,都是通过电荷或电流的运动变化来表现的。麦克斯韦首次提出了位移电流的概念,并预言了电磁波的一种形式――双链式。但受到当时条件的限制,麦克斯韦没能预言出电磁波的另一种形式――单链式。只有引入“定向振荡”这个全新的物理概念才能够形象地描述单链式电磁波。在现代汉语词典中,振荡的含义有两种,一种指振动;另一种指电流的周期性变化。电流的周期性变化可分为两种,一种是电流的大小和方向都做周期性变化的,叫做双向振荡;另一种是电流的方向恒定不变,电流的大小做周期性变化的,叫做定向振荡,也称单向振荡。双向振荡电流激发出的是双链式电磁波,双链式电磁波在空间中传播时产生的位移电流都是双向振荡的位移电流,即位移电流的大小和方向都是周期性变化的。双向振荡的位移电流产生的感应磁场也是双向振荡的,即磁场的大小和方向都做周期性变化的。双链式电磁波在传播过程中遇到导体,会使导体受到一个场强大小和方向都做周期性变化的双向振荡的感应磁场的作用,产生同频率双向振荡的感应电流。

有的单向振荡电流激发出的是双链式电磁波,比如交流和恒流混合形成的单向振荡电流。有的单向振荡电流则能够激发出单链式电磁波,比如将高频交流经过特殊的整流后形成的单向振荡电流。[2]

单链式电磁波在空间中传播时产生的位移电流都是单向振荡的位移电流,即位移电流的方向恒定不变,位移电流的大小做周期性变化的。单向振荡的位移电流产生的感应磁场也都是单向振荡的,即磁场方向恒定不变,场强大小做周期性变化的。单向振荡磁场也称定向振荡磁场。

单链式电磁波在传播过程中遇到导体,会使导体受到一个磁场方向恒定不变,场强大小做周期性变化的定向振荡的感应磁场的作用,产生同频率定向振荡的感应电流。

让两列时间相差T/2(T表示定向振荡电流定向振荡的一个周期)的等幅同频率的超高频单链式电磁波经过等长的路径后叠加,便可在空间中合成超低频定向振荡的无源 的磁场。因为这种定向振荡磁场是无源的,且只能表现出单个磁极的力学效应,因此叫做磁单极量子,也称单极光子。[3]将通恒定电流的导体放置在由两列时间相差T/2的超高频单链式电磁波经过等长的路径后叠加形成的超低频定向振荡磁场中,导体就会产生大小和方向都不变的电磁力。因为这种电磁力是由空间中无源的定向振荡磁场对恒定电流产生的,可驱动引擎前进。这就是能够进行星际跃迁的光速飞船所采用的大推力量子引擎技术的原理。[4]

4.结语

相对论和量子理论是20世纪物理学取得的两项重大的成果,这两项理论的创立极大地促进了科学技术的发展和人类文明的进步。但是,相对论和量子理论即是现代物理学的两大支柱,也是横旦在人类面前的两座大山。这两座大山都高耸入云,看似不可逾越。很多人望而却步,只得拜倒在山脚下,只有少数不畏艰险的勇者敢去翻越。这些勇者有的迷失在山中,有的跌入了深渊,谁能够第一个翻越过去,谁就会成为新大陆的发现者,人类文明史也将因此翻开崭新的一页。

参考文献

[1]李昌颖.引力场与静电场的广延性与超光速原理[J].电子世界,2014.

[2]李昌颖.光分解与光振荡形式变换的探究[J].电子世界,2014.

篇2

量子力学是近代物理的两大支柱之一,它的建立是20世纪划时代的成就之一,可以毫不夸张地说没有量子力学的建立,就没有人类的现代物质文明[1]。大批优秀的物理学家对原子物理的深入研究打开了量子力学的大门,这一人类新的认知很快延伸并运用到很多物理学领域,并且,导致了很多物理分支的诞生,如:核物理、粒子物理、凝聚态物理和激光物理等[2]。量子力学在近代物理中的地位如此之重,所以成为物理专业学生最重要的课程之一。但在实际教学过程中,学生普遍感到量子力学太过抽象、难以掌握。如何改革教学内容,将量子力学的基本观点由浅入深,使学生易于理解;如何改革教学手段,培养学生兴趣,使学生由被动学习变为主动学习。这是量子力学教学中遇到的主要问题。作者从几年的教学中摸索到一些经验,供大家参考。

一、教学内容和方法的改革

传统的本科量子力学教学一般包括了三大部分:第一部分是关于粒子的波粒二象性,正是因为微观粒子同时具有波动性和粒子性,才造成了一些牛顿力学无法解释的新现象,例如测不准关系、量子隧道效应等等;第二部分是介绍量子力学的基本原理,这部分是量子力学的核心内容,如波函数的统计解释、态叠加原理、电子自旋等;第三部分是量子力学的一些应用,如定态薛定谔方程的求解,微扰方法。以上三个部分相互联系构成了量子力学的整体框架[3]。随着量子力学的进一步发展,产生了很多新的现象和成果。例如量子通讯、量子计算机等等。许多学生对量子力学的兴趣就是从这些点点滴滴的新成果中得到的。如果我们仍按传统的内容授课,学生学完了这门课程发现感兴趣的那点东西完全没有接触到,就会对所学的量子力学感到怀疑,而且极大地挫伤了学习自然科学的兴趣。所以作者建议在教学过程中适当添加一些量子力学的新成果和新现象,来激发学生的学习兴趣[4]。在教学方法上也应该按照量子力学的特点有所改革。由于量子力学的许多观点和经典力学完全不同,如果我们还是按照经典力学的方法来讲,就会引起学生思维上的混乱,所以建议从一开始就建立全新的量子观点。例如轨道是一经典概念,在讲授玻尔的氢原子模型时仍然采用了轨道的概念,但在讲到后面又说轨道的概念是不对的,这样学生就会怀疑老师讲错误的内容教给了他们,形成逻辑上的混乱。我们应该从一开始就建立量子的观点,淡化轨道的概念,这样学生更容易接受。

二、重视绪论课的教学

兴趣是最好的老师。作为量子力学课程的第一节课,绪论课的讲授效果对学生学习量子力学的兴趣影响很大,所以绪论课直接影响到学生对学习量子力学这门课程的态度。当然很多学生非常重视这门课程,但学这门课的主要目的是为将来参加研究生入学考试,仅仅只是在行动上重视,而没有从思想上重视起来。如何使这部分学生从被动的学习量子力学变为主动地学习,这就要从第一节课开始培养。在上绪论课时作者主要通过以下几点来抓住学生的兴趣。首先列举早期与量子力学相关的诺贝尔物理学奖。诺贝尔奖得主历来都是万众瞩目的人物,学生当然也会有所关心,而且这些诺贝尔奖获得者的主要工作在量子力学这门课程中都会一一介绍,这样一方面通过举例子的方法强调了量子力学在自然科学中的重要地位,另一方面为学生探索什么样的工作才可以拿到诺贝尔奖留下悬念。抓住学生兴趣的第二个主要方法是列举一些量子力学中奇特的现象,激发学生探索奥秘的动力,例如波粒二象性带来的“穿墙术”、量子通讯、如何测量太阳表面温度等等,这些都很能激发学生学习量子力学的兴趣。综上所述,绪论课的教学在整个教学过程中至关重要,是引导学生打开量子力学广阔天地的一把钥匙。

三、重视物理学史的引入

随着量子力学学习的深入,学生会接触到越来越多的数学公式以及数学物理方法的内容,虽然学生会对量子力学的博大精深以及人类认知能力惊叹不已,但在学习过程中感觉越来越枯燥乏味。并且,学生学习量子力学的兴趣和信息在这个时候受到很大的考验,想要把丰硕的量子力学成果以及博大精深的内涵传达给学生,就得在适当的时候增加学生的学习兴趣。实际上,很多学生对量子力学的发展史有很浓厚的兴趣,甚至成为学生闲聊的素材,因此,在适当的时候讲述量子力学发展史可以增加学生学习量子力学的学习兴趣和热情。在讲授过程中,可以结合教学内容,融入量子力学发展史中的名人逸事和照片,如:索尔维会议上的大量有趣争论和物理学界智慧之脑的“明星照”,或用简单的方法用板书的形式推导量子力学公式。例如在讲到黑体辐射时,作者讲到普朗克仅仅用了插值的方法,就给出了一个完美的黑体辐射公式。而插值的方法普通的本科生都能熟练掌握,这一方面鼓励学生:看起来很高深的学问,其实都是由很简单的一系列知识组成,我们每个人都有可能在科学的发展过程中做出自己的贡献;另一方面教导学生,不要看不起很细微的东西,伟大的成就往往就是从这些地方开始。在讲到普朗克为了自己提出的理论感到后悔,甚至想尽一切的办法推翻自己的理论时,告诉学生科研的道路并不是一帆风顺的,坚持自己的信念有时候比学习更多的知识还要重要。在讲到德布罗意如何从一个纨绔子弟成长为诺贝尔奖获得者;在讲到薛定谔如何在不被导师重视的条件下建立了波动力学;在讲到海森堡如何为了重获玻尔的青睐,而建立了测不准关系;在讲到乌伦贝尔和古兹米特两个年轻人如何大胆“猜测”,提出了电子自旋假设,这些学生都听得津津有味。这些小故事不仅让学生从中掌握的量子力学的基本观点和发展过程,而且对培养学生的思维方法和科研品质都有很大帮助。

四、教学手段的改革

量子力学中有很多比较抽象原理、概念、推导过程和现象,这增加了学生理解的难度。而且在授课过程中有大量的公式推导过程,非常的枯燥。所以在教学过程中穿插一些多媒体的教学形式,多媒体的应用能够弥补传统教学的不足,比如:把瞬间的过程随意地延长和缩短,把复杂的难以用语言描述的过程用动画或图片的形式分解成详细的直观的步骤表达清楚[5]。相对于经典物理来说,量子力学课程的实验并不多,在讲解康普顿散射、史特恩-盖拉赫等实验时,可以运用多媒体技术,采用图形图像的形式模拟实验的全过程。用合适的教学软件对真实情景再现和模拟,让学生多册观察模拟实验的全过程。量子力学的一些东西不容易用语言表达清楚,在头脑中想象也不是简单的事情,多媒体的应用可以弥补传统教学的这块短板,形象地模拟实验,帮助学生理解和记忆。比如电子衍射的实验,我们不仅可以用语言和书本上的图片描述这个过程,还可以通过多媒体用动画的形式表现出来,让电子通过动画的形式一个一个打到屏幕上,形成一个一个单独的点来显示出电子的粒子性;在快进的形式描述足够长时间之后的情况,也就是得出电子的衍射图样,从而给出电子波动性的结论和波函数的统计解释,经过这样的教学形式,相信学生能够更加深刻地理解微观粒子的波粒二象性[6]。但在具体授课过程中不能完全地依赖于多媒体教学,例如在公式的推导过程中,传统的板书就非常接近人本身的思维模式,容易让学生掌握,如果用多媒体一带而过,往往效果非常的不好。所以教学过程中应该传统教学和多媒体教学并重,对于一些现象的东西多媒体表现更为出色;而一些理论方面的东西传统的板书更为有利,两者相互结合可以大大提高教学效率,增强课堂教学效果和调动学生的学习积极性[7]。

五、加强教学过程的管理

篇3

10月9日,诺贝尔物理学奖答案揭晓,来自巴黎高等师范学院塞尔日・阿罗什(Serge Haroche)教授以及美国国家标准与技术研究院的大卫・维因兰德(David Wineland)教授共同分享了这一殊荣,他们两人的获奖理由是分别发明了测量和控制孤立量子系统的实验方法。

在诺贝尔奖委员会的新闻稿中,两位获奖者的成就被称为“为实现量子计算机奠定了基础。”一时间,量子计算机也成为了业界关注的焦点。

薛定谔的猫和诺贝尔奖

对于普通人来说,量子力学是个深不可测的概念。不过,随着最近几年科幻题材电影电视剧的风靡,“平行宇宙”、“平行世界”之类的词汇开始被频频提及,而它正是出自量子力学的相关概念。

想要了解什么是量子计算机,那么首先需要了解“薛定谔的猫”这个量子力学中的经典假设。

1935年,奥地利著名物理学家,同时也是量子力学创始人之一的薛定谔设想出这样一个实验:一只猫被关进一个不透明的箱子里,箱子内事先放置好一个毒气罐,毒气罐的开关由一个放射性原子核来控制。当原子核发生衰变时,它会释放出一个粒子触发毒气罐的开关,这样毒气释放,猫就会被毒死。

根据量子力学的理论,在实验者没有开箱进行观测时,原子核处于衰变和未衰变的叠加状态,换言之,箱子里的猫既是活的也是死的,对于普通人来说,很难理解“既生又死”这样的状态,但这正是量子力学研究的领域。量子力学针对的是在微观环境下的物理现象,在这一环境中,大家中学时候学习的经典物理学中的规律会突然失效,微观世界是由另一套自然法则在操控,这也是为什么薛定谔的理想实验中猫既能是活的也能是死的。

不过,一旦打开箱子,微观实现就会出现“崩塌”,原子核的状态就会确定下来,此时猫是生是死也随之揭晓答案。

长期以来,由于不能实际观测,量子力学仅仅停留在理论之上,而缺乏实践的验证。然而,今年两位诺贝尔奖得主的成就正是在这方面取得了突破。他们各自通过精妙的实验,使“测量和操控量子系统成为可能”,让不打开箱子就能观察猫的生死变成了可能。当然,更重要的是,它也使量子计算机的实现变得不再遥不可及。

不再是空想的量子计算机

所谓量子计算机是基于量子力学基本原理实现信息处理的一项革命性计算技术。1982年,美国物理学家费曼在一次演讲中提出利用量子体系实现通用计算的想法,当时他发现,分析模拟量子物理世界所需要的计算能力远远超过了经典计算机所能达到的能力,而用实验室中一个可控的量子系统来模拟和计算另外一个人们感兴趣的量子系统会非常高效,量子计算机的概念也应运而生。

量子计算机与经典计算机不同之处在于,对于经典计算机来说,其基本的数据单位就是一个比特,相对应的一个比特不是0就是1,而对于量子计算机来说,一个比特可以同时表示0和1,这就意味着两个比特就能表示00、01、10、11四种状态。这样,只要有300个量子比特,其承载的数据就能是2的300次方,这将超过整个宇宙的原子数量总和。简而言之,量子计算机的运算能力将是目前经典计算机所无法比拟的。

前面的表述未免抽象,举一个形象的例子:目前最好的多核处理器能够解密150位的密码,如果想要解密一个1000位的密码,那么需要调用目前全球的计算资源才有可能实现。但是从理论上讲,一台量子计算机在几个小时内就能解决这一问题。在量子计算机面前,目前世界上最复杂的密码也会变得不堪一击,这意味着互联网上将不再有秘密可言,人类需要重新设立一套与现在完全不同的信息加密系统。

量子计算机的用处当然不只是破译密码,在大数据分析的时代,对计算机运算能力的要求正变得愈来愈高,从语义识别到人工智能,都需要倚仗计算机强大的运算能力才能完成,这也让业界对于量子计算机的诞生充满了期待。

不过,虽然理论上300个量子比特就能赋予计算机难以想象的运算能力,但现实与想象毕竟还存在不小的差距。根据清华大学交叉信息研究院助理研究员尹章琦的介绍,估算大概需要至少一万个量子比特才能超越经典计算机的计算能力,“因为我们需要对计算过程进行纠错,所以需要很多个物理比特才能获得一个可容错的逻辑比特。估计需要大概一千个逻辑比特运行Shor算法来超越经典计算机的计算能力,那么物理比特至少要高一个量级,甚至可能要高两个量级”。尹章琦所从事的正是关于量子信息与量子光学的理论与实验研究。

商业化的未来

在学界还在探讨量子计算机可行性的时候,产业界已经迫不及待开始了实践。早在2001年,IBM就曾经成功实现利用7个量子比特完成量子计算中的素因子分解法。

2007年,加拿大的D-Wave公司就了号称全球第一台商用量子计算机――采用16位量子比特处理器的Orion(猎户座)。不过,Orion后迅速被业界泼了一盆冷水,业内人士称,Orion并不是真正意义上的量子计算机,只是具备了一些量子计算的特性。

去年,D-Wave卷土出来,了全新的产品――D-Wave One,这一次它的处理器达到了128量子比特,比前代产品大大提升,一台售价高达1000万美元。但是,由于D-Wave对核心技术三缄其口,学术界无法得知关于其产品的更多信息,质疑之声再起,因为目前能够实现10量子比特已经是相当了不起的成就。

不过,即便质疑不断,D-Wave还是成功拿到了第一张订单,外国媒体报道,美国知名的军备制造商洛克希德・马丁已经购买了D-Wave的产品并且将其用在一些复杂的项目上,比如F-35战斗机软件错误的自动检测。

不仅如此,D-Wave还在今年10月得到了来自贝索斯以及美国中情局下属投资机构In-Q-Tel总计3000万美元的投资。贝索斯的投资逻辑显而易见,随着现实世界的不断互联网化,他的野心自然是通过深度挖掘和分析亚马逊积累的海量数据创造出更大的商业价值,而量子计算机正是实现这一切的基础。

在D-Wave大出风头的同时,老牌巨头IBM也不甘落后,今年2月,IBM宣布在量子计算领域再次取得重大进展。新的技术使得科学家可以在初步计算中减少数据错误率,同时在量子比特中保持量子机械属性的完整性。

篇4

人们通常把爱因斯坦与玻尔之间关于如何理解量子力学的争论,看成是继地心说与日心说之后科学史上最重要的争论之一。就像地心说与日心说之争改变了人们关于世界的整个认知图景一样,爱因斯坦与玻尔之间的争论也蕴含着值得深入探讨的对理论意义与概念变化的全新理解以及关于世界的不同看法。有趣的是,他们俩人虽然都对量子力学的早期发展做出了重要贡献,但是,爱因斯坦在最早基于普朗克的量子概念提出并运用光量子概念成功地解释了光电效应,以及运用能量量子化概念推导出固体比热的量子论公式之后,却从量子论的奠基者,变成了量子力学的最强烈的反对者,甚至是最尖锐的批评家。截然相反的是,玻尔在1913年同样基于普朗克的量子概念提出了半经典半量子的氢原子模型之后,却成为量子力学的哥本哈根解释的奠基人。爱因斯坦对量子力学的反对,不是质疑其数学形式,而是对成为主流的量子力学的哥本哈根解释深感不满。这些不满主要体现在爱因斯坦与玻尔就量子力学的基础性问题展开的三次大论战中。他们的第一次论战是在1927年10月24日至29日在布鲁塞尔召开的第五届索尔未会议上进行的。这次会议由洛伦兹主持,其目的是为讨论量子论的意义提供一个最高级的论坛。在这次会议上,爱因斯坦第一次听到了玻尔的互补性观点,并试图通过分析理想实验来驳倒玻尔—海森堡的解释。这一次论战以玻尔成功地捍卫了互补性诠释的逻辑无矛盾性而结束;第二次大论战是于1930年10月20日至25日在布鲁塞尔召开并由朗子万主持的第六届索尔未会议上进行的。在这次会议上,关于量子力学的基础问题仍然是许多与会代表所共同关心的主要论题。爱因斯坦继续设计了一个“光子箱”的理想实验,试图从相对论来玻尔的解释。但是,在这个理想实验中,爱因斯坦求助于自己创立的相对论来反驳海森堡提出的不确定关系,反倒被玻尔发现他的论证本身包含了驳倒自己推论的关键因素而放弃。

当这两个理想实验都被玻尔驳倒之后,爱因斯坦虽然不再怀疑不确定关系的有效性和量子理论的内在自洽性。但是,他对整个理论的基础是否坚实仍然缺乏信任。1931年之后,爱因斯坦对量子力学的哥本哈根解释的质疑采取了新的态度:不是把理想实验用作正面攻击海森堡的不确定关系的武器,而是试图通过设计思想实验导出一个逻辑悖论,以证明哥本哈根解释把波函数理解成是描述单个系统行为的观点是不完备的,而不再是证明逻辑上的不一致。在这样的思想主导下,第三次论战的焦点就集中于论证量子力学是不完备的观点。1935年发表的EPR论证的文章正是在这种背景下撰写的。从写作风格上来看,EPR论证既不是从实验结果出发,也不再是完全借助于思想实验来进行,而是把概念判据作为讨论的逻辑前提。这样,EPR论证就把讨论量子力学是否完备的问题,转化为讨论量子力学能否满足文章提供的概念判据的问题。由于这些概念判据事实上就是哲学假设,这就进一步把是否满足概念判据的问题,推向了潜在地接受什么样的哲学假设的问题。例如,EPR论证在文章的一开始就开门见山地指出:“对于一种物理理论的任何严肃的考查,都必须考虑到那个独立于任何理论之外的客观实在同理论所使用的物理概念之间的区别。这些概念是用来对应客观实在的,我们利用它们来为自己描绘出实在的图像。为了要判断一种物理理论成功与否,我们不妨提出这样两个问题:(1)“这理论是正确的吗?”(2)“这理论所作的描述是完备的吗?”只有在对这两个问题都具有肯定的答案时,这种理论的一些概念才可说是令人满意的。”〔3〕从哲学意义上来看,这段开场白至少蕴含了两层意思,其一,物理学家之所以能够运用物理概念来描绘客观实在,是因为物理概念是对客观实在的表征,由这些表征描绘出的实在图像,是可想象的。这是真理符合论的最基本的形式,也反映了经典实在论思想的核心内容;其二,如果一个理论是令人满意的,当且仅当,这个理论既正确,又完备。那么,什么是正确的理论与完备的理论呢?EPR论证认为,理论的正确性是由理论的结论同人的经验的符合程度来判断的。只有通过经验,我们才能对实在作出一些推断,而在物理学里,这些经验是采取实验和量度的形式的。〔4〕也就是说,理论正确与否是根据实验结果来判定的,正确的理论就是与实验结果相吻合的理论。但文章接着申明说,就量子力学的情况而言,只讨论完备性问题。言外之意是,量子力学是正确的,即与实验相符合,但不一定是完备的。为了讨论完备性问题,文章首先不加证论地给出了物理理论的完备性条件:如果一个物理理论是完备的,那么,物理实在的每一元素都必须在这个物理理论中有它的对应量。物理实在的元素必须通过实验和量度来得到,而不能由先验的哲学思考来确定。基于这种考虑,他们又进一步提供了关于物理实在的判据:“要是对于一个体系没有任何干扰,我们能够确定地预测(即几率等于1)一个物理量的值,那末对应于这一物理量,必定存在着一个物理实在的元素。”

文章认为,这个实在性判据尽管不可能包括所有认识物理实在的可能方法,但只要具备了所要求的条件,就至少向我们提供了这样的一种方法。只要不把这个判据看成是实在的必要条件,而只看成是一个充足条件,那末这个判据同经典实在观和量子力学的实在观都是符合的。综合起来,这两个判据的意思是说,如果一个物理量能够对应于一个物理实在的元素,那么,这个物理量就是实在的;如果一个物理理论的每一个物理量都能够对应于物理实在的一个元素,那么,这个物理学理论就是完备的。然而,根据现有的量子力学的基本假设,当两个物理量(比如,位置X与动量P)是不可对易的量(即,XP≠PX)时,我们就不可能同时准确地得到它们的值,即得到其中一个物理量的准确值,就会排除得到另一个物理量的准确值的可能,因为对后一个物理量的测量,会改变体系的状态,破坏前者的值。这是海森堡的不确定关系所要求的。于是,他们得出了两种选择:要么,(1)由波动函数所提供的关于实在的量子力学的描述是不完备的;要么,(2)当对应于两个物理量的算符不可对易时,这两个物理量就不能同时是实在的。他们在进行了这样的概念阐述之后,接着设想了曾经相互作用过的两个系统分开之后的量子力学描述,然后,根据他们给定的判据,得出量子力学是不完备的结论。EPR论证发表不久,薛定谔在运用数学观点分折了EPR论证之后,以著名的“薛定谔猫”的理想实验为例,提出了一个不同于EPR论证,但却支持EPR论证观点的新的论证进路。出乎意料的是,爱因斯坦却在1936年6月19日写给薛定谔的一封信中透露说,EPR论文是经过他们三个人的共同讨论之后,由于语言问题,由波多尔斯基执笔完成的,他本人对EPR的论证没有充分表达出他自己的真实观点表示不满。从爱因斯坦在1948年撰写的“量子力学与实在”一文来看,爱因斯坦对量子力学的不完备性的论证主要集中于量子理论的概率特征与非定域性问题。他认为,物理对象在时空中是独立存在的,如果不做出这种区分,就不可能建立与检验物理学定律。因此,量子力学“很可能成为以后一种理论的一部分,就像几何光学现在合并在波动光学里面一样:相互关系仍然保持着,但其基础将被一个包罗得更广泛的基础所加深或代替。”显然,爱因斯坦后来对量子力学的不完备性问题的论证比EPR论证更具体、更明确。EPR论证中的思想实验只是隐含了对非定域性的质疑,但没有明朗化。但就论证问题的哲学前提而言,爱因斯坦与EPR论证基本上没有实质性的区别。因此,本文下面只是从哲学意义上把EPR论证看成是基于经典物理学的概念体系来理解量子力学的一个例证来讨论,而不准备专门阐述爱因斯坦本人的观点。

二、玻尔的反驳与量子整体性

玻尔在EPR论证发表后不久很快就以与EPR论文同样的题目也在《物理学评论》杂志上发表了反驳EPR论证的文章。玻尔在这篇文章中重申并升华了他的互补观念。玻尔认为,EPR论证的实在性判据中所讲的“不受任何方式干扰系统”的说法包含着一种本质上的含混不清,是建立在经典测量观基础上的一种理想的说法。因为在经典测量中,被测量的对象与测量仪器之间的相互作用通常可以被忽略不计,测量结果或现象被无歧义地认为反映了对象的某一特性。但是,在量子测量系统中,不仅曾经相互作用过的两个粒子,在空间上彼此分离开之后,仍然必须被看成是一个整体,而且,被测量的量子系统与测量仪器之间存在着不可避免的相互作用,这种相互作用将会在根本意义上影响量子对象的行为表现,成为获得测量结果或实验现象的一个基本条件,从而使人们不可能像经典测量那样独立于测量手段来谈论原子现象。玻尔把量子现象对测量设置的这种依赖性称为量子整体性(whole-ness)。

在玻尔看来,为了明确描述被测量的对象与测量仪器之间的相互作用,希望把对象与仪器分离开来的任何企图,都会违反这种基本的整体性。这样,在量子测量中,量子对象的行为失去了经典对象具有的那种自主性,即量子测量过程中所观察到的量子对象的行为表现,既属于量子对象,也属于实验设置,是两者相互作用的结果。因此,在量子测量中,“观察”的可能性问题变成了一个突出的认识论问题:我们不仅不能离开观察条件来谈论量子现象,而且,试图明确地区分对象的自主行为以及对象与测量仪器之间的相互作用,不再是一件可能的事情。玻尔指出,“确实,在每一种实验设置中,区分物理系统的测量仪器与研究客体的必要性,成为在对物理现象的经典描述与量子力学的描述之间的原则性区别。”〔8〕海森堡也曾指出,“在原子物理学中,不可能再有像经典物理学意义下的那种感知的客观化可能性。放弃这种客观化可能性的逻辑前提,是由于我们断定,在观察原子现象的时候,不应该忽略观察行动所给予被观察体系的那种干扰。对于我们日常生活中与之打交道的那些重大物体来说,观察它们时所必然与之相连的很小一点干扰,自然起不了重要作用。”

另一方面,作用量子的发现,揭示了量子世界的不连续性。这种不连续性观念的确立,又相应地导致了一系列值得思考的根本问题。首先,就经典概念的运用而言,一旦我们所使用的每一个概念或词语,不再以连续性的观念为基础,它们就会成为意义不明确的概念或词语。如果我们希望仍然使用这些概念来描述量子现象,那么,我们所付出的代价是,限制这些概念的使用范围和精确度。对于完备地反映微观物理实在的特性而言,描述现象所使用的经典概念是既相互排斥又相互补充的。这是玻尔的互补性观念的精神所在。有鉴于此,玻尔认为,EPR论证根本不会影响量子力学描述的可靠性,反而是揭示了按照经典物理学中传统的自然哲学观点或经典实在论来阐述量子测量现象时存在的本质上的不适用性。他指出:“在所有考虑的这些现象中,我们所处理的不是那种以任意挑选物理实在的各种不同要素而同时牺牲其他要素为其特征的一种不完备的描述,而是那种对于本质上不同的一些实验装置和实验步骤的合理区分;……事实上,在每一个实验装置中对于物理实在描述的这一个或那一个方面的放弃(这些方面的结合是经典物理学方法的特征,因而在此意义上它们可以被看作是彼此互补的),本质上取决于量子论领域中精确控制客体对测量仪器反作用的不可能性;这种反作用也就是指位置测量时的动量传递,以及动量测量时的位移。正是在这后一点上,量子力学和普通统计力学之间的任何对比都是在本质上不妥当的———不管这种对比对于理论的形式表示可能多么有用。事实上,在适于用来研究真正的量子现象的每一个实验装置中,我们不但必将涉及对于某些物理量的值的无知,而且还必将涉及无歧义地定义这些量的不可能性。”其次,就量子描述的可能性而言,玻尔认为,我们“位于”世界之中,不可能再像在经典物理学中那样扮演“上帝之眼”的角色,站在世界之外或从“外部”来描述世界,不可能获得作为一个整体的世界的知识。玻尔把这种描述的可能性与心理学和认知科学中对自我认识的可能性进行了类比。在心理学和认知科学中,知觉主体本身是进行自我意识的一部分这一事实,限制了对自我认识的纯客观描述的可能性。用玻尔形象化的比喻来说,在生活的舞台上,我们既是演员,又是观众。因此,量子描述的客观性位于理想化的纯客观描述与纯主观描述之间的某个地方。

为此,玻尔认为,物理学的任务不是发现自然界究竟是怎样的,而是提供对自然界的描述。海森堡也曾指出,在原子物理学领域内,“我们又尖锐地碰到了一个最基本的真理,即在科学方面我们不是在同自然本身而是在同自然科学打交道。”爱因斯坦则坚持认为,在科学中,我们应当关心自然界在干什么,物理学家的工作不是告诉人们关于自然界能说些什么。爱因斯坦的观点是EPR论证所蕴含的。这两种理论观之间的分歧,事实上,不仅是有没有必要考虑和阐述包括概念、仪器等认知中介的作用的分歧,而且是能否把量子力学纳入到经典科学的思维方式当中的分歧。EPR论证以经典科学的方法论与认识论为前提,认为正确的科学理论理应是对自然界的正确反映,认知中介对测量结果不会产生实质性的影响;而玻尔与海森堡则以接受量子测量带来的认识论教益为前提,认为量子力学已经失去了经典科学具有的那种概念与物理实在之间的一一对应关系,认知中介的设定成为人类认识微观世界的基本前提。第三,就主体与客体的关系问题而言,EPR论证认为,认知主体与客体之间存在着明确的分界线。这意味着,所有的主体都能对客体进行同样的描述,并且他们描述现象所用的概念与语言是无歧义的。无歧义意味着对概念或语言的意义的理解是一致的。而对于量子测量而言,对客体的描述包含了主体遵守的作为世界组成部分的描述条件的说明,从而显现了一种新的主客体关系。为此,我们可以把主体与客体之间的关系划分为三类:其一,能够在主体与客体之间划出分界线,所有的主体对客体的描述都是相同的,EPR论证属于此类;其二,能够在主体与客体之间划出分界线,但主体对客体的描述是因人而异的,人们对艺术品的欣赏属于此类;其三,不可能在主体与客体之间划出分界线,主体对客体的描述包括了对测量条件的描述在内,玻尔对EPR论证的反驳属于此类。显然,EPR论证隐含的主客体关系与玻尔所理解的量子测量中的主客体关系之间存在着实质性的差别。EPR论证是沿袭了经典实在论的观点,而玻尔的观点代表了他基于量子力学的形式体系总结出来的某种新的认识。在这里,就像不能用欧几里得几何的时空观来反对非欧几何的时空观一样,我们也不能用经典意义上的理论观反对量子意义上的理论观。因此,可以说,物理学家关于如何理解量子力学问题的争论,在很大程度上,蕴含了他们关于科学研究的哲学假设之间的争论。

三、实验的形而上学

EPR论证不仅引发了量子物理学家关于物理学基础理论问题的哲学讨论,而且还创立了“实验的形而上学”,提供了物理学家如何基于形而上学的观念之争,最终探索出通过实验检验其结论的一个典型案例。这一过程与寻找量子论的隐变量解释的努力联系在一起。量子力学的隐变量解释的最早方案是德布罗意在1927年提出的“导波”理论。1932年,冯•诺意曼在他的《量子力学的数学基础》一书中曾根据量子力学的概念体系提出了四个假设,并且证明,隐变量理论和他的第四个假设(即,可加性假设)相矛盾,认为通过设计隐变量的观念来把量子理论置于决定论体系之中的任何企图都注定是失败的。冯•诺意曼的这一工作在为量子论的隐变量解释判了死刑的同时,也极大地支持了量子力学的哥本哈根解释。有意思的是,曾是量子力学的哥本哈根解释的支持者与传播者的玻姆,在1951年基于量子力学的哥本哈根精神出版了至今仍然有影响的《量子理论》一书,并在书的结尾,以EPR论证为基础,提出了“量子理论同隐变量不相容的一个证明”之后,从1952年开始反而致力于从逻辑上为量子力学提供一种隐变量解释的研究。

玻姆阐述隐变量理论的目标可以大致概括为两个方面,一是试图用能够直觉想象的概念为量子概率和量子测量提供一种可理解的说明,证明为量子论提供一个决定论的基础是可行的;二是希望从逻辑上表明,隐变量理论是有可能的,“不论这种理论是多么抽象和‘玄学’。”玻姆的追求显然是一种信念的支撑,而不是事实之使然。在这种信念的引导下,玻姆在1952年连续发表了两篇阐述隐变量理论的文章,在这些文章中,他用经典方式定义波函数,假定微观粒子像经典粒子一样总是具有精确的位置和精确的动量,阐述了一种可能的量子论的隐变量解释,最后,用一个粒子的两个自旋分量代替EPR论证中的坐标与动量,讨论了EPR论证的思想实验,并运用量子场与量子势概念解释了测量一个粒子的位置影响第二个粒子的动量的原因。

贝尔在读了玻姆的文章之后,认为有必要重新系统地研究量子力学的基本问题。贝尔试图解决的矛盾是:如果冯•诺意曼的证明成立,那么,怎么会有可能建立一个逻辑上无矛盾的隐变量理论呢?为了搞明白问题,贝尔首先重新剖析了冯•诺意曼的关于隐变量的不可能性的证明和EPR论证中设想的思想实验,然后,抓住了隐变量理论的共同本质,于1964年发表了“关于EPR悖论”的文章。在这篇文章中,贝尔引述了用自旋函数来表述EPR论证的玻姆说法,或者说,从EPR—玻姆的思想实验出发,以转动不变的独立波函数描述组合系统的态,推导出一个不同于量子力学预言的、符合定域隐变量理论的关于自旋相关度的不等式,通常称为贝尔不等式或贝尔定理,然后,用归谬法了量子力学的预言和贝尔不等式相符的可能性,说明任何定域的隐变量理论,不论它的变数的本性是什么,都在某些参数上同量子力学相矛盾。贝尔还假设,如果所进行的两个测量在空间上彼此相距甚远,那么,沿着一个磁场方向的测量,将不会影响到另一个测量结果。贝尔把这个假设称为“定域性假设”。从这个假设出发,贝尔指出,如果我们可以从第一个测量结果预言第二个测量结果,测量可以沿着任何一个坐标轴来进行,那么,测量的结果一定是已经预先确定了的。但是,由于波函数不对这种预先确定的量提供任何描述,所以,这种预定的结果一定是通过决定论的隐变量来获得的。贝尔后来申明说,他在“关于EPR悖论”一文中假设的是定域性,而不是决定论,决定论是一种推断,不是一个假设,或者说,贝尔的这篇文章是从定域性推论出决定论,而不是开始于决定论的隐变量。从逻辑前提上来看,贝尔的假设更接近于爱因斯坦的假设,他们都把“定域性条件”看成是比“决定论前提”更基本的概念。因此,贝尔的工作比冯•诺意曼和玻姆的工作更进一步地推进了关于量子力学的根本特征的理解。贝尔的这篇文章具有划时代的意义。它不仅成为20世纪下半叶物理学与哲学研究中引用率最高的文献之一,而且为进一步设计具体的实验来澄清量子力学的内在本性迈出了决定性的一步。粒子物理学家斯塔普(HenryStapp)甚至把贝尔定理的提出说成是“意义最深远的科学发现。”

同EPR论证一样,贝尔的这一发现也不是从实验中总结出来的,而是基于哲学信念的逻辑推理的结果。此后,量子物理学界进一步推广贝尔定理的理论研究与具体实验方案的探索工作并行不悖地开展起来。而这些工作都与EPR论证相关。就实验进展而言,物理学界承认,阿斯佩克特等人于1982年关于“实现EPR-玻姆思想实验”的实验结果,支持了量子力学,针对这样的实验结果,贝尔指出:“依我看,首先,人们必定说,这些结果是所预料到的。因为它们与量子力学预示相一致。量子力学毕竟是科学的一个极有成就的科学分支,很难相信它可能是错误的。尽管如此,人们还是认为,我也认为值得做这种非常具体的实验。这种实验把量子力学最奇特的一个特征分离了出来。原先,我们只是信赖于旁证。量子力学从没有错过。但现在我们知道了,即使在这些非常苛刻的条件下,它也不会错的。”

虽然EPR论证的初衷是希望证明量子力学是不完备的,还没有提出量子测量的非定域性概念,但是,物理学家则通常运用EPR思想实验的术语来讨论非定域性问题。经过40多年的发展,具体的实验结果使EPR论证失去了对量子力学的挑战性。一方面,这些实验证实了非定域性是所有量子论的一个基本属性,要求把在同一个物理过程中生成的两个相关粒子永远当作一个整体来对待,不能分解为两个独立的个体,其中,一个粒子发生任何变化,另一个粒子必定同时发生相应的变化,这种相互影响与它们的空间距离无关;另一方面,这些实验也表明了EPR论证提供的哲学假设不再是判断量子力学是否完备的有效前提,而是反过来提醒我们需要重新思考玻尔在反驳EPR论证的观点中所蕴含的哲学启迪。总而言之,EPR论证尽管是基于哲学假设,运用思想实验,来驳斥量子力学的完备性,但在客观上,物理学家围绕这一论证的讨论,最终在思想实验的基础上出乎意料地发展出可以具体操作的实验方案,并且获得了有效的实验结果。这一段历史发展不仅证明,无论在哲学假设的问题上,还是在物理概念的意义理解的问题上,量子力学都不是对经典物理学的补充和扩展,是一个蕴含有新的哲学假设的理论。正是在这种意义上,物理学家玻恩得出了“理论物理学是真正的哲学”的断言。

四、认识论的思维方式

如前所述,EPR论证—玻姆—贝尔这条发展主线是把对物理学问题镶嵌在哲学信念中进行思考的。这一历史片断揭示出,基于哲学信念的逻辑推理在物理学的理论研究与实验研究中起到了积极的认知作用。一方面,在这些探索方式中,不论是EPR论证的真理符合论假设,玻姆的决定论假设,还是贝尔的定域性假设,它们的初衷都是希望能够把量子力学纳入到经典物理学的概念框架或哲学信念之中。另一方面,检验贝尔不等式的物理学实验结果对量子力学的支持和对贝尔不等式的违背意味着,我们不应该依旧固守经典物理学的哲学假设来质疑量子力学,而是应该颠倒过来,积极主动地揭示量子力学蕴含的哲学思想,以进一步明确经典物理学的哲学假设的适用范围。

但是,这种视域的逆转不是简单地倡导用量子力学的哲学假设取代经典物理学的哲学假设,也不是武断地主张用玻尔的理论观替代EPR论证所蕴含的理论观,而是提倡摆脱习以为常的自然哲学的思维方式,确立认识论的思维方式。自然哲学的思维方式是一种本体论化的思维方式。这种思维方式是从古希腊延续下来的,追求概念与实在之间的直接的一一对应关系,忽视或缺乏对认知过程中不可避免的认知中介和理论框架的考虑。从起源上来讲,这种无视认知中介的本体论化的思维方式,源于常识,是对常识的一种延伸外推与精致化。近代自然科学的发展进一步强化与巩固了这种思维方式。EPR论证也是基于这种思维方式使经典科学蕴含的哲学假设以具体化的判据形式呈现出来。然而,与过去的物理学理论所不同的是。量子力学不再是关于可存在量(beable)的理论,而是关于可观察量(observable)的理论,“是理论决定我们的观察内容”这一句话,既是爱因斯坦创立相对论的感想,也为海森堡提出不确定关系提供了观念启迪。就理论形式而言,量子力学的理论描述用的是数学语言,而不是日常语言。用数学语言描述的微观世界是一个多位空间的世界,而我们作为人类,很难直观地想象这样的世界,更不可能直接“进入”这个世界来“观看”一切。人类感知的这种局限性是原则性的,从而限制了我们对微观世界的知识的全面获得。用玻尔的话来说,我们对一个微观对象的最大限度的知识不可能从单个实验中获得,而只能从既相互排斥又相互补充的实验安排中获得。用玻恩的话来说,在量子测量中,观察与测量并不是指自然现象本身,而是一种投影。

篇5

Reform and Practice of Quantum Mechanics Hybrid Teaching Mode Based on SPOC

LIU Rong HOU Hong-lu DONG Wei LIU Wang-yun HUI Ying-xue

(College of Optoelectronic Engineering, Xi’an University of Technology, Xi’an 710021, China)

【Abstract】With the rapid worldwide rise of open online courses and learning platforms, a hybrid teaching model based on SPOC for small-scale specific learning groups has emerged as a powerful means of truly embodying the concept of “student-centered” education. Based on the training goal of electronic science and technology in our university and the characteristics of quantum mechanics course, this paper explores the reform of teaching mode from “traditional teaching” to “SPOC-based hybrid teaching”, studies the reform of teaching mode based on students, SPOC quantum mechanics course hybrid teaching methods, to further improve the effectiveness and quality of classroom teaching to provide an important guarantee.

【Key words】SPOC; Quantum Mechanics; Electronic Science and Technology; Teaching Mode

1 SPOC的产生

追溯国内外在线课程的发展,从1989年美国凤凰城大学最先推行在线学位计划,成为美国第一批被认可的提供网络学位教育的学校开始,直至2001年美国麻省理工学院OCW(Open Course Ware)项目启动,再到2008年MOOC(Massive Open Online Course)概念首次提出[1],并在全球范围内以迅猛之势推广应用,称为现代教育改革的新兴产物。为了顺应新世纪的两大发展趋势,即全球化和信息化,中国高等教育也迎来了新的机遇和挑战。2011年教育部出台了《教育部关于国家精品开放课程建设的实施意见》(教高[2011]8号)、《精品资源共享课建设工作实施办法》(教高厅[2012]2号)文件,全面启动精品视频公开课和精品资源共享课建设。2014年“中国大学MOOC”平台全面运营。国内在线开放课程平台日趋成熟,有效支持在线开放课程的建设与运行。大规模在线开放课程等新型在线开放课程和学习平台在世界范围迅速兴起,不仅拓展了教学时空,实现优质教育资源共享,为学习者提供终身学习条件,而且增强了教学吸引力,激发了学习者的学习积极性和自主性。然而,MOOC缺乏教师的深度参与,脱离实体学校的小班教学,难以完全取代传统的课堂教学。与此同时,一种将MOOC资源服务于校园内学习者的在线教育形式――SPOC(Small Private Online Course)应运而生。SPOC是一种将MOOC资源用于小规模、特定学习者的教学解决方案,赋予学生更完整、有针对性的学习体验。采用混合式教学模式,既发挥教师引导、启发、监控教学过程的主导作用,又能体现学生作为学习过程主体的主动性、积极性与创造性,真正体现“以学生为核心”的教育理念[2]。

致力于建设面向工科专业学生的量子力学在线开放课程,结合我校电子科学与技术专业的培养目标,以及量子力学课程特点,立足于提高学生学习积?O性和培养学生科学探索精神及创新能力,以“微课程”为载体,实现从“传统课堂教学模式”向“SPOC教学模式”转变,研究和构建以学生为核心的基于SPOC的量子力学课程教学模式,采取线上视频教学和线下课堂教学有机结合的混合式教学方法,实现改善课堂教学效果及质量的目标。

2 SPOC教学模式设计

SPOC是线上和线下相结合,采用校内教师的在线资源与校外相关MOOC资源相结合,通过线上教学视频、教学课间、在线作业、测验等教学资源,让学生先自行在线学习,然后在课堂上进行面对面的讨论、答疑、实验等,最后进行线下期末考试环节,至此,整个课程完成。SPOC的核心是教学流程变革所带来的知识传授的提前和知识内化的优化[3]。SPOC的教学模式全过程一般由三个环节构成:问题导入环节、线上学习环节和互动跟踪环节。具体细化过程还包括:微视频制作与上传、设置任务单、提供资料库、组织线上视频学习、开展在线讨论、线下互动教学、跟踪监测等流程,SPOC教学模式设计流程如图1所示。

在具体实践中,结合量子力学的课程特点,做到以下几方面:

(1)基于SPOC的量子力学课程建设采用以知识点碎片化视频(10分钟左右)与交互式练习为基本教学方式的知识点组织模式和学习模式,采取线上视频教学和线下课堂教学有机结合的混合式教学方法,实现教与学的“翻转”。

(2)基于SPOC的量子力学课程建设预期形成6-8小时的在线视频课程,分为10周进行授课,每周授课时数为4节,每节10分钟左右(即为一个视频课程单元)。此外,还包含6-8小时的线下教师面授课程,分3-4周进行授课,每周授课时数为2节,每节50分钟.在线视频兼顾“快、高效、有趣”的特点。

(3)构建以知识点为单元的视频课程模块单元。结合量子力学的课程与内容特点,分解知识单元,构建以知识点为节点的知识架构。通过课程知识点的拆解、遴选和重组形成涵盖课程基本知识点、基本概念、基本原理、前沿专题和热点问题的课程体系课程内容。

(4)配备教学大纲、教案或演示文稿、重点难点、作业、试题库、参考资料、资源库等完整的课程支撑资源库。

(5)基于学情分析,预习导学、设置单元作业、在线讨论、在线考试等线上教学任务和线下教室讨论、交流、答疑等教学活动,以帮助学习者有效进行学习并实现课程制定的目标。教学团队每周会引领4个知识点的学习,渐进式的推进,配以丰富的案例与实操贴士,大家可以选择适合的时间来学习、交流与练习。

(6)考核方式:视频学习完成度+课内表现+期末考试成绩。

3 SPOC教学实践

SPOC采用线上视频教学和线下课堂教学有机结合的混合式教学方法,以学生为核心,将学习置于复杂的有意义的问题情境中,通过视频观看和互动讨论,激励学生积极探索隐含于问题背后的科学知识,实现知识体系的建构和转化,同时鼓励学生对学习内容展开讨论、反思,教师则以提问的方式推进这一过程,最终使学生在一个螺旋式上升的良性循环过程中理解知识,实现学习的不断延续,以促进学生解决问题、自主学习能力的发展,以及创新意识和创新能力的提高,实现改善课堂教学效果及质量的目标。

与传统教学方法相比,基于SPOC的混合式教学模式中,教师与学生的角色和任务发生巨大改变。教师从传统课堂中的知识传授者变成了学习的促进者和指导者,这意味着教师不再是知识交互和应用的中心,而是学生应用知识到真实情景的推动者。

教师的主要任务是:

(1)创设问题情境、呈现问题。提出问题是SPOC的起点和焦点。布朗、科林斯等学者认为,认知是以情境为基础的,发生在认知过程中的活动是学习的组成部分之一,通过创设问题情境可吸引学习者。问题的产生可以是学生自己在生活中发现的有意义、需要解决的实际问题,也可以是在教师的帮助指导下发现的问题,还可以是教师根据实际生活问题、学生认知水平、学习内容等相关方面提出的问题。

(2)提供丰富的教学资源。教学资源是实施SPOC的根本保障。教师可以利用网络课程为学生解决问题提供多种媒体形式和丰富的教学资源。

(3)对学习成果提出要求,给学生提供一个明确的目标和必须达到的标准。

(4)部分教学内容、难点问题讲授。

(5)答疑,论坛主持,实验,考试组织等。

学生的主要任务是:

(1)通过观看视频(任意时间)自主学习;

(2)在线完成作业和测试;

(3)线上论坛讨论并相互回答问题;

(4)参与课堂讨论和组间辩论。

例如,在讲到微观粒子的波函数时,有学生认为波函数是经典物理学的波,也有学生认为波函数由全部粒子组成。这些问题的讨论激发了学生的求知欲望,可以通过线上视频学习、网络资源共享,再组织在线讨论,最后线下教学互动和老师疑难解答,对各小组讨论和辩论的观点进行评述和指正,实现学生对一些不易理解的量子概念和原理的深入理解[4-6]。

4 SPOC教学设计的关键问题

(1)明确学习目标和内容。通常任课教师以整门课程为一个体系进行教学设计,但是这个体系过于庞大,学生往往看这个体系如“盲人摸象”,很难完整理解,甚至使学生产生畏难情绪,很难“留住”学生参与线上学习。所以,建议在设计学生的学习目标时以周为单位,定期视频学习任务书,该任务书一定是具体的、可量化的,使学生可以在短时间内明确本周的学习目标和内容。

(2)教学内容的设计与教学环节的组织安排。基于SPOC的混合式教学不等同于传统教学+在线学习,需要详细设计教学内容,例如哪些内容适合学生在线学习?哪些内容需要课堂讲授?设计哪些讨论主题既紧密结合课程知识点又能够激发学生的“好奇心”,有利于培养学生科学探索精神及创新能力?等等。此外,还需要细化各个教学环节的组织安排,确保各环节能够有机结合。

篇6

课程改革倡导的创新思维观念,无疑会引导教学方式的改变,教师随着学生学习方式的改变,重新建立一套创新教学模式,学生自主学习,形成探究式学习方法,即从学科或现实生活中选择正确探究目标。在探究过程中,运用实验操作、信息收集与处理、表达与交流等方式,解决问题,从而培养他们的创新思维与实践能力。 ¬

创新教育要求我们在一年级语文教学中,教师应有的放矢的培养学生――创新思维,激发学生的探索兴趣,引导学生乐学、活学、会学,引导学生学习语言,积累语言,运用语言,为培养新型人才打好基础。下面,结合《哪座房子最漂亮》一课教学,谈谈个人的粗浅认识。 ¬

一、设置悬念,激情趣生

引发兴趣,是激发学生创新意识的良好开端,每一个孩子对新生事物极易产生好奇心,一旦疑意设置起来,他们往往会得到结论,回去积极认真的探求。如我在教学《哪座房子最漂亮》时(人教版一年级下册第4课)我首先让学生想一想:随着我们生活水平的不断提高,家家都盖起了新房子,你知道谁家的房子最漂亮吗?学生们马上会争先恐后抢着发言,我抓住契机,鼓励同学们总结和归纳新课题,然后我说:啊!有这么多漂亮的新房子,那么哪座房子最漂亮呢?让我们赶快来读课文去看看漂亮的房子吧!此时,学生会迫不及待的翻开书带着浓厚的兴趣认真的研读起来,此时把“要你知足”演变成“我要知足”,学生的求知欲望被激发起来。 ¬

一、 巧用教材,培养想象

想象是创新之源、时间告诉我们想象的越丰富,对文章的深层含义的理解就越有创见,因此,新课改教学要求我们充分挖掘教材想象因素作为一个重要内容是有理论依据的。我在教《哪座房子最漂亮》这篇文时,我抓住学生这样一句话引导学生想象:课文是怎样写这个小村庄的?大家分分围坐一起,热烈的讨论着,辨别着,补充着,同时有的学生用简笔画画出漂亮的房子。可以说,学生们展开了想象的翅膀,已飞进了课文的意境之中。 ¬

三、大胆质疑,主动探究 ¬

“学起于思,思源于疑。”学生有了疑问,才能进一步去思考、无分析、去求索。教学时,尽量避免学生机械的去接受知识,而是引导学生大胆质疑,并且引导学生逐步提高质疑水平。当学生有了疑问后,引导学生主动去探索,教师不直接给与肯定或否定的答案?给学生有充分的思考和实践机会。如读完《哪座房子最漂亮》后,有的学生问:为什么我们的小学堂最漂亮呢?我让学习好的学生回答,再让大家一起认定。最后,这名同学的问题得到圆满解决,而且还促进了其他同学的思维。 ¬

四、发散思维,求异创新 ¬

篇7

关键词:凝聚态物理;关联区;量子态;理论方法

中图分类号:O469 文献标识码:A

凝聚态物理学是当今物理学中最大也是最重要的分支学科之一,它是从微观角度出发,研究凝聚态物质的物理性质、微观结构以及它们之间的关系,因此建立起既深刻又普遍的理论体系,是当前物理学中最重要、最丰富和最活跃的学科,在许多学科领域中的重大成就已在当今高新科学技术领域中起了关键性作用,为发展新材料、新器件和新工艺提供了科学基础。凝聚态物理一方面与粒子物理学在概念上的发展相互渗透,对一些最基本的问题给出启示;另一方面为新型材料的研发和制备提供理论上和实验上的支持,与工科的技术学科衔接构成科学上最有实用性的拓新领域。那么,当今凝聚态物理主要研究哪些分支内容?使用什么样的理论方法?这些研究在哪些方面有所成就?

一、凝聚态物理当今主要研究的一些分支内容

凝聚态指的是由大量粒子组成且粒子间有很强相互作用的系统。固态和液态是最常见的凝聚态,低温下的超流态、超导态、玻色-爱因斯坦凝聚态、磁介质中的铁磁态、反铁磁态等,也都是凝聚态。凝聚态物理是属于偏应用的交叉学科,研究方向和分支很多,基本任务是阐明微观结构与物理性质的关系。传统的凝聚态物理主要研究半导体、磁学、超导体等,现今凝聚态物理学研究的理论内容十分广泛,以下是其中较活跃的几个分支:

1.固体电子论中的关联区

研究固体中的电子行为,是凝聚态物理的前身固体物理学的核心问题。按电子间相互作用的大小,固体中电子的行为分成3个区域,它们分别是弱关联区、中等关联区和强关联区。弱关联区的研究基于电子受晶格上离子散射的能带理论,应用于半导体和简单金属,构成了半导体物理学的理论基础;中等关联区的研究包括一般金属和强磁性物质,是构成铁磁学的物理基础;强关联区则涉及电子浓度很低的不良金属,诸如莫脱绝缘体、近藤效应、巨磁电阻效应等,它们的物理性质问题尚未得到很好地解决。

现今对固体电子论的研究比较注重的是强关联系统。

2.宏观量子态

用量子力学描述宏观体系的状态称为宏观量子态,如超导中电子的库珀对。超导现象是电阻在临界转变温度Tc以下突然降为零,磁通全部被斥,成为完全抗磁体,超流现象是当液氦(4He)的温度降到2.17K时,由正常流体突然转变为具有一系列极不寻常的性质的“超流体”。宏观量子态具有典型的量子力学性质,如势垒隧道穿越和位相相干等。当前量子力学研究的重要课题是退相干现象和耗散现象。

3.介观物理与纳米结构

介观是介于宏观与微观之间的一种体系,处于介观的物体的尺寸可以说是宏观的,因而具有宏观体系的特点;但是由于其中电子运动的相干性,会出现一系列新的与量子力学相位相联系的干涉现象,这又与微观体系相似,故称“介观”。介观物理学所研究的物质尺度和纳米科技的研究尺度有很大重合,所以这一领域的研究常被称为“介观物理和纳米科技”。

为获取更优异的物理性能,凝聚态物理界从20世纪中期开始注重将材料按特定的结构尺度组织成复合体,若结构尺度在1nm~100nm范围内,即为纳米结构,它在基础研究中发挥的重要的作用是:在两维电子气中发现了整数量子霍尔效应、分数量子霍耳效应和维格纳晶格,在一维导体中验证了卢廷格液体的理论,在一些人工的纳米结构中发现了介观量子输运现象。在未来的一段时期内,纳米电子学和自旋电子学将成为固体电子学和光子学的发展主流。

4.软物质物理学

1991年被提出的软物质也被称为复杂液体,它是介于固体与液体之间的物相,一般由大分子或基团组成,诸如液晶、聚合物、胶体、膜、泡沫、颗粒物质、生命体系物质诸如DNA、细胞、体液、蛋白质等都属于这类物质,它们中大多数都是有机物质,在原子的尺度上是无序的,在介观的尺度上则可能出现某种规则而有序的结构。软物质在变化过程中内能的变化很微小,熵的变化却很大,因而其组织结构的变化主要是由熵来驱动,和内能驱动的硬物质不同。有机物质中的小分子和聚合物的电子结构与电子性质现在正受到重视,因此有机发光器件和电子器件正在研制开发中。

二、当今凝聚态物理研究的一些现象及其理论方法

固体物理学的一个重要的理论基石为能带理论,它是建立在单电子近似的基础上的。而凝聚态物理学的概念体系则渊源于相变与临界现象的理论,植根于相互作用的多粒子理论。凝聚态物理学的理论基础是量子力学,基本上已经完备且成熟。

当前常用的一些理论方法:第一性原理(特指密度泛函理论计算),蒙特-卡洛方法,玻尔兹曼模型,分子动力学模拟,伊辛模型,有效场,平均场等等。

当前被研究的一些现象:光谱,超导,霍尔效应,弱相互作用,电阻(巨磁电阻,庞磁电阻),磁性研究(磁阻,微磁学,铁磁性,巨磁阻抗效应,相图),多向异性,子晶格,态密度,能隙,强关联、激发态,量子通信,冷原子、物理进展等等。

第一性原理方法是根据原子核与电子相互作用及其基本运动的规律,运用量子力学原理从哈密顿量出发,近似处理后进行求解薛定谔方程的方法,它能给出体系的电子结构性质等相关信息,能描述化学键的断裂、重组,以及电子的重排而被很多人多热衷。

蒙特-卡罗方法也被称统计模拟方法,是以概率统计理论为基础的使用随机数来进行数值计算的方法一类数值计算方法,它是以事件出现的频率估算随机事件的概率,并将这个结果作为问题的解。

伊辛模型是描述分子之间有较强相互作用的系统发生相变情况的模型。通常使用有效场理论、平均场理论和蒙特・卡罗方法来研究它。

三、当今凝聚态物理研究的一些成就

凝聚态物理当今在器件方面取得的两方面主要成就是太阳能电池和纳米器件。在材料方面取得的一些成就有:纳米材料,电子陶瓷材料,拓扑绝缘材料,碳材料(石墨烯,石墨炔,碳化锗薄膜等),复合热电材料,自旋液体、超导体,超材料,薄膜材料。

上边所列的这些成就中,拓扑绝缘体的边界或表面总是存在导电的边缘态,这有望于制造未来新型电脑芯片等元器件。自旋液体描述物质中的一种特殊自旋排布状态,材料的作用能支持某些奇异的超导性或将一些像粒子一样拥有电荷的实体组织起来。石墨烯是目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机,而且它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。当今对石墨炔衍生物的研究逐渐成为研究热点,研究者们积极地设计可能的石墨炔衍生物并预测其物理性质。如研究BN掺杂的石墨炔系列结构的稳定性与电子结构,发现它的性质与硼氮元素掺杂的浓度和位置紧密相关;N掺杂石墨炔可充当氧还原反应的无金属电催化剂;氟化作用可调节石墨炔带隙宽度,这使得石墨炔在纳米电子设备的使用上使其有灵活性;分别在石墨二炔和α-石墨炔中掺入硅和锗的结果是碳硅元素以及碳锗元素之间可以形成稳定的炔键结构,并且其带隙值明显加宽。总之,设计实现这些新的碳锗材料,不仅可以丰富碳相关材料的数据库,而且可以为电子设备、气体分离薄膜、储能材料、锂离子电池电极材料等方面提供可选的对象。

还有,利用粒子的隧道效应可制备隧道结这类夹层结构,诸如半导体隧道二极管、单电子超导隧道结、库珀对超导隧道结。利用与自旋相关的隧道效应,则已制出具有隧道磁电阻的磁存储器。半导体量子阱已用来制备快速晶体管和高效激光器。量子点可用以制备微腔激光器和单电子晶体管。利用铁磁金属与非磁金属可制成磁量子阱,呈现巨磁电阻效应,可用作存储器的读出磁头等等。

结论

有人说:“没有量子力学就没有手机和电脑,就没有现今互联网的普及。”从这句话中可以看出更确凿的事实:基础科学一直是科学技术发展的基础和推手,凝聚态物理在理论上的发展一方面诠释客观物质世界存在的现象,一方面又能预测人类将能解决的客观问题;而它在实验上的发展则是根据其理论上建立的模型给予验证并因此揭示客观事物的实质与规律,且据此来建立并整合理论结果和实验结果与实用技术之间的联系,使得这些客观事物及其规律最终为人类所利用。

参考文献

篇8

量子计算机的秘密武器:叠加和纠缠

一方面,量子效应对现代电子学来说非常重要,它能使晶体管变得非常小;但另一方面,量子效应也是一个惹人讨厌的“调皮鬼”,由于电子的位置并非确定不变,它能让晶体管内的电子简单地从一个地方消失并在另外一个地方再次出现,这样会使得电流泄漏出来,导致信号衰减。

不过,有些科学家却从中看到了机会。他们认为,量子尺度上发生的一些诡异事件可以被利用起来,让人们能以一种全新且更快的方式进行计算并发送信息,至少从理论上而言,这些信息不可能被拦截。几个对此感兴趣的科研团体希望建造出量子计算机,以解决目前的计算机无法解决的问题,诸如找出几百位数的质因子或将大的数据库一网打尽等等。这些研究计划和成果都在AAAS的年度大会上得到了展示。

这些科学家们努力的核心是量子叠加和量子纠缠这两种量子力学现象。普通的数字计算机以位的形式操纵信息,位的值要么是1,要么是0。在计算机内,不同的电流电压分别表示1和0,这同电子的电荷有关。电荷是所有电子的固定特征,每个电子的电荷数目是一样的。但是,电子也拥有其他特征,比如自旋,自旋的方向可以表示为“向上”、“向下”或者模糊不清的“既向上又向下”。这种既向上又向下的状态就被称为叠加,叠加能被用来构建量子力学中的位量子位(量子比特)。

与此同时,纠缠使粒子捆绑在一起以增加更多量子位。在量子机器中,每增加一个量子位会让它能同时进行的操作翻番,这就是量子计算机之所以拥有强大计算能力的“秘诀”。比如,2个相互纠缠的量子位可以进行4个操作;3个量子位可以进行8个操作,等等,依此类推。那么,一个拥有300个量子位的计算机能同时执行的操作数就比可见宇宙中的原子数还多。

叠加和纠缠并不稳定

然而,不幸的是,这样的机器对我们来说仍是“羚羊挂角,无迹可寻”。纠缠和叠加都是非常精细的活,即使最轻微的扰动都会导致“量子位”失去这种相干性,让它们的神奇属性消失殆尽。为了建造出一台能工作的量子计算机,量子位将不得不变得更加灵活,更容易恢复相干性,但迄今为止,这方面的进步一直不大。

1995年,科学家们首次在实验室内实现了量子计算,从那时起,有科研团队已经设法让14个量子位发生了纠缠。这项纪录的保持者是来自德国因斯布鲁克的一个科研团队,他们使用了一个名为离子陷阱的设备,并让以处于不同能量状态的铷原子的叠加形式而存在的量子位在其间发生了纠缠。而加拿大滑铁卢大学的雷蒙德·拉弗莫和同事则设法使用同样的技巧让12个量子位发生了纠缠,让特定的原子在名为组氨酸的氨基酸单分子内发生了纠缠,组氨酸的特征使它非常适合这样的实验。

这些方法存在的问题是,它们并不容易进行升级和扩展。离子陷阱位于大的真空室内,不能轻易地收缩。另外,一个组氨酸分子包含的适合原子数量也有限,因此,科学家们一直在搜寻更实用的量子位。

各出奇招制造稳定的量子位

一种有潜力解决这一问题的方法是在半导体内蚀刻量子位。查尔斯·马库斯以前是哈佛大学的教授,现在是哥本哈根大学的教授,他一直试图使用电子自旋做到这一点。单电子制造的量子位很快会失去相干性,因此,他的研究团队决定使用两个电子制造出一个量子位,他们将其称为“量子点”,这是一块细小的半导体晶体(马库斯使用的半导体是砷化镓)。当两个这样的量子点相互靠近时,能让一个电子陷入一个量子点内以弹出并同另一个量子点内相邻的电子相结合,两个电子自旋的这种叠加就产生了量子位。

迄今为止,马库斯团队已设法让4个这样的量子位结合在一起,而且,使用了一套灵敏的技巧将其寿命延伸至10微秒,这一时间足以用来执行简单的代数操作,代数操作是计算的命脉。他们希望使用硅或碳,进一步延长其寿命,硅或碳的原子核对纠缠电子的干扰比砷化镓要小。

另外,美国加州大学圣巴巴拉分校的约翰·马提尼斯和同事试图从超导电路打造出量子位。在超导体内,电子并不会单独旅行,相反,因为复杂的量子力学原因,它们会成双成对地出现(也因为同样的原因,这对电子之间不会有电阻)。当它们成双成对旅行时,这对电子的行为就像单个粒子一样,这就出现了叠加倾向。例如,这个“超粒子”实际上一次能朝两个方向移动,当这对电子移动时,它们就制造出了一个磁场。接着,制造一个超导闭环,科学家们就得到了一个能同时朝上和朝下的磁场,马提尼斯团队现在已设法让5个这样的超导量子位发生了纠缠。

马提尼斯团队还使用一套名为共振腔的设备,将信息从电路传送到单个光子并将光子捕获在一个空腔内,并持续几微秒。换句话说,他们已经制造出了一个量子存储设备。几微秒听起来很短暂,但足以执行很多基本操作。

前路漫漫任重而道远

所有上述方法面临的问题是,他们赖以依靠的量子状态非常脆弱,很容易出现错误。一种确保他们能用量子位进行计算的方法是用几个量子位而非仅用一个量子位来对同样的信息进行编码。因此,马库斯、马提尼斯以及拉夫莫不得不在他们的系统中建立一些多余的量子位。这样,对于每个计算所需要的每一个“逻辑”量子位来说,都存在着几个其他的物理量子位,所有这些量子位都需要被纠缠在一起。

微软公司研究中心的米歇尔·弗里德曼正试图另辟蹊径来解决这一问题,他和同事正在建造他们称为拓扑量子计算机的机器,这台机器在一层名为锑化铟的奇异材料上方使用了一个超导体。当朝这套系统施加电压时,整个系统就变成了一个能以叠加状态而存在的量子系统。

弗里德曼的量子位与马提尼斯的量子位的不同之处在于,它们对干涉反应的方式不同。在马提尼斯的量子系统中,刺激一个超导电路中的任何电子,整个系统都会失去相干性。然而,弗里德曼的设计对这样的本地破坏活动“刀枪不入”,因为它采用一种特殊的方式让能量遍布于整个锑化铟上。迄今为止,微软公司的团队还没有制造出一个起作用的量子位,但他们希望很快能做到,他们也正在寻找其他材料来重复同样的实验。

篇9

抽象地说,所谓计算,就是从一个符号串f变换成另一个符号串g.比如说,从符号串12+3变换成15就是一个加法计算。如果符号串f是x2,而符号串g是2x,从f到g的计算就是微分。定理证明也是如此,令f表示一组公理和推导规则,令g是一个定理,那么从f到g的一系列变换就是定理g的证明。从这个角度看,文字翻译也是计算,如f代表一个英文句子,而g为含意相同的中文句子,那么从f到g就是把英文翻译成中文。这些变换间有什么共同点?为什么把它们都叫做计算?因为它们都是从己知符号(串)开始,一步一步地改变符号(串),经过有限步骤,最后得到一个满足预先规定的符号(串)的变换过程。

从类型上讲,计算主要有两大类:数值计算和符号推导。数值计算包括实数和函数的加减乘除、幂运算、开方运算、方程的求解等。符号推导包括代数与各种函数的恒等式、不等式的证明,几何命题的证明等。但无论是数值计算还是符号推导,它们在本质上是等价的、一致的,即二者是密切关联的,可以相互转化,具有共同的计算本质。随着数学的不断发展,还可能出现新的计算类型。

2远古的计算工具

人们从开始产生计算之日,便不断寻求能方便进行和加速计算的工具。因此,计算和计算工具是息息相关的。

早在公元前5世纪,中国人已开始用算筹作为计算工具,并在公元前3世纪得到普遍的采用,一直沿用了二千年。后来,人们发明了算盘,并在15世纪得到普遍采用,取代了算筹。它是在算筹基础上发明的,比算筹更加方便实用,同时还把算法口诀化,从而加快了计算速度。

3近代计算系统

近代的科学发展促进了计算工具的发展:在1614年,对数被发明以后,乘除运算可以化为加减运算,对数计算尺便是依据这一特点来设计。1620年,冈特最先利用对数计算尺来计算乘除。1850年,曼南在计算尺上装上光标,因此而受到当时科学工作者,特别是工程技术人员广泛采用。机械式计算器是与计算尺同时出现的,是计算工具上的一大发明。帕斯卡于1642年发明了帕斯卡加法器。在1671年,莱布尼茨发明了一种能作四则运算的手摇计算器,是长1米的大盒子。自此以后,经过人们在这方面多年的研究,特别是经过托马斯、奥德内尔等人的改良后,出现了多种多样的手摇计算器,并风行全世界。

4电动计算机

英国的巴贝奇于1834年,设计了一部完全程序控制的分析机,可惜碍于当时的机械技术限制而没有制成,但已包含了现代计算的基本思想和主要的组成部分了。此后,由于电力技术有了很大的发展,电动式计算器便慢慢取代以人工为动力的计算器。1941年,德国的楚泽采用了继电器,制成了第一部过程控制计算器,实现了100多年前巴贝奇的理想。

5电子计算机

20世纪初,电子管的出现,使计算器的改革有了新的发展,美国宾夕法尼亚大学和有关单位在1946年制成了第一台电子计算机。电子计算机的出现和发展,使人类进入了一个全新的时代。它是20世纪最伟大的发明之一,也当之无愧地被认为是迄今为止由科学和技术所创造的最具影响力的现代工具。

在电子计算机和信息技术高速发展过程中,因特尔公司的创始人之一戈登·摩尔(GodonMoore)对电子计算机产业所依赖的半导体技术的发展作出预言:半导体芯片的集成度将每两年翻一番。事实证明,自20世纪60年代以后的数十年内,芯片的集成度和电子计算机的计算速度实际是每十八个月就翻一番,而价格却随之降低一倍。这种奇迹般的发展速度被公认为“摩尔定律”.

6“摩尔定律”与“计算的极限”

人类是否可以将电子计算机的运算速度永无止境地提升?传统计算机计算能力的提高有没有极限?对此问题,学者们在进行严密论证后给出了否定的答案。如果电子计算机的计算能力无限提高,最终地球上所有的能量将转换为计算的结果--造成熵的降低,这种向低熵方向无限发展的运动被哲学界认为是禁止的,因此,传统电子计算机的计算能力必有上限。

而以IBM研究中心朗道(R.Landauer)为代表的理论科学家认为到21世纪30年代,芯片内导线的宽度将窄到纳米尺度(1纳米=10-9米),此时,导线内运动的电子将不再遵循经典物理规律--牛顿力学沿导线运行,而是按照量子力学的规律表现出奇特的“电子乱窜”的现象,从而导致芯片无法正常工作;同样,芯片中晶体管的体积小到一定临界尺寸(约5纳米)后,晶体管也将受到量子效应干扰而呈现出奇特的反常效应。

哲学家和科学家对此问题的看法十分一致:摩尔定律不久将不再适用。也就是说,电子计算机计算能力飞速发展的可喜景象很可能在21世纪前30年内终止。着名科学家,哈佛大学终身教授威尔逊(EdwardO.Wilson)指出:“科学代表着一个时代最为大胆的猜想(形而上学)。它纯粹是人为的。但我们相信,通过追寻”梦想-发现-解释-梦想“的不断循环,我们可以开拓一个个新领域,世界最终会变得越来越清晰,我们最终会了解宇宙的奥妙。所有的美妙都是彼此联系和有意义的。”

7量子计算系统

量子计算最初思想的提出可以追溯到20世纪80年代。物理学家费曼RichardP.Feynman曾试图用传统的电子计算机模拟量子力学对象的行为。他遇到一个问题:量子力学系统的行为通常是难以理解同时也是难以求解的。以光的干涉现象为例,在干涉过程中,相互作用的光子每增加一个,有可能发生的情况就会多出一倍,也就是问题的规模呈指数级增加。模拟这样的实验所需的计算量实在太大了,不过,在费曼眼里,这却恰恰提供一个契机。因为另一方面,量子力学系统的行为也具有良好的可预测性:在干涉实验中,只要给定初始条件,就可以推测出屏幕上影子的形状。费曼推断认为如果算出干涉实验中发生的现象需要大量的计算,那么搭建这样一个实验,测量其结果,就恰好相当于完成了一个复杂的计算。因此,只要在计算机运行的过程中,允许它在真实的量子力学对象上完成实验,并把实验结果整合到计算中去,就可以获得远远超出传统计算机的运算速度。

在费曼设想的启发下,1985年英国牛津大学教授多伊奇DavidDeutsch提出是否可以用物理学定律推导出一种超越传统的计算概念的方法即推导出更强的丘奇--图灵论题。费曼指出使用量子计算机时,不需要考虑计算是如何实现的,即把计算看作由“神谕”来实现的:这类计算在量子计算中被称为“神谕”(Oracle)。种种迹象表明:量子计算在一些特定的计算领域内确实比传统计算更强,例如,现代信息安全技术的安全性在很大程度上依赖于把一个大整数(如1024位的十进制数)分解为两个质数的乘积的难度。这个问题是一个典型的“困难问题”,困难的原因是目前在传统电子计算机上还没有找到一种有效的办法将这种计算快速地进行。目前,就是将全世界的所有大大小小的电子计算机全部利用起来来计算上面的这个1024位整数的质因子分解问题,大约需要28万年,这已经远远超过了人类所能够等待的时间。而且,分解的难度随着整数位数的增多指数级增大,也就是说如果要分解2046位的整数,所需要的时间已经远远超过宇宙现有的年龄。而利用一台量子计算机,我们只需要大约40分钟的时间就可以分解1024位的整数了。

8量子计算中的神谕

人类的计算工具,从木棍、石头到算盘,经过电子管计算机,晶体管计算机,到现在的电子计算机,再到量子计算。笔者发现这其中的过程让人思考:首先是人们发现用石头或者棍棒可以帮助人们进行计算,随后,人们发明了算盘,来帮助人们进行计算。当人们发现不仅人手可以搬动“算珠”,机器也可以用来搬动“算珠”,而且效率更高,速度更快。随后,人们用继电器替代了纯机械,最后人们用电子代替了继电器。就在人们改进计算工具的同时,数学家们开始对计算的本质展开了研究,图灵机模型告诉了人们答案。

量子计算的出现,则彻底打破了这种认识与创新规律。它建立在对量子力学实验的在现实世界的不可计算性。试图利用一个实验来代替一系列复杂的大量运算。可以说。这是一种革命性的思考与解决问题的方式。

因为在此之前,所有计算均是模拟一个快速的“算盘”,即使是最先进的电子计算机的CPU内部,64位的寄存器(register),也是等价于一个有着64根轴的二进制算盘。量子计算则完全不同,对于量子计算的核心部件,类似于古代希腊中的“神谕”,没有人弄清楚神谕内部的机理,却对“神谕”内部产生的结果深信不疑。人们可以把它当作一个黑盒子,人们通过输入,可以得到输出,但是对于黑盒子内部发生了什么和为什么这样发生确并不知道。

9“神谕”的挑战与人类自身的回应

人类的思考能力,随着计算工具的不断进化而不断加强。电子计算机和互联网的出现,大大加强了人类整体的科研能力,那么,量子计算系统的产生,会给人类整体带来更加强大的科研能力和思考能力,并最终解决困扰当今时代的量子“神谕”.不仅如此,量子计算系统会更加深刻的揭示计算的本质,把人类对计算本质的认识从牛顿世界中扩充到量子世界中。

如果观察历史,会发现人类文明不断增多的“发现”已经构成了我们理解世界的“公理”,人们的公理系统在不断的增大,随着该系统的不断增大,人们认清并解决了许多问题。人类的认识模式似乎符合下面的规律:

篇10

关键词: 原子结构;量子力学;互补原理;哥本哈根学派

文章编号:1005-6629(2007)01-0000-00中图分类号:G633.8 文献标识码:B

中学讲原子结构与元素周期律,丹麦最伟大的物理学家、原子“教父”尼尔斯・玻尔(1885~1962)(图1)是不能简单跳过去的,遗憾的是多数人除了可能听过“玻尔巧藏诺贝尔奖章”这个小故事及简单提到的玻尔原子结构模型外,其余知之甚少,这对无论从科学成就、人格魅力或是领导才能等方面都堪称典范的科学巨匠来说是远远不够的,我们有重读的必要!

1 卓越的科学成就

2 互补原理与中国的阴阳学说

1927年玻尔首次提出了互补性观点,其基本思想大意是:真理具有两个侧面,如同一枚钱币具有两个侧面一样。每个侧面都是正确的,它们是对立的,但又是互补的,只有把互补的两个侧面结合起来,成为比单独各个侧面更和谐的整体,我们对微观世界才能有全面的理解。由于微观粒子需要波动与粒子图像并协(互补)地加以描述,所以从原则上说,对微观粒子的描述只能是概率论的,而不是确定论的,在微观世界中,有“因”未必有“果”,因果律失去了意义。

玻尔的互补原理与中国的阴阳学说有异曲同工之妙:阴阳最初意义是指日光的向背,向日为阳,背日为阴。我国古代思想家认识到一切现象(天地、日月、昼夜、阴晴、寒暑、水火等)都具有正反两个方面,就用阴阳这对概念来解释自然界两种对立和相互消长的势力。《老子》提出:“万物负阴而抱阳”,认为任何事物都存在着阴与阳的矛盾,而阴阳二气又处于一个统一体之中;《易经》提出“一阴一阳之谓道”的原则,把阴阳概念上升为“范围天地”、“曲成万物”的最高哲学范畴,成为关于解释天地万物和宇宙原型的体系,形成比较系统完整的阴阳学说。

伏羲先天八卦太极图(图2)是阴阳学说的直观表达:四周有乾、坤、震、巽、坎、离、艮、兑的八个部分称为八卦,分别代表天、地、雷、风、水、火、山、泽八种基本自然现象,象征宇宙万物,由八卦可以演变成六十四卦乃至一百二十八卦。

中间的核心部分是具有黑暗的阴(黑色)和明亮的阳(白色)的对称图案,表示任何既对立又统一的矛盾双方,俗称阴阳鱼。矛盾对立的每一方一个极。两极之间能动地联系在一起而形成对称的布局,但这种对称不是静态的,而是表示一种循环运动,黑白两部分形成互补图像,表明阴阳两级既相互对立,又相互依存,任何一方都不能脱离对方而单独存在。阴在下方最盛,而阳逐渐增多;阳在上方最盛,而阴逐渐增多,“阳还终始,阴极返阳。”图中的两个圆点象征着这样的概念,就是每当这两种力量中的一方达到自己的极端时,在其中就已经有了它的对立面的萌芽。

1937年玻尔访问中国,当他见到我国古代的太极图时无比兴奋,如获至宝,认为太极图完美准确地表达了他的互补原理。阴阳两级标志着真理的两个方面,它们既是矛盾的、对立的,又是互补的、统一的,阴阳两方面综合起来,就能得到事物和现象的完备的描述。1947年,由于玻尔在科学上的杰出成就以及对丹麦文化的杰出贡献,丹麦国王破格授予玻尔“宝象勋章”(图3),勋章的正中选用的图案就是太极图,意指玻尔的互补哲学,也饱含他对中国文化的诠释。

3 索尔维论剑

玻尔的互补哲学受到许多有影响学者如狄拉克、奥本海默、惠勒等的拥护,但由于互补原理与海森堡的不确定原理迫使我们不得不放弃要求严格的物理学因果关系的思想,以致某些伟大的科学家如爱因斯坦等人从来不愿接受它,由此爆发了史无前例的学术大论战。

在人类科学史上,曾经发生过许多次重大的学术论战,但论及双方的地位、论战的深入和影响,只有这一次才最有资格被称为巅峰对决。

爱因斯坦设想了一些理想化实验来应对不确定原理与互补原理,其中最著名的是1930年在第六届索尔维会议上提出的“爱因斯坦盒子”(图4),盒中装有一些辐射物质,盒子一侧有一个小洞,洞口有一块挡板。盒子里放有一只能控制挡板开关的钟,盒子的重量是可以测出来的。盒子里的钟能在某一时刻将小洞打开,放出一个粒子(光子或电子),这样粒子跑出前后盒子的重量也可以准确地测量出来,根据爱因斯坦的质能公式E=mc2,粒子的能量也可以准确地确定,这样得出在准确的时间释放出准确的能量的结论,于是不确定关系以及互补原理不再成立,因果律和准确性都恢复了。

玻尔经过认真仔细地分析后指出:在粒子跑出盒子的过程中,盒子必然在重力方向上发生位移,而根据爱因斯坦广义相对论,钟在沿重力方向发生位移的过程中,它的快慢会发生变化。因此,由钟所读出的时间就会由于这个粒子的跑出而有所改变,由此引出的误差正好满足不确定关系。

以彼之道,还施彼身,爱因斯坦的这个光箱实验非但没能击倒量子论,反而成了它最好的证明,自此哥本哈根解释也被奉为是量子力学的正统解释。

现代科技手段已能对当年的部分理想实验进行论证,实验结果几乎指向玻尔是正确的,尽管如此,爱因斯坦的深刻质疑,对玻尔发展思想、深化论点、精练表述,起了有益的促进作用。

4 哥本哈根学派

1921年,在玻尔的倡议下成立了哥本哈根大学理论物理学研究所,玻尔领导这一研究所先后达40年之久。这一研究所培养了大量的杰出物理学家,在量子力学的兴起时期曾经成为全世界最重要、最活跃的学术中心,对量子力学的孕育、诞生和哲学诠释做出独到的贡献。有人统计,全世界有30多个国家的近千个现代物理学家曾经或长或短地在该研究所里工作过,其中有17人获得诺贝尔奖(涉及物理、化学与生理或医学奖),这是了不起的成就!

许多人都对在玻尔研究所的工作印象深刻,在离开那儿多年后仍十分怀念在那里的工作和生活,他们对玻尔更是充满敬意,在玻尔60岁寿辰的献词中,他们这么说:“‘父呵!你乃大自然之发现者,吾等从你谨受教诲。’这句对古代伟大原子论者的献词,我们也要把它献给现代原子理论的创立者!”

哥本哈根研究所之所以使物理学家有精神家园的感觉,主要原因在于那里有在判断和讨论方面完全自由的最卓越的精神,被后人称为“哥本哈根精神”,这是一种独特的、浓厚的、平等自由地讨论和相互紧密地合作的学术气氛。正是这种精神吸引着物理学家,同时这也是他们对玻尔充满感激和敬意的主要原因。

直到今天,很多人还说“哥本哈根精神”在国际物理学界是独一无二的。“哥本哈根精神”已成为物理学界最宝贵的精神财富,它对世界的贡献,也许不亚于玻尔的量子力学。

二十一世纪科学研究最需要的是什么精神?中国人进行科学研究最缺少的是什么精神?

――哥本哈根精神!

5 玻尔的人格魅力

玻尔为人温和而幽默,和别人争论时也轻声细语。他特别爱护年轻人,曾经有人问玻尔:“你是怎么把那么多有才华的青年人团结在身边的?”他回答说:“因为我不怕在年青人面前承认自己知识的不足,不怕承认自己是傻瓜。”正是不怕在年青人面前承认自己知识的不足,1922年夏天,他应邀到德国哥廷根大学发表演讲时发现了海森堡和泡利,而这两位1932年、1945年的诺贝尔物理奖得主,后来成为哥本哈根学派主力干将,为量子力学的发展做出了卓越的贡献。

爱因斯坦本来早该获得诺贝尔奖,但由于当时有不少人对相对论持有偏见,直到1922年秋才回避相对论的争论,授予他上年度诺贝尔物理奖,并决定把本年度的诺贝尔物理奖授予玻尔,这两项决定破例同时发表。爱因斯坦当时正赴日本,在途经上海时接到了授奖通知。而玻尔对爱因斯坦长期未能获得诺贝尔奖深感不安,怕自己在爱因斯坦之前获奖,因此,当玻尔得知这一消息后非常高兴,立即写信给旅途中的爱因斯坦。玻尔非常谦虚,他在信中表示,自己之所以能取得一些成绩,是因为爱因斯坦做出了奠基性的贡献,因此,爱因斯坦能在他之前获得诺贝尔奖,他觉得这是“莫大的幸福”。爱因斯坦在接到玻尔的信后,当即回了信,信中说:“我在日本启程之前不久收到了您热情的来信,我可以毫不夸张地说,它像诺贝尔奖一样,使我感到快乐;您担心在我之前获得这项奖金,你的这种担心我觉得特别可爱――它显示了玻尔的本色。”

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

玻尔热爱自己的祖国,他一再婉言拒绝外来的高薪聘请,决心在人口不到500万的小国建立起物理学的国际中心。确实,玻尔获得成功,他把哥本哈根建成了物理学家“朝拜的圣地”。

玻尔一直引用丹麦童话作家安徒生的名言:“丹麦是我出生的地方,是我的家乡,这里就是我心中的世界开始的地方。”以此来陶冶自己的思想情操,激励自己为祖国的昌盛建功立业。

科学无国界,科学家却有自己的祖国。

6 原子“教父”

普朗克、爱因斯坦与玻尔是量子理论的三大先驱,代表量子理论的三个不同阶段。普朗克提出了能量子的概念,但是他是个不情愿的革命者,并不充分认识量子理论的革命性,它意味经典物理学的终结;爱因斯坦发现了光量子,他立即认识到量子与经典理论的对立性,他对这种理论局面感到不舒服;玻尔是物质结构量子理论的创立者,他把量子概念用于单个微观体系原子或分子,他也立即意识到量子理论的革命性,适应了新的理论局势,并对这种局势做出哲学概括。

综观玻尔的科学之旅,是从定性到定量,最后再到定性的过程:定性定量定性。后一个定性比前一个定性要高级、丰富、生动,因为它已经拥有了一个非常精确的定量这个中间环节,这最后一个定性包括三个成分:惊叹、敬畏和惆怅。在自然哲学观上,量子论带给了我们前所未有的冲击和震动,甚至改变了整个物理世界的基本思想。它的观念是如此地革命,乃至最不保守的科学家都在潜意识里对它怀有深深的惧意,玻尔就说过:“如果谁不为量子论而感到困惑,那他就是没有理解量子论。”

这才是科学的极致!互补原理与对应原理就是这样的极致!玻尔理论看似模糊,但其中包含丰富的内容,给后来物理学家提供了很大的发展空间。

玻尔从1905年开始他的科学生涯,一生从事科学研究达57年之久。他的研究工作开始于原子结构未知的年代,结束于原子科学已趋成熟、原子核物理得到广泛应用的时代,从开始到结束,玻尔那种充满着高度创造性,锐敏性和带有批判性的精神,始终指引着他的事业的方向,使之深入,直到最后完成。今天,我们的现代文明,从电脑,电视,手机到核能,航天,生物技术,几乎没有哪个领域不依赖于原子理论。他对原子科学的贡献使他无疑地成了20世纪上半叶与爱因斯坦并驾齐驱的、最伟大的物理学家与哲学家之一。

爱因斯坦这样评价玻尔:“作为一位科学思想家,玻尔所以有这么惊人的吸引力,在于他具有大胆和谨慎这两种品质的难得融合;很少有谁对隐秘的事物具有这一种直觉的理解力,同时又兼有这样强有力的批判能力。他不但拥有关于细节的全部知识,而且还始终坚定地注视着基本原理。他无疑是我们时代科学领域中最大的发现者之一。”

玻尔集高尚的人格、卓越的领导才能和批判性、开创性的科学研究于一身,人类科学史这样的大师难觅第二人,他是物理学天才,更是网罗人才的天才,令无数立志科学探索的青年学者竞折腰。遗憾的是,我们并不重视对玻尔的研究,相对爱因斯坦甚至海森堡等科学家,我们做得远远不够,我给每届学生都讲玻尔:“我们或许缺少爱因斯坦,但我们更需要的是玻尔。”

是的,我们更需要玻尔!

参考文献:

[1]亚伯拉罕・派斯(戈革译).尼耳斯・玻尔传[M].北京:商务出版社.2001.

[2]尼耳斯・布莱依耳(戈革译).和谐与统一(尼耳斯・玻尔的一生)[M].上海:东方出版社中心.1998.

[3]李增智,吴亚非,孟湛祥等.物理学中的人文文化[M].北京:科学出版社,2005:197-241.

4]约翰・西蒙斯(王首燕,姜栋译).科学家100人:历史上最具影响力的科学家排行榜[M].北京:当代世界出版社,2006:10-13.

[5]秦克诚.邮票上的物理学史[M].北京:清华大学出版社,2005.