光刻技术的基本原理范文

时间:2023-11-17 17:19:35

导语:如何才能写好一篇光刻技术的基本原理,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

光刻技术的基本原理

篇1

关键词:微电子技术 电子束 光刻 前途

中图分类号:TN305 文献标识码:A 文章编号:1672-3791(2012)11(a)-0072-01

光刻是现代集成电路制造的基础工艺技术,也是最关键、最核心的加工技术。它就像洗相片一样,将电路图形投影到底片(硅芯片)上,然后刻蚀加工出电路、元器件。制造一片集成电路,要经过200~300多道工序,其中要经过多次光刻,占用总加工时间的40%~50%,光刻工艺的水准直接决定了一国电子技术的水平。

现代微电子技术的发展基本遵循摩尔定律,也就是说:每18个月左右,集成电路元器件的特征尺寸要缩小1/2,集成密度要增加一倍。西方发达国家把微电子技术作为一项战略产业,对发展中国家严格实行技术封锁限制。像美国国会就规定,卖给中国的集成电路关键加工设备要比美国的水平低2代。今天,INTEL(英特尔)公司已经可以投产元器件尺寸为10 nm左右的集成电路,而我国相应的水平只有40 nm,加工水平相差2代(即20 nm、10 nm)。

我国已经在过去数个五年计划中将微电子技术列为高技术重点工程,在一些方面取得了一定进展。这其中光刻加工设备一直是重点中的重点。目前,国际上采用的主流工艺是光学光刻。光学光刻的光源从波长较长的红外线一直发展到了今天的紫外线,但是光学光刻正在日益接近其物理极限,也就是说再往小的加工,就会遇到原理性的障碍,而无法进行下去。各工业强国都在加紧开发下一代光刻工艺,主要的技术方法有:x射线光刻、深紫外线投影光刻、电子束光刻、离子束光刻等。在各种方案中,电子束光刻以其特有的魅力,成为大有前途的下一代加工技术。

所谓电子束光刻,就是用电子源发出电子束,经过掩膜和电子透镜,将图案投射到硅片上,从而形成电子线路的工艺技术。电子束加工技术是近30年来发展起来的一门新兴技术,它集电子光学、精密机械、超高真空、计算机自动控制等近代高新技术于一体,是推动微电子技术和微细加工技术进一步发展的关键技术之一,因而已经成为一个国家整体技术水平的象征。电子束曝光技术广泛地应用于高精度掩膜、新一代集成电路研制及新器件、新结构的研究与加工等方面。目前,世界各国都投入了大量人力、物力、财力进行电子束微细加工技术研究。20世纪90年代以来,美、日的一些研究部门采用电子束曝光技术,已经制造出高精度纳米级掩膜和器件。电子束光刻也是研究新一代量子器件的有力工具。

电子束光刻中使用的曝光机一般有两种类型:直写式与投影式。直写式就是直接将会聚的电子束斑打在表面涂有光刻胶的芯片上,不需要光学光刻工艺中最昂贵和制备费时的掩膜;投影式则是通过高精度的透镜系统将电子束通过掩膜图形平行地缩小投影到表面涂有光刻胶的衬底上。一般直写式曝光机主要使用的是热场发射源(表面镀ZrO的钨金属针尖),工作温度在1800K,和冷场发射源相比可以有效地防止针尖的污染并提供稳定的光源。电子源发射出来的电子束的聚焦和偏转是在镜筒中完成的。镜筒通常包含有光阑、电子透镜、挡板、像散校正器和法拉第电流测量筒等装置。光阑的作用主要是设定电子束的会聚角和电子束电流。电子透镜的作用是通过静电力或是磁力改变电子束的运动。电子透镜类似光学透镜,也存在球差和色差(当外圈电子会聚比内圈电子强时就形成了球差,而当能量有微小差异的电子聚焦在不同平面上时就形成了色差),从而限制了束斑的大小和会聚角的范围。像散校正器可以补偿不同方位角电子束的像差。挡板的作用是开启或关闭电子束。结合刻蚀和沉积工艺,利用直写式曝光技术可以制备20 nm甚至更细的图形,最小尺寸达10 nm的原理型纳米电子器件也已经制备出来。由于直写式曝光技术所具有的超高分辨率,无需昂贵的投影光学系统和费时的掩膜制备过程,它在微纳加工方面有着巨大的优势。但由于直写式的曝光过程是将电子束斑在表面逐点扫描,每一个图形的像素点上需要停留一定的时间,这限制了图形曝光的速度。直写式电子束光刻在产能上的瓶颈使得它在微电子工业中一般只作为一种辅助技术而存在,主要应用于掩膜制备、原型化、小批量器件的制备和研发。但直写式电子束曝光系统在纳米物性测量、原型量子器件和纳米器件的制备等科研应用方面已显示出重要的作用。

投影式曝光机是指将大束的电子束,照射到掩膜上,然后通过掩膜上的图案缝隙,将图案投影到芯片上。这种方法和当前的光学光刻技术是相同的。由于电子束不像光那样有光学的衍射效应,因此可以将图案做的很小,大大提高集成度。

这两种方法各有其优缺点,用直写式加工方法,电子束直接在芯片上扫描,形成图案,优点是省却了制作复杂、价格昂贵的掩膜,缺点是电子束能量太小,因而要在一个点上投射很长时间,这就限制了加工速度,使其不能在大规模生产中应用。而用投影式曝光加工方法,需要制备昂贵的掩膜,而且由于电子能量太小,打到任何物质上都会发生反射、散射等情况,这使得成像效果大打折扣。

篇2

半导体超晶格是指由交替生长两种半导体材料薄层组成的一维周期性结构.以gaas/alas半导体超晶格的结构为例:在半绝缘gaas衬底上沿[001]方向外延生长500nm左右的gaas薄层,而交替生长厚度为几埃至几百埃的alas薄层。这两者共同构成了一个多层薄膜结构。gaas的晶格常数为0.56351nm,alas的晶格常数为0.56622nm。由于alas的禁带宽度比gaas的大,alas层中的电子和空穴将进入两边的gaas层,“落入”gaas材料的导带底,只要gaas层不是太薄,电子将被约束在导带底部,且被阱壁不断反射。换句话说,由于gaas的禁带宽度小于alas的禁带宽度,只要gaas层厚度小到量子尺度,那么就如同一口阱在“吸引”着载流子,无论处在其中的载流子的运动路径怎样,都必须越过一个势垒,由于gaas层厚度为量子尺度,我们将这种势阱称为量子阱.

当gaas和alas沿z方向交替生长时,图2描绘了超晶格多层薄膜结构与相应的的周期势场。其中a表示alas薄层厚度(势垒宽度),b表示薄层厚度(势阱宽度)。如果势垒的宽度较大,使得两个相邻势阱中的电子波函数互不重叠,那么就此形成的量子阱将是相互独立的,这就是多量子阱。多量子阱的光学性质与单量子阱的相同,而强度则是单量子阱的线性迭加。另一方面,如果两个相邻的量子阱间距很近,那么其中的电子态将发生耦合,能级将分裂成带,并称之为子能带。而两个相邻的子能带 之间又存在能隙,称为子能隙。通过人为控制这些子能隙的宽度与子能带,使得半导体微结构表现出多种多样的宏观性质。 2.2 量子阱器件

量子阱器件的基本结构是两块n型gaas附于两端,而中间有一个薄层,这个薄层的结构由algaas-gaas-algaas的复合形式组成,。 在未加偏压时,各个区域的势能与中间的gaas对应的区域形成了一个势阱,故称为量子阱。电子的运动路径是从左边的n型区(发射极)进入右边的n型区(集电极),中间必须通过algaas层进入量子阱,然后再穿透另一层algaas。 量子阱器件虽然是新近研制成功的器件,但已在很多领域获得了应用,而且随着制作水平的提高,它将获得更加广泛的应用。 3 量子阱器件的应用 3.1 量子阱红外探测器

量子阱红外探测器(qwip)是20世纪90年展起来的高新技术。与其他红外技术相比,qwip具有响应速度快、探测率与hgcdte探测器相近、探测波长可通过量子阱参数加以调节等优点。而且,利用mbe和mocvd等先进工艺可生长出高品质、大面积和均匀的量子阱材料,容易做出大面积的探测器阵列。正因为如此,量子阱光探测器,尤其是红外探测器受到了广泛关注。

qwip是利用掺杂量子阱的导带中形成的子带间跃迁,并将从基态激发到第一激发态的电子通过电场作用形成光电流这一物理过程,实现对红外辐射的探测。通过调节阱宽、垒宽以及algaas中al组分含量等参数,使量子阱子带输运的激发态被设计在阱内(束缚态)、阱外(连续态)或者在势垒的边缘或者稍低于势垒顶(准束缚态),以便满足不同的探测需要,获得最优化的探测灵敏度。因此,量子阱结构设计又称为“能带工程”是qwip最关键的一步。另外,由于探测器只吸收辐射垂直与阱层面的分量,因此光耦合也是qwip的重要组成部分。 3.2 量子阱在光通讯方面的应用

篇3

关键词: 大规模集成电路 集成电路制造工艺 教学内容

21世纪以来,信息产业已成为我国国民经济发展的支柱产业之一,同时也是衡量一个国家科技发展水平和综合国力的重要指标。超大规模集成电路技术是信息产业的重要基础,而集成电路制造工艺又是超大规模集成电路的核心技术。因此,对集成电路工艺的优化和创新就成为提高信息产业综合实力,增强国家科技竞争力的关键所在。近年来,尽管我国微电子技术不断进步,但与微电子技术发达的国家相比,仍存在着相当大的差距。因此,要实现由集成电路生产制造大国向集成电路研发强国的转变,就迫切需要培养一批高质量的超大规模集成电路工艺技术人才[1],这也正是《集成电路工艺原理》这门课程所要实现的目标。

然而,目前《集成电路工艺原理》课程的教学效果并不理想[2],[3],究其根本原因在于该课程存在内容陈旧、知识点离散、概念抽象、目标不明确等不足[4]。同时,由于大部分普通高校没有足够的实验设备和模拟仿真实验平台,无法使学生熟悉和掌握工艺仪器的操作,导致学生所学知识与实际应用严重脱钩,甚至失去学习积极性,产生厌学情绪。为此,依据我院微电子专业本科生的教学情况,我详细分析了教学过程中存在的问题,提出了改革方案。

一、目前教学中存在的问题

1.学习目标不明确。现有的教学内容往往采用先分别独立讲授单项加工工艺,待所有工艺全部讲授完毕,再综合利用所有工艺演示制作CMOS集成电路芯片的流程。这种教学模式会造成学生在前期的理论学习过程中目标不明确,无法掌握单项工艺在芯片加工中的作用,不能与实际器件加工进行对应,造成所学知识与实际应用严重错位,降低了学生的学习积极性和主动性。

2.知识衔接性差。本课程的重点内容是集成电路工艺的物理基础和基本原理,它涉及热学、原子物理学、半导体物理等离子体物理、化学、流体力学等基础学科,然而,大部分学生并未系统地学习过譬如等离子体物理、流体力学等课程,这就不可避免地造成了教学内容跨越性大的问题,无法实现知识的正常衔接,致使学生对基本概念和基本物理过程难以理解,从而影响学生的学习兴趣。

3.课程内容抽象,不易理解。由于该课程的基本概念、物理原理和物理过程多而繁杂,再加上各种不同工艺之间的配合与衔接,导致内容抽象难懂。教师在课堂上按照常规讲法,费时费力,学生对所讲内容仍无法彻底理解,难以完成知识的迁移。

4.教学资源匮乏。现有教材中严重缺乏集成电路加工方法的可视化资料,大量使用文字叙述描述物理过程和工艺流程,致使课程讲授枯燥乏味,学生无法真正理解教学内容,很难产生学习兴趣。

综上所述,在现有集成电路工艺原理的教学过程中还存在一些严重影响教学质量的因素。为了响应国家“十二五”规划中明确提出的建设创新型国家的任务,培养创新型大学生的要求,我们必须逐步改革和完善现有的教学内容及教学模式[5],提高教学质量,为培养开创未来的全面发展型人才奠定基础。

二、教学内容的整体规划

为了让学生明确教学目标,突出教学重点,需要摒弃传统的教学思路[6],构建“先整体、后部分;先目标、后工艺”的教学思路,对教学内容进行重新设计,使其更加符合学生的认知规律。我们抛弃了传统的教学内容编排方式,提出了整个课程主要围绕一个通用、典型的集成电路芯片的加工和制备展开,使学生明确本课程的教学目标。首先给出典型器件的模型,分析其各部分的材料和结构,明确器件的不同组成部分并进行归类,依据器件加工的先后顺序,然后模块化讲授器件每部分的加工方法、工艺原理和加工流程,逐步完成集成电路的全部制作,进而完成整个课程内容的讲授。这样就能用一条主线串起每块学习内容,使学生明确每种工艺的原理、流程和用途,做到有的放矢,并能与实际应用较好地融合在一起,进而提高学生的学习主动性,增强课堂教学效果。

三、教学内容的选取与组织

1.教材的选择

集成电路工艺的发展遵循摩尔定律,随着理论的深入和技术的革新,现有的大部分《集成电路工艺原理》教材显得陈旧、落后,无法适应现代工艺技术的发展和教学的需求。

为此,本课程的教材最好采用现有经典教材和前沿科学研究成果相结合的方式,现有经典教材有美国明尼苏达大学的《微电子制造科学原理与工程技术》[3]和北京大学的《硅集成电路工艺基础》[7]等,这些教材内容全面,几乎覆盖了所有的集成电路加工方法,而且原理讲解深入透彻,具有较强的理论性。这些教材知识结构基本上是按照传统的教学思路编排,所以要打破这种思维的束缚,设计出一个具有代表性器件的加工过程,然后把教材中的工艺原理、工艺流程融入器件的加工过程中。这就要求我们不能照搬书本上的知识内容,需要根据课程的新设计方案重新整合讲义。同时还应该注意,为了扩充学生的知识面,还应该摘取一些具有代表性的最新前沿成果,不仅使学生的知识体系具有完整性,而且能进一步调动他们的创造性。

2.教学内容的选取

依据课程“先整体、后部分;先目标、后工艺”的教学思路,采用“范例”教学模式,教学内容可以划分为九大知识模块:典型CMOS器件、外延、氧化、扩散、离子注入、物理气相淀积、化学气相淀积、光刻与刻蚀、隔离与互联。首先,通过一个典型CMOS器件的结构分析,获得制作一个芯片所需的材料与结构,然后简要给出不同材料和结构的加工方法,让学生对课程整体内容有宏观把握,初步了解每种工艺的基本功能。其次按照器件加工的顺序,对不同工艺分别从发展历史、工艺原理、工艺流程、工艺特点等方面进行详细阐述,使学生对工艺原理深入理解,工艺流程熟练掌握,最后完成整个器件的制作。

3.教学内容的组织

对每部分教学内容要坚持“基础知识衔接、主流工艺突出、淘汰工艺删减、最新工艺提及”的原则。由于本课程以工艺的物理基础和基本原理为重点内容,这是本课程的教学难点,为了让学生更加清晰地理解和掌握其工艺原理,需要适当地补充一些课程必备的物理基础知识。主流工艺是本课程的主要内容,要求学生对原理、流程、性能、使用范围等深入理解,熟练掌握。因此,这部分内容要进行详细讲解。淘汰工艺是本课程的了解内容,目前淘汰工艺在现有教材中占据的篇幅和课时还比较多,且有喧宾夺主之势,为了让学生了解和熟悉集成电路工艺的发展历史,需要进行适当的概括压缩或删减处理。最新工艺是本学科的前沿研究内容,为了扩充学生的知识,开阔学生的视野,应该适当地补充一些新型工艺技术,为学生将来进一步研究深造奠定基础。

四、结语

《集成电路工艺原理》是微电子学专业本科生的一门重要的专业基础课程,本课程的目的是使学生掌握集成电路制造工艺流程和基本原理。只有通过精心选择优秀教材,合理设计教学内容,使理论与实践紧密结合,才能激发学生的学习兴趣和创新思维,进而有效地提高课堂教学质量,为培养科技创新型人才奠定基础。

参考文献:

[1]彭英才.兼谈《集成电路工艺原理》课的教学体会与实践[J],高等理科教育,2003(50).

[2]李尊朝.集成电路工艺课程教学改革探析[J].实验科学与技术,2010(8).

[3]李琦,赵秋明,段吉海.工程教育背景下“集成电路工艺”的教学探索[J].中国电力教育,2011.

[4]邵春声.浅谈《集成电路制造工艺》的课程建设和教学实践[J].常州工学院学报,2010(23).

[5]汤乃云.“集成电路工艺原理”课程建设与教学改革探讨[J].中国电力教育,2012.

篇4

【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2014)10-0220-02

一、引言

为应对当前世界经济一体化以及科技革命带来的严峻挑战,加强主宰世界经济及科技走向的新知识、新科技及新成果的学习势在必行,而开展承载着“爆炸信息量”的纳米材料的双语课程学习就显得尤为重要。纳米材料是填补了长期以来人们对于宏观和微观领域研究的缺失领域―介观领域的空白,由于纳米材料的结构特性,具有常规材料不具备的纳米效应,因而,纳米材料的研究已成为当前先进材料研究最活跃的领域之一[1];同时,纳制造技术也将对当前的微制造技术带来一次革命性的变革,这是因为纳制造技术采用“自下而上”的制造原理,能够制造出体积更小、便于携带、功能更强大的电子元器件及仪器设备,其研究成果日新月异,如:纳米机器人、纳米小轿车、纳米间谍机、纳米芯片、纳米电池、纳米医药,这些纳米产品将对我们的生活、工业、农业、军事、医疗、制造业等各行各业带来前所未有的巨变与冲击。

为了加强本科生对纳米材料最新成果的了解,拓宽知识视野,启迪学生的纳米概念和纳米理论的新思想,培养学生的创新意识,构建一种纳米材料双语教学课程知识体系,对于科学系统的传授纳米材料基本概念和基础知识是十分必要的。作者在长期的纳米材料双语教学过程中,力图将纳米材料基本概念系统的介绍给学生;采用现代化的教学方法,并将板书、图表、视频等教学手段相结合,不断的充实授课内容,期望形成一种较完整的双语课程知识体系。

二、纳米材料双语课程教学知识体系的构建

构建科学合理的纳米材料双语课程教学知识体系是以知识、能力和素质培养为宗旨,以能力培养为核心,以双语教学为媒介,以传授新概念、新理论、新工艺、新成果为纽带,以提升创新能力为培养目的,着力开启纳米材料课程教学人才培养的新模式和新途径。纳米材料双语课程在我校属于专业选修课,只有32学时,针对课程内容多,学时少的现状,课程教学中知识体系的选取原则是以基本的纳米概念、基础理论、纳米效应、纳米制造方法、检测手段、标志性的成果(如碳纳米材料中的富勒烯)以及纳米材料在新能源领域中的应用为主线。

纳米材料双语课程知识体系可分为八个知识单元:第一个知识单元Introduction to nanoscale materials(纳米材料简介);第二个知识单元Nanometer effects (纳米效应);第三个知识单元Properties of nanoscale materials (纳米材料的性质);第四个知识单元Synthesis of nanoscale materials (纳米材料的合成);第五个知识单元Scanning tunneling microscope and atomic force microscope (扫描隧道显微镜和原子力显微镜);第六个知识单元Synthesis of carbon nanomaterials (碳纳米材料合成);第七个知识单元Lithography for nanofabrication(光刻纳米制造技术);第八个知识单元Nanotechnology for production of hydrogen by solar energy (纳米技术用于太阳能产氢)。

作为纳米科技基础的纳米材料,近年来已成为最热门的研究课题之一,纳米科技的浓厚兴趣集中在能对经济、加工及科学产生巨大影响的若干领域。第一个知识单元中的知识点可划分为纳米材料定义及其分类。按照空间维度纳米材料可分为零维、一维、二维及块体材料,依据材料的量子性质可分为量子点、量子线、量子阱,同样,按照材料的性质、组成以及形貌对纳米材料进行分类。更多的知识点涉及到纳米科技的定义。工业革命推动了纳米科技的发展,当作为芯片的氧化硅的绝缘层厚度被减薄至大约3个硅原子的厚度时,漏电就成为一个大问题。加之,当硅材料被限制在很小的尺寸时,将会失去它固有的能带结构,故此,目前微制造技术的局限性的知识点就显得十分重要。如何才能克服当前固态电子学技术中的局限性?分子电子学的诞生是一个崭新的和诱人的研究领域,该研究领域正在唤起科学家的想象力;未来技术的挑战在于原子操纵的分子和超分子系统设计;纳米材料在水处理、纳催化、纳米传感器、能源以及医疗方面等领域的应用。

第二个知识单元是纳米材料的纳米效应,当一种材料的尺寸缩减到纳米量级时,即使其组成与可以看得见和触摸到的块体材料完全相同,但材料的性能却有着本质的区别,纳米材料表现出与常规块体材料迥然不同的性质称为纳米效应。当纳米粒子的尺寸与光波长,德布罗意波长,电子的自由程长度,或者超导态的相干波长相当或更小时,将会产生小尺寸效应。当粒子尺寸减小到或接近于激子波尔半径时,将会产生量子尺寸效应,在量子尺寸效应中主要阐明能隙与粒子尺寸的关系;当纳米粒子的表面原子数与总原子数之比随纳米颗粒的粒径减小而显著增大时,将会引起表面效应;宏观量子隧道效应的知识点包括了弹道传输、隧穿、共振隧穿、隧穿效应等内容[2]。

第三个知识单元涉及纳米材料的性能;力学性能表现为纳米材料的硬度随粒径尺寸的减小而增大表现出正的Hall?Petch斜率关系(K>0),纳米材料的硬度随粒径尺寸的减小而减小呈现出负的Hall?Petch斜率关系(K

在过去数十年间,科学家已经揭示了至少有一维处于纳米量级的许多新材料的合成与表征方法。如:纳米粒子,纳米膜和纳米管。然而,设计和制备具有可控性能的纳米材料仍然是纳米科技的一项重大的和长期的挑战。纳米材料的制备有多种途径。了解纳米材料制备过程中的一些工艺特性是非常重要的,这是因为制备的工艺路线通常决定了所制备材料的性能。第四个知识单元纳米材料的制备首先介绍采用传统的“自上而下”的方法以及先进的“自下而上”的两种方法制备纳米材料。利用固相方法制备纳米材料包括了机械研磨和固相反应。物理气相沉积(PVD)法分为热蒸发PVD法、等离子体辅助PVD法以及激光消融法。化学气相沉积法 (CVD),液相合成方法包括了沉淀法、溶剂热法、冷冻-干燥法(低温化学合成法)、溶胶-凝胶法、微乳液法、微波辅助合成法、超声波辅助合成法。采用冷压和热压法固化纳米粉体合成块体纳米材料。通过模板辅助自组装纳米结构材料的合成;从节能减排、原子经济、溶剂安全性以及提高能量效率的角度设计纳米材料的绿色合成路线。

第五个知识单元主要介绍扫描隧道显微镜(STM)和原子力显微镜(AFM) 的基本原理,操作模式及其应用。STM 和AFM表明是获取材料表面原子形貌信息的新仪器。此外,通过纳米操纵,人们可以采用扫描隧道显微镜和原子力显微镜制造纳米尺寸的材料和器件。

第六个知识单元涉及碳纳米材料的合成。碳族的知识点涉及石墨、金刚石、碳的同素异形体。富勒烯的知识点包括C60的合成、富勒烯的纯化、C60的结构、13C核磁共振谱、富勒烯包合物、亲核加成反应、C60的聚合反应、纳米小轿车的制造。碳纳米管的知识点包括了碳纳米管的合成、碳纳米管的生长机理以及碳纳米管的几何构型。

第七个知识单元是纳米制造中的光刻技术,其知识点包括紫外线光刻技术;扫描束刻蚀纳米制造的知识点有电子束刻蚀以及聚焦离子束刻蚀技术。纳米压印刻蚀技术包括了纳米压印刻蚀技术、步进式闪烁压印刻蚀技术及微接触印制技术。扫描探针刻蚀技术。

第八个知识单元是纳米技术用于太阳能光催化分解水制氢的新能源应用。知识点涉及太阳能转换、光催化分解水制氢、负载型TiO2、可见光驱动的光催化剂的发展、铬离子掺杂的钛酸盐纳米管以及半导体复合材料[3]。

在上述八个知识单元的教学过程中,结合不同章节的具体情况,教学方法和教学手段要灵活多样,将板书、多媒体、动画技术及网络资源相结合,做到图文并茂,寓教于乐,激发学生的学习热情。另外,采用启发式教学,课堂中加强与学生的活动,提高学生的思考问题及解决问题的创新能力,实现学生的知识、能力和素质的全面培养。

篇5

关键词: 衍射光栅;干涉;位移测量;Lighttools软件

中图分类号:TN16 文献标识码:A

Design of 2-D Laser Interferometer System with Diffraction Grating

LI Shuai

(School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, Hefei Anhui 230009, China)

Abstract: 2-D nano-displacement measurement system is developed based on diffraction grating. This system consists of optical structure and electronic subdivision circuit. The measurement principle of the system is proposed. And by the simulation, the change rule is found, theoretical model for the follow-up structural optimization and error compensation is provided.

Keywords: diffraction grating; Interference; displacement measurement; lighttools software

引 言

衍射光栅作为计量光栅的一种,在精密测量、超精密加工和纳米技术等领域有着广泛的应用。与其它纳米测量方法相比,如STM法、SPM法、电容电感测微法和激光干涉仪法等,光栅纳米测量方法具有以下优势:(1)高精度,低成本,由于精密的光刻技术和电子细分技术,以及莫尔条纹所具有的对局部误差的消除作用,光栅传感器可以得到很高的测量精度;(2)同时具备大量程、高分辨率的特点,尤其在大量程方面,光栅传感器的测量精度仅次于激光测量,而成本却比其低得多;(3)较强的抗干扰能力,其对环境的适应性比激光干涉仪更强。因此,研制基于衍射光栅的二维纳米测量系统具有重要的现实意义。

1 系统组成

二维光栅纳米位移测量系统主要是基于光栅衍射与相干光干涉原理组成的几何光学测量系统,整个系统由几何光路部分和信号处理部分组成,其构如图1所示。由半导体激光器发出的光束经过起偏器P1垂直入射到二维光栅表面,反射的正交衍射光通过偏振分光光路形成相位相差90°的干涉信号,然后进入光电转换模块使得光学信号转换为正弦和脉冲电信号,然后由计数细分电路对信号进行计数细分处理,最后把数据处理的果经过误差补偿后进行记录和显示。

2 光路构设计

整个系统的光路构如图2所示,为了提高信号的输出频率,光路采用二次衍射设计。

由半导体激光器发出的光束经过偏振分光镜PBS2后分成振动方向相互垂直的偏振光的s光和p光。若s光被PBS2反射,经过四分之一波片Q3后变为圆偏振光,该圆偏振光经过反射镜R反射后再次通过四分之一波片Q3,该光束变为p光直接通过PBS2,经过Q4后变为圆偏振光在光栅表面衍射,适当调整光栅与读数头之间的距离,-1级衍射光垂直入射到平面反射镜M2上后沿原路返回,通过光栅表面再次衍射后,+1级衍射光沿原路进入PBS2,此时经过Q4的再次旋光变为s光,s光被PBS2的偏振分光面全部反射后,经Q2和M1返回后变为p光,该光束完全通过PBS2偏振面出射,进入偏振光检测部分。同理对于激光器出射光经PBS2透射的p光经过Q2和M1返为s光,被PBS2的偏振分光面全部反射,通过Q4后变为圆偏振光被衍射光栅表面衍射,+1级衍射光被M2反射后再次衍射,再次衍射后的-1级衍射光沿原路通过Q4进入PBS2,变为P光全部通过PBS2的偏振分光面,经过反射镜R和四分之波片Q3后,变为s光再次进入PBS2,经过PBS2的偏振分光面后被全部反射进入偏振光检测部分。

3 位移测量原理

二维衍射光栅系统可以同时对两个方向上的位移进行测量,其基本原理是利用衍射光栅的多普勒效应。当LD激光器发出一束频率为f0,波长为λ的光垂直入射到光栅表面,由衍射光栅的性质可知,光栅在某一方向上运动时,在此方向上形成的衍射光束会发生一定的相移。如图3所示,根据多普勒效应,X方向上的±1级衍射光的频率为

式中c为光速,v为光栅在X方向上的运动速度,θ为衍射光束的衍射角。若采用图2的二次衍射光路设计,则由M2反射出的光入射到光栅表面又发生一次多普勒频移,此时,X方向的±1级衍射光的频率为

因此,光栅在平面内移动时,X方向上的光电探测器所接收的干涉条纹信号可以表示为

由式(7)、(8)可以看出,当光栅移动四分之一栅距时,光栅偏振干涉输出信号明暗变换一次,对应输出光电转换信号一个周期(2π)。只要把四象限光电探测器置于适当的位置,使光电阵列接收到四个相差π/2的光强信号,通过对这四个信号的计数与细分处理即可计算出实际的位移量。

4 光学系统仿真

在二维衍射光栅测量系统中,光栅的定位误差是影响系统干涉信号的主要系统误差。如图4所示,光学镜头与光栅之间存在五个自由度,分别为X方向上的偏摆、Y方向上的转动、Z方向上的俯仰、Y方向上的侧移与Z方向上的平移。因此利用Lighttools软件进行仿真,以分析光栅在五个自由度上对干涉信号的影响。

图5即为采用Lighttools软件依照图2所完成的3D模型。

该3D模型设定光栅采用1,200线/mm的二维平面光栅作为标尺,光束波长为635nm,探测器接受面为1×1mm,根据图4以光栅分别偏摆俯仰和转动0.05°以及在Y和Z轴向上各平移5个光栅常数来测定系统干涉光点落在光电探测器上的位置状况,得出数据如表1所示。

由图表可以看出,俯仰和偏摆对系统干涉信号的影响较大,在进行实际对位安装时应注意X轴向偏摆与Z轴向俯仰对干涉信号的影响,以产生高质量的干涉信号。

5 论

二维光栅纳米位移测量系统是一种高精度,大量程且成本较低的精密测量系统。其精度主要取决于系统干涉信号的质量,上文采用Lighttools软件设计的光路模型分析了光栅在五个自由度上对干涉信号的影响,发现俯仰和偏摆对系统干涉信号影响较大,为后续的光路校准优化和误差补偿提供了理论依据。

参考文献

[1] Prospectus of the High-Resolution Canon Laser Linear Encoder L-10418. Canon USA, Inc., Components Division, 1989.

[2] S. Ishii, T. Nishimura, K. Ishizuka, M. Tsukiji. Optical type encoder including diffraction grating for producing interference fringes that are processed to measure displacement[C]. U.S. Patent No. 4, 912, 320, 1990.

[3] 刘玉圣,范光照,陈叶金. 高精度衍射光栅干涉仪的研制[J]. 工业计量,2006,16(2):1-3.

[4] 余文新,胡小唐,邹自强等. 光栅纳米测量中的系统误差修正技术研究[C]. 计量学报,2002(2):100-105.

[5] 马修水,费业泰,陈晓怀,赵 静. 一种新型纳米光栅传感器的理论研究[C]. 仪器仪表学报,2006(2):159-164.

[6] 李 欣,黄世涛,张 云,冯之敬. 光栅莫尔条纹细分技术的研究[J]. 现代制造工程,No. 6,2004.

篇6

    一、当前我国机械制造加工发展情况

    进入21世纪,我国己基本建立社会主义市场经济体制。全球性的产业结构重新组合和国际分工不断深化,科学技术在突飞猛进地发展,各国都把提高产业竞争能力及发展高新技术,抢占未来经济的制高点,作为科技工作的主攻方向。在机械制造技术方面我国与世界各国的联系日益紧密,中国市场与国际市场进一步接轨,面对国内外市场的激烈竞争,我国企业对技术的需求更加迫切和强烈。新产品的开发水平提高了大批重点骨干企业在关键工序增加了先进、精密、高效的关键设备,从而进入到高技术开发企业行业研制出如超重型数控龙门铣、高精度五轴数控镗铣床、sx—T大规模集成电路光栅数显仪、大吨位超重水压机等;制造技术水平不断提高,船泊制造精度可达5微米,高精度外圆磨达o.25微米、粗糙度达0.08微米,精密及超精密加工精度已达到亚微米级和亚纳米级,已形成完整的先进数控机床、新型刀具开发的制造体系。

    二、现代机械的先进加工工艺与制造技术的应用

    进入21世纪来,机械制造业迎来的是一个更为激烈的竞争和生存环境。新知识、新概念的不断涌现和新产品、新工艺的迅速更新加速了市场的变化,企业面临着更加严峻的挑战。特别是在市场不断高速变化的21世纪,企业不仅需要有对市场变化的快速反应能力,而且还需要通过技术创新和产品更新来不断开拓市场、引导市场的能力。现代制造技术就是为了适应这种竞争环境而产生的。它是在传统制造技术的基础上,不断吸收和发展机械、电子、能源、材料、信息及现代管理等技术成果,并将其综合应用于产品设计、制造、检验、管理、服务等生产周期的全过程,以实现“优质、高效、低耗、灵活、清洁”的生产技术模式,取得理想技术经济效果的制造技术的总称。

    (一)现代机械的先进加工工艺特点

    随着计算机技术、微电子技术、传感技术、自动控制技术和机电一体化技术的迅速发展及其在机械制造方面的应用,由系统论、信息论和控制论所组成的系统科学和方法论与机械制造科学的密切结合,组成了机械制造系统,并形成了现代制造工程学。制造系统就是人、机器以及物料流和信息流的一个组合体。现代制造技术特别强调入的主体作用,强调入、技术和管理三者的有机结合,因此,现代制造技术具有以下特征:

    1.现代机械制造技术己成为一门综合性学科。现代制造技术是由机械、电子、计算机、材料、自动控制、检测和信息等学科的有机结合而发展起来的一门跨学科的综合性学科。现代制造技术的各学科、各专业间不断交叉融合,并不断发展和提高。

    2.产品设计与机械制造工艺一体化。传统的机械制造技术通常是指制造过程的工艺方法,而现代制造技术则贯穿了从产品设计、加工制造到产品的销售、服务、使用维护等全过程,成为“市场调查十产品设计十产品制造十销售服务”的大系统。如并行工程就是为了保证从产品设计、加工制造到销售服务一次成功而产生的,已成为面向制造业设计的一个新的重要方法和途径。

    3.现代机械制造技术是一个系统工程。现代制造技术不是一个具体的技术,而是利用系统工程技术、信息科学、生命科学和社会科学等各种科学技术集成的一个有机整体,已成为一个能驾驭生产过程的物科流、能量流和信息流的系统工程。

    4.现代机械制造技术更加重视工程技术与经营管理的有机结合。现代制造技术比传统制造技术更加重视制造过程的组织和管理体制的简化和合理化,由此产生了一系列技术与管理相结合的新生产方式。如制造资源计划(MRP)、准时生产(HT)、并行工程(CE)、敏捷制造(AM)和全面质量管理(TQC)等。

    5.现代机械制造技术追求的是最佳经济效果。现代制造技术追求的目标是以产品生命周期服务为中心,以新产品开发速度快、成本低、质量好、服务佳、灵活性强取胜,并获得最佳的经济效果。

    6.现代机械制造技术特别强调环境保护。现代制造技术必须充分考虑生态平衡、环境保护和有限资源的有效利用,做到人与自然的和谐、协调发展,建立可持续发展战略。未来的制造业将是“绿色”制造业。

    (二)现代机械的先进加工工艺应用分类

    现代制造技术的分类及发展大体上可从5个方面来论述。

    1.制造系统的自动化、集成化、智能化

    机械制造自动化的发展经历了单机自动化、刚性自动线、数控机床和加工中心、柔性制造系统(FMS)和计算机集成制造等几个阶段,并向柔性化、集成化、智能化进一步发展。

    2.精密工程和特种加工方法

    超精密加工和纳米加工三个档次。精密加工和超精密加工特种加工方法又称非传统加工方法,它是指一些物理的、化学的加工方法。如电火花加工、电解加工、超声波加工、激光加工、电子束加工、离于束加工等。特种加工方法的主要对象是难加工的材料,如金刚石、陶瓷等超硬材料的加工,其加工精度可达分子级加工单位或原于级单位,所以它又常常是精密加工和超精密加工的重要手段*。

    3.快速成形(零件)制造

    零件是一个三维空间实体,它可由在某个坐标方向上的若干个“面”叠加而成。因此,利用离散/堆积成形概念,可将一个王维空间实体分解为若干个二维实体制造出来,再经堆积而构成三维实体,这就是快速成形(零件)制造的基本原理,其具体制造方法很多,较成熟的商品化方法有叠层实体制造法和立体光刻等。如叠层实体制造,根据各叠层几何信息,用数控激光机在铺上一层箔材上切出本层轮廓,去除非零件部分,再铺上一层箔材,用加热辊辗压,以固化粘接剂,使新铺上的—层箔材牢固地粘接在己成形体上,再切割该层的轮廓,如此反复多次直至加工完毕。

    4.零件的分类编码系统

    零件分类编码是对零件相似性进行识别的一个重要手段,也是GT的基本方法。是用数字来描述零件的几何形状、尺寸和工艺特征,即零件特征的数字化。零件分类是根据零件特征的相似性来进行的,这些特征主要分为以下三个方面;1)结构特征。零件的几何形状、尺寸大小、结构功能、毛坯类型等。2)工艺特征。零件的毛坯形状及材料、加工精度、表面粗糙度、机械加工方法、定位夹紧方式、选用机床类型等。3)生产组织与计划特征。加工批量,制造资源状况,工艺过程跨车间、工段、厂际协作等情况。零件的特征用相应的标志表示,这些标志由分类系统中的相应环节来描述。零件各种特征的标识按一定规则排成若干个“列”,每“列”就称为码位,也叫纵向分类环节;在每个列(码位)内又安排若干“行”,每一“行”称为“项”,也叫横向分类环节。零件分类编码系统是实施成组技术的基础和重要手段*对零件进行分类成组,可以便零件设计标准化、系列化和通用化,辅助人工或计算机编制工艺过程和进行成组加工车间的平面设计,改进数控加工的程序编制,使工艺设计合理化:促进工装和工艺路线标准化,为计算机辅助制造打下基础,进一步以成组的方式组织生产。

    零件的分类编码反映了零件固有的名称、功能、结构、形状和工艺特征等信息。类码对于每种零件而言不是唯一的,即不同的零件可以拥有相同的或接近的分类码,由此能划分出结构相似或工艺相似的零件组来加工。它的特点是从毛坯到产品多数可在同一种类型的设备上完成,也可仅完成其中某几道工序的加工。如在转塔车床、自动车床加工的中小零件,多半属于这种类型。这种组织形式是最初级的形式,最易实现,但对较复杂的零件,需用多台机床完成时,其效果就不显着。值得一提的是,自从出现加工中心以来,成组单机加工又重新得到重视。

    5.柔性制造系统

    柔性制造系统一般是指用一台主机将各台数控机床连接起来,配以物料流与信息流的自动控制生产系统。它一方面进行自动化生产,而另一方面又允许相似零件组中不同零件,经过少量调整实现不同工序的加工。这一组织生产的方式,代表着现代制造技术的发展方向。值得一提的是,成组技术是计算机辅助工艺设计(CAPP)的基础之一,在成组技术基础上发展起来的派生cAPP设计方法,已成为工艺现代化的一种主要方法。另外,成组技术作为一种生产哲理,对柔性制造技术和集成制造技术的发展产生了深刻的影响。

篇7

关键词:半导体光电;研究型;实践;教学探索

中图分类号:G42 文献标志码:A 文章编号:1674-9324(2015)07-0123-02

近几年来,随着半导体电子产业和光学专业的快速发展,半导体光电正逐渐成为一门新兴的学科。半导体光电技术是集现代半导体技术、电子学技术和光学信息处理技术等学科于一体的综合性学科,要求学生具有扎实的半导体物理、光电子、数学和计算机等基础知识。该学科作为光、机、电、算、材一体的交叉学科,专科课程较多,涉及知识面较广,有其自身的课程特点:既要讲授半导体相关的专业知识,又要补充光电专业的知识,还要加强数理基础理论教学;既要围绕半导体光电专业核心,又要涉足其他专业领域;既要重视教学方法,提高教学质量,又要加强前沿知识的学习和科研,不断更新知识体系,将最新的行业信息灌输给学生。同时,随着近年来固态半导体LED照明技术、半导体激光、太阳能光伏和半导体探测器等高新行业的蓬勃发展,需要大量的具有创新研究能力的技术人才来从事半导体光电材料、器件以及系统的研究和开发。这就需要高校培养具有动手能力强,基础知识扎实,综合分析能力优秀的研究型人才。但是目前高校半导体光电学科的教学普遍停留在理论层面,缺乏实践性内容的提升。因而作为一门实用性很强的专业,应着重加强理论与实践相结合的全面教学,逐步开展研究性课程的教学探索,打破传统的教学理念,以形成学生在课程学习中主动思考探索并重视创新叉研究的积极教学模式,为半导体光电学科建立一个全新的培养方式。

一、理论教学中创设前沿性课题,引导学生进行探究性学习

在传统的教学模式中,专业课程的讲授主要依靠讲解概念、分析原理、推导公式、得出结论。而学生就是按部就班地记笔记、做习题、应付考试。课堂教学效果完全取决于教师的教学经验,最终学生所接受的知识也仅仅停留在课本的层面,这完全达不到迅猛发展的高新的半导体光电学科的培养要求。这就需要教师打破传统的教学理念,开展研究性的教学方式。研究性教学是以学生的探究性学习为基础,教师提出一些创新性的问题,以及与专业相关的一些前沿性科技专题报道,学生在创新性的问题中,借助课本提供的基础理论和教师提供的相关资料,借鉴科学研究的方法,或独立探索、或协作讨论,通过探究学习、合作学习、自主学习等方式最终找到解决问题的方案,甚至提出更具有创新性的思路。因此,在教学过程中,我们应尝试减少课堂讲授时间、增加课堂讨论时间,有意识地提出一些较深层次的问题:如提高太阳能电池的光电转换效率的方法、新型的半导体材料制作光电器件的优异性等,有针对性地组织专题讨论。考核方式以课程设计或者专题论文的形式进行,以培养学生的思考和创新研究能力。此外,要重视阶段性总结和检查工作,培养学生综合素质和能力。教师在注重教学方式改进的同时,也要重视学生学习效果的阶段性检查和总结。传统的课堂教学是以作业为考察标准,这种考察的弊端是给学生提供了抄袭作业的机会,学习效果不佳。因此应考虑采取多元化的检查方式,增加检查手段。可以让学生将多媒体课件与教材和参考书相结合,根据教师在课堂教学中指出的难点和重点,单独总结出学习笔记,并进行定期检查。

二、建立半导体专业与光电专业协同的教学环境

半导体光电从理论上来讲是研究半导体中光子与电子的相互作用、光能与电能相互转换的一门科学,涉及量子力学、固体物理、半导体物理等一些基础学科;从实践层面来讲,也关联着半导体光电材料、光电探测器、异质结光电器件及其相关系统的研究。因此,在理论上应鼓励教师根据教学情况,编写有针对性的,并且包含基础物理学、半导体电子学、光学和系统设计等具有交叉性理论的教材和讲义,提升学生在半导体光电交叉领域的理论基础。同时需要组织和调动各层次教师,建设教学研究中心。结合老教师的经验和青年教师的创意,共同进行教学改革探索。另外,实现半导体光电学科的教学探索,不仅需要专业教师改进和完善课堂教学措施,提升教学水平和质量,同时也需要专业的半导体光电材料生长、器件制备和检测设备,以及专业设计软件供教学和科研使用。该学科的性质决定了教学的内容不能仅仅局限于理论方面,还需要实验方面的补充和实践,从而可以从软件和硬件双方面实现协同的教学环境。在具体的操作过程中,以光谱分析为例,传统的光谱分析光源采用的是一些气体激光器,我们可以在教学中利用新型的半导体固体激光器来替代传统的气体激光器,将半导体光电器件和光学系统有机结合起来,提供两者协同的新型设备。指导学生在实验中分析新型的光谱系统和传统系统的优劣性,以及如何在现有的基础上改进系统,提高系统的使用性能,在教学中锻炼学生的协同学科的技能性训练。进一步可以引入显微镜成像技术,采用简易的一些光学元器件,在实验室内让学生动手搭建显微成像设备,锻炼学生对光学系统的整体认知能力,并且可以提升传统设备的应用范围。这一系列交叉协同教学实验的建立有利于打破教学和研究的界限,打破学科的界限,突出半导体光电学科的交叉性特点,促进学生知识的全面性掌握,为研究型的教学模式开辟新的途径。

三、建立前沿性半导体光电专业实验教学平台

半导体光电涉及的领域很广泛,单纯的理论教学不能满足学生对于高新的工程应用的直观认识,许多设备和器件只阐述其工作原理,概念比较抽象,学生不易理解。因而需要重视研究型实践教学。在条件允许的情况的,将半导体材料生长和器件制造设备引入课堂,让学生深刻掌握器件的制造流程。同时可以引入先进的光电检测设备,让学生开展一些器件的检测实验,在实验过程中熟悉器件和光电系统的工作原理,可以起到事半功倍的作用。同时还可以让学生在实践中不断思考和探索一些前瞻性的科学研究问题。以半导体LED光电器件为例:由于LED材料和器件制造设备较为精密、价格昂贵、不易获取。在理论课程后,可以引用适当的LED材料生长设备MOCVD的一些生长过程的实物图片和视频,以及半导体器件制备的薄膜沉积、光刻制作和刻蚀工艺的流程图和视频,让学生尽可能地将抽象的理论与具体实践联系起来。此外,购置现成的LED器件和光电检测设备,利用光电测试设备对LED器件开展一些电学和光学性能的检测,在测试过程中让学生对LED光电转换基本原理和不同测试条件对器件光电性能影响的物理机制开展探索性研究。对于阻碍LED发展的一些前沿性难题进行深刻的思考和分析,提出合理的改进和解决方案。基于学科的科研实验条件,我们还可以提出项目教学法,把教学内容通过“实践项目”的形式进行教学,为了能够一个半导体和光电专业相协同的实验平台,可以设置一个系统的实验项目包含多门课程的知识。项目教学是在教师的指导下,将相对独立的教学内容相关的项目交由学生自己处理。信息的收集,方案的设计,项目实施及最终评价报告,都由学生负责完成,学生通过该项目的进行,了解并把握实验制造和检测得整个过程及每一个环节的基本要求,教师在整个过程中主要起引导作用。以此来培养学生的实践性、研究性学习能力,让学生扮演项目研究者的角色,在研究项目情景的刺激下及教师的指导下主动开展探究活动,并在探究过程中掌握知识和学习分析问题、解决问题的方法,从而达到提高分析问题、解决问题能力的目的。这样才具备一门前沿性的学科所应该达到的理想效果。

四、建立专业校企合作基地

半导体光电专业需结合地域经济发展特点,建立专业的校企合作基地。校企合作是高校培养高素质技能型人才的重要模式,是实现高校培养目标的基本途径。以江南大学为例,可以依据无锡当地工业的发展中心,与半导体光电类企业,如无锡尚德太阳能股份有限公司、江苏新广联LED器件制造企业、LED照明企业实益达、万润光子等公司进行深入合作,建立企业实训创新基地及本科生、研究生工作站。定期组织学生去企业进行参观,了解半导体光电类产品的产线制造过程。还可以安排有兴趣的学生在学有余力的同时进入企业进行实习,使学生能够将课堂的理论知识应用到实际的应用生产中,并且可以利用理论知识来解决实际生产中所遇到的一些问题。以实际产线的需求分析为基础,结合理论教学的要求,建立以工作体系为基础的课程内容体系;实施综合化、一体化的课程内容,构建以合作为主题的新型课堂模式,做到教室、实验室和生产车间三者结合的教学场所。最终积累一定的合作经验后,校企可以合作开发教材,聘请行业专家和学校专业教师针对课程的特点,结合课堂基础和生产实践的要求,结合学生在相关企业实训实习的进展,编写出符合高校教学和企业生产需求的新型校企双用教材。

综上所述,要开展研究型半导体光电类课程的教学探索,首先要突破传统的理论教学模式,根据课堂教学需求,改善课堂教学措施,形成有创意、有个性化的课堂特色,旨在培养学生的创新思维能力。

参考文献:

篇8

一.什么是基因芯片

生物芯片,简单地说就是在一块指甲大小(1cm3)的有多聚赖氨酸包被的硅片上或其它固相支持物(如玻璃片、硅片、聚丙烯膜、硝酸纤维素膜、尼龙膜等,但需经特殊处理。作原位合成的支持物在聚合反应前要先使其表面衍生出羟基或氨基(视所要固定的分子为核酸或寡肽而定)并与保护基建立共价连接;作点样用的支持物为使其表面带上正电荷以吸附带负电荷的探针分子,通常需包被以氨基硅烷或多聚赖氨酸等)将生物分子探针(寡核苷酸片段或基因片段)以大规模阵列的形式排布,形成可与目的分子(如基因)相互作用,交行反应的固相表面,在激光的顺序激发下标记荧光根据实际反应情况分别呈现不同的荧光发射谱征,ccd相机或激光共聚焦显微镜根据其波长及波幅特征收集信号,作出比较和检测,从而迅速得出所要的信息。生物芯片包括基因芯片、蛋白质芯片、组织芯片。而基因芯片中,最成功的是dna芯片,即将无数预先设计好的寡核苷酸或cdna在芯片上做成点阵,与样品中同源核酸分子杂交[3]的芯片。

基因芯片的基本原理同芯片技术中杂交测序(sequencing by hybridization, sbh)。即任何线状的单链dna或rna序列均可被分解为一个序列固定、错落而重叠的寡核苷酸,又称亚序列(subsequence)。例如可把寡核苷酸序列ttagctcatatg分解成5个8 nt亚序列:

(1)

ctcatatg

(2)

 gctcatat

(3)

agctcata

(4)

 tagctcat

(5)

ttagctca

这5个亚序列依次错开一个碱基而重叠7个碱基。亚序列中a、t、c、g 4个碱基自由组合而形成的所有可能的序列共有65536种。假如只考虑完全互补的杂交,那么48个8 nt亚序列探针中,仅有上述5个能同靶dna杂交。可以用人工合成的已知序列的所有可能的n体寡核苷酸探针与一个未知的荧光标记dna/rna序列杂交,通过对杂交荧光信号检测,检出所有能与靶dna杂交的寡核苷酸,从而推出靶dna中的所有8 nt亚序列,最后由计算机对大量荧光信号的谱型(pattern)数据进行分析,重构靶dna 的互补寡核苷酸序列。

一般基因芯片按其材质和功能,基本可分为以下几类[4]

(一)元件型微阵列芯片

1.生物电子芯片

2.凝胶元件微阵列芯片

3.药物控释芯片

(二) 通道型微阵列芯片

1.毛细管电泳芯片

2 .pcr扩增芯片

3.集成dna分析芯片

4.毛细管电层析芯片

(三)生物传感芯片

1光学纤维阵列芯片

2白光干涉谱传感芯片

小鼠基因表达谱芯片(mgec)

 附:目前国内基因芯片常见品种.(上海博星公司) 

三 基因芯片的制备

芯片种类较多,制备方法也不尽相同,常见的芯片可分为两大类:一类是原位合成;一种是直接点样。原位合成适用于寡核苷酸;直接点样多用于大片段dna,有时也用于寡核苷酸,甚至mrna。原位合成有两种途径。一是光蚀刻法;一是喷印法。光蚀刻法可以合成30nt左右,喷印法可以合成40-50nt,光蚀刻法每步缩合率较低,一般为95%左右,合成30nt产率仅20%;喷印法可达99%以上,合成30nt产率可达74%,从这个意义上说喷印法特异性应比光刻法高。此外,喷印法不需特殊的合成试剂。与原位合成法比较点样法较简单,只需将预先制备好的寡核苷酸或cdna等样品通过自动点样装置点于经特殊处理的玻璃片或其它材料上即可。

1、原位光蚀刻合成[5-7] 寡聚核苷酸原位光蚀刻合成技术是由affymetrix公司开发的,采用的技术原理是在合成碱基单体的5'羟基末端连上一个光敏保护基。合成的第一步是利用光照射使羟基端脱保护,然后一个5'端保护的核苷酸单体连接上去,这个过程反复进行直至合成完毕。使用多种掩盖物能以更少的合成步骤生产出高密度的阵列,在合成循环中探针数目呈指数增长。某一含n个核苷酸的寡聚核苷酸,通过4×n个化学步骤能合成出4n个可能结构。例如:一个完整的十核苷酸通过32个化学步骤,8个小时可能合成65,536个探针。

目前美国affymetrix公司已有同时检测6,500个已知人类基因的dna芯片,并且正在制备含500,000-1,000,000个寡核苷酸探针的人类基因检测芯片。该公司每月投入基因芯片研究的经费约100万美元,目前产品尚未公开投放市场发挥经济效益,但已有许多公司及研究机构与其签约购买其产品。该产品不仅可用于基因表达分析和基因诊断等,而且在大规模药物开发方面也具有诱人的前景。affymetrix的大部分产品将在98年底全面投放市场。届时,在其产品被广泛采用的同时,其所有的研究投入将变成巨大的利润。其它公司产品也正在从实验室技术研究走向开发应用。目前,用于分子诊断的dna芯片不仅已可用于检测爱滋病病毒基因还可用于囊性纤维化(cf)、乳腺癌、卵巢癌等疾病相关基因的基因诊断。鉴于光刻设备技术复杂,只能有专业化公司生产,加之成本高及合成效率不高的问题,因此有待进行以下研究:⑴对光刻技术进行改进,提高合成效率;⑵开发新的原位合成技术,如喷印合成技术,该技术既能进行原位合成又能进行非原位合成。

另一方法是光导原位合成法。具体方法是在经过处理的载玻片表面铺上一层连接分子(linker),其羟基上加有光敏保护基团,可用光照除去,用特制的光刻掩膜(photolithographic mask)保护不需要合成的部位,而暴露合成部位,在光作用下去除羟基上的保护基团,游离羟基,利用化学反应加上第一个核苷酸,所加核苷酸种类及在芯片上的部位预先设定,所引入的核苷酸带有光敏保护基团,以便下一步合成。然后按上述方法在其它位点加上另外三种核苷酸完成第一位核苷酸的合成,因而n个核苷酸长的芯片需要4n个步骤。每一个独特序列的探针称为一个“feature”,这样的芯片便具有4n个“feature”,包含了全部长度为n的核苷酸序列。这种原位直接合成的方法无须制备处理克隆和pcr产物,但是每轮反应所需设计的光栅则是主要的经费消耗。运用这种方法制作的芯片密度可高达106探针/平方厘米,即探针间隔为 5-10μm,但只能制作ii型 dna芯片。见图一。

2 原位喷印合成 芯片原位喷印合成原理与喷墨打印类似,不过芯片喷印头和墨盒有多个,墨盒中装的是四种碱基等液体而不是碳粉。喷印头可在整个芯片上移动并根据芯片上不同位点探针的序列需要将特定的碱基喷印在芯片上特定位置。该技术采用的化学原理与传统的dna固相合成一致,因此不特殊制备的化学试剂。

3 点样法 点样法是将合成好的探针、cnda或基因组dna通过特定的高速点样机器人直接点在芯片上。点样分子可以是核酸也可以是寡核酸。一些研究者采用人工点样的方法将寡核苷酸分子点样于化学处理后的载玻片上,经一定的化学方法处理非干燥后,寡核苷酸分子即固定于载玻片上,制备好的dna芯片可置于缓冲液中保存。由于方法费时费力,不适于大规模dna芯片制作,因而实现自动化点样就显得尤为重要。有的研究者用多聚赖氨酸包被固相支待物玻片,经过分区后用计算机控制的微阵列点样机按照预先设计顺序点上核酸分子,点样量很小,约为5nl。大规模cdna芯片多采用这种方法,与其寡核苷酸微芯片相比。dna芯片的潜在优越性是具有更强的亲和势和特异性杂交,但是需要大量制备,纯化,量化,分类pcr产物。有的研究者将玻片上覆盖20μm厚薄层聚丙烯酰胺凝胶作为支持物,采用机械刻写或光刻的方法在其表面划上网格,并用激光照射蒸发掉单元间隙的多余凝胶,以实现dna芯片分区,单元大小为 40×40μm或 100×100μm间隔分别为50μm和100μm。然后将化学方法合成的寡核苷酸探针自动化点样于各个单元内而制成dna芯片,点样速度可达2000单元/秒。

其装置采用的机器人有一套计算机控制三维移动装置、多个打印/喷印针的打印/喷印头;一个减震底座,上面可放内盛探针的多孔板和多个芯片。根据需要还可以有温度和湿度控制装置、针洗涤装置。打印/喷印针将探针从多孔板取出直接打印或喷印于芯片上。直接打印时针头与芯片接触,而在喷印时针头与芯片保持一定距离。打印法的优点是探针密度高,通常1平方厘米可打印2,500个探针。缺点是定量准确性及重现性不好,打印针易堵塞且使用寿命有限。喷印法的优点是定量准确,重现性好,使用寿命长。缺点是喷印的斑点大,因此探针密度低,通常1平方厘米只有400点。国外有多家实验室和公司研究开发打印/喷印设备,目前有一些已经商品化。军事医学科学院和益生堂生物企业公司目前正在联手利用打印/喷印技术进行生物芯片的研究和开发,预计2年内将有用于实验室研究或临床诊断的基因芯片产品问世。见图二。

4 电子芯片[8-10] 电子芯片是由美国nanogen公司开发的,目前国内清华大学和复旦大学也在开发这一技术。这种芯片为带有阳电荷的硅芯片、芯片经热氧化,制成1mm×1mm的阵列、每个阵列含多个微电极,在每个电极上通过氧化硅沉积和蚀刻制备出样品池。将连接链亲和素的琼脂糖覆盖在电极上,在电场作用下生物素标记的探针即可结合在特定电极上。电子芯片最大特点是杂交速度快,可大大缩短分析时间。制备复杂、成本高是其不足。

5 三维芯片[11-12] 三维芯片是由美国的packard、摩托罗拉、argonne国家实验室三家机构与俄罗斯engelhardt分子生物学研究所合作开发的一种芯片技术。三维生物芯片实质上是一块显微镜载玻片,其上有10,000个微小聚乙烯酰胺凝胶条,每个凝胶条可用于靶dna,rna和蛋白质的分析。先把乙知化合物加在凝胶条上,再用3cm长的微型玻璃毛细管将待测样品加到凝胶条上。每个毛细管能把小到0.2nl的体积打到凝胶上。以上几家机构合作研究的生物芯片系统具有其它生物芯片系统不具有的几个优点。一是凝胶的三维化能加进更多的已知物质,增加了敏感性。二是可以在芯片上同时进行扩增与检则。一般情况下,必须在微量多孔板上先进行pcr扩增,再把样品加到芯片上,因此需要进行许多额外操作。本芯片所用凝胶体积很小。使pcr扩增体系的体积减小1,000倍(总体积约纳升级),从而节约了每个反应所用的pcr酶(约减少100倍)。三是以三维构象形式存在的蛋白和基因材料可以其天然状态在凝胶条上分析,可以进行免疫测定,受体-配体研究和蛋白组分析。

6 流过式芯片(flow-thru chip)[13] cene logic正在开发一种在芯片片基上制成格栅状微通道,cene  logic设计及合成特定的寡核苷酸探针,结合于微通道内芯片的特定区域。从待测样品中分离dna或rna并对其进行荧光标记,然后,该样品流过芯片,固定的寡核苷酸探针捕获与之相互补的核酸,采用cene  logic's信号检测系统分析结果。流通式芯片用于高通量分析已知基因的变化,其特定在于⑴敏感性高:由于寡核苷酸吸附表面的增大,流过式芯片可监测稀有基因表达的变化;⑵速度快:微通道加速了杂交反应,减少了每次检测所需时间;⑶价格降低:由于采用了特殊的共价化学技术将寡核苷酸吸附于微通道内,使每一种流过芯片可反复使用多次,从而使其成本降低。

四.基因芯片样品制备

一般说来应用dna芯片进行实验包括5个过程:生物学问题的提出和芯片设计;样品制备;生物杂交反应;结果探测;数据处理和建模。 

1.样品制备。一般所需mrna的量是以一张表达谱芯片需要3μg mrna计算的

考虑到个体差异以及样品在研磨、匀浆等过程中的损失,客户提供的样品量应在上述基础上增加1-2倍。

2 样本采集过程关键点. 

组织标本采集操作建议规程,(取标本所需关键器材和处理要求 ) 

注:

· 以下步骤1 - 5应在冰上进行且不超过15分钟,超过时间会导致样品的rna降解。 

· 对肿瘤组织的取材,要求尽可能准确地判定肿瘤和正常组织,例如对于手术切除的整个或部分前列腺,可能要根据冰冻切片报告的结果来判定要进行研究的取材部位。

1 离体新鲜组织,切成多个1cm3小块,剔除结缔组织和脂肪组织。胃、肠组织应剪除外膜;肝、肾、脾应剪除门部血管神经,肿瘤组织应将周围的正常组织切除干净(正常组织也应将周围的肿瘤组织切除干净)。

2 在rnase-free 0.9%生理盐水中漂洗样品,以去除血渍和污物。

3 用铝箔包裹组织,或用5ml冻存管装载组织(但最好统一采用铝箔)。用记号笔在铝箔或冻存管外表写明样品编号,并贴上标签,迅速投入液氮冷却。

4 填写样品登记表,写明样品名称、种类、编号、取样日期、样品处理情况等

将液氮冷却的组织放入样品袋(每个样品袋只保存同样的组织),袋口留一根编号绳,绳上粘一张标签纸(标签上注明:样品名称、编号、日期),迅速转入便携式液氮罐

5 保留1-2张取材部位的病理切片。

五.生物芯片杂交

待分析基因在与芯片结合探针杂交之前必需进行分离、扩增及标记。根据样品来源、基因含量及检测方法和分析目的不同,采用的基因分离、扩增及标记方法各异。当然,常规的基因分离、扩增及标记技术完全可以采用,但操作繁琐且费时。高度集成的微型样品处理系统如细胞分离芯片及基因扩增芯片等是实现上述目的的有效手段和发展方向。为了获得基因的杂交信号必须对目的基因进行标记,目前采用的最普遍的荧光标记方法与传统方法如体外转录、pcr、逆转录等原理上并无多大差异,只是采用的荧光素种类更多,这可以满足不同来源样品的平行分析。用计算机控制的高分辨荧光扫描仪可获得结合于芯片上目的基因的荧光信号,通过计算机处理即可给出目的基因的结构或表达信息。

杂交条件的选择与研究目的有关,多态性分析或者基因测序时,每个核苷酸或突变位点都必须检测出来。通常设计出一套四种寡聚核苷酸,在靶序列上跨越每个位点,只在中央位点碱基有所不同,根据每套探针在某一特点位点的杂交严谨程度,即可测定出该碱基的种类。如果芯片仅用于检测基因表达,只需设计出针对基因中的特定区域的几套寡聚核苷酸即可。表达检测需要长的杂交时间,更高的严谨性,更高的样品浓度和低温度,这有利于增加检测的特异性和低拷贝基因检测的灵敏度。突变检测,要鉴别出单碱基错配,需要更高的杂交严谨性和更短的时间。

此外,杂交反应还必须考虑杂交反应体系中盐浓度、探针gc含量和所带电荷、探针与芯片之间连接臂的长度及种类、检测基因的二级结构的影响。有资料显示探针和芯片之间适当长度的连接臂可使杂交效率提高150倍[9]。连接臂上任何正或负电荷都将减少杂交效率。由于探针和检测基因均带负电荷,因此影响他们之间的杂交结合,为此有人提出用不带电荷的肽核酸(pna)做探针[9]。虽然pna的制备比较复杂,但与dna探针比较有许多特点,如不需要盐离子,因此可防止检测基因二级结构的形成及自身复性。由于pna-dna结合更加稳定和特异,因此更有利于单碱基错配基因的检测。

六 基因芯片检测原理

杂交信号的检测是dna芯片技术中的重要组成部分。以往的研究中已形成许多种探测分子杂交的方法,如荧光显微镜、隐逝波传感器、光散射表面共振、电化传感器、化学发光、荧光各向异性等等,但并非每种方法都适用于dna芯片。由于dna芯片本身的结构及性质,需要确定杂交信号在芯片上的位置,尤其是大规模dna芯片由于其面积小,密度大,点样量很少,所以杂交信号较弱,需要使用光电倍增管或冷却的电荷偶连照相机(charged-coupled device camera,ccd)摄像机等弱光信号探测装置。此外,大多数dna芯片杂交信号谱型除了分布位点以外还需要确定每一点上的信号强度,以确定是完全杂交还是不完全杂交,因而探测方法的灵敏度及线性响应也是非常重要的。杂交信号探测系统主要包括杂交信号产生、信号收集及传输和信号处理及成像三个部分组成。

由于所使用的标记物不同,因而相应的探测方法也各具特色。大多数研究者使用荧光标记物,也有一些研究者使用生物素标记,联合抗生物素结合物检测dna化学发光。通过检测标记信号来确定dna芯片杂交谱型。 

    1.荧光标记杂交信号的检测方法

    使用荧光标记物的研究者最多,因而相应的探测方法也就最多、最成熟。由于荧光显微镜可以选择性地激发和探测样品中的混合荧光标记物,并具有很好的空间分辨率和热分辨率,特别是当荧光显微镜中使用了共焦激光扫描时,分辨能力在实际应用中可接近由数值孔径和光波长决定的空间分辨率,而在传统的显微镜是很难做到的,这便为dna芯片进一步微型化提供了重要的检测方法的基础。大多数方法都是在人射照明式荧光显微镜(epifluoescence microscope)基础上发展起来的,包括激光扫描荧光显微镜、激光共焦扫描显微镜、使用了ccd相机的改进的荧光显微镜以及将dna芯片直接制作在光纤维束切面上并结合荧光显微镜的光纤传感器微阵列。这些方法基本上都是将待杂交对象 以荧光物质标记,如荧光素或丽丝胶(lissamine)等,杂交后经过ssc和sds的混合溶液或sspe等缓冲液清洗。

    (1)激光扫描荧光显微镜

    探测装置比较典型。方法是将杂交后的芯片经处理后固定在计算机控制的二维传动平台上,并将一物镜置于其上方,由氩离子激光器产生激发光经滤波后通过物镜聚焦到芯片表面,激发荧光标记物产生荧光,光斑半径约为5-10μm。同时通过同一物镜收集荧光信号经另一滤波片滤波后,由冷却的光电倍增管探测,经模数转换板转换为数字信号。通过计算机控制传动平台x-y方向上步进平移,dna芯片被逐点照射,所采集荧光信号构成杂交信号谱型,送计算机分析处理,最后形成20μm象素的图像。这种方法分辨率高、图像质量较好,适用于各种主要类型的dna芯片及大规模dna芯片杂交信号检测,广泛应用于基因表达、基因诊断等方面研究。

    (2)激光扫描共焦显微镜

    激光扫描共焦显微镜与激光扫描荧光显微镜结构非常相似,但是由于采用了共焦技术因而更具优越性。这种方法可以在荧光标记分子与dna芯片杂交的同时进行杂交信号的探测,而无须清洗掉未杂交分子,从而简化了操作步骤大大提高了工作效率。affymetrix公司的s.p.a.forder等人设计的dna芯片即利用此方法。其方法是将靶 dna分子溶液放在样品地中,芯片上合成寡核苷酸阵列的一面向下,与样品池溶液直接接触,并与dna样品杂交。当用激发光照射使荧光标记物产生荧光时,既有芯片上杂交的dna样品所发出的荧光,也有样品地中dna所发出的荧光,如何将两者分离开来是一个非常重要的问题。而共焦显微镜具有非常好的纵向分辨率,可以在接受芯片表面荧光信号的同时,避开样品池中荧光信号的影响。一般采用氩离子激光器(488nm)作为激发光源,经物镜聚焦,从芯片背面入射,聚集于芯片与靶分子溶液接触面。杂交分子所发的荧光再经同一物镜收集,并经滤波片滤波,被冷却的光电倍增管在光子计数的模式下接收。经模数转换反转换为数字信号送微机处理,成像分析。在光电信增管前放置一共焦小孔,用于阻挡大部分激发光焦平面以外的来自样品池的未杂交分子荧光信号,避免其对探测结果的影响。激光器前也放置一个小孔光阑以尽量缩小聚焦点处光斑半径,使之能够只照射在单个探针上。通过计算机控制激光束或样品池的移动,便可实现对芯片的二维扫描,移动步长与芯片上寡核苷酸的间距匹配,在几分钟至几十分钟内即可获得荧光标记杂交信号图谱。其特点是灵敏度和分辨率较高,扫描时间长,比较适合研究用。现在 affymetrix公司已推出商业化样机,整套系统约 12万美元。

    (3)采用了ccd相机的荧光显微镜

    这种探测装置与以上的扫描方法都是基于荧光显微镜,但是以ccd相机作为信号接收器而不是光电倍增管,因而无须扫描传动平台。由于不是逐点激发探测,因而激发光照射光场为整个芯片区域,由ccd相机获得整个dna芯片的杂交谱型。这种方法一般不采用激光器作为激发光源,由于激光束光强的高斯分布,会使得光场光强度分布不均,而荧光信号的强度与激发光的强度密切相关,因而不利于信号采集的线性响应。为保证激发光匀场照射,有的学者使用高压汞灯经滤波片滤波,通过传统的光学物镜将激发光投射到芯片上,照明面积可通过更换物镜来调整;也有的研究者使用大功率弧形探照灯作为光源,使用光纤维束与透镜结合传输激发光,并与芯片表面呈50o角入射。由于采用了ccd相机,因而大大提高了获取荧光图像的速度,曝光时间可缩短至零点几秒至十几秒。其特点是扫描时间短,灵敏度和分辨率较低,比较适合临床诊断用[14].

    (4)光纤传感器

    有的研究者将 dna芯片直接做在光纤维束的切面上(远端),光纤维束的另一端(近端)经特制的耦合装置耦合到荧光显微镜中。光纤维束由7根单模光纤组成。每根光纤的直径为200μm,两端均经化学方法抛光清洁。化学方法合成的寡核苷酸探针共价结合于每根光纤的远端组成寡核苷酸阵列。将光纤远端浸入到荧光标记的靶分子溶液中与靶分子杂交,通过光纤维束传导来自荧光显微镜的激光(490urn),激发荧光标记物产生荧光,仍用光纤维束传导荧光信号返回到荧光显微镜,由ccd相机接收。每根光纤单独作用互不干扰,而溶液中的荧光信号基本不会传播到光纤中,杂交到光纤远端的靶分子可在90%的甲酸胺( formamide)和te缓冲液中浸泡10秒钟去除,进而反复使用。这种方法快速、便捷,可实时检测dna微阵列杂交情况而且具有较高的灵敏度,但由于光纤维束所含光纤数目有限,因而不便于制备大规模dna芯片,有一定的应用局限性。

2.生物素标记方法中的杂交信号探测

     以生物素(biotin)标记样品的方法由来已久,通常都要联合使用其它大分子与抗生物素的结合物(如结合化学发光底物酶、荧光素等),再利用所结合大分子的特殊性质得到最初的杂交信号,由于所选用的与抗生物素结合的分子种类繁多,因而检测方法也更趋多样化。特别是如果采用尼龙膜作为固相支持物,直接以荧光标记的探针用于dna芯片杂交将受到很大的限制,因为在尼龙膜上荧光标记信号信噪比较低。因而使用尼龙膜作为固相支持物的这些研究者大多是采用生物素标记的。

目前应用较多的是美国general scanning公司开发的基因芯片专用检测系统(scanarray 3000),采用激光共聚焦扫描原理进行荧光信号采集,由计算机处理荧光信号,并对每个点的荧光强度数字化后进行分析。近期又开发出了scanarray 5000,其扫描精度和功能有较大的提高。

七 结果的分析

  样品在被测定前,首先要经过消化,使待测组织细胞中的dna或rna释放出来,在经过适当的扩增后,以荧光标记物标记,放入基因芯片自动孵育装置(fluidics station)中,由其自动控制反应的时间、温度以及缓冲液的配比等反应条件,进行杂交,这一过程,仅需要数秒钟。杂交完成后,要对基因芯片进行“读片”,即应用激光共聚焦荧光扫描显微镜,对基因芯片表面的每个位点进行检测。这种显微镜,将聚焦的平面设定为芯片的表面,因此可以检测结合到芯片表面位点的样品片断的荧光标记,而待测样品中未与芯片上探针结合的荧光标记物,则悬浮于溶液中,由于不在聚焦平面上,因而不被检测。样品与探针的错配是影响杂交反应结果的重要因素,但由于样品与芯片上的探针正确配对时产生的荧光信号要比错配时强的多,因此,通过对信号强度的分析,就可以区分正确与错误的配对。

为了使结果的检验更加简便和快速,affymetrix的基因芯片的分析系统中采用了基因阵列扫描仪和专用的基因芯片工作站,对一幅包含数万个探针位点的基因芯片图样的分析,仅需要数分钟的时间。这样在短短的几十分钟至数小时内,就可以完成用传统方法需要数月才能完成的几万乃至几十万次杂交分析试验。

八 基因芯片的应用

(一)基因表达分析 基因芯片具有高度的敏感性和特异性,它可以监测细胞中几个至几千个mrna拷贝的转录情况。与用单探针分析mrna的点杂交技术不同,基因芯片表达探针阵列应用了大约20对寡核苷酸探针来监测每一个mrna的转录情况。每对探针中,包含一个与所要监测的mrna完全吻合和一个不完全吻合的探针(图2),这两个探针的差别在于其中间位置的核苷酸不同。这种成对的探针可以将非特异性杂交和背景讯号减小到最低的水平,由此我们就可以确定那些低强度的mrna。目前,affymetrix公司已经生产出hugenefl、mu6500(含有小鼠6 500个基因)、ye6100(含有酵母6 100个基因)等基因芯片成品。

1 分析基因表达时空特征。英国剑桥大学whitehead研究所的frank c.p. holstege等人,应用含有酵母基因组的基因芯片,深入研究了真核细胞基因组的调节周期。应用基因组水平的表达分析,监测那些表达受转录起始机制的关键成分控制的基因,发现rna聚合酶ii、主要的转录因子tfiid和saga染色体修饰复合物等均在基因的表达中有自己特定的作用位点[15]。通过本试验,研究人员揭示了:(1)基因特异性的转录因子对表达的调控作用。(2)细胞在缺乏营养的环境中,基因不同位点的协同调节作用的全新机制。(3)信号转导通路的最终作用位点,在最初的几步中就可以确定。以此试验为基础,研究人员进一步绘制出了酵母基因组控制图,并由此分析出了各种调节因子在基因上不同的作用位点和其作用的分子机制。

美国stanford大学的v.r.iyer等人[16],对成纤维细胞中与细胞增生和损伤修复有关的基因进行了分析。首先,他们用成纤维细胞中的8 600个基因片断制成基因芯片的探针阵列,通过与mrna反转录形成的cdna的杂交反应,可以判断出该基因的活性。在试验中,成纤维细胞被置于无营养的环境中,使绝大部分基因的活性关闭,两天后,加入10%的血清,24小时内,分6个不同的时间点,观察基因的活化情况。试验结果表明,在所有被监测的基因中,约有500个基因最为活跃,而使细胞保持不分裂状态的基因活性被抑制。其中,最早被活化的是那些转录调控基因。在活化的基因中,有28个基因共同作用,控制细胞的增殖;8个与免疫反应的激活有关;19个与血管重建有关;另有许多基因,与血管新生密切相关。在肿瘤细胞中,基因的表达与正常的细胞存在着明显的差异。通过基因芯片绘出基因表达的时空图谱,有助于人类认识生命活动过程和特征。

2 基因差异表达检测〔17〕 生命活动中基因表达的改变是生物学研究的核心问题。理解人类基因组中10万个不同的基因功能,监测某些组织、细胞不同分化阶段的差异基因表达(differential gene expression ,dge)十分重要。对差异表达的研究,可以推断基因与基因的相互关系,细胞分化中基因“开启”或“关闭”的机制;揭示基因与疾病的发生、发展、转归的内在联系。目前dge研究方法主要有表达序列标签(ests)测序、差减克隆(subtractive cloning )、差异显示(differential display)、基因表达系列分析 (serial analysis of gene expression, sage)。而cdna微阵列杂交技术可监测大量mrna的转录,直接快速地检测出极其微量的mrna,且易于同时监测成千上万的基因,是研究基因功能的重要手段之一。rihn bh等利用基因芯片检测胸膜间皮瘤与正常细胞间比较了6500个基因,,发现了300多个差异基因的表达。其中几个典型基因的表达经rt-pcr进行定量后,可作为胸膜间皮瘤诊断的标记物(markers)[18]。sgroi〔19〕报告dna芯片结合激光捕获显微切割技术(laser capture microdissection)用于乳癌浸润期和转移期及正常细胞的基因表达谱(gene expression profiles)差异研究,结果被定量pcr和免疫组化所证实。差异表达有助于早期发现瘤细胞3万个基因与正常细胞的区别,有助于了解瘤细胞的发生、浸润、转移和药敏。最近,美国毒物化学研究所(ciit) 和国家环境健康科学研究所(niehs)正计划在一张玻片上建立8 700个小白鼠cdna芯片,用于肝癌的研究。我国也已成功研制出能检出41 000种基因表达谱的芯片。美国stanford大学的david botstein利用cdna微阵列芯片,对乳腺癌细胞的基因表达进行了分析,发现其基因表达水平明显低于正常细胞。利用基因芯片对表达进行分析,在一次试验中可以获取相当于在60余万次传统的northern杂交中所获得的关于基因表达的信息。通过这种实验方法,可以建立一种全新的肿瘤分类学方法,即依据每个肿瘤细胞中的基因表达情况对肿瘤细胞进行分类。基因芯片技术在分析基因的表达中具有不可比拟的优势。

    3 发现新基因 moch等利用肿瘤微阵列芯片(5 184个cdna片段)发现了肾细胞癌的肿瘤标志物基因,并于正常细胞进行比较。在532份标本中检测到胞浆纤维vimentin的表达基因,阳性率为51%~61%〔20〕。追踪观察,有vimentin表达的患者,预后极差。人类大量ests给cdna微阵列提供了丰富的资源,数据库中400 000个ests代表了所有人类基因,成千上万的ests微阵列将为人类基因表达研究提供强有力的分析工具。这将大大地加速人类基因组的功能分析〔21〕。

定量检测大量基因表达水平在阐述基因功能、探索疾病原因及机理、发现可能的诊断及治疗靶等方面是很有价值的。如该技术在炎症性疾病类风湿性关节炎(ra)和炎症性肠病(ibd)的基因表达研究中,由ra或ibd组织制备探针,用cy3和cy5荧光素标记,然后与靶cdna微阵列杂交,可检测出炎症疾病诱导的基因如tnf-α、il或粒细胞集落刺激因子,同时发现一些以前未发现的基因如hme基因和黑色素瘤生长刺激因子。schena等人[22]报道了cdna的微阵列在人类基因表达监测、生物学功能研究和基因发现方面的应用。采用含1,046个已知序列的cdna微阵列,用高速机器人喷印在玻片上,用双色杂交法定量监测不同基因表达,在一定的实验条件下,不同表达模式的阵列成分通过序列分析鉴定其特征。该方法较以往常用的方法敏感10倍以上,检测限度为1:500,000(wt/wt)总人体mrna。在培养t细胞热休克反应的测定中,发现17个阵列成分的荧光比较明显改变,其中11个受热休克处理的诱导,6个呈现中度抑制,对相应于17个阵列成分的cdna测序发现5个表达最高的成分是5种热休克蛋白,17个克隆中发现3个新序列。另外,在佛波酯诱导检测中[23],发现有6个阵列成分信号增强超过2倍,测序及数据库比较揭示有5个已知的,诱导表达最高的两个是pca-1酪氨酸磷酸酶和核因子-κb1,有一个是未知的。这4个新基因的表达水平均相对较低,仅呈现2倍的诱导。northern杂交结果证实了微阵列的结果。进一步检测了人的骨髓、脑、前列腺及心脏组织中热休克和佛波酯调节基因的表达,4种组织中检测出15种热休克和佛波酯调节基因的表达,其表达水平与jurkat细胞中相应成分的表达水平密切相关如在四种组织中表达水平最高的两个基因β-actin和细胞色素c氧化酶在jurkat细胞中的表达水平也很高。上述实验提示在缺乏任何序列信息的条件下,微阵列可用于基因发现和基因表达检测。目前,大量人类ests给cdna微阵列提供了丰富的资源,数据库中400,000个ests代表了所有人类基因,成千上万的ests微阵列将为人类基因表达研究提供强有力的分析工具。这将大大地加速人类基因组的功能分析。

    4 大规模dna测序 人类基因组计划的实施促进了高效的、自动化操作的测序方法的发展。芯片技术中杂交测序(sequencing by hybridization, sbh)技术及邻堆杂交(contiguous stacking hybridization, csh)技术即是一种新的高效快速测序方法[24-26]。用含65 536个8聚寡核苷酸的微阵列,采用sbh技术,可测定200 bp长dna序列,采用67 108 864个13聚寡核苷酸的微阵列,可对数千个碱基长的dna测序。sbh技术的效率随着微阵列中寡核苷酸数量与长度的增加而提高,但微阵列中寡核苷酸数量与长度的增加则提高了微阵列的复杂性,降低了杂交准确性。csh技术弥补了sbh技术存在的弊端,csh技术的应用增加了微阵列中寡核苷酸的有效长度,加强了序列准确性,可进行较长的dna测序。计算机模拟论证了8聚寡核苷酸微阵列与5聚寡核苷酸邻堆杂交,相当于13聚寡核苷酸微阵列的作用,可测定数千个核苷酸长的dna序列[26]。dubiley等人[26]将合成的10聚寡核苷酸固定于排列在载片表面的0.1×0.1×0.02mm或1×1×0.02mm聚丙酰胺凝胶垫上制备聚寡核苷酸微阵列,先用分离微阵列(fractionation chips)进行单链dna分离,再用测序微阵列(sequencing chips)分析序列,后者联合采用了10聚寡核苷酸微阵列的酶促磷酸化、dna杂交及与邻堆的5聚寡核苷酸连接等技术。该方法可用于含重复序列及较长序列的dna序列测定及不同基因组同源区域的序列比较。利用基因芯片测序的准确率达99%以上。

正如nih首脑harold varmus在美国细胞生物学1998年年会上所说:“在基因芯片的帮助下,我们将能够监测一个细胞乃至整个组织中所有基因的行为。”

(二)基因型、基因突变和多态性分析

在同一物种不同种群和个体之间,有着多种不同的基因型,而这种不同,往往与个体的不同性状和多种遗传性疾病有着密切的关系。通过对大量具有不同性状的个体的基因型进行比较,就可以得出基因与性状的关系。但是,由于大多数性状和遗传性疾病是由多个基因同时决定的,因此分析起来就十分困难,然而基因芯片技术恰恰解决了这一问题,利用其可以同时反应数千甚至更多个基因的特性,我们就可以分析基因组中不同基因与性状或疾病的关系。美国stanford大学的e.a.winzeler等[27],以两种不同菌株的酵母(s96和yjm789)作为实验材料,对控制酵母对放线菌酮的抗药性的基因进行分析。将含有酵母150 000个dna片断的基因芯片分别与这两株酵母活化转录的mrna分子杂交,s96几乎全部吻合,而yjm789与芯片上的探针组存在较大的差异,约有3000个位点没有杂交显色。由于s96对放线菌酮有抗药性而yjm789的抗药性则弱的多,因此可以判定控制这一抗药性的基因的所在。而后,通过对s96和yjm789杂交后产生的抗药子代的遗传标记的分析,进一步确定,控制该抗药性的基因位于15号染色体,是一长约57 000个碱基的片断。美国国家人类基因组研究室的j.g.hacia等在fodor研究小组的协助下[28],将基因芯片应用于双色突变分析。他们的分析对象是与人类遗传性乳腺癌和卵巢癌密切相关的brca1基因的外显子11。在扩增后,将brca1基因的外显子11置于含有荧光素-12-utp的环境中进行体外转录反应,而后将转录产生的mrna与brca1外显子11芯片杂交,4小时后,用藻红蛋白染色。在观察时,用488nm的氩离子激光进行扫描,荧光染色位点呈现绿色,而藻红蛋白染色的位点呈现红色。应用双色分析,可以更为清楚的监测未知样品与标准链之间的竞争性杂交情况,进而分析该基因中的不同突变。通过对15名患者brca1基因的观察,有14名患者在外显子11位点存在不同的突变。hacia等[29]在1.28 cm×1.28 cm的芯片上固定了9.66×104个长度为20 nt的寡核苷酸探针,用于检测乳腺癌基因brca1的exon11 (3.45 kb)中所有可能的碱基置换、插入和缺失(1~5 bp)突变。针对每一个位点,共有28个独立的探针,14个针对有义链,14个针对反义链。14个探针包括2个野生型,3个碱基置换、4个插入突变、5个碱基缺失。在15例患者样品中,发现有14例有基因突变,类型包括点突变、插入及缺失等;在20例对照样品中均未检出假阳性结果,结果表明dna芯片技术可快速、准确地研究大量患者样品定基因所有可能的杂合变。cronin等[30]分别用两种dna芯片检测囊性纤维化跨膜传导调节(cftr)的突变,其中一个芯片包含1 480个探针,检测了cftr基因的第10和11外显子的已知突变,包括缺失、插入和单碱基置换,并分析了10个未知样品的cftr基因,其结果与pcr-relp的分析结果完全一致。

guo等人[31]利用结合在玻璃支持物上的等位基因特异性寡核苷酸(asos)微阵列建立了简单快速的基因多态性分析方法。将asos共价固定于玻璃载片上,采用pcr扩增基因组dna,其一条引物用荧光素标记,另一条引物用生物素标记,分离两条互补的dna链,将荧光素标记dna链与微阵列杂交,通过荧光扫描检测杂交模式,即可测定pcr产物存在的多种多态性,该方法对人的酪氨酸酶基因等4个外显子内含有的5个单碱基突变进行分析,结果显示单碱基错配与完全匹配的杂交模式非常易于区别。这种方法可快速、定量地获得基因信息。β-地中海贫血中变异的检测也论证了该方法的有效性和可信性[32]。lipshutz等人[33]采用含18,495个寡核苷酸探针的微阵列,对hiv-1基因组反转录酶基因(rt)及蛋白酶基因(pro)的高度多态性进行了筛选。微阵列中内部探针与靶序列的错配具有明显的不稳定性,据此可快速区别核酸靶的差异。例如检测序列5'gtatcagcatxgccatcgtgc中x碱基的种类,可用下列4种探针3'agtcgtaacggtagc,3'agtcgtaccggtagc,3'agtcgtagcggtagc,3'agtcgtatcggtagc。高密度探针阵列可检则具有特征性的较长序列相关的多态性与变异。筛选1,000个核苷酸序列的变异与多态性需要4,000个探针。用100μm合成位点,设计1.28cm2阵列,将有大约16,000个探针,能筛选4kb序列。hiv-1基因组中rt与pro在疾病过程中易于发生多种变异,这些变异将导致病毒对多种抗病毒药物包括azt、ddi、ddc等出现明显抗性,因此检测和分析rt与pro的变异与多态性具有重要的临床意义。随着遗传病与癌症相关基因发现数量的增加,变异与多态性分析将越来越重要。chee等[34]用含有1.35×105个长度为25 nt的寡核苷酸探针,分析了16.6 kb的人类线粒体基因组dna(mt dna),共分析了10个样本,检测出了505个多态性位点,并在leber′s遗传性视神经疾病患者的mt dna中检测出3个致病性突变位点。

随着人类基因组计划的逐步发展,研究人员分析出了越来越多的基因序列。下一步,就是要分析这些基因的多态性与生物功能和疾病的关系,而这需要对大量个体进行分析。通过基因芯片snp(单核苷酸多态性)定位试验,可以确定基因多态性和疾病的关系,同时也可确定致病的机制和病人对治疗的反应等。同样,对于许多与人类疾病密切相关的致病微生物,也可对其进行基因型和多态性分析,1998年,法国t.livache等[35]就成功的利用基因芯片技术,对人血中的hcv病毒进行了基因型分析。snp基因芯片的成功将使临床诊断上到一个新的台阶。

(三)疾病的诊断与治疗 人类的疾病与遗传基因密切相关,基因芯片可以对遗传信息进行快速准确的分析,因此它在疾病的分子诊断中的优势是不言而喻的,就临床一种新的、强有力的分子工具[36]。基因芯片技术已经被应用于感染性疾病、肿瘤和药物代谢等方面的研究。

1 遗传病相关基因的定位 90年代以来,随着人类基因组计划的发展,各种方法被相继创立并应用到基因定位中。我国有4 000万育龄妇女,每年有2 000万新生儿,准确检测遗传病基因是优生优育的技术保障。dna芯片充分结合并灵活运用了大规模集成电路制造技术、自动化技术、计算机及网络技术、激光共聚焦扫描、dna合成、荧光标记探针、分子杂交及分子生物学的其它技术,在这一领域的研究中有着巨大的潜力。这一技术已成为基因定位研究的高效工具。随着遗传病与癌症相关基因发现数量的增加,变异与多态性分析将越来越重要。hgp使许多遗传疾病基因得以定位,配合使用多位pcr (multiplex-pcr) /dna芯片可一次筛查多种遗传病,既经济快速又敏感可靠[37,38]。

    2 肿瘤诊断 已用基因芯片检测人鼻咽癌、肺癌基因表达谱、肿瘤原癌基因和抑癌基因的发现和定位。早在1996年,m.j.kozal等就利用基因芯片[39],对hiv-i b亚型中的蛋白酶基因的多态性进行了分析,这也是基因芯片技术被首次应用于临床实践。在艾滋病的治疗中,使用hiv蛋白酶抑制剂是一种重要的手段。然而,病毒对该药物的反应却有着很大的差异。利用基因芯片技术,研究人员分析了取自102个病人的167个病毒单体,发现这些同为美国hiv-i b亚种的病毒的基因序列存在极大差异,其中蛋白酶的基因片断差异最大,在编码99个氨基酸的序列中,竟有47.5%存在明显突变。这些氨基酸的突变,直接导致了病毒抗药性的不同。含96 600个20体寡核苷酸高密度阵列对遗传性乳腺和卵巢癌brca1基因3.45 kb的第11个外显子进行杂合变异筛选,15个患者的已知变异的样品中,准确诊断出14个患者,20个对照样品中未发现假阳性。用affimetrix p53芯片和pcr-sscp调查42例有乳癌史的家系,p53基因13 964位的g变为c,突变率为7.1%;无乳癌家族史者为0。favis等用多位pcr/连接酶检测反应(pcr/ldr)在一个试管内同时检测数百个基因突变,用于检测大肠癌组织k-ras 和p53突变及brca-1和brca-2低频率突变收到良好效果。

    人类恶性肿瘤中,约有60%与人类p53抑癌基因的突变有关,目前研究人员已经研制成功了可以检测p53基因所有编码区(外显子2~外显子11)错意突变和单碱基缺失突变的基因芯片。以外显子7的第248个密码子为例,野生型为cgg,在芯片上做出5条探针,相应位点分别为gac、gcc、ggc、gtc和g-c,根据杂交后的荧光显色图,就可以分析出该位点为何种突变。

3 感染性疾病的诊断 hiv-1基因组中rt与pro在疾病过程中易于发生多种变异,这些变异将导致病毒对多种抗病毒药物包括azt、ddi、ddc等出现明显抗性,因此检测和分析rt与pro的变异与多态性具有重要的临床意义。hayward[40]以3 648个插入片段建立猎枪微阵列(shotgun microarray),通过差异杂交和dna测序找到了疟原虫无性和有性生殖阶段基因差异表达,为抗疟药设计提供了线索。可以预测在不久的将来,人们可望在一张dna芯片上检测几乎所有的病原微生物基因,实现真正意义上的“组合检测(profile tests)”。

    4 耐药菌株和药敏检测 据who报告,全球每年约有800万结核病患者,有300万人死亡,死亡人数超过了艾滋病和疟疾的总和。主要原因是菌株对不同的药物产生了抗药性(俄国80%tb对一种药物产生抗性;美国50%为多重耐药)。对每例患者进行菌株和药敏鉴定是控制tb的关键。最近,俄美两国科学家开发了具此功能的基因芯片,可使医生及早使用敏感药物。该芯片(tb biochips)将抗性菌株的单链dna标记后固定在玻片上,与待检tb株杂交,临床使用未见假阳性,该芯片可清洗后重复使用50次。

    (四)药物研究中的应用

从经济效益来说,最大的应用领域可能是制药厂用来开发新药。所以已经有多家制药企业介入芯片的开发。如: incyte pharmaaceuticals inc.,sequana therapeutics,millenium pharmaceuticals inc.等。对于寻找新药来说,目标之一是应用芯片可以在基因水平上寻找药物靶标。采用所谓“译码器”策略(decoder strategy)来确定药物靶标。从而找到“导向药物”。基因芯片也被用于寻找蛋白激酶抑制物。细菌或肿瘤组织的耐药性也涉及基因改变可以用dna芯片鉴定。

    1 新药开发 高通量的dna芯片可发现众多的新基因和新的靶分子用于新药的设计。噬菌体展示技术可创造大量蛋白质,目前多用于抗体库的建立和筛选,进而可用于受体-配体相互作用的研究。基因组学、蛋白质组学和生物信息学(bioinformatics)将大大促进制药工业的发展。目前第一个生物分子工程药物herceptin已用于乳癌的治疗,并获得美国fda的批准。除肿瘤外,用分子生物工程设计的药物可用于治疗遗传病及代谢疾病、抗衰老、设计新的抗生素和工业用酶等。

同时,有时一种药物的作用是多方面的,基因芯片有助于发现一种药物的新的功能。原先设想的作用是针对某一靶标的,但在全基因或广范围筛选中却发现该药在另一方面有很强的抑制作用,从而开发成另一种新药。

2 调查药物处理细胞后基因的表达情况

基因芯片在用来研究药物的作用机理时十分有用。marton[40]等人利用基因芯片构建了免疫抑制性药物fk506处理酵母细胞后的基因表达图谱。发现用fk506处理的酵母细胞基因表达图谱与fk506靶标的无意义突变体相似。而用fk506去处理此突变体,发现了不同于野生型的作用机制。clarke等[41]用基因芯片研究了肠癌患者化疗前和治疗期间肿瘤基因表达情况,发现丝裂霉素c和5-氟尿嘧啶治疗均可使糖苷合成酶和尿嘧啶-dna糖基酶的基因表达增加。该研究提示,这类研究既有助于阐明药物的作用机制,也有助于确定药物作用的靶基因,为新药研究提供线索。

   3 对药物进行毒性评价

应用芯片查找药物的毒性或副作用,进行毒理学研究。尤其是慢性毒性和副作用,往往涉及基因或基因表达的改变。如果药物能抑制重要基因的表达,则对它的深入研究就值得考虑。用芯片作大规模的表达研究往往可省略大量的动物试验。若某个正在筛选的潜在药物作用靶细胞得到的基因表达图谱与已知的具有毒性副作用的药物得到的基因表达图谱相似时,就要考虑是否停止药物开发(drug development)中花费巨大的临床实验阶段。nuwaysir等[42]研制了包括涉及细胞凋亡、dna复制和修复、氧化应激/氧化还原内稳态、过氧化物酶体增殖反应、二英/多环芳烃反应、雌激素反应、看家基因、癌基因和抑癌基因、细胞周期控制、转录因子、激酶、磷酸酶、热休克蛋白、受体、细胞色素p450等共2 090个基因的毒理芯片(toxchip v1.0), 该芯片既可用于毒物的检测和遗传多态性的检测,又可用于受检毒物的毒作用机制的研究。最近,holden等从人和小鼠文库中选择约600个与毒理学相关基因的cdna克隆,制备了种属特异的毒理基因组学芯片,可研究肝脏毒性、内分泌干扰、致癌作用等毒性终点的作用机制,也可用于确定以基因表达模式为基础的化合物的毒性。

(五)基因芯片中医学领域中的应用

中医学中应用基因芯片技术,还处于初始阶段,目前主要集中以下三个方面:

1 中药的研究,具体的方法,同上述药物筛选方法类似。尤其中药中众多成分中有效成分的筛选、有效药物的筛选、中药毒理学过程均被大大简化,将推动中药的迅猛发展。中药学引入基因芯片技术,将大大推动中药研究的国际化进程,为阐明中药作用机理,具有无可估量的重要意义。

2 中医“证”本质的研究。中医“证”的中医药的临床治疗的核心,但“证”的本质研究一直难以有重大进展。主要因为中医理论设及到生命的整体,因而它牵涉到许多基因和蛋白质,传统的方法学无法弄清“证”的实质,而利用基因芯片技术,对不同“证”状态的基因组进行扫描,再绘出不同证的基因表达谱,通过相关分析,可望获得一些有意义的成果。也是从分子基因水平全面揭示“证”本质提供了可能。如果证本质被揭示,它可能会引起医学治疗学理论的重大革新或变化,尤其是个体化治疗方案可能重新被重视。

3 针灸原理研究。针灸的原理设及全身各个部分,针灸不同方法、不同穴位、经络是否具有不同的作用,也即经脉与脏腑间的相关联系是否具有相对特异性。通过基因芯片测量不同组织基因表达的差异,判断基因表达是否具有特异性,有望解决这一长期争论不休的问题。如果心经与心脏具有相对特异性,那么针刺心经后,心脏内可能会出现某些与针刺相关的特异性基因表达,而且,这种表达只在针刺心经时出现,这些基因可能不在其它器官,如肝脏中表达。那么可以肯定地认为经脉脏腑相关是具有相对特异性的,也可以认为传统经络理论是有依据的。

另一方面,基因芯片还有助于揭示针灸的作用机制。针灸的作用是与神经内分泌免疫网络系统(nei networks)密切相关的,它设及到细胞信使、神经递质、调质、神经肽、细胞因子、内分泌激素等多种因子,但针灸的信号是如何在细胞间和细胞内传递的过程仍不明朗,如果引入基因芯片,可以高通量的检测细胞内基因表达的时空特征,有助于了解针灸促进基因表达的特点,进而再利用蛋白组学相关技术,揭示针灸作用原理。现在已有部分工作正在进行。

(六)其它应用

1 环境化学毒物的筛选 我们的生活环境中存在着数千种化学物质,每种物质在投入使用前必须进行人体毒性试验,传统的动物试验费用高昂,且存在着国际上关注的动物福利(animal welfare)问题。采用毒物检测芯片(toxchips)可对环境中众多化学物质对人类基因的潜在毒性进行筛选,探查毒物“开启”或“关闭”哪些基因,研究“环境如何改变我们的基因”。niehs将对人类100 000个基因中的12 000个基因进行检测,弄清致癌物质对基因的改变,建立化学物质指纹库(fingerprints of chemicals),然后即可通过测定特定基因的突变与否判断新的合成物质的生物毒性。

2 体质医学的研究。体质医学关系到个体化治疗的核心问题,不同的人具有不同的体质基础,其原因与基因型可能存在一定的相关性,尤其可能与snp关系较大,如何全面了解人的snp差异,以及它与体质因素、疾病的易感性间关系,是值得研究的重大课题。

美国继开展人类基因组计划以后,于1998年正式启动基因芯片计划,美国国立卫生部、能源部、商业部、司法部、国防部、中央情报局等均参与了此项目。同时斯坦福大学、麻省理工学院及部分国立实验室如argonne oakridge也参与了该项目的研究和开发。英国剑桥大学、欧亚公司正在从事该领域的研究。世界大型制药公司尤其对基因芯片技术用于基因多态性、疾病相关性、基因药物开发和合成或天然药物筛选等领域感兴趣,都已建立了或正在建立自己的芯片设备和技术。目前全世界有几百家基因芯片公司,有多种生物芯片问世,而且这些芯片的特点较以前密度更高,检测方法更精确,特异性更强的特点。而主要仍以少数几家公司为主,如affymetrix、brax、hysep等。国内目前主要如清华大学(陈京)、中科院生命科学院、上海复旦大学、北京军事科学院、南京东南大学、西安等四十余家公司,而且可能还有一大批公司相继成立。

主要dna芯片高科技术企业的开发善和各自技术特点(1998年)[43]

十、当前面临的困难

尽管基因芯片技术已经取得了长足的发展,得到人们的瞩目,但仍然存在着许多难以解决的问题,例如技术成本昂贵、复杂、检测灵敏度较低,重复性差、分析泛围较狭窄等问题。这些问题主要表现在样品的制备、探针合成与固定、分子的标记、数据的读取与分析等几个方面。

1 样品制备上,当前多数公司在标记和测定前都要对样品进行一定程度的扩增以便提高检测的灵敏度,但仍不少人在尝试绕过该问题,这包括mosaic technologies公司的固相pcr扩拉体系以及lynx therapeutics公司提出大量并行固相克隆方法,两种方法各有优缺点,但目前尚未取得实际应用。

2 探针的合成与固定比较复杂,特别是对于制作高密度的探针阵列。使用光导聚合技术每步产率不高(95%),难于保证好的聚合效果。应运而生的其它很多方法,如压电打压、微量喷涂等多项技术,虽然技术难度较低方法也比较灵活,但存在的问题是难以形成高密度的探针阵列,所以只能在较小规模上使用。最近我国学者已成功地将分子印章技术应用探针的原位合成而且取得了比较满意的结果。

3 目标分子的标记也是一个重要的限速步骤,如何简化或绕过这一步现在仍然是个问题。目标分子与探针的杂交会出现一些问题:首先,由于杂交位于固相表面,所以有一定程度的空间阻碍作用,有必要设法减少这种不利因素的影响。southern曾通过向探针中引入间隔分子而使杂交效率提高于150倍。其次,探针分子的gc含量、长度以及浓度等都会对杂交产生一定的影响,因此需要分别进行分析和研究。

4 信号的获取与分析上,当前多数方法使用荧光法进行检测和分析,重复性较好,但灵敏仍然不高。正在发展的方法有多种,如质谱法、化学发光法等。基因芯片上成千上万的寡核苷酸探针由于序列本身有一定程度的重叠因而产生了大量的丰余信息。这一方面可以为样品的检测提供大量的难证机会,但同时,要对如此大量的信息进行解读,目前仍是一个艰巨的技术问题。

5 基因芯片的特异性还有待提高。最近affymetrix公司生产的基因芯片采用瓣的技术,已大大提高检测的特异性,估计在今后几年内基因芯片的特异性将大大提高。

6 如何检测低丰度表达基因仍是目前一个重要问题。基因芯片要保证其特异性、但又要保证能检测低丰度表达的基因,目前尚未解决这一问题。因为许多低丰度表达的基因,也可能表达出主要执行效应功能的蛋白质。因为基因表达与蛋白质生成并不成比例。

上述问题不仅是当前和今后一段时期内国内外基因芯片技术研究的焦点,同时也是基因芯片能否从实验室研究推向临床应用的关键问题。

十一  基因芯片技术的研究可能方向

纵观当前基因芯片的研究趋势,基因芯片在今后几年内可能的发展方向,可能有以下几个方面:

1.进一步提高探针阵列的集成度,如有多家公司的芯片阵列的集成度已达1.0×105左右,这样基因数量在1.0×105以下的生物体(大多数生物体)的基因表达情况只用一块芯片即可包括。

2 提高检测的灵敏度和特异性。如检测系统的优化组合和采用高灵敏度的荧光标志。多重检测以提高特异性,减少假阳性。 

4 高自动化、方法趋于标准化、简单化,成本降低。价格高昂是目前推广应用的主要障碍之一,但随着技术的革新,基因芯片的价格将会大大降低。

5 高稳定性。寡核苷酸探针、rna均不稳定,易受破坏。而肽核酸(pna)有望取代普通rna/dna探针,可以确保探针的高稳定性。

6 研制新的应用芯片,如1999年美国环保局(epa)组织专家研讨会,讨论了毒理学芯片的发展策略。近来多种新的生物芯片不断问世,这是物理学、生物学与计算机科学共同的结晶。

7 研制芯片新检测系统和分析软件,以充分利用生物信息。

8 芯片技术将与其它技术结合使用,如基因芯片pcr、纳米芯片等。

9不同生物芯片间综合应用,如蛋白质芯片与基因芯片间相互作用等,可用于了解蛋白质与基因间相互作用的关系。

当前,基因芯片数量呈几何级数在增长,功能也日益完善,但价格却大大降低。可以预见,基因芯片可能在未来3-5年,也即到2005年左右,将在医学和生物学领域中得到广泛应用,甚至普及使用!到2010年它可能成为常规的实验技术,正如个人电脑的迅速普及一样。

基因芯片作为生物芯片的代表,其发展目标同生物芯片的目标一样是“芯片实验室”(lab-on-chip),也即将整个生化检测分析过程缩微到芯片上。“芯片实验室”通过微细加工工艺制作的微滤器、微反应器、微泵、微阀门、微电极等以实现对生物样品从制备、生化反应到检测和分析的全过程,而且实验过程趋于自动化从而极大地缩短的检测和分析时间,节省了实验材料,而且又降低人为主观因素,大大提高实验的客观性。

总之,基因芯片技术发展到今天不过短短几年时间,虽然还存在这样或那样的问题,但其在基因表达谱分析、基因诊断、药物筛选及序列分析等诸多领域已呈现出广阔的应用前景,随着研究的不断深入和技术的更加完善基因芯片一定会在生命科学研究领域发挥出其非凡的作用。基因芯片最终的意义和目的不再于本身,而在于它极大地提高了人类认识生命本质的能力和手段,为揭示人类这个复杂网络系统打下基础。从某种意义上我们可以这样认为:基因的结构或种类决定物种;基因的功能或表达则决定生命,即生物的生、老、病、死。基因芯片技术将为我们提供一条认识生命本质的捷径。当然基因芯片并非万能,基因的表达并非代表生命活动本质,生命执行者应是蛋白质,因而基因芯片必需同蛋白组学相关技术,如二维凝胶电泳、蛋白质芯片、大规模双杂交体系等相结合才有望真正揭示生命活动的时空过程。

参考文献

1 persidis aris. nature biotechnol,1998;16:393

2 andrew r et al.nature biotechnol,1998;16:520

3 persidis aris. nature biotechnol,1998;16:981

4 徐炳森,邵健忠.几种新型生物芯片研究进展.生物化学与生物物理学进展,2000,27(3):251-254

5        mcgall, g.h., barone,a.d., diggelmann,m., et al. j am chem soc 1997;119(22): 5081-5050.

6        pease ac, solas d, sullivan ej, et al. proc natl acad sci usa,1994;91:5022-5026.

7        beecher,jody e.,mcgall,glenn h.,et al. polym mater sci eng, 1997;76:597-598.

8        ramsay r. dna chips: state-of-the art.nature biotechnology 1998;16:40-44.

9        marshall a and hodgson j. nature biotechnology 1998;16:2731.

10    eggers m and ehrlich d.hematol pathol,1995,9(1):1-159.

11    yershov,k.,barsky,v.,belgovskiy,a.,et al.proc natl acad sci usa. 1996;93:4913-4918.

12    parinov s,barsky v,yershov g,et al.nucleic acids res,1996;24(15):2998-3004.

13    yang hj.gene logic’s flow-thru chiptm.人类基因组科学与生物医药发展研讨会资料汇编。北京,1998,28-35.

14    david rw et al.nature biotechnol,1998;14:1681

15    holstege fcp,jennins eg,wyrick jj,et al.dissecting the regulatory circuitry of a eukaryotic genome. cell,1998,95:717~728.

16    iyer vr,eisen mb,ross dt,et al.the transcriptional program in the response of human fibroblast to serum. science,1999,283:83~87.

17    carulli jp, artinger m, swain pm, et al. high throughput analysis of differential gene expression. j cell biochem suppl, 1998;120(30-31):286-296

18    rihn bh, mohr s, mcdowell sa, et al. differential gene expression in mesothelioma.febs lett, 2000, 480(2-3):95-100

19    sgroi dc, teng s, robinson g, et al. in vivo gene expression profile analysis of human breast cancer progression. cancer res, 1999; 59(22):5656-5661

20    moch h, schraml p. bubendorf l et al. high-throughput tissue microarray analgsis to evaluate genes uncorered by cdna microarray screening in renal cell carcinoma. am j phathol, 1999;154(4):981-986

21    loftus sk, chen y, gooden g et al. informatic selection of a neural crest-melanocyte cdna set for microarray analysis. proc natl acad sci u s a, 1999; 96(16): 9277-9280

22    schena m.,shalon d.,davis r.w.,et al.quantitative monitoring of gene expression patterns with a complementary dna microarray. science, 1995;270:467-470.

23    schena m, shalon d, heller r, et al. parallel human genome analysis: microarray-based expression monitoring of 1000 genes[j]. proc natl acad sci usa, 1996, 93(20): 10614-10619.

24    wallraff,g.,labadie,j.,brock,p.chemtech 1997;22-32.

25    southern em.tig,1996;12(3):110-115.

26    dubiley s,kirillov e,lysov y,et al.nucleic acids res,1997;25(12);2259-2265.

27    winzeler ea,richards dr,conway ar,et al.direct allelic variation scanning of the yeast genome. science,1998,281:1194~1197.

28    hacia jg,edgemon k,sun b,et al.two color hybridization analysis using high density oligonucleotide arrays and energy transfer dyes. nucleic acid res,1998,26~16:3865~3866.

29    hacia jg, brody lc, chee ms, et al. detection of heterozygous mutation in brca1 using high density oligonucleotide arrays and two-color fluorescence analysis[j]. nat genet, 1996, 14(4): 441-447.

30    cronin mt, fucini rv, kim sm, et al. cystic fibrosis mutation by hybridization to light- generated dna probe dna arrays[j]. hum mut, 1996, 7(3): 244-255.

31    guo z,guilfoyle fa,thiel aj,et al.nucleic acids res,1994;22(24):5456-5465.

32    drobyshev a,mologina n,shik v,et al.gene,1997;188:45-52.

33    lipshutz rj,morris d,chee m, et al. biofeature, 1995;19(3):442-447.

34    chee m, yang r, hubbell e, et al. accessing genetic information with high-density dna arrays[j]. science, 1996, 274(5287): 610-614.

35    livache t,fouque b,roget a,et al. polypyrrole dna chip on a silicon device:example of hepatitis c virus genotyping. anal biochem,1998,255:188~194.

36    diamandis ep. sequencing with microarray technology-a powerful new tool for molecular diagnostics.clin chem, 2000, 46(10):1523-1525

37    ryu dd,nam dh. recent progress in biomolecular engineering. biotechnol prog, 2000;16(1):2-16

38    dobrowolski sf, banas ra, naylor ew et al. dna microarray technology for neonatal screening. acta paediatr suppl, 1999; 88(432):61-64

39    kozal mj,shah n,shen n,et al.extensive polymorphisms observed in hiv-i clade b protease gene using high-density oligonucleotide arrays. natr med,1996,2:753~759. 

40    marton mj,derisi jl,bennett ha,et al.drug target validation and identification of secondary drug target effect using dna microarray[j].nature medicine,1998,4:1293-1301.

41    clarke pa, george m, cunningham d, et al. analysis of tumour gene expression following chemotherapeutics of patients with bowel cancer[j]. 1999, nat am inc. http//:llgenetics.nature.com.