生物医学工程方向范文
时间:2023-11-15 17:46:47
导语:如何才能写好一篇生物医学工程方向,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
(一)培养热爱祖国,坚持四项基本原则,拥护党的基本路线和方针政策,遵纪守法,品德优良,具有严谨的治学态度和良好的职业道德,能够适应我国社会主义现代化建设需要,能在生物医学工程专业积极为社会主义现代化建设服务,从事教学与科研的高级专门人才。
(二)努力学习生物医学工程的基础理论和知识,熟练掌握和应用生物医学工程的现代实验方法和技能,对本学科方向国内外研究状况及发展趋势有较全面、系统的了解,熟练掌握一门外国语,具有发现问题、分析问题和解决问题的能力,取得具有创新性的研究成果。
(三)有良好的心理素质,具备良好的人际沟通能力和团队合作精神;身心健康,能够胜任科学研究工作。
生物医学工程专业就业方向
本专业学生毕业后可可以在医疗仪器企业的研发机构、生物医学工程及相关学科的科研单位、大型医院的设备中心、高等院校等地方工作,也可以做国家公务员。相关行业(如IT,仪器仪表等)。
从事行业:
毕业后主要在医疗设备、护理、制药等行业工作,大致如下:
1 医疗设备/器械;
2 医疗/护理/卫生;
3 制药/生物工程;
4 新能源;
5 电子技术/半导体/集成电路;
6 其他行业;
7 计算机软件;
8 仪器仪表/工业自动化。
从事岗位:
毕业后主要从事算法工程师、售后工程师、销售工程师等工作,大致如下:
1 算法工程师;
2 售后工程师;
3 销售工程师;
4 硬件工程师;
5 维修工程师;
6 注册专员;
7 技术支持工程师;
8 产品经理。
就业前景是我们每个人必定考虑的东西,生物医学工程专业的就业总体来说供需平衡,甚至略微供不应求。随着科学技术的发展,各类大型医疗设备在医院中的应用越来越广泛,大型医疗设备的操作、维修及管理人员是各大医院及公司急需的人才。因此,该专业急需高技术人才,学得越精也越吃得开。
篇2
“卓越计划”的提出旨在培养工程界的领军人物,除了要求学生掌握本领域的学科基础理论知识,还要大力培养学生的工程实践能力以及人文综合素质。对于培养医疗器械仪器产业相关的生物医学工程专业的学生来说,要求学生具有如下方面的能力:具有扎实的理、工、医等多学科的医学仪器工程基础和专业知识;深入理解并掌握医学仪器工程分析和设计原理,理解医疗器械生产过程中的工程技术问题;具备实现医学仪器工程相关设计的智慧、能力及奉献精神;具有宽广的人文社会科学背景知识。
二、生物医学工程人才培养模式存在的问题
到目前为止,全国约有140所高等院校开设了生物医学工程本科专业,所有的培养计划和方案都只是偏重于相互关联比较紧密的学科方向,不可能涵盖所有的学科方向。由此,生物医学工程学科本科生的培养方案非常多,相互之间的区别还比较大,但它们大多都存在着一些问题。
1.在课程的设置上,内容比较散,课程之间的相互联系较少。生物医学工程是一门理、工、医融合在一起的交叉型学科,课程设置除了一些公共课程外,其专业课涉及了电子技术、计算机技术、生物技术、数学、物理、化学、医学基础等相关课程。在大多数本科院校仅仅是将这些课程简单地拼凑起来,并没有很好地将它们的知识点进行融合,形成生物医学工程领域特色的专门课程。
2.教师的知识结构很难融合多学科的知识,使得课程体系的执行在一定程度上脱节。在大多数院校的生物医学工程教学任务是由电子、计算机、生物、物理、医学等领域专家来承担,他们往往在某一个领域内有很高的造诣,但要结合其它领域的知识就存在一定的困难。这种现象阻碍了本科生培养计划的实施,也使人感觉课程体系比较松散。
3.在培养过程中,学生对生物医学工程相关产业的了解较少。生物医学工程学科是一个年轻的学科,其相关产业更是最近十年才发展起来的,大部分高校与这些企业之间的联系不够紧密,使得学生很难到相关企业开展工程实践活动。主要有两方面的原因,一是已开设生物医学工程专业的部分高校的科研能力有待提高;二是企业主要是以赢利为目的,不愿意接受本科生到企业进行工程实训。
三、生物医学工程培养模式改革探索
桂林电子科技大学生物医学工程学科定位于医学仪器相关科学技术问题的研究,并已经被确认为广西重点学科。依托于“生物医学传感与智能仪器”广西高校重点实验室,紧密围绕“医药制造”等广西十四个千亿元产业以及广西国民经济发展的需要,构建了特色鲜明的“工程应用型”专业学科结构体系。这些改革举措有效解决了当前生物医学工程本科专业教学普遍存在的诸多问题,为工程型生物医学工程人才的培养提供了新思路。
1.凝练专业方向,领航专业发展。凝练专业方向,不仅要清楚自己的优势和特点,还要了解当前科学技术发展前沿、相关企业的技术需求和人才需求。只有不断加强与医疗器械相关生产企业的联系,掌握最新的人才需求情况以及专业需求情况,才能使专业方向紧跟需求,专业才能长期健康发展。
2.加强科学研究,带动本科教学。生物医学工程是一门交叉融合特性非常明显的学科,这种特性在科学研究尤为突出。鼓励教师参与医学仪器相关的科学研究,积极申报国家、省部级生物医学工程相关科研项目。特别鼓励教师承担相关企业委托的科研项目,这在教学方面至少有三个好处:(1)可以加强高校与企业之间的联系,为学生的实习、工程实践活动提供实际条件,同时也使相关工程研究可以到生产实际当中;(2)使教师在较短的时间里快速融合理、工、医三个学科的知识点,掌握医学仪器生产过程中的科学问题和工程设计要求,有利于提高教师本身的工程实践能力和水平;(3)可以组织学生参与教师的科研项目,包括企业委托的开发项目,使学生有机会参与工程实践训练活动,同时,让学生能够亲历生产现场,有助于对医疗器械生产过程中的工程技术问题的理解。
3.完善课程体系,适应“卓越计划”。生物医学工程课程设置可采用多任务与相互联系的教学规律,鼓励在课程的设置上注重广度也有深度。课程的设置必须既重视基础知识,又突出专业特色;既有较宽的知识面,又有一定的专业深度。主要应包括基础知识课程体系、专业基础知识课程体系、医学知识课程体系、专业知识课程体系和人文社会科学等选修课程体系。在专业课程和实践课程的设置方面要经过充分的企业调研,广泛听取企业相关生产专家的意见,了解企业生产中的人才需求进行设置,并要安排足够的时间到企业去进行顶岗实习。
4.加强与相关生产企业合作,切实提高学生工程实践能力。建立高校与相关生产企业的良好关系对于工学本科人才培养是非常重要的。可以邀请企业参与院系对办学方向、发展规划、专业建设等重大问题的讨论和决策,参与学校教育改革、参与人才培养的全过程,及时修正培养方案和课程体系。还可以聘请企业有较高水平和富有经验的工程技术人员,参与并指导教学活动、实习、毕业设计课题、参与毕业答辩,让学生可以进行充分的工程实践能力训练,切实提高学生工程实践能力。
篇3
理工类院校生物医学工程专业的教育,主要体现于理学、工学及二者有机结合的特色和优势,如理工类院校在数学、生物、材料、机械、电子、计算机、自动控制、组织工程等学科,具有坚实的教学基础、丰富的教学经验、良好的教学资源与条件。研究和解决生命科学及医学中的重要问题,是生物医学工程学科教育与发展的宗旨,因此,利用理工科院校的教学资源优势,培养能利用工程学手段,解决人类生命及健康问题的研究和应用型人才,是理工科院校生物医学工程专业教育的重要目标。因教学资源与条件的不同,理工科院校与医科院校、综合性大学的人才培养目标亦相异。理工科院校侧重于培养学生具备扎实的基础知识,包括数学、物理、电子、机械、生物等学科;熟悉医学电子仪器、生物医学信息、计算机、生物材料等相关学科专业知识;善于利用工程学方法与手段,解决专业相关领域的问题。培养目标具有准确的定位与时代性,即一方面能充分利用理工科院校的优势,体现其在工程学科方面的特色,另一方面,根据学科的交叉性与涉及领域的广泛性,密切跟踪学科的发展与社会需求变化,从而培养高素质的复合型高级专业科技人才。
根据教学与科研条件、研究方向的不同,国内理工类院校关于生物医学工程专业人才的培养目标既具有上述共性,又各有侧重与特色。如清华大学提出旨在培养能将现代电子、信息技术、物理、化学、数学和其它工程学原理,应用于研究生命科学的基本问题,能利用工程技术方法解决疾病预防、诊治及改善健康、提高生活质量等的高级专业人才;浙江大学则明确培养具有生命科学、电子技术、计算机技术及信息科学等理论知识、医学知识和工程技术紧密结合的科学研究和技术开发能力,能在生物医学电子、医疗仪器、计算机技术、信息产业等部门从事研究、开发、教学及管理的高层次创新型人才;东南大学强调以电子、信息技术生物学、化学和材料学为知识基础,使学生具备开展与人类健康相关的科学研究及应用开发能力,重点培养学生的研究能力和创新能力,培养具备宽阔视野、思维活跃的精英人才和领军人才;上海交通大学依托其强大且基础雄厚的工科和医学背景,重点培养在生物、医学和工程技术领域中具有开展交叉研究能力的有创新精神的,能应用物理、化学、材料、电子信息和工程等领域的技术解决生命科学问题的创新型交叉学科人才。华中科技大学生物医学工程专业培养具备生命科学与光、电、计算机等信息科学有关的基础理论知识,以及医学与工程技术相结合的科学研究能力,能在医疗器械、电子技术、计算机技术、信息等产业部门从事研究、开发、教学及管理的高级工程技术人才。
华南理工大学生物医学工程专业,始于从硕士研究生人才的培养,我校于1993年获生物力学硕士学位授予权,1998年,将生物力学硕士点(生物科学与工程学院)与生物电子学硕士点(电子与信息学院)整合为生物医学工程一级学科专业硕士学位授权点,并开始正式招收硕士生,2002年招收生物医学工程专业本科生,2004成立生物医学工程系,2006年获生物医学工程一级学科博士点。根据我校生物、电子、材料等学科在科研教学方面的多年积累的与优势,结合广东省生物医学工程产业的发展与需求,将生物医学工程专业本科培养目标,按要求掌握的知识与具体的能力确定为:
目标1(扎实的基础知识):培养掌握扎实的专业基本原理、方法和手段等方面的基础知识,包括生物医学、电子技术、信息科学、计算机技术、生物材料、生物信息等相关学科基本知识、基本理论和基本技能的复合型高级科技人才。
目标2(解决问题能力):培养学生能够创造性地利用生物医学与工程技术相结合的研究开发能力,以服务于国内外生物医学工程产业快速发展的需求。
目标3(团队合作与领导能力):培养学生在团队中的沟通和合作能力,学会按分工要求在团队中从事具体工作,完成指定任务,进行组织协调,进而能够具备生物医学工程领域的领导能力。
目标4(工程系统认知能力):让学生认识生物医学工程的多学科交叉特性,从系统的角度认识与领会生物医学工程学科的核心与特点。要求从工程系统的角度,运用多种工程技术手段与方法,寻求解决实际问题的方案。
目标5(专业的社会影响评价能力):培养学生正确理解生物医学工程对人们日常生活、人类健康所产生的重要影响。
目标6(全球意识能力):培养学生能够在全球化的环境里保持清晰意识,积极跟踪新理论方法、技术的发展,在全球化的背景下认识与把握生物医学工程学科的现状与发展。
目标7(终身学习能力):生物医学工程毕业生在职业生涯中,需要根据学科、行业发展与岗位要求,不断更新知识,提升自己的综合素质,并具备终身学习的能力。
综观理工科院校生物医学工程专业本科生的培养目标,既反映了各校的学科优势、特色与定位,又具明显的共性,即强调学科的交叉复合特性,培养能将工程技术和医学、生物等基础理论相结合,解决人类生命健康中的问题、提高生活质量的综合性人才,尤其注重学生的实践能力与创新能力。
理工类院校的生物医学工程专业培养特色
在专业特色建设方面,各高校依托各自的学科建设与教学资源优势,逐渐形成自己的办学特色。如清华大学持之以恒地进行教学建设与改革,形成了"注重质量,强调实践,紧密结合科研"的教学特色,清华大学生物医学工程学科2001年被评为全国重点学科,2006年被评为国家重点一级学科;浙江大学则强调系统掌握计算机技术、信息处理技术、电子技术、仪器技术和生命科学相关的基础理论知识具有多学科交叉应用能力和国际竞争力的复合型人才培养,为国家级生物医学工程特色专业建设点;东南大学从1988年开始与南京医科大学合作,进行7年制工医双学位人才培养,2000年开始进行生物医学工程专业(七年制)本硕连读人才培养。2007年建立医工结合生物医学工程长学制创新人才培养国家人才培养模式创新实验区,2008年成为生物医学工程国家特色专业建设点,形成了工医复合型人才培养的特色,并形成了生物医学电子学和现代生物技术两个重要的特色方向;上海交通大学则充分利用附属医院的临床资源,建立与基础课程相适应的实践教学体系,强化学生实践训练,培养动手操作与创新研发能力,大力推进医工(理)交叉学科人才培养,积极推进国际合作与交流;华中科技大学华中科技大学自1997年起系统地开展了生物医学光子学特色方向本科教学体系建设的探索与实践。基于生物医学工程学科的特点,借鉴国内外最新教学成果,建立了一套具有生物医学光子学特色方向的本科教学体系。2011年开始招收“医疗器械”卓越工程师实验班,按照全新的教育大纲和创新的实验模式培养面向医疗器械产业发展需要的高端领军型人才。
华南理工大学生物医学工程专业经过近10年的本科教育实践,以电子技术为基础,以生物医学电子仪器与生物医学信息为主,兼顾生物医学材料、分子生物学及生物信息学,基本形成了多学科方向交叉的知识体系。尤其注重学生基础知识、实践能力和创新能力的培养,根据广东地区生物医学工程产业的优势与市场需求,着力培养具有生物医学工程专业基本素养、基础扎实、专业知识面广的复合型高级技术和专业管理人才。近年来,积极与广东省生物医学工程领域领军企业、医疗、科研机构开展联合培养人才的改革,如自2009年开始,华南理工大学与深圳华大基因研究院共同成立了华南理工大学-深圳华大基因研究院,并开设基因组科学创新班,生物医学工程专业部分优秀学生从大学三年级开始,即有机会进入深圳华大基因研究院从事生命学科的学习与科学研究;2011年,华南理工大学携手中国科学院广州生物医药与健康研究院,共建“华南干细胞与再生医学英才班”,实行“2.5+1.5”的培养模式,“英才班”将根据学生所属专业本科培养计划和干细胞与再生医学的专业培养要求,为学生制订个性化的培养方案,将专业理论知识与实践、学习和科学研究相结合。此外,生物医学工程专业与深圳迈瑞电子有限公司、汕头超声仪器研究所、广州总院、南方医院、广东省人民医院、中山大学附属肿瘤医院和广州医学院附属肿瘤医院等单位建立了密切的联系,为学生的实践、实习提供优越的资源和条件,同时,为学生的就业不断开拓新的渠道;从大学二年级开始,学生即有机会加入“学生研究计划SRP(StudentResearchProject)”,参与老师指导的科研实践,进入实验室与研究生共同学习研究。学习、研究期间,取得优异成绩或成果的学生,推荐参加“挑战杯”大学生课外学术科技作品竞赛。华南理工大学生物医学工程专业,近年来进行各种新的人才培养模式的有益探索与实践,进一步扩宽学生的知识面,显著提高学生的实践能力,激发学生学习热情,培养学生的创新能力。
生物医学工程专业人才培养模式
我国高等工程教育强化主动服务国家战略需求、主动服务行业企业需求的意识,确立以德为先、能力为重、全面发展的人才培养观念,创新高校与行业企业联合培养人才的机制,改革工程教育人才培养模式,提升学生的工程实践能力、创新能力和国际竞争力。主要体现于四个方面:(1)工程教育服务国家发展战略;(2)加强与工业界的密切合作;(2)重视学生综合素质和社会责任感的培养;(4)注重工程人才培养国际化。近年来,各高校都在进行专业人才培养模式的改革、探索和实践,主要包括(1)重基础、宽口径、强能力、高素质的大类培养模式。如上海交通大学实行按院系招生、学生入校两年后再分专业的培养模式,从而有利于学生根据个性、特长选择专业,增强学生的竞争意识,有利于资源的优化整合;中国科技大学秉承“基础与创新并重”的办学理念,实行重基础、“轻”专业,注重基础“宽、厚、实”,专业“精、新、活”的宽口径个性化培养模式。浙江大学提出“以人为本、整合培养、求实创新、追求卓越”的教育理念,确立的人才培养模式是以3M(多规格、多通道、模块化)和“宽、专、交”为特征的KAQ(知识、能力、素质)并重,将本科专业分成若干学科大类,实行前期按大类培养,实施通识教育,后期实行宽口径专业教育的新模式。华南理工大学的培养模式与浙江大学既具相似性,又各有侧重。华南理工大学以注重精英人才与个性化人才的创新能力培养为特色,如按大类分电子、机械、化工、材料、经贸等各大类专业精英班,“基因组科学创新班”和"华南干细胞与再生医学英才班"等。
(2)注重创新与实践能力培养,如卓越人才培养、产学研相结合人才培养、交叉复合型人才培养。近几年,各高校均十分注重学生的创新能力和实践能力的培养,通过卓越人才计划旨在提高学生的科研能力与解决实际问题的能力。卓越工程师教育培养计划的遵循“行业指导、校企合作、分类实施、形式多样”的原则,其特点包括:行业企业深度参与培养过程;学校按通用标准和行业标准培养工程人才;强化培养学生的工程能力和创新能力。其中,首批“卓越工程师教育培养计划”高校包括清华大学、浙江大学、上海交通大学、华中科技大学、东南大学和华南理工大学等61所高校,第二批共有133所年高校加入“卓越工程师教育培养计划”。
(3)国际化人才培养,通过与国外知名高校建立人才培养合作项目,进行联合培养。如教育部中国教育国际交流协会(CEAIE),中教国际教育交流中心(CCIEE)和美国州立大学与学院协会(AASCU)共同合作的“1+2+1中美人才培养计划”,积极推动中美高校学分学历互认,促进中美高校师生双向交流、共同制定大学本科专业教学计划等。此外,近年来,各校纷纷与欧美、澳洲著名大学建立了各种灵活的本科人才联合培养机制,推进教师双向交流,专业课程实行双语教学或全英教学等。
(4)个性化人才培养,华南理工大学生物医学工程专业培养学生过程中,根据学生知识结构与特长,注重个性化培养,如,一方面鼓励生物医学工程专业学生修读“双学位”,另一方面,也接受其它专业学生修读生物医学工程专业“双学位”;通过“学生研究计划(SRP)”,“百步梯攀登计划”、“挑战杯全国大学生课外学术科技作品竞赛和创业计划大赛”等,培养学生的创新、创业、科研能力。
课程建设
生物医学工程专业教学指导委员会,为生物医学工程学科人才培养的规范化提供重要的指导性意见。根据生物医学工程学科的发展趋势与社会需求、以及各高校的教学和科研优势,理工科院校设置的生物医学工程专业本科的课程体系,既存在共性,又各具特色。其中,理论教学部分,主要包括公共基础课、学科基础课和专业领域课,实践部分,包括实验课程、课程设计、认识实习、工程实习、生产实习和毕业实习等。各理工院校生物医学工程专业本科培养计划中的公共基础课颇为相似,主要有政治类课程、大学英语、大学物理、大学化学、数学(微积分、线性代数、概率论与数理统计)、工程制图、大学体育,以及人文、社会和技术类通识教育课程;学科基础课程,大多数高校以生物医学电子与信息为主,包括电路、数字电子技术、模拟电子技术、信号与系统、数字信号处理等主干课程,并设置解剖生理学、临床医学概论、普通生物学、生物化学与分子生物学等重要基础课程;各校的生物医学工程专业本科课程的差别,主要体现在专业领域课,同时也最能体现其专业特色。一般以其优势学科方向开设不同的专业必修或选修课程,如浙江大学按数字医学信息、生物传感器与医学仪器、定量与系统生理学三个方向设置专业课程,东南大学则分生物传感与生物电子学、生物信息学、生物医学材料与纳米技术、医学信息工程等四个方向,上海交通大学包括生物医疗仪器、神经科学与神经工程、医学成像与图像处理、生物材料与纳米生物医学等几个方向课程;清华大学按学科方向分为医疗仪器、神经工程、医学影像和微纳医学等四个主要方向,分别设置不同的专业课程。
华中科技大学则包括按生物医学光子学、医学影像学、生物信息学、纳米生物材料和组织工程等方向的专业课程;华南理工大学生物医学工程专业的本科课程,主要涵盖了医学电子仪器、医学影像、医学信息、生物力学和生物医学材料等五个方向,分别开设了医学传感器、医疗仪器设计、生物医学测量、医学超声学、生物医学信号处理、医学成像技术、医学图像处理、医院信息系统、远程医疗、生理系统仿真建模、生物力学、生物医学材料等重要课程。
实践环节主要包括综合实验、课程设计、临床实习、金工实习、电子工艺实习和毕业实习等。其中综实验包括工程生理学、生物医学工程、医学仪器与信息工程3门综合实验课程,设置了数字电路、微机原理与应用、医学仪器等3门课程设计。由于广东省医学资源和生物医学工程产业具有较强的特色和优势,尤其在医疗仪器行业拥有一批实力雄厚的企业,华南理工大学充分利用这种地域的产业优势,知名企业联合建立了本科实习基地,和具优越医疗资源的医院建立了良好合作关系,为本科生的临床实习与毕业实习提供强有力的支持。此外,华南理工大学积极鼓励学生参与“暑期实习计划”,即由老师或学生自行联系实习单位,经院系和老师推荐,学生有机会在暑期到相关高校或科研院所实验室、企事业单位实习。
在双语课程、全英语课程、新型课程和特色课程方面,华南理工大学生物医学工程专业也正在积极进行建设,如《医学图像处理》和《医院信息系统》已经实行双语教学,正在为全英文授课做准备;不定期地邀请国内外有影响的专家和企业负责人进行专题讲座或创业教育;为新生开设《生物医学工程概论》课程,计划进一步开展新生研讨课、系列专题研讨课。
总结
生物医学工程学科具有鲜明的交叉与复合特性,它对解决人类生命与健康中的问题具有十分重要的作用,生物医学工程学科与相关产业发展亦极为迅速,如何培养适应学科发展需求和符合社会需要的专业人才,是各高校生物医学专业面临的重要问题。理工科院校在电子、计算机、信息、生物、材料、制造等学科具有一定的优势,充分利用理工科的资源优势,培养研究与应用兼顾的高级专业人才,亦是理工科院校本科教学的重要目标。
华南理工大学生物医学工程本科专业,经过近十年的教学实践,逐渐形成以生物医学电子、医学信息工程、生物力学为主导的培养体系,十分注重学生的实验能力和创新能力的培养,并充分利用广东省的医学资源和生物医学工程产业的地域优势,努力培养适应社会需求的专业人才。近年来,华南理工大学生物医学材料方向发展迅速,先后成立了国家人体组织工程重建工程中心、特种功能材料教育部重点实验室、广东省生物医学工程实验室,在生物医学材料方面取得了一系列成果。为此,华南理工大学正在为利用生物医学材料方面的优势,加强生物医学材料方向的本科专业人才的培养,积极地进行探索。
篇4
【关键词】医学;职业技术教育;生物医学工程
【中图分类号】R318.0-4 【文献标识码】B【文章编号】1004-4949(2014)02-0316-02
基金项目:重庆市教委人文社科基金资助项目(10SKS02)
随着近20年来世界范围内高新技术的迅猛发展,职业教育在形式和数量上都有了突飞猛进的增长。基于此,联合国教科文组织(UNESCO)推出最新版本“国际教育标准分类”ISCED1997,虽然将高等职业教育仍定位于ISCED5为“第三级教育第一阶段”,但是作为“不直接通向高等研究资格证书”(not leading directly to an advanced research qualification)获得的教育层次,它将初版中分属两个不同层次的大学专科(原ISCED5)和本科(原ISCED6)以及“所有博士学位以外的研究课程”(原ISCED7中的博士前课程部分)纳入了同一层次之中,从此突破了高等职业教育(尤其是在中国)仅仅局限于专科层次的教育瓶颈,为各类职业教育建立本科乃至硕士层次的教育提供了可能[1]。与普通本科教育并行的“立交桥式”发展之路由此拉开序幕。目前我国由于临床医学、中医学、口腔医学、药学等专业要求学生掌握一定的科学技术知识以达到“能进入一个高精技术要求的专门职业”。医学本科院校在医学主干专业的人才培养定位与水平上均高于医学类高职高专院校。本文将以生物医学工程学的国内外现状为例,来探索职业教育互补于普通医学本科教育的发展之路。
1生物医学工程国内外发展现状
生物医学工程学是理、工、医相结合的边缘学科,是多种工程学科向生物医学领域渗透的产物。它是运用现代自然科学和工程技术的原理与方法,从工程学的角度,在不同层次上研究人体的结构、功能及其相互关系,揭示其生命现象,为防病治病、促进健康提供新技术手段的一门综合性的高技术学科。
1.1 80年代起生物医学工程学步入新起点 50年代是生物医学工程学发展的初期,工程技术与生物医学间的交差、渗透是从临床医学开始的,其中尤以人工器官的出现,可视为现代医学的一个重大特征。在经历了60年代的早期发展和70年代以医学影像技术为代表,所标志的生物医学工程学取得突破性进展的基础上,80年代起,生物医学工程学除继续向临床领域横向扩展外,开始在向纵深方向发展方面出现新的转折。如医学影像技术中的MRI、DSA、ECT、彩色多普勒超声诊断装置、图像文档与通讯系统等;出现了全实验室自动化系统、体外碎石机和除颤器等治疗装置以及微波、射频、激光、超声等各种治疗技术。
1.2 90年代与更多的学科交叉、融合 组织工程:是生物医学工程、细胞生物学、分子生物学、生物材料、生物技术、生物化学、生物力学,以及临床医学等学科间的不断交叉、渗透与融合,而形成的新的前沿科学。所涉及的组织有软骨、皮肤、胰腺、肝脏、肾脏、膀胱、输尿管、骨髓、神经、骨骼肌、肌键、心瓣膜、血管、肠、等,其中皮肤已有初步产品进入临床应用。我国自90年代初开始了有关的基础研究工作,并列入了国家重点基础研究发展规划(973),成为国家的重点支持项目。生物芯片:在实施人类基因组计划的推动下,DNA微探针阵列的基因芯片是最重要的生物芯片之一。它可以在同一时间内分析大量的基因,实现生物基因信息的大规模检测。微米/纳米技术:是指量度范围分别在0.1?100微米(?m)和0.1?100纳米(nm)内的物质或结构的制造技术。其最终目标是,人们将按自己的意志直接操纵单个原子、分子或原子团(小于10nm)、分子团,制造具有特定功能的产品,包括纳米材料学、纳米电子学、纳米机械学、纳米生物学、纳米显微学等等新的高技术群。我国在大尺寸纳米氧化物材料制备方面,已成功地研制出致密度高、形态复杂、性能优越的纳米陶瓷,从而进入了国际领先行列。日本研制出的“万能医用微型机器人”,可在不损害任何人体器官的情况下,沿着血管或胃肠道行进到发病部位进行检查,医生可指令机器人取组织样品、直接释放药物、清除血栓、切断或接通神经和进行细胞操作等精细手术。家庭保健工程(Home Health Care, HHC):美国、日本和欧洲等均已将HHC作为重要内容列人21世纪的生物医学发展战略,成为优先资助的领域之一。即将家庭保健管理系统、疾病早期预报、家庭治疗和康复仪器、家庭急救支援系统等技术和产品作为重点开发项目。我国开展HHC的研究与开发以家用治疗产品为最多。通过采用电话传输监护网的方式进行心脏监测和急救,已在我国北京、上海、天津、南京、广州等大城市相继开展起来。
1.3 生物医学工程学传统领域的发展 生物材料:自50年代出现合成高分子材料以来,生物材料取得了很大发展;如今,合成高分子材料,天然高分子材料,医用金属材料,无机生物医学材料,以及由活体材料和非活体材料构成的杂化生物材料,几乎在临床医学各个领域得到广泛的应用,并最终导致了标志着本世纪现代医学重大特征之一的人工器官的出现;在此基础上,90年代生物材料又在向着复合/杂化型、功能型和智能型的方向发展。医学影像技术:在生物医学工程学中,像X射线、超声波、磁共振、放射性核素、红外线等物理源的医学影像技术,对医学的发展起了很大的推动作用,数字化、网络化、综合化已成为目前医学影像技术的总体发展方向。生物医学工程学所涉学科尚有生物力学、医学电子学、人工器官等等。
2国内生物医学工程专业建设情况
生物医学工程专业属工科专业,具有很强的多学科交叉性和前沿性,强调数理科学、电子信息和计算机技术等理工科知识与生物医学知识的有机结合。本专业课程设置除数理化及工程基础课外,主要专业课程有:电路、信号与系统,模拟与数字电子技术,数字信号处理,生物医学传感器与检测技术,微机原理与应用,单片机在医学中的应用,生命系统分析与仿真,生物医学信号处理,生物医学仪器,医学成像技术,医学图像处理,医学超声波,工程生理学,人体解剖学,组织胚胎学,自动控制,计算机与信息系列课程等,并开设多个专业课程设计,做到教学与实验设计并重。目前国内开设生物医学工程专业的学校,一部分是医科院校,一部分是各大综合类院校。排名前十的有浙江大学、四川大学、上海交通大学、东南大学、西安交通大学、天津大学、清华大学、华中科技大学、南方医科大学、大连理工大学。而在香港大学,生物医学工程学由工程学院与医学院合办,学生将学习到有关工程和生命科学的原理,理解不同类型的先进医学工程系统之设计和运作,掌握工程技术在医学领域的应用。
3医学职业教育可以在生物医学工程专业中寻找“立交桥式”发展契机
医学职业教育类院校,应该与本科院校错位发展。以生物医学工程专业为例,应该培养计算机网络技术服务和各类大型医疗设备的操作与维护方面的专业人才;计算机网络技术包括:数字化医学中心,医学图象处理及多媒体在医学中的应用,生物信息的控制及神经网络生物医学信号检测与处理。要求学生深入掌握电子技术,计算机技术,信息处理理论医学与工程相结合的科研能力,解决生物医学领域中的科学研究,医疗仪器研制,产品开发以及大型医疗设备的操作,维修管理等问题,同时也能胜任其他领域的电子技术及计算机技术。学生主要学习生命科学、电子技术、计算机技术和信息科学的基本理论和基本知识,受到电子技术、信号检测与处理、计算机技术在医学中的应用的基本训练,具有生物医学工程领域中的研究和开发的基本能力。
3.1 生物信息技术 实现生物技术和信息技术以及其他学科的有机结合,发展生物信息高通量、高效、快速的提取方法,发展疾病检测的新方法和新技术,发展研究药物与靶标作用的新方法,发展基因组数据、蛋白质组数据和结构基因组数据的计算机处理、分析和可视化方法,解析生物大分子结构和功能之间关系等,提高生物信息处理、分析和利用的水平,为我国生命科学和生物技术的源头创新奠定基础。
3.2 医学图像与医学电子学 医学图像处理和分析、计算机辅助诊断和治疗、医学物理等,以及生物、医学和工程学等领域理论和方法,并通过这些学科的交叉形成了新型学科。
3.3 生物与医学纳米技术 包括纳米生物材料、纳米生物器件研究、纳米生物技术在临床诊疗中的应用、纳米材料与器件的计算模拟。
3.4 生物与医学纳米技术 生物医用材料研究,用于人体、器官的诊断、修复、替换或增进其功能。
3.5 医学信息学及工程 应用系统分析工具这一新技术来研究医学的管理、过程控制、决策和对医学知识科学分析。
4以生物医学工程为例,探讨医学职业教育的前景
生物医学工程专业修业年限为四年或五年。授予学位是工学学士。就业前景良好,由于科学技术的发展,各类大型医疗设备的应用越来越广泛,大型医疗设备的操作、维修及管理人员是各大医院及公司急需的人才。毕业后可从事医学机构中医疗器械的维护、使用、销售和和医疗电子系统的开发与维护,辅助医生观察、诊断、治疗疾病。职称由卫生部组织统一考试评定,颁发临床医学工程技术(初级士、初级师、中级等)证书。
医学职业教育不仅要解决国家发展急需的基层卫生人才的培养问题,更重要的是要引领区域经济向先进领域拓展,提升地方行业水平。建设西部教育高地,需要在技术类专业中大胆创新,走别人没有走过或者没有走出规模的路。其重要意义体现在以下几点:①医学应用技术类专业虽然具有办学成本高、难度大等不利因素,但也具有技术含量高、可直接转化为现实生产力的巨大优势。②医学应用技术类专业走向产业化,对引领区域经济发展、拓展地方行业布局和提升地方行业水平都具有重要的现实意义。③医学应用技术类人才培育专业群的建成,将为地方输出高素质的技能型人才,同时也能提供高水平的就业岗位,有助于拉动地方经济,整体提高地方生产力。④医学应用技术类专业人才的聚集,与提高区域人才质量、推动地方经济发展进程直接相关。斯坦福大学在成立之初不被看好,但坚持将硅谷建设与学校成长联系在一起,最终成为世界名校就是例证[2]。
5结语
在国家拉动内需、教育优先的有利政策指引下,在医学职业教育领域大力发展医学应用技术专业是切实可行的。用教学做一体化培养医学技术专业人才,为地方医学应用技术产业化发展提供智力支撑,其意义也是深远的。创立医学应用技术专业基本原则是按照专业设计,分步骤解决专业基本格局,建设教学做一体化生产性实训基地,逐步提升专业办学水平和内涵质量,最终构建具有影响力的专业群。在全国众多的医学类高职高专院校中同质化办学的现象非常突出,上海医疗仪器高等专科学校涉足生物医学工程领域外,还没有一所学校开设生物医学工程的相关专业[3]。现代医疗活动是建立在庞大的医疗仪器设备的辅助诊断和治疗基础上的,急需医学工程技术的大量人才。只有大力拓展医学相关技术领域的办学,才能真正在传统医学专业之外办出既有生命力又有制高点的医学职业技术教育。
参考文献
[1]Issenberg SB,Mcgaghie WC,Petmsa ER,Gordon DL,Scalse AJ.Features and uses of high―fidelity medical simulations that lcad to effective learning:a BEME systemic review.Medieal Teacher,2005;27:10-28.
篇5
课程教学是工程硕士培养的重要环节,是知识再积累和知识更新的基础环节,在整个研究生培养过程中,是学校可控时间最长,影响最大的环节[3]。因此在课程设置和教学内容上,考虑工程硕士的特殊性,才能培养出高质量、特色鲜明的工程硕士。在进行生物医学工程硕士培养模式探索期间,我们通过对生物医学工程专业的工程硕士进行了问卷调查及现场调研,并对调查及调研结果进行总结分析,对课程设置和教学内容进行了优化。在课程设置上增设了实用设备类课程的讲解,针对工程硕士要求动手能力强等特点,加设了与医疗相关的设备维修理论及实践课程和相关实用性较强的应用类课程。同时,在教学内容上也进行了优化以医学院校为背景的生物医学工程领域工程硕士培养模式探索张鑫,曾碧新,黄敏,陈付毅(温州医学院,浙江温州325035)摘要:结合医学院校特点,探讨了以医学院校为背景的生物医学工程领域工程硕士培养模式的创新与优化,从培养目标、课程设置、教学内容、学位论文等方面进行了探索和优化,以不断完善和规范生物医学工程专业工程硕士的培养过程。关键词:生物医学工程;工程硕士;培养模式调整,主要表现为:
1.在讲解基本理论的基础上,增加如电子病历等热门话题的开放式教学模式探讨;
2.攻读工程硕士学位的学生已经具有一定的工作经验及在某一领域已经有一些独到见解,在教学内容上可以安排一些学生讲座,让学生针对自己所熟悉的领域与班级学生进行讲解与互动,从而扩大工程硕士在教学内容上的局限性;
3.在时间充裕的前提下可以尝试邀请相关医院及厂家的专家进行专题讲座,可以增加解决某一专业问题的针对性。
二、优化学位论文指导与评价体系
工程硕士学位论文是工程硕士培养的主要环节,也是最终环节。与工学硕士不同,生物医学工程领域工程硕士的选题应来源于医院及相关部门的实际需要或具有明确的生物医学工程背景,研究成果要有应用价值。因此,在学位论文指导方面可以实施由学校具有工程实践经验的教师与医院相关部门的技术人员联合指导,医、校双方导师发挥各自优势,共同指导。为制定更具实用性的论文指导与评价体系,我们调研了省内10余家附属医院和部分相关企事业单位的相关科室,了解附属医院及相关科室对人才的需求情况,根据相关部门及临床医生提出的意见进一步完善生物医学工程领域工程硕士的毕业论文制订及相关评价体系。在充分调研的基础上,制订了工程硕士论文学位论文质量参考标准,并在多家培养单位中应用,取得了较好的效果。
三、构建适合医学院校生物医学工程领域工程硕士培养的模式
生物医学工程的研究是电子技术、现代通讯技术、计算机技术、生物技术以及材料科学、数学、化学、物理学等新技术的飞速发展和研究的深入,由多学科的渗透与综合作用于传统医学领域而形成的一门新型的交叉的边缘学科。生物医学工程专业具有跨学科、交叉的学科特殊性,在培养模式方面会出现偏重于工科或医科的现象,没有真正体现出医学工程的多学科交叉的特点。那么如何更好地将理、工、医三者有机的结合在一起,使得培养出来的学生的知识结构和基本素质更加完善,这已成为我们在人才培养方面的一个突出问题。为了更好地构建适于医学院校生物医学工程领域工程硕士培养模式,应重视以下几个方面[4]:
1.以社会需求为导向专业设置及培养目标都以社会需求为导向,紧密结合生产和科技发展变化的需要,及时调整课程设置,不断更新课程内容和教学方法,使学生能够尽快地接受新技术与信息。
2.重视实际能力在教学过程中可以开展课程讨论会,重视学生实际操作能力,培养创造精神与创新意识。
3.师生共同参与课程设置课程目标由侧重传授知识转向培养探究能力,由片面增加学生认知成长转向兼顾学生情感发展,课程内容由静态的稳定划一走向动态的开放灵活,课程不再仅仅作为面向过去知识的载体,而更多地呈现为面向未来发展的过程;课程设计趋向更大的弹性,在必修课的基础上,增加了选修课的数量,多方位地开拓学生的知识面,激发学生的想象力和创造力。
鼓励学生积极参与课程设置与发展,通过学生在学习过程中的感受与需要,由学生和老师共同参与课程的设置与修改,而不仅仅是由学校单独制定,课程的组织不再限于学科界限而是面向跨学科和综合化的方向发展。培养模式的创新主要表现为:
1.由学校教师和医院临床医生共同承担教学任务,真正实现理、工、医的有机结合。
2.以培养复合型人才为目标,真正做到与实际相结合。针对医生在诊疗过程中对现有仪器设备的看法和改进意见以及病人的需要建立起一个良好的沟通环境。
3.引进先进的教学理念与方法。
篇6
导师与研究生培养直接相关,是研究生培养质量的关键所在。研究生导师的理论、工程实践和对学科前沿的洞察力与生物医学学科研究生培养质量息息相关。目前大部分生物医学工程学科的研究生指导老师来自机械、电子、光电、等专业,他们对自己的专业知识精通,但对于对生物医学工程学科这一交叉学科中的众多的其它学科并不熟悉。因此,生物医学工程学科这一交叉学科需要两个以上的导师来完成研究生的培养,这样才能很好地体现学科的交叉性。另外,高校生物医学学科中,具有工程背景的导师数量较少,能够给予研究生实际指导的导师就更少,不能满足研究生教育的需求。
工程能力培养的硬件条件问题
工程能力培养的条件包括工程实践基地、工程实践项目、工程实践教学条件。生物医学工程学科这一交叉学科,需要大量的工程时间基地,包括医院、医疗器械生产销售商、医疗器械检测管理部门。还需要提供大量的工程实践项目,以提供项目、资金的支持。一些高校缺少这些资源,不能够提供基本的研究生工程能力培养的硬件条件。
生物医学学科研究生工程能力培养的建议
针对以上分析的5个问题,我们提出以下的解决策略
1重视生物医学学科研究生工程能力培养
二级学院领导、导师应重视生物医学学科研究生工程能力培养。近年来工程硕士的扩招,目前,我校的工程硕士与科学硕士的比例达2:1,工程硕士培养的重点是工程能力,因此工程能力的培养显得非常重要。另一方面,工程能力是一种需要不断培养和开发的能力素养,要培养研究生对工程实践的兴趣,让他们发挥从事工程实践的主动性,自觉地投身工程实践活动。
2提高生物医学工程学科优秀研究生比例
采取各种方式,吸引优质生源报考生物医学学科研究生。首先在本校的本科生中进行宣传,鼓励本校学生报考本校的研究生。这要在大二、大三和大四时多做工作。例如我校实行多年的大二本科生导师制,本科生从大二起,就进人导师实验室,与导师一起进行科研。这样学生和老师交流的机会更多,学生老师有更深的感情,能够使一批学习成绩好,科研能力强的本科生报考本校研究生。也可到本校别的相关专业,如机械、电子、化学等本科班级宣传,吸引优质生源。
3研究生导师队伍的建设
目前研究生的培养是采取导师责任制。但对生物医学工程交叉学科研究生,特别是工程硕士而言,应实行由不同单位、不同研究方向组成的双导师对研究生进行指导。导师的科研水平、科研课题、科研经费都会直接影响着研究生是否有机会参与好的课题的研究,制约着硕士研究生工程能力的培养,导师在硕士研究生工程能力培养中起至关重要的作用。因此,加强研究生工程基金项目:重庆理工大学基金项目(20102013);重庆市教委基金项目(KJ120807);重庆理工大学研究项目(2009026)作者简介:王洪(1966一),男,四川乐山人,重仄理工大学药学与生物工程学院副教授,从事生物医学工程研兄;能力的培养需要应转变导师的观念,强化导师工程实践意识。导师应在工程实践方面给予研究生更多的指导,尽量给研究生提供更多的工程实践机会,例如给研究生提供参与课题的机会,提供企事业工程实践的机会等,帮助硕士研究生提高工程能力。重庆理工大学生物医学工程学科建立于2002年5月,现为重庆理工大学校级重点学科。从2006年开始本科生和研究生招生。经过10年多的学科建设,引进了一批来自国内外著名大学的生物医学工程学科学术带头人,组建了一支在教学和科研方面实力雄厚、结构搭配合理的师资队伍,具备良好软硬件条件。大多数老师具有工程背景,一些老师在公司兼职,与企业联系广泛。这就为我校的生物医学工程学科的工程教学和工程实践提供了很好的平台。
4建立更多的工程实践基地,获取更多的工程实践项目,支撑研究生的工程实践
产学研一体化的研究生培养模式是建立企业和高校之间密切合作的基础上,集研究生教学、实习、课题研究、企业的产品开发、就业于一体,随着研究生培养规模的日益扩张,特别是工程硕士的大规模招生,产学研这一非常优质的研究生培养资源可以充分利用。在生物医学工程学科研究生工程实践能力培养上可以利用企业在生产实践、资金、管理等方面的优势,通过产学研合作建立起来的实践基地,采用学校、企业双导师制加强对研究生的工程能力培养。生物医学工程学科研究生也可在这种产学研一体化培养模式的培养下,在知识结构、实践能力和科研能力上满足社会化的要求,同时更加贴近实际。产学研培养基地可以充分吸纳社会科技教育资源,为研究生工程能力的培养服务,有效地节省研究生培养的社会成本。
这方面我校也取得了一定的成果。从硬件条件看,我校的生物医学工程学科拥有各种相关的高端仪器设备和实验室,能够满足研究生实践教学和科研的需求。建有“重庆市现代中药制药工程技术研究中心”和“重庆市中英数字医疗中心”两个省部级工程中心。现有设备551件,总值1509.40万元,实验场地3600m2。建有4个产学研示范基地和2个企业联合实验室,与10余家企业建立了技术和人才培养合作关系,搭建了良好的生物医学工程学科平台;从软件条件看,本学科有生物医学工程学科学术带头人及高水平的教师队伍,在国内外核心期刊180余篇,SC工、E1收录36篇,获得专利10余项,省部级科技成果奖10项。承担国家自然科学基金、省部级项目等100余项,科研经费3000余万元。
5加强工程实践管理,完善工程能力培养体系
首先制定具体的研究生工程实践能力培养实施细则,在培养方案和制度设计上明确要求。其次,配备足够的管理人员,为研究生的工程能力培养服务,一切以研究生为中心的管理模式,建立科学、高效的研究生管理体系,保障生物医学学科研究生工程能力培养环节的落实。
结束语
篇7
关键词:生物医学工程专业;理工院校;解剖生理学
作者简介:李小慧(1980-),女,黑龙江铁力人,南京邮电大学地理与生物信息学院,副研究员;吴建盛(1979-),男,江西抚州人,南京邮电大学地理与生物信息学院,讲师。(江苏 南京 210003)
中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)10-0161-02
生物医学工程(Biology Medical Engineering,简称BMI)是综合生物学、医学和工程学的理论与方法而发展起来的新兴交叉学科,其主要是运用工程技术手段,在多层次上研究生物体特别是人体的结构、功能和其他生命现象,研究用于防病治病、人体功能辅助及卫生保健的人工材料、制品、装置和系统的工程原理的学科。[1]自20世纪70年代末以来,国内许多综合或理工科大学、医学院校及相关科研机构都设立了生物医学工程专业,涵盖了生物信息、医疗仪器、生物材料、生物工程等多个专业方向,课程设置主要包括工程类课程和医学类课程,旨在培养具有各方面能力的复合型人才。[2]
生物医学工程专业作为一门为生物学和医学服务的交叉学科,生物学和医学知识的学习就具有非常重要的作用。现在大多数院校的生物医学工程专业都开设了解剖学、生理学、生物化学、分子生物学、基础生物学等必修基础生物学或医学课程,旨在让学生了解生物体的基本构造及生命现象的本质,掌握一定的医疗常识,为学习如何把工程技术应用于医学领域打下基础。
人体解剖生理学是研究人体各部分正常形态、结构及人体生命活动的规律或生理功能的科学。[3]作为生物医学工程专业的一门重要专业基础课,它包含了解剖学和生理学两门学科的内容,并且涉及到组织学、胚胎学、细胞学和分子生物学等多个学科的知识,内容广泛并且复杂抽象,对于缺乏生物学相关知识基础的生物医学工程专业的学生来说,是一个难题。南京邮电大学是以工科为主,信息科学为特色的理工科院校,生物和医学知识的教学相对薄弱。如何扬长避短,使解剖生理学知识与学生工程类的专业知识有机融合,是摆在教师面前的一项重要任务,也是教学过程中需要不断思考和努力解决的问题。
一、教学现状及存在问题
1.教学基础薄弱
南京邮电大学是以理工科为主的高校,生物医学工程专业在南京邮电大学起步较晚,工程类课程依托南京邮电大学理工教学和科研的工作积累,具有良好的基础。然而,生物和医学类课程基础较为薄弱,教学基础和实验条件与医学或者综合院校相比都有很大差距。
2.课时有限
生物医学工程专业属于前沿的交叉学科,专业囊括的知识面广,专业所学课程较多,数学、电学、计算机科学相关课程占了很大比例的学时,给生物和医学理论知识分配的学时有限,例如人体解剖生理学课程只有48个学时,但这门课程包含了解剖和生理两门学科,教学内容丰富,学时相对不足。学生的生物和医学类知识薄弱,也给教学带来了一定困难。
3.学生兴趣缺乏
信息科学是南京邮电大学的特色和优势,生物医学工程专业正是依托于南京邮电大学通信与信息工程学院的教学和科研基础而创建的,学校通信、电子和计算机等信息领域的学习与研究氛围浓厚,加之上述专业找工作容易,在这种环境下,学生会自觉将兴趣转移到通信、电子和计算机等方向,无法建立对人体解剖生理学的学习兴趣。另外,人体解剖生理学知识多、复杂抽象的学科特点,也容易让学生产生畏难和厌学的情绪。
二、教学体会和思考
在学时有限和学生兴趣缺乏的情况下,如何利用有限的课堂讲授时间,使学生更好地掌握解剖生理学知识,是摆在授课教师面前的突出问题。笔者针对在人体解剖生理学教学中遇到的实际问题,结合南京邮电大学生物医学工程专业的培养目标,根据教学过程中的体会,提出以下几点思考。
1.引导和培养学生兴趣
解剖生理学是专讲正常人体形态、结构和功能的课程,向学生强化学习解剖生理学就是认识自己、了解自己的观念。但是如果单纯讲解课本上解剖和生理学的知识,学生仍然是被动接受,缺乏兴趣。因为解剖生理学的一些知识与学生日常生活密切相关,在课堂教学中可以穿插讲授一些卫生保健的知识或者一些学生感兴趣的问题,让学生知道课堂知识能够在日常生活中学以致用,自然而然会产生兴趣,主动去学习。例如,在讲到呼吸系统时,就结合生活现状,介绍吸烟的危害、雾霾天气呼吸系统疾病的预防等;在讲到循环系统时,可以介绍如何预防心血管疾病。对于女生感兴趣的减肥和护肤的话题,在讲授消化系统和皮肤章节时,适时介绍节食减肥的危害和正确保养皮肤的方法。此外,身体是解剖生理学最好、最直接的“教具”,在课堂教学中,可以增加互动,让学生参与进来,这样不仅可以加深学生的直观印象,还可以活跃课堂氛围,从而激发学生的兴趣。例如,在讲授解剖学知识和常用方位术语时,可以请学生到讲台上来做示范,使学生轻松掌握这些知识。
2.课程教学与专业结合
生物医学工程专业的目的是运用工程技术手段解决医学中的有关问题,保障人类的健康,为疾病的预防、诊断、治疗和康复服务。在讲解解剖生理学知识的同时,一定要将生物医学工程专业的目标和意义贯穿其中,不仅能加深学生对专业的认可度,而且有助于对解剖生理学知识的巩固。例如,在讲解运动系统的关节内容时,介绍完关节结构和功能后,可以向学生系统介绍人工关节的相关知识,包括人工关节的发展历史、使用的材料及应用疾病等。在讲解呼吸系统和循环系统时,可以介绍人工心肺装置的构造以及在外科手术中的重要意义。总之,在解剖学教学中,应结合知识点介绍相应的器官是如何人工制备,如何实现相应的解剖和生理功能等内容。通过将解剖学知识与工程学知识有机结合,不仅可以拓展学生的知识面,还可以促进学生对专业方向的理解,培养学生发现问题和解决问题的能力。
3.简化课程内容
解剖生理学课程存在学时少、实验少、内容多等问题,在课时的安排上要符合生物医学工程专业的需求。基于上述考虑,将课程重点放在解剖学上,有选择地介绍生理学内容,对于未介绍的知识,建议学生自学。对于解剖学部分,对运动系统、内脏学和心血管系统重点讲授,对神经系统、感觉系统和内分泌腺部分有所删减,目的是为了加深学生对人体结构的掌握和了解。此外,我们精心钻研教材并设计教学大纲,了解课程的教学重点、难点,在课前对学生较难理解的部分设计好教学方法和模式,力争用简练、易懂的语言讲解课程内容,消除学生畏难、厌学的情绪。
4.充分发挥多媒体教学的优势
解剖生理学教学需要向学生展示很多人体结构,涉及名词非常多,很多学生反映较难记忆。制作集合声音、文字、图片、动画、视频等多种媒体信息的课件来辅助教学,可将人体结构直观化,人体功能原理图像化和动态化。从视听的角度强化学生的理解和记忆,提高学生课堂的学习效率。另外,使用多媒体课件也能弥补理工科院校实验条件的缺乏和教学标本的不足。但在使用多媒体教学方法的时候,教师不能脱离传统的教学方式,因为多媒体教学资料虽然直观易于理解,但知识零散且容量大,会影响学生的系统理解和记忆。教师应适时进行必要的讲解, 对于重点、难点应在课堂上充分讨论,并征求学生意见,控制好教学的节奏。
参考文献:
[1]邓玉林,李勤.生物医学工程学[M].北京:科学出版社,2007.
篇8
【关键词】生物医学工程;生物医学电子学;生物电位放大器;电子设计自动化
【Abstract】In order to strengthen the electronic engineering technology training for Biomedical Engineering students, the Biomedical Electronics experiment course was designed for the students. The biological potential amplifier was selected as the experiment subject; In the experiment, student will be required to combine the simulation based on the electronic design automation software and practical operation to complete the design work of the biological potential amplifier, verify its function, and measure its important performance; the experiment was arranged in the early stage of the theoretical courses. Practice shows that the students have a more depth understanding of the characteristics of different methods in electronic engineering technology through the training of biomedical electronics experiments. Therefore, the curriculum design of the experiment is successful.
【Key words】Biomedical Engineering; Biomedical Electronics; Biological potential amplifier;Design automation
0 引言
生物医学工程专业涉及多种学科和技术,具有很强的综合性[1];但与此同时,该专业的本科生培养工作也具有很高的难度,原因就在于学生学习的内容多而不精,在择业时常常无法体现出能力优势。因此,从培养生物医学工程专业本科生的角度而言,应该在对学生进行综合素质培养的同时、加强特定专业技能的训练,为学生的就业和继续深造打下良好的专业基础[2]。
医学电子仪器方式是上海理工大学生物医学工程专业的一个重要方向,在课程设置上,专注于培养学生的电子工程技术[3]。这其中,生物医学电子学[4]是生物医学工程专业的重要专业课程之一,其教学目的是让学生掌握医学电子仪器中带有共性的电子器件、电子线路及电子学设计方法,因此是引导学生学习将电子工程技术应用于生物医学工程专业的重要环节。生物医学电子学实验是该课程的配套实验,目的是在于通过有代表性的实验课题,引导学生学以致用、将课堂内容融会贯通于实践之中。因此,生物医学电子学实验是生物医学工程专业的一门重要实验,需要进行慎重的实验选题、认真的实验设计和细致的实验安排。为此,进行了相关的课程设计和实践工作,详述如下。
1 课程设计思想
上海理工大学生物医学工程专业的生物医学电子学实验被安排于第五学期,和生物医学电子学理论课平行设置。此前,学生已经通过电路原理、模拟电子技术基础、数字电子技术基础和电子技术技能训练等课程的培养,具备了一定的电子工程技术基础。生物医学电子学实验的总课时为16学时,在有限的课时内,让学生得到最大程度的专业训练,具有一定难度。在此背景下,展开生物医学电子学实验的课程设计工作。
首先要解决的问题是实验选题。生物医学电子学实验的选题,应该能够突出生物医学电子学的特色,具有代表性。经过研究,多个生物医学电子学的相关教材中,都将生物电位放大器(Biopotential Amplifier),即仪表放大器(instrumentation amplifier),放在了相当重要的位置上[5]。生物电位放大器,是用于放大心电、肌电和脑电等信号的专用放大器;这些信号具有的特点包括:由生物体内的电活动产生、属于微弱的差分信号、非常容易被更加强烈的共模噪声淹没;而生物电位放大器具有很好的共模抑止特性,最适于放大这些存在于强烈共模噪声背景下的微弱差分信号[6];因此,生物电位放大器在生物医学电子学中占有重要地位,以生物电位放大器为主题开展生物医学电子学实验,不仅具有代表性,而且能够引导学生在前期的课程基础上有所提高。
其次要解决的问题是实验设计。围绕生物电位放大器这个主题开展实验设计工作,需要使实验具有一定深度,但同时又要保证大部分同学有能力在限定的课时内完成任务。经过反复论证设计,最终决定生物电位放大器相关实验由两部分组成:基于电子设计自动化(Electronic design automation, EDA)软件的设计仿真实验和动手实践实验。在第一部分实验中:学生基于LM324[7]完成生物电位放大器的设计工作;仿真验证设计结果;仿真测试其差模增益幅频响应曲线[8]。在第二部分实验中:学生在面包板上动手搭建生物电位放大器;并在实验室中,使用各种设备测试差模增益幅频响应曲线。上述实验设计的优点在于:通过设计仿真工作,让同学们尽快掌握生物电位放大器的原理,同时,基于EDA软件开展电路工作,符合发展趋势[9];通过设计仿真和动手实践相结合,互为验证,比较差异,容易引发思考,更加深刻的体会电子工程技术中不同手段的特点;对生物电位放大器的重要参数进行仿真、测量和总结,有利于学生们在更深地程度上掌握生物电位放大器。
最后要解决的问题是实验安排。由于生物医学电子学实验是生物医学电子学理论课程的配套实验,因此在进度安排上必须要统筹考虑;此外,实验设计决定了生物医学电子学实验适宜集中精力完成,而不是分散到每周进行,集中完成实验能够取得更好的效果。为此,在生物医学电子学理论课程中,生物电位放大器相关内容被安排在课程的早期进行讲解;紧随其后,利用课余和周末时间,在一周内完成生物医学电子学实验。这样安排的好处是:学生能够在课程的开始阶段,就体会到了如何将理论应用于实际,引发学习兴趣。
2 实验内容展示
下面以一位学生的实验情况为例,说明课程设计效果。
1)生物电位放大器的设计和仿真
a)生物电位放大器的设计:
基于lm324设计一个基于三运放的仪表放大器,用于生物电位测量,仿真电路原理图如图1所示。增益公式如公式(1)所示,其中:R1、R2、R5和R6都选用10KΩ的电阻;R3和R4都选用24KΩ的电阻;Rg为增益电阻,当Rg为无穷大时,(这里选用600MΩ),增益约为1倍,当Rg为5.6kΩ时,增益约为10倍,当Rg为470时,增益约为100倍,当Rg为47时,增益约为1000倍。
A=(2*R3/Rg+1)*R2/R1(1)
b)对所设计的生物电位放大器进行仿真,验证其功能
如图1所示:使用+Vdm/2和-Vdm/2两个信号源组合成模拟心电信号的差模输入信号Vdm,峰值为10mV,频率为18Hz;使用Vcm仿真工频干扰产生的共模信号,峰值为500mV,频率为50Hz。取Rg为5.6kΩ,输入、输出信号对比图如图2所示。由图可见,差模输入信号被放大约10倍,但50Hz共模输入信号在输出信号中全无踪迹,因此该生物电位放大器正确的实现了预期目的:放大差模信号、抑制共模信号。
c)对所设计的生物电位放大器进行仿真,测量其性能,频率范围设定在0.1Hz-5MHz之间:
对图1的生物电位放大器进行仿真,测量其差模增益频率响应,如图3所示。图中从上到下的短划线、虚线、点划线和实线分别代表差模增益约为1000倍、100倍、10倍和1倍时的幅频响应。由图3可见,放大倍数越小时的幅频响应截止频率约高:差模增益约1000倍时,幅频响应在1kHz左右就开始截止;差模增益约100倍时,幅频响应在10kHz左右开始截止;差模增益约10倍时,幅频响应在100kHz左右开始截止;差模增益约1倍时,幅频响应在1MHz左右开始截止。
2)生物电位放大器的实践实验
动手实现所设计的生物电位放大器。使用的器材包括:面包板、lm324、10KΩ电阻、24KΩ电阻、5.6KΩ电阻、470Ω电阻、47Ω电阻和导线等,电阻均为5%精度;使用的仪器包括SPF05数字合成函数信号发生器、DS1000数字示波器和电源。测试所得到差模增益频响曲线如图4所示。其中,差模增益随频率变化的趋势与仿真所得的结果基本类似,除了差模增益为1时的截止频率出现在了100kHz左右。
3)实验分析
相比于实际实现的生物电位放大器,仿真实验而得的结果具有更好、更理想的特点。其原因在于:仿真时避免了器件差异造成的影响,需要匹配的电阻和运放可以做到完全匹配,同时也避免了人为测量失误造成的影响,因此可以排除随机误差。仿真实验更容易实施,对于理解理论课内容大有裨益;但动手实验更加真实,且可以提高动手能力、积累实验经验,对于理解真实情况、解决实际问题非常有好处;两者可以互为补充。
3 结论
为了避免生物医学工程专业本科生培养博而不精的问题,在对学生进行综合素质培养的同时,应该加强特定专业技能的训练;上海理工大学生物医学工程专业医学电子仪器方向在课程设置上专注于培养学生的电子工程技术;生物医学电子学实验作为该专业的重要课程生物医学电子学的配套实验,在引导学生“入门”、引发专业兴趣等方面,具有重要作用;为此,对该实验进行了相关的课程设计工作。实践表明,通过生物医学电子学实验的训练,学生对专业的认知程度、对技术的理解程度和对知识的掌握程度,都得到了提升,这些能力的加强有助于学生对其它专业课程的学习和掌握。因此,该实验的课程设计是成功的,今后将沿此方向继续推进。
【参考文献】
[1]尤富生.麻省理工学院教育理念及对生物医学工程专业的启示[J].医疗卫生装备,2016,37(1).
[2]赵晓明.生物医学电子综合实验系统设计[J].实验技术与管理,2013,30(7).
[3]周宇.医学仪器设计原理课程构建的心电检测系统[J].实验室研究与探索,2012(2).
[4]马长升.生物医学电子学的回顾与展望[J].中国医疗设备,2008,23(3).
[5]Webster, J.G.Medical Instrumentation: Application and Design[M]. 3rd ed. John Wiley & Sons,2009.
[6]Franco, S.基于运算放大器和模拟集成电路的电路设计[M].2ed.西安交通大学出版社,2009.
[7]Instruments. T. LM324 Quadruple Operational Amplifier. Available from: http:///product/lm324.
篇9
关键词:生物医学工程 电子类课程 教材选择 项目教学法
生物医学工程专业是20世纪70年代末在我国出现的集多个学科领域于一身的交叉型新兴学科。该专业涉及生物学、医学、电子学、材料学、工程学、物理学和计算机技术等多门学科的知识,具有知识覆盖面广、学科交叉性强、应用实践性强和就业口径宽等特点。
生物医学工程本科专业培养目标设定在为医疗机构提供医疗仪器设备的研发和维护人员,但经过近50年的发展,四年制本科教育只能为毕业生提供一个该专业的入门引领,或是提供了理工科和医学学习经历,将各学科知识叠加,学生很难将各学科融会贯通,并应用于实际工作中。为此,如何让医学院校的生物医学工程本科生在面临就业时突出专业特色,脱颖而出是值得我们思考的问题,课程建设是专业培养的基础,在生物医学工程本科教育上显得尤为重要。
生物医学工程专业众多门专业基础课中,电子类课程与计算机类课程、自动控制技术、医疗仪器原理类课程都有着密不可分的联系,本科生只有掌握电子技术才可以为日后从事生物工程相关研究打下良好的硬件和软件基础。因此,电子类课程在众多基础课程中有着不可替代的重要性,现根据我校电子类课程教学情况中存在的不足,提出几点思考与建议。
一、电子类基础课程特点
电子类基础课程包括电路分析、模拟电子技术、数字电子技术和电工学等。这些课程是生物医学工程专业的专业基础课,也是多门专业课程的先行课,为生物医学电子学、自动控制原理、单片机技术与应用、医用仪器原理、检验分析仪器和医用影像设备学等课程奠定理论基础。该类课程具有如下特点:第一,具有承前启后的特点。针对生物医学工程专业的学生必须具有扎实的大学物理、高等数学等理论支撑才能学好电子技术课程,并为后续医学仪器的原理分析和设计打好坚实的基础。第二,课程内容抽象,理论知识复杂,实践性强。这一特点导致学生出现两极分化,理论扎实的学生,学习兴趣越来越浓;而理论知识学的不好的则厌倦电子类课程学习,实践动手能力也得不到提高,更缺乏对课程中各种电路的理解和设计制作能力。
二、教学中存在的问题
1.学生缺乏学习兴趣
由于学生报考时对所报专业不了解,盲目选择,使得原本爱好医学的学生选择了该专业,入学后开始抱怨选错了专业,继而也把这种情绪带到了学习中;另外,电子类知识都是各种复杂难懂的、功能各异的典型电路,以及对各种电路的结构和工作原理分析,电子类课程各学科之间以及每门课程的各章节之间都是环环相扣的,如果学生电子类某一科学习不好,会影响到后面其他电子类课程乃至专业课的学习。
总之,一些学生对错选专业的负面情绪和电子类课程知识复杂难懂的特点,使得他们对电子技术类课程缺乏学习兴趣,甚至在学习中出现倦怠情绪,要想改变这种情况不是一朝一夕就能完成的,对于专业的培养目标和就业去向已经明确的前提下,我们更应该思考的就是如何从教学中激发学生的学习兴趣,使他们对这个专业充满希望,对电子技术类课程提高重视程度。
2.教材选择对电子类课程的影响
生物医学工程专业具有知识覆盖面广,但每科研究深度浅等特点,因此在教材的选择上也要配合专业特点,选择难易程度适度,能为专业课服务的合适教材。
我校电子类课程的教材选择普遍偏难。虽然教材知识覆盖面够用,但知识的深度和难度偏大,学生在计划学时内很难消化理解。课时少,授课内容多,难度又大,无疑加重了学生的学习负担和厌学情绪。可见,教材的选择对于适应教学需求,学科体系的建设,学生学习兴趣的培养都很重要。
3.医学院校理工科教师医学知识薄弱
医学院校的工科专任教师多数没有医学相关知识的学习背景,而且我校电子类专业基础课所选教材几乎与医学无关,导致电子类课程授课内容与医学联系不紧密。因此,医学院校理工科教师应该普及医学知识,这样理工科教师授课时才能更恰当的引入典型医学实例,为医学仪器课程的开展做好准备,为专业课奠定基础。
三、结合课程特点与专业培养目标改进教学方法
1.采用多种教学方法相结合
对于电子类课程,由于具有课程内容抽象,理论知识复杂,实践性强等特点,采用传统启发式教学会使得理论知识的传授枯燥无味,教学效果不明显,教师可根据教学内容采用任务驱动式教学方法、案例教学法和答辩式教学法等多种教学方法结合使用。把课堂翻转起来,尽量让学生在课后完成资料查阅和教学内容的学习,教师在课堂上只解决学生自学后提出的或未能解决的问题,教师仍然是课堂的主导,学生根据老师每次有针对性的任务去自行学习,既完成了任务,达到教学要求,又提高了学生学习和思维能力。
2.实验课程采用项目教学法,激发学生学习兴趣
与其他学科不同,每一门电子类课程都有相关的实验课程,学生在完成与理论知识相对应的验证性和设计性实验外,还需要开展一些综合性实验环节,以提高学生对于小型医疗仪器的理解和研发能力。我们可以针对生工学生设计小型的综合实验项目,如把电子血压仪等小型医学设备拆分成若干部分,各部分再组成一个设计项目,有能力的学生任项目组长,其他学生根据掌握知识的情况和个人喜好选择完成某一部分的电路,由任课教师统一指导。这样在有任务驱动、有完成目标、有时间限制、有指导教师和有合作伙伴的前提下,学生学习的积极性会被充分调动,实践动手能力也会在项目的驱使下逐步提高,为日后走向工作岗位积累经验。
四、结论
本文针对电子类课程阐述了教学中的问题和对策,实际上生物医学工程专业在课程建设与培养目标上还有许多不足之处,该专业的本科毕业生在择业时缺少和其他工程专业毕业生竞争的优势。因此,生物医学工程专业在专业方向设定上应向着多元化发展,借鉴国外对生物医学工程的人才培养模式,实现生物医学工程专业方向上理工科和文科并行发展,为生物医学工程毕业生就业打开更广阔的突破口。
参考文献:
[1]王能河,但汉久.生物医学工程专业(医学影像工程)本科课程体系比较研究[J].现代仪器与医疗,2013,19(2):70-74.
篇10
航技术的进步 、人类实现了登月计划以来,生物医学工程有了快速的发展。在我
国,生物医学工程做为一 个专门学科起步于20世纪70年代,中国医学科学院、中
国协和医科大学原院校长、我国着名 的医学家黄家驷院士是我国生物医学工程学
科最早的倡导者。1977年中国协和医科大学生物 医学工程专业的创建、1980年中
国生物医学工程学会的成立,有力地推进了我国生物医学工 程的发展。目前,我
国许多高校科研单位均设有生物医学工程机构,从事着生物医学的科研 教学工作
,在我国生物医学工程科学事业的发展中发挥着重要作用。
显微镜的发明 “解剖”一词由希腊语“Anatomia”转译而来,其意思是用
刀剖割,肉眼观察研究人体结构。17世纪Lee Wenhock发明了光学显微镜,推动了
解剖学向 微观层次发展,使人们不但可以了解人体大体解剖的变化,而且可以进
一步观察研究其细胞 形态结构的变化。随着光学显微镜的出现,医学领域相继诞
生了细胞学、组织学、细胞病理 学,从而将医学研究提高到细胞形态学水平。
普通光学显微镜的分辨能力只能达到微米(μm)级水平,难以分辨病毒及细胞
的超微细结构 、核结构、DNA等大分子结构。而20世纪60年代出现的电子显微镜,
使人们能观察到纳米(nm )级的微小个体,研究细胞的超微结构。光学显微镜和电
子显微镜的发明都是医学工程研究 的成果,它们对推动医学的发展起了重要作用
。
影像学诊断飞跃进步 影像学诊断是20世纪医学诊断最重要发展最快的领域
之一。50年代X光透视和摄片是临床最常用的影像学诊断方法,而今天由于X线CT技
术的出现 和应用,使影像学诊断水平发生了飞跃,从而极大地提高了临床诊断水
平。即计算机体断层 摄影(computed tomography CT),即是利用计算机技术处理人
体组织器官的切面显像。X线CT 片提供给医生的信息量,远远大于普通X线照片观
察所得的信息。目前,螺旋CT(spiral CT 或helicalet CT)已经问世,能快速扫描
和重建图像,在临床应用中取代了多数传统的CT, 提高了诊断准确率[1]。医学
工程研究利用生物组织中氢、磷等原子的核磁共振(nu clear magnetic resonanc
e)原理。研制成功了核磁共振计算机断层成像系统(MRI),它不仅 可分辨病理解剖
结构形态的变化,还能做到早期识别组织生化功能变化的信息,显示某些疾 病在
早期价段的改变,有利于临床早期诊断。可以认为MRI工程的进步,促进了医学诊
断学 向功能与形态相结合的方向发展,向超快速成像、准实时动态MRI、MRA、FM
RI、MRS发展。 根据核医学示踪,利用正电子发射核素(18F,11C,13N)的原理,
创造 的正电子发射体层摄影(PET),是目前最先进的影像诊断技术。美国新闻媒体
把PET列为十大 医学生物技术的榜首。PET问世不过30年历史,但它已显示出对肿
瘤学、心脏病学、神经病 学、器官移植,新药开发等研究领域的重要价值[2]。
影像学诊断水平的不断提高 ,与20世纪生物医学工程技术的发展密切相关。
介入医学问世 介入医学是一种微创伤的诊疗技术。Dotter和Judkin(1964 年
)是最早使用介入技术治疗疾病的创始人,他们用导管对下肢动脉阻塞性病变进行
扩张治 疗取得成功。1967年Margulis首先使用过介入放射学(Interventional Ra
diology),这是医 学文献出现“介入”一词的最早记载。1977年 Gruenzing成功
地进行了首例冠状动脉球囊扩 张术获得成功以后,介入性诊疗技术由于其创伤小
、患者痛苦少,安全有效而倍受临床欢迎 。20世纪80年代随着生物医学工程的发
展,高精度计算机化影像诊查仪器、数字减影血管造 影(DSA)、射频消融技术以及
高分子(high-polymer)新材料制成的介入技术用的各种导管相 继问世,使介入性
诊疗技术发生了飞速进步,临床应用范围不断扩大,从心血管、脑血管、 非血管
管腔器官到某些恶性肿瘤等都具有使用介入诊疗的适应证,并使诊疗效果明显提高
,患者可减免许多大手术之苦。有人把介入诊疗技术视 为与药物诊疗、手术诊疗
并列的临床三大诊疗技术之一,也有人把介入诊疗技术称之为20世 纪发展起来的
临床医学新领域--介入医学[3,4]。
人工器官的应用 当人体器官因病伤已不能用常规方法救治时,现代临床医
疗技术有可能使用一种人工制造的装置来替代病损器官或补偿其生理功能,人们
称这种装置 为人工器官(artificial organ)。如20世纪50年代以前,风湿性心脏
瓣膜病的治疗,除了应 用抗风湿药物、强心药物对症治疗外,对病损的瓣膜很难
修复改善,不少患者因心功能衰竭 死亡。而今天可以应用人工心肺机体外循环技
术,在心脏停跳状态下切开心脏,进行更换人 工瓣膜或进行房、室间隔缺损的修
补,使心脏瓣膜病、先天性心脏病患者恢复健康。心外科 之所以能达到今天这样
的水平,主要是由于人工心肺机的问世和使用了人工心脏瓣膜、人工 血管等新材
料、
新技术的结果[5]。
- 上一篇:初中篮球教学教案
- 下一篇:篮球控球基本功训练方法