量子计算基本原理范文
时间:2023-11-15 17:46:43
导语:如何才能写好一篇量子计算基本原理,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词:人力资源;成本核算
Abstract: with the constant development of economy, the modern economic structure from production-oriented to science and technology service-oriented transformation has become a trend. This transformation makes human resource in enterprise production and management and the development of national economy has become more critical. In this paper, the author analyzes the human resources cost generation, form, valuation and how to effectively control and other aspects, has carried on the preliminary discussion.
Key words: human resource; cost accounting
中图分类号:F562.5文献标识码:A 文章编号:2095-2104(2012)
随着现在企业制度的建立,我国建立起新的会计制度,合理的界定人力资源成本范围,规范企业人力资源成本列支制度,企业人力资源成本的管理进入新的阶段。
一、人力资源成本分析
1.1人力资源成本的基本理论
人力资源是指在一定区域内的人口总体所具有的劳动能力的总和,是存在于人的自然生命机体中的一种国民经济资源。企业为获得人力资源和优秀的人才,就需要很多的投资,这种投资在企业中就体现为人力资源成本。
1.2人力资源成本会计的特点
单独计量人力资源的取得成本、开发成本、使用成本和替代成本,企业取得的人力资源的使用权,其运用期限在一年或者超过一年的一个营业周期以上的,所发生的人力资源的取得成本和开发成本应该视作资本性支出,在资本化处理后在确定的分摊期限内摊销。企业聘用使用期限不超过一年的季节工等发生的取得成本和开发成本(这里的开发成本主要是组织进行必要的上岗前的操作培训、学习所发生的支出),其受益期为这些聘用的季节工、临时工的使用期限,因此这部分取得成本和开发成本可在季节工、临时工的使用期限内分期摊销, 如果金额小,也可以在发生时直接计入当期费用,企业运用人力资源的使用权时,所发生的工资、奖金等支出,则属于收益性支出,应计入当期费用。
1.3 人力资源成本会计的构成
1.3.1取得成本
1)招募成本
招募成本主要是为确定企业所需要的人力资源的内外来源,企业对人力资源需求的信息,吸收所需要的内外人力资源所发生的费用。
2)选拔成本
选拔成本是企业对应聘人员进行挑选、评价、考核等活动所发生的成本。他通过初步面试或处理应聘人的申请材料进行初选费用。
3)录用成本
录用成本是企业从应聘人员中选拔出合格者后,将其正式录用为企业的成员的过程中所发生的费用。
4)安置成本
安置成本是企业将所录用人员安排到确定的岗位上是所发生的各种费用。
1.3.2开发成本
1)定向成本
定向成本也称为岗前培训成本,是企业对上岗前的职工进行的有关企业历史文化、规章制度、业务知识、业务技能等方面的教育是时所发生的支出。
2)在职培训费
在职培训成本是在不脱离工作岗位的情况下对在职员工进行培训所发生的费用。
3)脱产培训成本
脱产培训成本是企业根据生产和工作的需要对在职职工进行脱产培训时所发生的支出。
1.3.3使用成本
1) 维持成本
维持成本是为保证人力资源维持其劳动力生产和在生产所需的费用, 包括职工的计时工资或计件工资、各种劳动津贴和各种福利费用。
2)奖励成本
奖励成本是企业为激励职工使其更好的发挥主动性、积极性和创造性,而对职工做出的特别贡献所支付的奖金,它是对人力资源主体所拥有的能力的超长发挥做出的补偿。
3)调剂成本
调剂成本是全企业为了调剂职工的生活和工作,满足职工精神生活上的需求,稳定职工队伍并进而影响和吸引外部人员进入所发生的费用支出。
4)替代成本
替代成本是指目前重置人力资源应该做出的牺牲,他包括为取得或开发替代者而发生的成本。
二、人力资源成本会计核算与计量的必要性
首先,人资管理可以调节社会资源。如同调节一个组织的资源一样人资管理除了可以调配社会成员的位置和流动方向以外,对于资源和支出也地有着很直接的调节作用,实际上,人资管理最根本的目的就是要实现人力资源的最大使用价值, 而这一点从很大意义上节约了社会资源,也使得社会资源能够得到合理地分配。
其次,人资管理可以提高整体国民素质。国民素质是综合国力中一个很重要的指标。人资管理正好可以针对国民进行培养和分流, 很大程度上避免了良莠不齐的状况出现可以让国民整体素质有稳步地提高。也能够在抓住整体实力的基础上选拔出高端人才,很好地分配他们的位置,为国家的尖端科技工作提供稳定保障。
人力资源管理的影响:
2.1 我国建立人力资源会计的必要性
世界高新技术革命的浪潮,已经把世界经济的竞争从物质资源竞争推向人力资源的竞争,对人力资源的开发、利用和管理将是人类社会经济发展的关键因素。此过程中所需的大量人力资源信息,必然离不开人力资源会计。我国人口众多,而人口素质相对较差,推行人力资源会计更具有必要性。
1)获取企业信息的需要
科学技术的迅速发展,推动着生产力的快速发展。经济发展水平越高,人力资源在经济发展中的作用也越大,人才成为经济资源中最重要的因素,是企业财富的真正象征和源泉。 因此,将人力资源作为企业的资产,运用会计的方法对其加以确认、计量和报告,以满足企业管理者和企业外部有关人士对企业信息的需求成为时代的必然要求。
2)优化人力资源配置的需要
市场经济体制的不断完善,使人力资源有更多的经济特征,要求确认人力资源的成本和价值,促进人力资源的供求平衡,确定人力资源开发方向,引导人力资源合理流动,在宏观上优化人力资源的配制。
2.2 人力资源会计核算与计量对于个人的必要性
1)首先,人资管理可以帮助培养个人的最大实力。人资管理的宗旨里有一条,就是要让组织中的每个成员都可以尽可能发挥出自己最大的实力,为组织奉献出自己所有的力量。人资管理还可以通过环境影响和针对性培训来对成员进行培训,从而培养每个人最适合自己的能力。
2)人资管理还可以帮助发挥每个成员的最大潜力,让每个人都在组织有条理的帮助和自身不断地学习下发挥出所有自身潜藏的实力。
3)人资管理还可以帮助每个人都找到自己的适合位置。有个别成员,他自身的能力也许很强,潜能也不可估量,但不适合他的地方,必然会使他没有办法发挥出自己所有实力,影响了他为组织做事和奉献自己力量的积极性。
2.3 成本会计核算与计量对于组织的必要性
在企业文化建设和制度管理办法中,能够有效地开发其他的人才资源,才能够使组织达到价值的实现。 所以说,人资管理的理念对于一个无论是什么性质的组织来说,都有举足轻重的作用。
1)通过人资管理,可以提高组织成员积极性和企业凝聚力。人资管理可以用一系列心理学和管理学的方法提高人员积极性和成员之间团结凝聚力。显然,这对于组织来说是必不可少的。
2)人资管理还可以提高组织行事的高效性。从人资管理影响人员调配这一点体现出来,可以达到事半功倍的效果,因此可以说,人资管理可以大大缩短工作时间,提高工作的效率。
3)人资管理还可以降低组织支出的浪费率。在一个企业中,很大一部分支出就是员工的工资和奖金支出,那么支出多少,在如何支出的情况下能够最大程度激发员工的工作积极性, 这些都是人资管理要思考的问题,这些问题的考虑在无形中就大大节约了组织的成本。
三、企业人力资源成本核算与计量的现状与存在问题
人力资源管理是指组织的一项基本管理职能,他是以提高劳动生产率、工作生活质量和取得经济效益为目的的,而对人力资源进行获取、整合、保持和激励、控制与调整、开发等一系列的管理过程。企业的重大决策权集中在政府行政部门,企业在机构设置、干部任免、 职工进出、工资标准等方面自不够,更多的人动是因为企业制度存在问题。建立在不稳固基础上的企业制度是“豆腐渣”,容易动摇人事基础,主要表现为:
第一,人事规划战略定位不明。我国的专业技术人员普遍存在知识老化,缺乏创新意识和思维;高级管理人才和高新技术人才严重短缺;对人力资源的资本投资低于世界平均水平等等,这些都使得我国人力资源的开发迫在眉睫。
第二,组织结构紊乱。企业结构不能配合企业战略的实施, 更加造成人力资源的浪费, 使企业难以整合和提升企业内部的人力资源。
第三,工作流程松散。工作流程与部门之间联系松散,职能重叠,缺乏信息共享机制, 无法为企业创造附加值,从而引发人事危机或给企业造成重大损失。
第四,激励机制缺乏。缺乏有效的绩效评估制度、薪酬体系、员工福利制度等激励机制,以致使人才的成长落后于企业的发展。新经济时代的最大特点是人的价值被认可,“人本观念”已深入到企业经营的各个方面,这使得人事制度的建立和人事的选择都成为企业经营的重要一环,慎重的选择、任用,是双方面适应的结果。
四、结语
总而言之,人力资源是最珍贵的,也是现代管理学的核心内容,因此,不断地提高和开发人资管理水平,不仅仅是各种企业能够发展壮大,各个组织能够提高自身市场竞争力的重要途径,也是每个组织成员能够发挥自身实力不可忽视的方式,同时,人资管理还是各个单位,各个地区,我们整个民族,社会乃至国家能够长期繁荣昌盛的有利保证。
参考文献
[1]马武鑫,“人力资源的价值和报告理论讨论”,《上海会计》,2003年第 2 期
篇2
量子力学的成功和困惑
用宏观物理学的方法研究原子的性质及其相互作用时,只能通过测量微观量的平均值,大平均过程掩盖了原子水平上的重要效应。操控单个微观粒子,研究单个粒子的行为和性质以及少数粒子的相互作用,一直是就是物理学家梦寐以求的事。随着实验技术的发展,控制单个微观粒子的愿望成为可能。特别是1960年激光的发明和在这以后激光技术的发展,可以随我们所需改变激光的频率,控制激光束的延续时间并使激光束聚焦到一个原子大小的范围。从这以后,实验技术和实验方法有了极大的发展,利用激光可以使原子或离子冷却到接近绝对零度,就是使它们的运动速度减到非常小,直至几乎停止。还实现了利用特殊的电磁场来陷俘单个原子或离子。物理实验技术的进展使研究单个或少数几个粒子的性质、深入研究光子和物质粒子的相互作用有了可能。这不仅打开了高科技应用的广阔前景,还为证实和发展量子物理学的基本原理提供了实验基础。
量子力学已有100多年历史,量子力学理论取得了辉煌的成功。现代的高科技产品,如计算机芯片、激光、医用磁共振等等无不是在量子力学理论基础上发展起来的。量子力学被认为是最精确、最成功的物理理论,可是人们对量子力学的基本原理始终存在着疑问,那些创立量子力学的物理大师们自己都不满意量子力学的基本假设。在这些大师之间以及他们的后继者中,关于量子力学的理论基础是否完善的问题争论不休,新的解释层出不穷,至今还没有得出令人满意的结论。
量子力学描写微观世界的规律,但人类的直接经验都是关于宏观世界的。我们的测量仪器以及人类感官本身都是宏观物体,仪器测量到的和我们直接感知的都是大量原子组成的宏观物体。在经典物理学中,观察不影响被观察对象的运动状态,例如,我们能够观察一个行星的运动,追随它的运动轨迹,行星的状态变化与观察者无关,不受我们观察的影响。可是,对微观世界的观察就完全不是这样,当我们研究一个量子体系时,经过测量后的量子体系原来的状态总是被破坏了。例如,光子进入光电探测器后,光子就被吸收;电子被探测器件接收后,该电子原来的状态就改变了。宏观仪器对量子系统测量的结果,都必须转换为经典物理学的语言。要直接观察并且非破坏性(non-demolition)地测量量子体系的量子性质是难以做到的事情,所以,量子力学所预言的量子世界的奇特性质一直令物理学家和公众感到神秘难解。
2012年诺贝尔物理奖获得者和他们的同事们的工作,突破了经典物理学实验和人类直接经验的限制,他们直接观察到了个别粒子的量子行为。瓦因兰德小组做的是在电场中陷俘离子,用光子对它做非破坏性的操控。阿罗什小组是在空腔中陷俘单个光子,用原子进行非破坏性的测量。他们异曲同工,都对单个量子粒子进行实验测量,研究量子力学的基本原理。这些研究不仅对量子理论的基本原理的进一步阐明有重要意义,并且有广阔的应用前景。
阿罗什:把光子囚禁起来
阿罗什毕业于法国高等师范学校。1971年他在巴黎第六大学获得博士学位,导师是柯亨-塔诺季(Claude Cohen-Tannoudji),1997年诺贝尔物理学奖得主。从20世纪60年代开始阿罗什就在法国高等师范学校物理系的卡斯特勒-布罗塞尔实验室(Kastler-Brossel Laboratory)工作。该实验室是以获诺贝尔物理学奖的阿尔夫莱德・卡斯特勒(Alfred Kastler)的名字命名的。1972~1973年,阿罗什曾到美国斯坦福大学,在诺贝尔物理学奖获得者肖洛的实验室中工作。
阿罗什说,他们的成功主要得益于卡斯特勒-布罗塞尔实验室特有的学术环境和物质条件。他们组成了极其出色的研究小组,并且将共同积累的知识和技能传授给一代又一代的学生。阿罗什还说,他给研究生和本科生的讲课也有助于研究工作,在准备新课的过程中他注意到了光和物质相互作用的不同方面。阿罗什认为,国际交流学者参加研究不仅带来专门的知识和技能,也带来不同的科学文化以补充他们自身的不足。他觉得幸运的是,在长期的微观世界探索中,他和他的同事们能够自由地选择他们的研究方向,而不必勉强地提出可能的应用前景作为依据。
阿罗什小组的主要成就是发展了非破坏性的方法检测单个光子。用通常的方法检测光子,都是吸收光子并把它转换为电流(光电探测器)或转化为化学能量(照相底片)(动物的眼睛是将光子转化为神经的电脉冲的)。总之,光子被测量到后立即消失。近半个世纪以来,虽然人类发展出了量子非破坏性测量,但这些测量只能用于大量光子的情况。而阿罗什和同事们做到了反复测量记录同一个光子。
光的速度非常快,达每秒30万公里,所以要控制、测量单个光子,必须将光子关闭在一个小的区域内,并使其在足够长的时间内不逃逸或被吸收。阿罗什小组实验成功的关键是制成反射率极高的凹面镜。反射镜是在金属底板上镀以超导材料铌,镜面抛光到不平整度只有几个纳米(1纳米=100万分之一毫米),光子因镜面不平而散射逃逸的机会非常小。空腔由两个凹面镜相对安放组成,镜间距离27毫米。整个设备安置在绝对温度1度以下的环境中。一个微波光子在腔中停留时间可达十分之一秒,即在两面镜子之间来回反射10 亿次以上,差不多相当于绕地球一周。可以说阿罗什小组创造了限制在很小的有限体积内的光子寿命的世界纪录。
阿罗什小组的另一项创造性贡献是利用利用里德伯原子作为探测器,实现非破坏性测量单个光子。所谓里德伯原子,是激发到很高的能量轨道上的原子,这种原子的体积比正常原子大许多。他们用铷(原子序数37)原子,把它的价电子激发到第50层的圆形轨道上(主量子数n=50)。这种情况下,外层电子从n=50 的轨道跃迁到相邻的轨道n=49和n=51,发射或吸收微波光子频率分别为54.3GHz(千兆赫兹)和51.1GHz。正常的原子半径在0.1纳米以下,铷原子中电子占据的最外层轨道为n=5;当它的最外面的电子跑到n=50的圆形轨道上时,原子的半径达到100多纳米,原子半径增大了1000倍以上。这样的原子好比一个很大的无线电天线,容易和电磁场相互作用。
瓦因兰德:让离子停下来
瓦因兰德和阿罗什同年,都生于1944年。1965年,瓦因兰德毕业于美国加利福尼亚大学伯克利分校;1970年在哈佛大学获博士学位,博士论文题目是“氘原子微波激射器”,导师是拉姆齐(Norman Ramsey)。以后他到华盛顿大学,在德默尔特(Hans Dehmelt)的实验室做博士后研究。德默尔特是1989年诺贝尔物理奖获得者。1975年,瓦因兰德和德默尔同发表了讨论激光冷却离子的论文,这是有关激光致冷的开创性论文,被学术界同仁广泛引用,其中包括获1977年诺贝尔物理学奖的朱棣文、菲利普斯和柯亨-塔诺季等。
1975年,瓦因兰德到隶属于美国商业部的美国国家标准与技术研究所工作。在那里,他创建了储存离子研究小组。在过去多年的工作中,他做出了多项世界第一的研究成果,终于获得了诺贝尔物理学奖。他是15年来美国国家标准与技术研究所第四位获诺贝尔物理奖的研究人员之一,研究激光致冷的菲利普斯也是其中之一。
制造量子计算机的建议方法有多种,许多科学家正在对不同的方案进行实验研究。瓦因兰德小组从事的陷俘离子的方法是最成功的方法之一。他们利用特殊排列的几个电极组合产生特定的电场,形成陷阱,将汞的一价离子限制在三个电极组成的空间中。三个电极包括两端各有一个相对的电极和一个环形电极,离子由激光束控制。
在常温下,原子运动的平均速度为每秒数百米,以这种速度运动的离子会立即逃逸出陷阱。要将离子陷俘在电场陷阱中,离子的运动速度必须非常小。只有在极低的温度下,离子或原子的运动速度才能变得很小。可以利用激光使离子冷却,使离子的速度减小到几乎停止的状态。将特定频率的激光束对着原子或离子射来的方向照射时,原子在迎面射来的光子的一次次冲击下,速度就慢了下来。当然,原子或离子吸收了光子又要再把它发射出去,发射光子时原子也要受到反冲。但原子或离子发射光子的方向是随机的,各种方向都有,结果反冲效应平均为零,只有迎面射来的光子被吸收后起到了减速的作用。但仅仅用这种方法还不能使原子速度降低到近乎停止,还要加上其他方法。速度已经很小的离子在陷阱中受电场的作用,还在以一定的频率振动,这种振动的能量和离子内部的能量状态耦合起来,形成复杂的能级。在适当频率的激光束照射下,离子吸收光子后又重新放出光子,落回原来内部能量最低的状态,同时带动离子振动能量的变化。在适当控制的条件下,重复这样的过程,就可以使离子振动能量逐步减少,直到振动能量达到最低的量子状态,离子近于完全停止。这时,离子就可以随意操控了。
瓦因兰德小组利用利用陷俘离子做成一个量子可控非门(Controlled NOT)。当然可控非门只是最简单的量子计算机的元件,一台能工作的计算机需要多得多的元件,离制成实用的量子计算机还非常遥远。然而前景是光明的,包括瓦因兰德在内的许多科学家正积极研究,攻克难关,希望在本世纪内将量子计算机研制成功。
瓦因兰德和同事们还利用陷俘的离子制造出了当今世界上最精确的原子钟。他的研究工作也可以检验量子力学基本原理,如进行“薛定谔猫”的实验。
不为盛名所惑
阿罗什和瓦因兰德有许多相同的地方。他们都在世界第一流的实验室中工作;巧的是,他们每人各有两位获诺贝尔物理学奖的老师;他们都有合作30年以上的同事组成的稳定的研究小组,还有许多优秀的学生和合作者,其中包括外国的访问学者。在他们的诺贝尔奖报告中,他们的老师、同事以及和他们的工作有密切关系的、前人的研究都一一提到。两人都还提到有100多位学生、博士后和访问学者也做出了贡献,强调成绩是大家努力的结果。
瓦因兰德和阿罗什也有一点很大的不同。阿罗什的研究目的偏重于探索自然界的奥秘,没有非常明确的应用目标,虽然他知道自己的研究成果肯定有长远的应用前景。他所属的卡斯特勒-布罗塞尔实验室也没有要求其研究一开始就必须有明确的应用目的。不过,即使在法国高等师范学校,这种待遇也只有像阿罗什这样的资深科学家才能得到。而瓦因兰德所在的美国国家标准与技术研究所本身就具有明确的实用目标:促进美国的创新和产业竞争能力,开创新的测量科学,推进美国的技术水平。该研究所的研究都是目标长远,技术含量高,能在世界上领先的项目。这些项目实际上都是结合远期应用的基础性研究。
瓦因兰德和阿罗什还有一个共同点,就是除了做研究以外,都在大学教课。阿罗什认为备课的过程促使他从多方面考虑基本原理,也有助于研究工作。而从学生的角度来看,能听到优秀的科学家讲课,和他们直接交流,不仅能学到当今前沿的科学知识,还可以学习到优秀科学家的治学精神和思想方法。
荣摘诺奖桂冠是否改变了科学家本人的生活呢?据英国广播公司(BBC)在线版消息称,阿罗什本人仅仅提前了20分钟被组委会告知自己获奖的消息。
“我很幸运,”阿罗什说,但他指的并不是自己得奖这回事,“(接到来电时)我正在一条街上,旁边就有个长椅,所以我第一时间就坐了下来。”他形容那一刻的心情,“当我看到是瑞典的来电区号,我意识到这是真实的,那种感觉,你知道,真是势不可挡。”
不过据诺奖官网的推特称,阿罗什接到获奖的确切消息后,打了个电话给自己的孩子,然后开了瓶香槟庆祝。再然后,他又回实验室工作去了。
(作者单位:复旦大学物理系)
阿罗什小组设备示意图
篇3
量子纠缠态的性质刻画特别是它的大小测量是一个有意义的课题。研究表明量子纠缠态的大小一般可以由纯态的冯诺伊曼熵来衡量,对于一个两量子比特系统,冯诺伊曼熵大的态可以通过局域量子操作及经典通讯变换为另一个冯诺伊曼熵小的态。但是对高维系统,却经常存在两个量子纠缠态并不能互相转化的情况,甚至存在更复杂比如所谓纠缠催化的情况:即在纠缠态转换过程中有辅助的纠缠态起到类似化学催化剂的现象。在刻画这些纠缠态性质方面,大家最近发现冯诺伊曼熵的推广即任伊熵是一个好的量子纠缠大小的测度,可以准确的刻画纠缠转化行为。同时随着量子信息科学的发展,人们也希望能利用量子信息科学里的一些技术和方法来研究比如凝聚态系统的一些量子行为,例如对量子相变的刻画。反过来也希望凝聚态物理对物质量子相的性质研究能对量子信息处理和量子计算是否可以在这些系统实现给出提示。
最近,中科院物理研究所/北京凝聚态物理国家实验室(筹)理论室范桁研究员、博士生崔健与新加坡国立大学等合作在不同量子相的不同量子计算能力方面的研究取得重要进展(Nature Commun.3,812(2012))。他们通过对模型基态任伊熵的偏导正负性的判断,发现其行为可以准确区分凝聚态模型的不同量子相,而且不同的量子相确实在量子计算的能力方面是不同的。
量子计算的实现在方法上大致可以被分为两种,量子逻辑门方法和绝热量子计算方法。研究表明这两种方法在计算能力和计算复杂度方面是等价的。他们选取了一种可以用绝热量子计算实现的量子算法,通过对一维横场伊辛模型和XY模型基态纠缠任伊熵的分析发现,在绝热量子计算的实现过程中,在一些量子相里,绝热量子计算需要整体相干操作,而在另一些量子相里,绝热量子计算可以通过较简单的局域操作辅助以经典通讯。而对比如量子搜索的研究表明,局域操作在所谓的量子加速方面并不起作用。从而表明不同的量子相具有不同的量子计算能力。
凝聚态模型基态的任伊熵研究对量子相变的刻画及在量子计算中的作用是一个新的方法,不同量子相有不同的量子计算能力这个结论对具体物理系统的选取有指导意义。相关工作发表在近期Nature Commun.上(Nature Commun.3.812(2012))。
篇4
【关键词】量子通信;量子信息学;量子信道;光子探测
1.引言
量子通信是量子力学和通信科学相结合的产物,可以实现经典信息论不能完成的信息处理任务。量子通信以量子力学为基础,其研究包括:量子隐形传态、量子安全直接通信等研究方向,对现有信息技术带来了重大突破,引起了学术界高度重视。近年来,有关量子计算机、量子相干性、量子通信、量子密码等理论和研究大热,其中,量子通信作为量子信息研究的内容之一,成为物理学等领域最活跃的研究热点。量子通信理论上可以实现绝对安全的通信过程,最初是利用光纤完成的,但由于光纤受地理和自身限制,无法实现远距离的量子通信,不利于全球化量子通信。1993年,6位来自不同国家的科学提出了利用量子隐形传送方案,构建了一种脱离实物的量子通信系统,以量子态作为信息载体,通过量子态的传送完成了大容量信息的传输,实现原则上不可被破译的通信技术。由于存在不可避免的环境噪声,量子的纠缠态品质会随着传送距离的增加而变得越来越差。因此,量子通信不可避免地首先要解决传输距离的限制才能具有良好的应用前景。空间量子通信技术利用分发纠缠光子的方法为远程量子通信的研究提供了一种途径。
2.空间量子通信技术原理
量子通信具有“容量大、速度快、保密性好”的优点,其过程遵从量子力学原理。典型的量子通信系统包括:量子态发生器、通道和量子测量装置。具有量子效应的粒子如:光子、电子、原子等,都可以作为实现量子通信的量子信号[1]。由于光信号具有良好的传输特性,我们现在通常所说的量子通信系统均为量子光通信系统。单光子(纠缠光子对)的分发是实现空间量子通信的前提,空间量子通信技术可以通过空间技术实现全球化的量子通信,克服自由空间链路带来的距离限制,图1给出了典型量子通信实验系统组成。
使用纠缠量子信号的量子态隐形传输技术是未来量子通信网络的核心技术[2],其原理如下:根据量子力学理论,由两个光子组成的纠缠光子对(薛定谔将多体量子状态的不可分的相互关联称为量子纠缠),无论其在宇宙中相隔多远,其状态均不可分割。单独测量其中一个光子状态,会得到完全随机的结果,根据海森堡测不准原理,一旦测量了其中一个光子的状态,即使其发生了变化,那么另一个光子也会发生同样的变化,即“塌缩”到相同的状态。利用这一特性,通信者Alice随机产生一个比特,再随机改变自己的基来制备传输量子态,并重复多次,接收者Bob通过量子信道进行接收,他测量每个光子,也随机改变自己的基,当两人的基相同时,就得到了一组互补的随机数。一旦窃听者Eve进行窃听,纠缠光子对的特性就被破坏,Alice和Bob就会发觉,因此利用这种方式的通信是绝对安全的。
3.量子通信的研究进展和趋势
人们最初对量子的研究是基于对光的研究进行的,由于量子通信可以建立无法被破译的通信系统,因此受到美国、欧盟、日本等国在内有关科研机构的大力研究和发展,我国在这方面的研究成果也受到了国际上的广泛关注。特别是在量子通信的演示验证试验方面,学术界已经由地面自由空间传输试验向空间传输试验发展[1][3]。
(1)分发协议的发展
1984年,IBM公司的Chales H.Bennet和加拿大蒙特利尔大学的Gilles Brassard提出了第一个分发协议——BB84协议[4]。在1992年,他们又提出了EPR协议,又称E91协议,将纠缠态首次与量子通信联系起来[5]。2002年,Bostrom和Felbinger提出了Ping-pong协议[6],这是一个十分重要的协议,其信息可以被确定性的直接传输,明显提高了传输相率,受到人们的重视。目前所有实验基本上基于上述协议进行的[7]。
(2)地面自由空间量子通信实验进展
1993年,美国IBM公司基于纠缠态交换的实验方案实现了世界上第一个量子信息传输实验,传输距离32cm,传输速率10bps,从此拉开了量子通信实验研究的序幕[1]。表1给出了现在国内外较著名的地面自由空间量子通信实验及成果[2][8-10]。
其中,中国科学技术大学潘建伟教授、清华大学彭承志教授等人于2005年至2009年间一系列的研究成果表明量子隐态传输穿越大气层是可行的,纠缠光子在穿透等效于整个大气厚度的地面大气后,其纠缠特性仍可以保持,这为未来空间量子通信技术的发展奠定了基础[7]。2007年,Zeilinger领导的联合实验室在奥地利两海岛间实现了跨越144km距离的基于诱骗态和纠缠态量子通信,是目前为止自由空间量子通信实验距离的世界纪录[7]。该实验的单光子源采用弱相干脉冲[10],链路采用双向主动望远镜跟踪系统,包括一台光学望远镜(可发送单光子同时接收信标激光信号)及一架CCD相机等部件,如图2所示。这个实验的成功被认为是实现空间量子通信的重要基石。
由于量子通信的优势和特点,许多国家都把其列入重点研究范围,纵观各国研究现状,不难发现,美国侧重研究量子理论,正在大力研究和发展量子计算机和量子通信的理论和技术,希望在十年内有所突破。欧洲则对星地量子通信等空间应用较感兴趣,善于联合各国力量推动量子通信技术发展,现已开展相关实验。日本则重点致力于提高量子通信传输速率,并致力于量子网络系统的搭建和研究。我国目前已经在自由空间量子通信上取得了一系列世界领先的科研成果,需要广大科研人员继续努力,保持我国在该领域的领先地位。
(3)量子通信在空间的实验计划
欧空局(ESA)自2002年以来资助了一系列空间量子通信研究,如QSpace项目(2002年-2003年),ACCOM项目(2004年),QIPS(2005年-2007年)。QSpace项目一来是为了验证基于量子物理学的空间通信技术的可行性,二来是为了验证空间量子通信较地面量子通信的优势,如可避免大气扰动和吸收的影响等[11]。为此该项目进行了一些列的试验,获得了空间量子通信四项主要应用方向,对空间量子通信技术优势进行了归纳总结。ACCOM项目主要包括一个空-地单向通信实验,该实验基于当时的星间光通信技术,利用一个空基发射机对多个分布式地基接收机间进行自由空间量子通信实验,首次研发出了一种可重复使用光学收发终端。该项目的实验系统是在经典光学通信系统上进行复杂设计后改建的。QIPS项目即为上面描述的Zeilinger领导的联合实验团队进行的144km量子通信实验。实验表明,144km地面水平传输实验量子信道传输损耗约为25-30dB,这一数值与低轨卫星与地面间传输损耗大致相当,由此可见,同样的技术应用于空-地系统更具发展潜力和优势。
基于上述研究成果,维也纳大学的研究团队于2004年提出了Space-QUEST计划。审核该计划的ELIPS-2项目组认为该计划具有非常巨大的优势并强烈推荐ESA进行资助并实施。Space-QUEST实验旨在首次验证如下内容[11]:
1)基于新型量子通信技术(QKD)的全球无条件安全空间信息传输技术。
2)利用空间环境优势,突破地基量子通信瓶颈,实现空间量子通信。
如图4所示,该计划拟采用国际空间站(ISS)上搭载的量子通信终端设备向地面发送纠缠态光子来进行,搭载的光学望远镜口径仅10-15cm,载荷总重小于100kg,峰值功率小于250W,收发终端间距离大于1000km,远远超过现有地基实验系统传输距离。该计划最终将于2015年实施完成。
(4)空间量子通信技术存在的主要问题
一是空间量子通信噪声干扰消除问题。由于现实通讯状况的不完美和噪声干扰,所有的量子密码协议的噪声干扰如果跟有窃听者存在所带来的噪声没有差别[1],通信连路是无法建立起来的;二是自由空间量子信道的传输特性问题。不同地面环境对光子传播的影响,包括大气衰减和退极化效应。4.总结
如上所述,近年来量子通信由于其安全性引起了研究人员广泛地兴趣,目前在实验领域取得了一系列进展,其中量子态的隐形传输,量子网络等技术正逐步走向实用。正是因为量子拥有广袤的实用前景,各国均在量子通信技术方面加大科研投入。但是在降低单光子源成本、加大通信传输距离、增强检测概率等一些关键性问题上还需要进一步研究。本文主要阐述了空间量子通信技术的产生、基本原理、发展历程和现状,并对空间量子通信技术存在的问题和难点进行了介绍。笔者相信,随着科学技术的发展,量子通信技术实用化、商用化指日可待。
参考文献
[1]阎毅.自由空间量子通信若干问题研究[J].西安电子科技大学,2009.
[2]CZ Peng,T Yang,et al.Experimental free-space distribution of entangled photon pairs over 13km:towards satellite-based global quantum communication[J].PhysicalReviewLetters,2005(94).
[3]金贤敏.远程量子通信的实验研究[J].中国科学技术大学学报,2008.
[4]C.H.Bennett and G.Brassard,in Proc.IEEE Int.Conf.on Computers,Systems and Signal Processing Bangalore,India,pp.175-179.
[5]C.H.Bennett,Quantum cryptography using any two nonorthogonal states.Phys.Rev.Lett.68:3121-3124,1992.
[6]Bostrom K,Felbinger T.Deterministic Secure Direct Communication Using Entanglement[J].Phys Rev Lett,2002,89(18):187-902.
[7]何玲燕,王川.量子通信原理及进展概述[J].中国电子科学研究院学报,2012,7(5):466-471.
[8]Richard J Hughes,Jane E Nordholt et al.Practical Free-Space Quantum Key Distribution over 10km in Daylight and at Night[J].New Journal of Physics,2002(4).
[9]RarityJ G,Gorman P M,et al.Secure Key Exchanger Over 1.9km Free-Space Range Using Quantum Crypto-graphy[J].Electronics Letters,2001,37(8):512-514.
篇5
在信息时代,网络安全是一个严峻的问题。信息安全已经得到了各国政府的高度重视,一方面要保护自己的安全,另一方面要攻击对方,信息保护的升级刻不容缓。
1 现代密码学
现代密码学的基本思想是发送方使用加密算法和密钥,将要保密的信息变成数字发送给接收方。密钥是随机数0、1,将其与要传送的数字明文放在一起,用加密算法把它们变成密文,密文就是传送的信息。接收方使用事先定好的相应的解密算法,反变换将明文提取出。
密码体制分为两类:一类叫对称密钥(非公开密钥),它的加密密钥和解密密钥相同,通信双方需要事先共享相同的密钥,关键在于如何安全地传递密钥。其中有一种一次一密(one time pad)的密码,用与明文等长的二进制密钥与明文异或得密文,并且每个密钥使用一次就销毁,根据香农的证明一次一密是无法破译的。
另一类叫非对称密钥(公开密钥),加密密钥和解密密钥不相同,加密密钥公开,发送者发送密钥与明文混合之后的密文,接受者使用不相同的密钥解出密文。从公开的加密密钥推导出解密密钥需要耗费极巨大的资源,虽然原则上可破解,但实际做不到,所以,在当今社会受到广泛使用。
一旦量子计算机研制成功,它可以更快速的破解数学难题,公开密钥就面临了严峻挑战。
2 量子密码
无论采用哪种方法,都无法避免“截取-重发”的威胁。为了应对强大的量子计算机,需要无条件安全的一次一密的加密方案;但必须解决密钥分配的安全性,可以借助于量子信息作为密钥传输的工具。一次一密不可破译加上密钥传输不可以窃听,从理论上就可以做一个“绝对安全”的量子保密通信。
量子密码是利用信息载体(例如光子等粒子)的量子特性,以量子态作为符号描述的密码,它的安全性是由量子力学的物理原理保障的。
①测量塌缩理论:除非该量子态本身即为测量算符的本征态,否则对量子态进行测量会导致“波包塌缩”,即测量将会改变最初的量子态。②不确定原理:不能同时精准测量两个非对易物理量。③不可克隆原理:无法对一个未知的量子态进行精确的复制。④单个光子不可再分:不存在半个光子。
3 量子通信
量子通信,广义是指量子态从一个地方传送到另一个地方,内容包括量子隐形传态、量子纠缠交换、量子密钥分配;狭义上是指量子密钥分配或基于量子密钥分配的密码通信。本文讲述的是狭义的量子通信。
3.1 单光子的偏振态
本文介绍采用BB84协议实现的量子通信,在发送者和接收者之间用单光子的偏振态作为信息的载体。有两种模式:一个是直线模式,光子偏振态的偏振方向是垂直或者水平,如图1所示;一个是斜线(对角)模式,光子偏振态的偏振方向与垂直线称45 ?觷角,如图2所示。
3.2 基于BB84协议下的“制备-测量”
依照惯例,密码学家称发送者为Alice,接收者为Bob。Alice随机用直线模式或对角模式发出光子,并记录下不同的指向。Bob也随机决定用两种模式之一测量接收到的光子,同时记下采用检偏器的模式和测量结果值。传送结束后,Alice与Bob联络,Bob告诉Alice他分别采用哪种模式测量,然后Alice会告诉Bob哪些模式是错误的,这一过程无须保密。之后他们会删除使用错误模式测量的光子,而正确模式测量出的光子按照统一规定变成0、1码后,就成为量子密钥。
3.3 发生窃听
根据“海森堡测不准原理”,任何测量都无法穷尽量子的所有信息。因此,窃听者想要复制一个完全相同的光子是根本不可能的事情。同时,任何截获或测量量子密钥的操作都会改变量子状态,窃听者只得到无意义的信息,而信息合法接受者也可以从量子态的改变,知道存在窃听者。
密码学家通常称窃听者为Eve,同Bob一样只能随机选择一种测量模式,当她采用错误的测量方式对某一光子测量时,由于波包塌缩,光子的偏振态会改变。比如,Eve使用对角模式测量直线模式下的光子态,光子态会塌缩为对角模式。之后即使Bob选择了正确的测量模式测量该光子,Bob可能会得到不符合编码信息的测量结果,这就产生了误差,具体通信过程如图3所示。
Eve窃听一个光子采用错误测量模式的概率是50%;采用错误模式时,信息可能变成0,也可能变成1,他有25%的概率被发现。但密钥并非一个光子组成,光子数越多被发现的概率就会越高。当误码率低于阈值,就可以称这个密码是安全的;当误码率超过阈值,就称密码被窃听,重新再制备新的密钥,一直检查到密钥在建立过程中没有窃听者存在,接下来进行一次一密的传送。通过这种方式能保证密钥本身安全,并且加密密文不可破译,这就是量子通信的安全性所在。
3.4 量子信道与经典信道
发送方通过量子信道传送量子态光子,接收方用两种不同类型的检偏器测量,检测出0、1组成的量子密钥,还需要一个经典信道。因为是采用一次一密方式,所以经典信道需要定时传送同步信号。
4 量子通信现状
由于量子通信技术的各种优势,国际上的一些国家,特别是美国、日本、欧盟都投入了大量的人力物力,进行量子通信的理论与实验研究。2002年美国BBN公司,哈佛大学和波士顿大学开始联合建造DARPA网络。2010年日本在三个政府机构之间使用量子密钥分配技术,并与2010年10月在东京演示了一个城域量子保密通信网。2010年西班牙马德里建成欧盟第一个城域QKD网络。我国也在量子通信技术的道路上不断发展。2012年“金融信息量子通信验证网”是世界首次利用量子通信网络实现金融信息的传输。2012年党的“十”期间在部分核心部位部署量子通信系统。2013年量子保密通信“京沪干线”正式立项,打造广域量子通信网络。
5 结 语
量子通信还有一些技术难题未攻破,例如信道的干扰,设备的非理想特性,身份验证、密钥存储等技术需要进一步改良等等。虽然理想情况量子密码不可破,但在实际中还有一些漏洞需要考虑。在未来几年,相信我国在中央、地方政府及相关部门大力支持下,通过相关科研团队的努力,量子通信技术会不断完善,量子通信产业也必将取得飞速发展。
篇6
关键词: 单光子计数系统; 信噪比; 噪声; 弱光信号
中图分类号: TN911?34 文献标识码: A 文章编号: 1004?373X(2013)06?0167?04
光子计数技术是检测微弱光信号的一种技术。目前,单光子计数系统在环保检测、生物医学、放射探测、激光测量、化学分析等领域有着广泛的应用。当光功率低于10-14 W,激发出来的光信号将会是离散的光子脉冲。若仅仅用一般的光电探测器几乎无法实现将微弱的光信号探测出来并进行量化处理。此时,用一般的直流测量法,已不能把淹没在噪声里的有用信号有效地提取出来。为了实现精确的检测、提高信号抗干扰能力,需要有从噪声中提取、恢复和增强被测信号的技术[1]。本文用的单光子计数系统可以把淹没在噪声里的微弱光信号提取出来,检测光源(发光二极管)的光子分布。
2 单光子计数系统原理、计数性质
3 单光子计数系统的构成
3.1 光电倍增管PMT
PMT由光阴极、聚焦极、倍增极和阳极构成。性能优良的PMT,光谱响应特性好,时间响应快,光阴极的稳定性好,工作波段内的量子效率高,暗计数低[3]。由于PMT的偏置电压对非线性和信号电流的增益有很大的影响,因此为了使PMT有较好的灵敏度,减少噪声的影响,需要精心选择它的最佳偏置电压。选取依据是PMT的信号计数、暗计数和偏置电压的关系曲线如图4所示,由于信号计数曲线有一平坦的坪区,而暗计数曲线则处于连续上升的趋势,当信号计数曲线开始进入坪区时,信噪比SNR最大,此处的偏压是最佳偏置电压[4]。
3.2 放大器
为实现光子计数功能,双阈值甄别器达到的要求是死区时间短,甄别电平范围灵活可调,输出的脉冲输出幅度、宽度达到后续脉冲计数电路的需要。
3.4 计数器
4.2 背景计数
PMT的光阴极、各倍增极的热电子发射在信号检测中产生在没有入射时的背景计数,即暗计数。暗计数还包括杂散光的计数。面积较小的光阴极管的选择、管子的工作温度的降低以及适当甄别电平的选择,可降低暗计数率到最小,不过对于极微弱的光信号,这种噪声源仍不可忽略。若PMT的第一倍增极增益很高,甄别器已经去除各倍增极和放大器的噪声,则上述信号的噪声成分由于暗计数增加至信噪比为若在光信号累记计数中暗计数保持不变,则从实际计数中扣除它很容易。
4.4 脉冲堆积效应
分辨时间是可以区分两相继发生的事件的最短时间间隔,计数系统的分辨时间主要由PMT的分辨时间和甄别器的死时间决定。PMT的分辨时间通常在10~40 ns之间,在分辨时间内,当相继有两个或者两个以上的光子入射到光阴极,它们的时间间隔小于,PMT只输出一个脉冲,于是单位时间内光电子脉冲的输出计数率比入射到光阴极上的光子数少。与此类似的是,若在死时间内输入脉冲,甄别器输出计数率也会损失。上面这样的现象叫做脉冲堆积效应。若光子计数系统由高速的甄别器、计数器构成,极限光子流量约为109 s-1,因存在脉冲堆积效应,含有多个光子的超短脉冲光的强度光子计数器不能测量。
5 实验结果及数据分析
实验装置光路如图7所示。在测量实验中,计数时间设作500 s,光源(发光二极管)的电流调为最小,测量500次,通过计算机获得采样数据,求出光子数的平均值和方差,同样光子数出现的次数统计出来,除以测量的总次数,算出该光子数的几率,然后以横坐标表示光子数,纵坐标表示光子数几率,做出光子数的分布曲线,与理论的泊松分布曲线进行比较,检查测量数据是否符合理论的泊松分布,判断计数系统的稳定性。
6 结 语
本文介绍了微弱光检测技术,了解了单光子计数系统基本原理、基本实验技术,通过实际的实验,观察和对比发光二极管的实际光子数分布与理论的泊松分布的本质区别,加深了对光子数概率分布规律的理解。
参考文献
[1] 吴丽君.用单光子计数系统检测微弱光信号[J].大学物理实验,2011(3):23?25.
[2] 刘桂芳,熊狂炜,刘文操.单光子计数系统的研究[J].高师理科学刊,2011,31(2):67?70.
[3] 王挺峰.提高PMT光子计数系统探测灵敏度的方法[J].光机电信息,2009,26(3):37?42.
[4] KAWASAKI Y, BERTAINA M E, SAKAKI N, et al. Performance of a multi?anode photomultiplier employing a weak electrostatic focusing system [J]. Nuclear Instruments and Methods in Physics Research Section A, 2006, 564(1): 378?394.
[5] 战琳,王艳芳.单光子实验的测试与研究[J].唐山学院学报,2009,22(3):81?82.
篇7
关键词:科学活动观;结构化学;课程教学
一、问题的提出
“结构化学”是高等院校化学专业的主干基础课程。它从微观视角阐明原子、分子和晶体的结构、性能和应用,主要包括量子力学基本原理及其在原子与分子体系中的应用和原子、分子与晶体结构的实验表征两大部分。后者又可根据被表征物质的形态及理论基础的不同,划分为谱学和晶体学两个不同体系[1]。
由于“结构化学”课程涉及面广、内容抽象、理论性强,要求学生具备较强的空间思维能力,严密的逻辑推理能力和扎实的数理功底;同时由于“结构化学”通常不作为考研基础科目,因此许多教师对教学有效性缺乏足够重视,大量采用灌输式教学或简化教学内容。这样看似在短时间内完成了课程内容的教学,但实际上产生了诸多问题,这些问题恰恰制约着课程目标的达成。
(1)学生难以形成对知识的整体性认识。教师将结构化学知识作为一种结果和定论传授给学生,从表面上看,学生能够机械记忆基本知识,能进行简单的运用和拓展。但由于没有经历和体验知识获得的过程,无法从本质上、整体上理解结构化学的知识体系的来龙去脉、因果关系。
(2)学生关于理论与计算化学的学习和研究能力非常欠缺。由于结构化学涉及许多微观物质的结构和抽象的概念,如果没有科学的方法支撑去解决问题、发现规律,学生难以理解理论与计算化学的核心观念并运用理论与计算化学的核心方法。
(3)学生的情感体验不足。由于结构化学本身具备较高的难度,学生容易产生抵触、焦虑等一系列不良情绪。仅仅将知识作为一种工具和经验传授给学生,他们将无法体验和感受在知识形成中的愉悦感和合作、会话、交流的过程,进而难以得到需要的满足和被尊重、被接纳的情感体验。
基于以上“结构化学”教学的问题,有必要探索、建立新的教学观念以改革“结构化学”课程教学。由于科学知识从本源来讲恰恰是在科学活动中产生的,因此将“结构化学”的教学活动和科学活动做适当的融合,通过深入探索化学科学活动的基本特点和形式,研究科学活动与“结构化学”教学的相互关系,进而探索以科学活动为中心的“结构化学”课程教学途径,不失为一种恰如其分的改革视角。
二、科学活动观——“结构化学”课程教学的新理念
人们对科学本质的认识是一个不断深化的过程。从动态的和生成性的观点看,科学作为“系统化的实证知识”的观点引起了人们高度反思。有人认为科学的本质是获得知识的活动,例如,保加利亚学者T. H. 伏尔科夫曾提到,科学的本质,不在于已经认识的真理,而在于探索真理;科学本身不是知识,而是产生知识的社会活动,是一种科学生产[2]。我国学者刘大椿曾将科学更多地看成是活动的过程,指出科学是人类特有的活动形式,是人类特定的社会活动成果;虽离不开独特的物质手段,但本质上是精神的、智力的活动[3]。这种以动态的角度认识科学本质的思想,能够使人们对科学的理解更加丰富、深刻和全面。
对科学本质的理解,决定着科学教育实践价值取向。以科学活动观指导“结构化学”课程改革,对于提高教学质量,让学生建立自己的“结构化学”乃至整个化学一级学科的知识框架体系,培养学生终身学习、自主学习的能力,引导学生掌握分子模拟研究的初步技能,有着显著的优势。
(1)科学活动观视角下的“结构化学”教学是为科学知识的获得服务的。学生获得的系统性的、基础性的结构化学知识大多是结构化学已有的成果,是科学家多年来积累的理论与计算化学的经验、概念、理论、技能和方法。将知识的获得过程还原于科学活动,符合结构化学教学活动和科学活动在知识形成过程中的本质共同性,有利于学生建立并巩固系统的结构化学知识体系。
(2)科学活动观视角下的“结构化学”教学为学生能力的培养带来了良机。体验结构化学研究过程、掌握结构化学研究方法,对学生走入结构化学研究、形成理论与计算化学的研究能力并进而发展对整个化学一级学科的研究能力都有着重要的意义。学生在以科学活动为背景的学习中感受科学研究的全过程,习得科学研究方法,感受科研的意义和价值,在获得结构化学知识的同时形成与提高科研能力。
(3)科学活动观视角下的“结构化学”教学给予学生体验科研情感的平台。科学活动创造了真实的结构化学科研情境,而科学情感等隐性目标都是在情境中通过感悟获得的。学生在对结构化学问题的研究过程中提高学习兴趣、产生学习热情、发扬团队精神,这就有效解决了因知识灌输式教学而带来的学生情感体验不足的问题。
三、“结构化学”课程教学——“知识学习与能力培养”并重
1.以挑战性问题为学习驱动,构建“结构化学”学习活动
基于挑战性问题的探究式教学方法是为了设计合理的科学活动、有效实施“结构化学”教学而设计的。所谓的挑战性问题是指教师提出的一些与教学内容相关的、具有探索意义和探究价值的问题,供学生小组根据自己的兴趣和思维特点进行选择,以此作为科学活动的一个驱动性引导。在学习过程中,学生通过查找资料、相互讨论、动手实践等多种形式,采用合理的结构化学研究方法对这个问题进行深入研究,完成研究报告。
在“量子力学基本原理及其在平动、振动、转动、原子与分子轨道理论中的应用”模块的教学过程中,教师选择了从简单到复杂的系列自主学习内容,组织学生开展了以挑战性问题为驱动的自主研究性学习。
例如,教师在过去的教学过程中发现,学生对类氢原子结构的球谐波函数和径向波函数的图像理解有难度,不清楚图像的来源和图像节点的性质。为此,教师向学生介绍matlab软件,并提出挑战性问题:如何利用matlab软件编写程序语言作图,帮助理解原子与分子轨道图像。并根据这个问题,分别提出了一套由简入深的系列问题:(1)利用matlab 软件将谐振子振动波函数数字图形化,并与教材上的图形进行对比分析,以此为例说明表层理解信息(naming something)和深层理解信息(knowing something)的区别。(2)利用matlab软件将粒子围绕球面转动的球谐波函数Y及其|Y|2数字图形化。(3)利用matlab软件将类氢原子的径向函数、径向分布函数、原子轨道(径向函数R与球谐函数Y之积)数字图形化并讨论其节点问题。(4)利用matlab软件将氢分子离子的分子轨道(分子轨道理论框架下的单电子波函数近似解)数字图形化并讨论其节点与成键与反键性质。(5)设计一个程序将矩阵对角化,为共轭体系的休克尔经验分子轨道理论的近似解提供一套矩阵算法(HC=SCE在休克尔近似下变为HC=CE),并重点理解分子轨道理论的核心在于变分原理——将不可能完成的精确求解多体薛定谔方程的任务转化为近似求解体系能量函数(尝试波函数的线性组合系数为变量)的条件极值问题。
该系列挑战性问题由若干不同难度的小问题组成,根据学生的认知特点和水平逐渐提高,既防止问题太宽泛而无从下手,又逐渐向学生发出挑战以激发学生求知欲。另外,该问题的解决方法不固定,解答结果也不唯一。它允许学生运用不同的方法来解决问题,并且将分子模拟技术融入理论课程之中,通过体验编写程序的过程,获得结构化学研究的思路,深化对理论知识的理解和掌握。在学习过程中,教师作为学生学习的主导者,对学生学习过程进行观察、把握和调配,当学生学习出现困难时,提供必要的指导和点拨。
学生通过分工合作、查找资料、熟悉软件、编写程序、运行程序、优化程序,逐渐解决了每一个子问题。在这个过程中,学生在原有知识经验基础上主动构建对知识的理解,充分将知识内化为自己的认知。比如对球谐函数图像的认识,不再是机械地“记忆”每一个函数对应的图像,而是充分理解其本质,将原理融入图像的绘制过程,整体把握“数-形”关系,在理解的层面上深刻记忆图像的性质和形状。不仅如此,学生在学习过程中熟悉了结构化学学习与研究的基本方法,充分将结构化学的理论知识与分子模拟实践相结合,体验了以科研的视角去分析问题、解决问题、获得新知的过程。更加难能可贵的是,有学生通过自己绘制一维谐振子振动波函数示意图,发现了教材附图中的一处印刷错误[4]。
科学的发展是建立在继承前人的研究结果,并在科学实践过程中不断地对已有认识形成批判而发展的。例如,原子结构理论模型正是一代又一代科学家在继承、借鉴、批判前人研究成果,并在孜孜不倦地分析与探索过程中逐步建立的。这种科学精神和科学意识的形成必须依赖于科学活动。如果仅仅是读书、聆听教师的讲授,思维往往会被局限,实证意识往往会变得淡漠;相反,学生通过审慎地思考、缜密地分析、严谨的践行,不仅能够让学生认识到科学的学习不能唯书唯上,还需自己亲历躬行。
2.以知识框架图为学习工具,建立“结构化学”学科网络
要具备良好的理论与计算化学的学习与研究能力,必须具备系统化的结构化学基础知识和基本技能,从整体上、宏观上驾驭整个学科体系。学生需要将自己在科学活动中所获得的知识与经验加以总结、提炼与提升,构建自己的知识网络。在以教师讲授为主的“结构化学”教学过程中,这一点做得很不够,不是忽视知识的系统化处理过程,就是将教师自我头脑中已经构建好的体系直接传递给学生,供学生直接借鉴、吸取,而缺乏探索和整理的过程,缺失个性。
在“结构化学”的课程教学过程中,通过学生自主根据自己的知识理解状况绘制知识框架图(Schema),以图形而非文字的形式将结构化学知识加以梳理。在具体的实施过程中,教师要求学生将结构化学知识进行梳理、归类,根据具体的内容绘制相应的知识框架图,不仅仅要全面涵盖该内容内所有的知识点,同时要呈现出各知识点之间的逻辑关系,清晰地表明知识的结构属性和形成方式,使知识逐渐从“点”向“线、面”过渡。学生在绘制知识框架图的时候,不需要根据课本上的章节顺序来设计,也没有固定的思路,更希望学生能够呈现出自己对知识结构的理解。
以量子力学基本原理一章为例,学生绘制了该章的知识框架图,展现出了量子力学基本原理所包括五方面内容。这种教学方式不仅有助于帮助学生梳理结构化学知识的来龙去脉,建立科学的结构化学知识体系,形成全面的关于结构化学基本学科逻辑结构和基本学习与研究思路的认识;更有助于学生反思科学研究活动过程和结果,总结开展科学学习与研究的视角和途径,探索有待进一步学习和研究的盲点和解决策略,最终建立起清晰的化学学科体系框架,并在具体知识基础上形成化学观念。
3.以多种形式呈现学习结果,提升能力同时以评促学
所谓“研而不发则囿”,在科学活动中,通过书面报告(论文)和口头汇报(学术报告)等形式,科学生动地、多样化地展示科学活动成果,是科学工作者必须具备的能力和素质。学生在实践中解决了挑战性问题,绘制了知识框架图之后,需要完成关于学习与研究过程与结果的书面报告,同时在课堂中将自己的学习与研究过程与结果通过口头汇报的形式向教师和同学展示。这样能够让教师了解学生的学习研究过程,让同学学习与借鉴研究方法和研究结果,同时也能够接受教师与同学的批评指正,认识到自己的研究不足之处,为今后开展深入的结构化学学习与研究工作启迪思维、创设条件、打好基础。
利用书面报告和口头汇报等形式表达学习和研究过程与结果,在提高学生的基本科学研究素养的同时,也有助于从过程的角度、从个性化的角度、从个人全面发展的角度来开展并落实过程评价、全员评价,将过程评价与终结性评价相结合。传统的以平时成绩和期末考试成绩为唯一评价指标的评价方式,过多地局限于知识点的掌握,却不能很好地考查学生的个性化学习能力和学习方式,更难以评价学生的科学研究基本素养。利用书面报告和口头汇报则有效地弥补了单一评价方式的不足之处,最终达到以评促学的根本目的。这种以多个评价者从多个角度对学习者进行评价的机制,关注学习者学习过程中所表现出来的各方面能力和素质而并非简单的学习结果,有效促进了学习者学习的积极性,体现了过程评价与终结性评价相结合的现代教育评价理念。
通过“活动-提炼-总结”方式的“结构化学”课程学习,学生能够在科学活动中找到自己的长处,发现自己的潜能,体验到相互合作的乐趣以及自己的想法被他人肯定和接纳时的成功愉悦感。学生在自主学习过程中收获的不仅仅是知识和能力,还有对自我的肯定,对他人的赞许,以及对学习、对科学研究的积极态度。同时,最难能可贵的是学生的学习能力普遍得到了提高,自主学习意识明显增强,为他们今后更好地开展分子模拟研究乃至从事化学理论与实验相结合的研究打下了良好的基础。
参考文献:
[1] 万坚等. “结构化学”课程内容体系与教学方法的研究与实践[A]//大学化学化工基础课程报告论坛论文集[C]. 北京:高等教育出版社,2007:264-267.
[2] 夏禹龙. 科学学基础[M]. 北京:科学出版社,1983:45.
篇8
【关键词】 量子通信 金融信息 接口标准 安全性设计 检测规范
一、概述
金融信息系统的安全稳定依赖于通信网络,而随着技术的不断发展,其所面临的安全风险种类也将更多、范围更大、层次更深入;随着人类计算能力的不断提高,依赖算法复杂性来增加安全等级的传统加密手段,已经逐渐不能抵御日益强大的计算机。因此,迫切需要研究新的安全通信技术,通过技术创新,为构筑高安全等级的新一代金融信息系统通信基础设施提供新思路、新方法。
对于金融系统的客户而言,其交易过程是否安全、其交易结果的数据是否得到高可信度的存储,一直是倍加关注的焦点。对金融系统本身,不管是网络交易、手机交易各种新式交易手段,还是传统的交易所柜台交易,以及对数据存储的要求(冗灾备份),始终表现出对信息安全的高度关注。国际金融行业普遍使用的基于复杂计算问题的加密算法都无法回避算法被破解的隐患。更严重的后果是,己方不知情密码体系遭到破解而仍在使用,所有金融秘密即一览无遗地暴露在对方眼下。
而在目前可实用化保密通信体系中唯有量子保密通信具有严格的安全性证明。量子通信是量子密码术与现代通信技术结合的产物,可实现无条件安全的通信数据传输。1984年,Benett和Brassard 提出了首个量子密钥分发协议(Quantum Key Distribution,QKD),即BB84协议【1】。后来诱骗态方法的提出【2】成功地解决了非理想单光子源存在的问题,很大程度地拓展了量子通信距离。目前实用化QKD系统中,大多采用基于诱骗态方案的BB84协议。
应用量子保密通信原理性技术手段,在物理层上实现金融数据量子加密传输与存储解决方案,作为未来金融与资讯领域的先进通信安全技术手段储备,满足未来金融与资讯领域的通信安全重大需求,具有重要的战略意义。在这个过程中,迫切需要制定量子通信设备在金融信息领域中的相关标准和规范,尤其是接口协议标准、安全性设计标准、产品测试规范等,这是量子通信技术在各个领域中产业化推广的必经之路,是大规模推广量子通信产品的有效途径。本文就将对以上几个研究课题和方向进行初步探讨,旨在启动金融量子设备的相关标准和规范的研究和探讨。
二、量子通信设备管控与密钥接口标准的研究
2.1研究目的
通过量子网络,量子通信设备能够为通信双方安全地分配量子密钥,而目前大部分经典设备依然使用经典密码学算法对通信数据进行加解密处理,因此有被破解和篡改的风险。为了便于量子通信设备与传统设备融合,更好实现管控指令和密钥数据的安全可靠传输,以及在行业内大规模推广,需要制定一个标准的管控与密钥接口。
2.2研究内容
该接口主要实现量子设备与应用设备之间的管控指令和密钥数据交互,主要研究内容包括:
1.研究应用设备向量子设备申请量子密钥的流程,同时充分考虑量子设备与传统密码设备之间的差异,如时延、成码率等;
2.应用设备与量子设备之间接口的密钥传输可靠性研究,充分考虑量子密钥产生的非连续、突发等特性;
3.研究应用设备与量子设备之间的管控方式,结合量子设备的固有特点,比如需要结合量子信道切换等等;
4.研究应用设备对量子设备的异常处理方式,确保接口或设备异常时能够及时上报管控系统并得到相应的处理。
三、量子通信设备安全性设计研究
3.1研究目的
从原理上来说,量子密钥分发不依赖于计算的复杂性来保证通信安全,而是基于量子力学基本原理,从原理上保证了一旦存在窃听就必然被发现。换言之,一旦成功在通信双方建立了密钥,这组密钥就是安全的,而这种密钥从原理上是无法被破解的。量子密码系统的安全性不会受到计算能力和数学水平的不断提高的威胁,从而保证了利用量子密码系统加密的信息不仅在现在是安全的,而且在未来都是安全的。因此,量子保密通信是人类已知唯一的具有长期安全性保障的安全通信解决方案。
然而,对于实际设备,即使严格遵循理论依据进行密钥提取,也需要考虑很多其它因素导致的安全患,比如电磁泄漏、远程侵入、器件不完美等,另外还有很多管理制度方面的安全隐患。
因此,有必要从设计角度对量子通信设备提一些安全性要求,用于指导后续量子设备的设计和开发。
3.2研究内容
这里的安全性设计,重点关注量子通信设备实现的合规性、抗量子攻击、设备软硬件的安全性等,主要研究内容如下:
1.研究对QKD密码协议过程的评测方法,对产品是否遵循量子密钥分发协议进行评估;
2.研究评估量子设备抗量子攻击的方法,提出相关抗量子攻击的评判标准和方式;
3.针对量子设备算法相关的主要过程,如身份认证、隐私放大等,研究评估核心算法安全性的评判标准;
4.分析量子设备在金融信息系统实际应用环境下的可能安全隐患,给出量子设备在软硬件方面的安全性设计要求。
四、量子通信设备环境检测规范的研究
4.1研究目的
作为一款新产品,有必要制定出一套金融领域应用环境下量子设备的入围检测规范和标准,一方面可以提高设备在实际系统运行的可靠性,另一方面,也可以为后续量子通信设备应用于金融系统提供必要的测评依据。
4.2研究内容
这里拟研究的环境检测规范,重点是关注量子设备在实际环境下运行效果。主要研究内容包括:
1.研究如何进行不同长度光缆及其在各种环境下的模型建立;
2.通过分析量子设备在实际电磁环境下的运行情况,给出光量子编码技术在该环境下的可行性或是否可行的检测方法;
3.分析量子设备在不同环境下的关键运行参数,尤其是错误率、成码率等,给出评估设备是否能在实际环境中使用的评测标准;
五、结语
金融信息系统的安全稳定依赖于通信网络,而随着技术的不断发展,其所面临的安全风险种类也将更多、范围更大、层次更深入;因此,迫切需要研究新的安全通信技术,通过技术创新,为构筑高安全等级的新一代金融信息系统通信基础设施提供新思路、新方法。而量子通信技术目前已经由实验室走向应用,从国家安全的角度来看,使用量子通信手段,提高金融信息数据通信网的可靠性、安全性和稳定性,是一个值得研究和发展的方向,两者结合能够有利于金融信息的保密传输。从国内外大趋势来看,光纤量子通信技术已经逐步实用化和产业化,这为量子通信技术融入金融信息系统提供了得天独厚的条件,金融量子通信网络的产业化前景值得期待。
在这一大的背景需求下,本文提出了上述研究和应用方向,旨在启动量子设备的相关标准和规范的研究和探讨。短期内,可以为量子设备在金融信息领域的应用示范提供设计依据;中长期来看,可以此为契机逐步制定和推广行业标准甚至国家标准,让更多的企业和科研院所参与到量子通信产业化中来,为最终实现金融信息系统量子安全通信网络奠定基础。
参 考 文 献
篇9
[关键词]计算材料学;综合教学;课程起源
[中图分类号] G40-011 [文献标识码] A [文章编号] 2095-3437(2016)08-0155-02
一、前言
计算材料学是一门正快速发展的材料科学与计算机科学交叉的新兴学科,它能够利用相应计算方法对材料的组成、结构、性能进行设计与模拟;广泛涉及材料、物理、计算机、数学、化学等多门学科。[1]可以说,计算材料学是材料学理论和实验的桥梁连接。[2]学习计算材料学能让学生进行模拟实验,使学生养成在制备材料前从理论上设计新材料并预测其性质的良好思路。
作为材料类专业的重要课程,我们在教学过程中存在着不少的问题:1.具有计算材料学研究背景的师资力量欠缺;2.授课方法单一、枯燥,课堂效果不好;3.实践条件的欠缺很难保证教学效果。为了提高计算材料学课程的教学质量,使学生更好地掌握材料设计和性能预测的基本能力,我们结合存在的问题和教学改革的实践,对计算材料学的课程教学提出一些改革方法。
二、了解起源,培养兴趣
计算材料学是一门十分抽象、理论性极强的课程,书中理论众多并伴随着数不清的陌生的符号、公式和注释,这往往让学生在学习过程中望而却步。传统的计算材料学教学通常是让学生在课后反复操练习题,以至可以灵活应用这些公式定律来解题。结果不言而喻,学生往往知其然,而不知其所以然,很难提起学习的兴趣。因此,授之以鱼,还得授之以渔,在教学过程中追本溯源,将理论的来龙去脉讲述清楚,教给学生创造的思维和方法显得更为重要。
计算材料学不仅蕴含着复杂的变量、方程和实验方法等知识,而且还充满了疑问,这些疑问把学生带入充满曲折的探索之旅。所以,在计算材料教学中将课程重点和难点融为一体,可以在不知不觉中起到“润物细无声”的独特效果。
计算材料学课程教改的目标是转变教学理念,让学生懂得计算模拟的起源、材料计算设计的基本方法和基本内容以及与之相关的计算材料的前沿知识,引入与之相关的计算模拟案例介绍,从而使其具有一定的理论素养,培养其科学的态度、方法和精神。
三、引入抛锚式教学模式,提高课堂质量
抛锚式教学也称实例式教学,是由美国温特贝尔特大学匹波迪教育学院开发的一种教学模式。其要求学生在某种类型个案的实际环境中去感受和体验问题,而不是听经验的间接介绍和讲解。真实的感受案例或情境,可以激发学生兴趣,引导学生观察和思考,形成一种探索与研究的习惯。
根据课程的特点,适当选择讲述一些有关课程的起源与发展的案例,使其自然地融入课堂。再结合教材内容“见缝插针”,让学生理解重要定理、公式是怎么来的,为什么要这么命名,相关定理、公式背后都有哪些有趣、有意义的故事,使学生产生一种情景记忆,而不是死记硬背,从而引导学生对知识点进行深入的学习和挖掘。
以本课程中的量子力学基础为例,详细介绍量子力学的发展历程可以让学生更好地理解量子力学的基本意义和它对于学好计算材料学的重要作用。如利用信息技术创设一个量子力学发展历程的故事或一段经历,用一根主线将求解量子力学波函数问题融入情境故事或经历中,使学生趟着主线求解复杂的问题。见表1:[3] [4]
围绕相关原理、公式如不确定性原理、薛定谔方程等,开发可共享的经验,展开教学活动,使学生掌握态矢量、波粒二象性和量子测量等概念知识,老师在学生获得概念知识的初始阶段需要提供较多的指导。创造机会使学生拥有更多的自进行独立探究或小组探究,围绕求解薛定谔方程所做的近似求解思想和方法,查找或探究相关的隐藏或缺失的信息。
运用知识作为问题求解的工具。学生运用相关定理、公式中隐含的信息或线索,积极制订解决问题的计划。为此,学生需要先探究一些问题,以确定辅助解决整个问题的补充信息。教师们应该根据实际情况,将计算材料软件如CASTEP、VASP和Abinit等引入教学中,使学生有接触解决实际问题的工具的机会。同时,教师们更需要了解学生的理解能力、决策能力和推理能力,从而更好地为学生的问题求解提供“脚手架”。
制订一套整合相关原理、公式的教学方案。引导学生们阅读更多学科知识的内容,共同探究相关的故事,使学生们沉浸在相关的模拟情境中,从而加深对概念知识的理解并整合不同学生的概念知识,在潜移默化中培养学生的知识迁移能力。
共同分享所学内容。学生们将他们对相关原理、公式问题和拓展性问题探究结果呈现出来,从不同角度探讨解决综合问题的策略,深层次地理解学习内容,从而为学习共同体作出贡献。[4]
四、以史为鉴,培养科学精神
科学精神包括探索精神、求真精神、民主精神、实践精神和怀疑批判精神等等。中国的应试教育使得广大学生太相信书本和教师,摧残了学生批判性思维能力,因此在教学中可结合一些计算材料学的历史,加强学生批判思维能力的培养。
例如,在计算材料学课堂中引入爱因斯坦对薛定谔、德布罗意等的观点提出质疑的案例。[5]
爱因斯坦在1924年对泡利反对连续区理论的观点上发表示了“完全的因果性”的看法,针对玻尔关于辐射的波动在本质上是几率波的假设而评论:“玻尔关于辐射的意见是很有趣的。但是,我决不愿意被迫放弃严格的因果性,将对它进行更强有力的保卫。我觉得完全不能容忍这样的想法,即认为电子受到辐射的照射,不仅它的跳跃时刻,而且它的方向都由它自己的自由意志去选择。”
爱因斯坦对“量子力学仅可建立在可观察量的基础上”这一观点也提出异议。1926年春天,他在海森堡的一次谈话中,提出了“是理论决定我们能够观察到的东西”的观点。
通过学习计算材科料学史,可以引导学生去发现和认识公式、方程的产生。如引导学生思考:从薛定谔方程产生到解决过程中真正创造了些什么?哪些思想、方法代表着薛定谔方程相对于以往的实质进步?科学工作者在求解薛定谔方程遇到瓶颈时,成功创造了近似求解的方法,这种方法可以从微扰理论到变分理论再到密度泛函理论,这不仅体现了量子力学理论的一大进步,更体现科学工作者对寻求真理的孜孜不倦的精神。[6]通过对计算材料科学史的学习,可以锻炼学生的创造性思维,同时学习薛定谔为追求真理,而百折不挠、义无反顾、献身科学的精神,感受薛定谔治学严谨、刚正真诚、淡泊名利的风范和人格魅力。
五、结论
计算材料学作为一门新兴科学,是材料类专业人才培养中的重要基础课程。然而在教学过程中由于师资力量薄弱、教学方法单一、研究对象复杂、实践条件有限等问题,使学生的学习兴趣低下、教学效果不明显。我们在教学过程中应运用科学发展过程中蕴藏的丰富的教育资源,通过讲授学科起源、发展以及应用的案例,使学生了解知识的形成过程,同时引入抛锚式教学模式将一个个真实生动的科学形象,融入日常课堂教学之中,从而提高课堂教学质量。同时,应有意识地加强计算材料学发展史的讲授,使知识、原理和规律变得生动而鲜活,更使学生的科学思想、科研方法、科学精神、科学态度和科学素养等得到熏陶和培养。
[ 注 释 ]
[1] 张跃,谷景华,尚家香.计算材料学基础[M].北京:航空航天大学出版社,2007.
[2] (德)D・罗伯,项金钟,吴兴惠.计算材料学[M].北京:化学工业出版社,2002.
[3] 许良英.爱因斯坦文集[M].北京:商务印书馆,1977(1).
[4] (美)J・梅拉H・雷琴堡.量子理论的历史发展[M].北京:科学出版社,1990.
篇10
关键词 物理专业 物理师范专业 课程体系
中图分类号:G649.1 文献标识码:A DOI:10.16400/ki.kjdks.2016.10.003
Abstract The curriculum system of physics department and physics teacher education of Baylor University are introduced in detail. It is easy to see that the undergraduate enrollment of physics majors is a little less that is similar to our country. And the undergraduate majors of Baylor physics department are more reasonable, the degrees are more selectable. Their curriculum system is broad and profound, emphasizing of interdisciplinary development. The physics teacher education is separate from physics department, and is undertaken by the school of education, emphasizing interdisciplinary studies and teaching practice. Other mountain's stone can carve jade. These things are definitely meaningful for the transformation development of physics department in our local college.
Keywords physics; physics teacher education; curriculum system
美国贝勒大学位于德克萨斯州韦科市,是一所私立的基督教会大学。1845年2月,德克萨斯基督教育协会发起创办,德克萨斯共和国总统安森・琼斯签署国会行动令,命名为贝勒大学贝勒大学是一所综合性大学,设有文理学院、教育学院、商学院等12个教学学院,共有160个专业,在校学生16000多人。每个学院的教学系数目不同,其中物理系所在的文理学院有25个系,物理师范专业所在的教育学院,却只3个系。
贝勒物理系有教师21人,其中教授6人,副教授7人,助理教授2人,高级讲师3人,讲师3人,博士19人,硕士2人。实行教授预聘制度,即对新进教师实行5年试用期,试用期满考核决定去留。考核合格即进入终身教职行列。对任课教师的考评,主要通过系学术委员会对每位教师从教学、科研、社区服务三个方面进行考核。下面为物理系历年在校本科生人数(大一到大四年级人数合计):2015,60人;2014,53人;2013,61人;2012,45人;2011,41人;2010,41人;2009,40人;2008,39人;2007,33人;2006,24人。可以看出,每一届平均招生10.9人。实际毕业的人数还会减少,因为转专业或被开除,例如,2013年毕业本科生5人,2015年毕业本科生8人。与数学系和化学系人数相比,是最少的,可见,学习的难易程度和工作机会的优劣决定了物理系学生人数少是国际上的普遍现象。
贝勒物理系只3个与物理有关专业:物理学、天文学和天体物理学。可授予8个学士学位:物理理学学士、物理理学学士(计算科学)、物理理学学士(医疗保健预科)、物理文科学士、天文理学学士、天文文科学士、天体物理理学学士和天体物理文科学士。物理师范专业包括中小学科学教师专业和中学高年级物理科学教师专业,授予理学教育学士学位。
1 贝勒物理系的课程体系
贝勒的物理学、天文学和天体物理学的文科学位提供相应领域内核心课程的传统人文科学教育。物理学、天文学和天体物理学的理学学位提供该领域内全面综合课程的学习,为后续的研究生学习做准备,或者为技术、医药、教育、法律、经济、工业和其它职业做准备。鼓励跨学科学习,尤其是与计算物理或医疗保健预科相关的物理课程。
其课程体系分为主修课程、第二主修课程和副修课程三类以及四个层次。主修课程是获得相应学位时所要求的。第二主修课程和副修课程是供其它专业学生选修,其中修完第二主修课程后,会在他的学位证书上注明其第二专业是什么。副修课程的数量及要求都最低。
1.1 物理系开设的课程体系
1.1.1 1000层次
PHY 1404 光视学:有关光、光学、摄影、视觉、颜色和其它视现象的物理概念。
PHY 1405 文科普通物理:物理概念和历史发展以及专题选讲。
PHY 1407 声音和声学:有关声音、声音产生和声源性质的物理。介绍用于记录、产生和分析声音的一些仪器设备以及学习一些建筑声学知识。
PHY 1408 自然和行为科学I的普通物理:有关力学、热学和声学的一些基本知识,强调相关的物理概念、问题解决、符号和单位的学习。
PHY 1409自然和行为科学II的普通物理:有关电、磁、光以及现代物理的一些基本知识,强调相关的物理概念、问题解决、符号和单位的学习。
PHY 1420 普通物理I:有关力学、波动、声学、热学的基本原理和应用。
PHY 1430 普通物理II:有关电、磁、光和现代物理的基本原理和应用。
PHY 1455 描述天文学:天文学及其和人类发展的关系,强调太阳系、行星、小行星、流星、彗星等。
PHY 1V95 物理的独立学习:在老师的辅导下的独立学习。
1.1.2 2000层次
PHY 2135 基本电学实验:电路和电子的原理和应用。
PHY 2190 物理研究介绍:为本科研究做准备。包括研究技术、选导师和完成研究计划书。
PHY 2350 现代物理:包括狭义相对论、量子力学引论、原子分子结构、核物理和粒子物理等。
PHY 2360 数学物理和计算物理:包括矩阵、矢量、坐标变换、数值计算、混沌分形微分方程特殊函数等。
PHY 2455 基本天文学:现代天文学的数学和物理基础,强调其技术、历史以及目前宇宙的演化图。
1.1.3 3000层次
PHY 3175 介质物理实验I:实验计划、数据分析和误差分析。密立根油滴实验、法拉第常数测定、汽泡室摄影测量、盖革计数、半衰期测定等。
PHY 3176 介质物理实验II:强调核计数及测量。
PHY 3305 发明和技术历史包括科学家的传记。
PHY 3320 经典介质力学:包括矢量、线性变换、单个粒子牛顿力学、线性和非线性振动、Euler方程、拉格朗日和哈密顿动力学、共点力以及轨道运动等。
PHY 3330 介质电磁学:包括静电、拉普拉斯方程、镜像法、多极子展开、静磁和麦克斯韦方程。
PHY 3350 天文主题:天文和天体物理中当前的研究主题。
PHY 3372 量子力学概论I:量子力学假定、希尔伯特空间算符、叠加原理、可观测量、演化、守恒律、一维有界和无界态、WKB近似以及固体导电理论。
PHY 3373 量子力学概论II:三维问题、微扰理论、幺正理论、量子统计、原子光谱、固体原子核基本粒子物理介绍。
PHY 3455 观测天文学:天文观测基本手段,寻找和鉴别天体。
PHY 3V95 物理本科研究。
1.1.4 4000层次
PHY 4001 毕业考试:由系部组织,类似于GRE专业考试。PHY 4150 天文观测概论。
PHY 4190 物理研究结果。PHY 4322 经典物理的现代主题:包括粒子系统动力学、刚体运动、耦合振动、一维波动方程、规范变换、导体和绝缘体中的电磁波、色散、多极辐射、Linard-Wiechert势、相对论性电动力学等。
PHY 4340 热力学统计物理:概率、宏观热力学、统计热力学、热动力学、量子统计。
PHY 4350 星系结构和演化概论:星和星系包括黑洞、矮星、中子星的定量研究。
PHY 4351 现代宇宙概论:可观测宇宙、牛顿引力、相对论宇宙模型、宇宙热历史等。
PHY 4360 计算物理模型:应用当代计算机解决物理和工程问题的若干模型。
PHY 4372 固体物理概论。PHY 4373 粒子、核物理概论。
PHY 4374 相对论性量子力学。
1.2 物理系学生选修其它系的课程
1.2.1 数学课程
MTH 1321 微积分I:单变量微分、定积分和微积分理论。
MTH 1322 微积分II:单变量积分、微分方程、斜率场和级数。
MTH 2311 线性代数:矢量、矩阵算子、线性变换、矢量空间特点、线性系统、本征值和本征矢。MTH 2321 微积分III:多变量微分积分,格林函数。
MTH 3325 常微分方程:一阶常微分方程、二阶高阶线性方程、级数方法、拉普拉斯变换等。
MTH 3326 偏微分方程:物理偏微分方程、分离变量法、傅里叶级数、边值问题、傅里叶积分。
1.2.2 计算科学课程
CSI 1430 计算科学I。CSI 1440 计算科学II。CSI 2334 计算系统概论。CSI 2350 离散结构。
CSI 3324 数值方法。
1.2.3 生物课程
BIO 1105、1106现代生物科学概念(实验)。BIO 1305、1306 现代生物科学概念。
1.2.4 化学课程
CHE 1301 现代化学基本概念I。CHE 1302现代化学基本概念II。CHE 1316 实验测量技术。
CHE 3331 生物化学I。CHE 3332 生物化学II。CHE 3238 生物化学实验。
1.2.5 宗教课程
REL 1310 基督教圣经。REL 1350 基督教传统。
1.2.6 英语课程
ENG 1302 英语思维和写作。ENG 1304 英语思维写作和研究。ENG 2304 美国文学。
ENG 3330 英语写作技巧。
1.2.7 政治科学课程
PSC 2302 美国宪法发展。
1.3 物理系各专业的第二主修课程和副修课程
1.3.1 物理学第二主修课程
PHY 1420、1430、2135、2350、2360、3320、3330、3372、3373、4322、4340、4001;PHY 4000层次任3学分;MTH 1321、1322、2311、2321、3325、3326。
1.3.2 物理学副修课程
PHY 1420、1430、2350;3000或4000层次任分。
1.3.3 天文学第二主修课程
PHY 1420、1430、2350、2360、2455、3320、3350、3455、4150、4350、4351、4001;MTH 1321、1322、2311、2321、3325、3326。
1.3.4 天文学副修课程
PHY 1420、1430、2455、3350、3455;其它PHY 3000或4000任3学分。
1.3.5 天体物理学第二主修课程:
PHY 1420、1430、2350、2360、2455、3320、3350、3455、3372、4340、4001;PHY4350、4351中任一门;MTH 1321、1322、2311、2321、3325、3326。
1.3.6 天体物理学副修课程
PHY 1420、1430、2455;PHY 3350、4350、4351中任两门;其它PHY3000或4000任3学分。
1.4 物理系各学位的主修课程
每个学位修满至少124学分,其中3000/4000层次36学分。从以下课程计划可以看出,一是课程面宽广,有一定深度;二是强调跨学科学习,强调学科交叉。
1.4.1 物理理学学位主修课程
PHY 1420、1430、2135、2190、2350、2360、3175、3176、3320、3330、3372、3373、4190、4322、4340、4001;PHY 4372、4373、4374中任两门;CHE任3学分、CSI 任3学分、REL 1310、1350、ENG 3330、PSC 2302、MTH 1321、1322、2311、2321、3325、3326。
1.4.2 物理理学学位主修课程(计算物理)
PHY 1420、1430、2135、2190、2350、2360、3175、3320、3330、3372、3373、4190、4340、4360、4001;CSI 1430、1440、2334、2350、3324、REL 1310、1350、ENG 3330、PSC 2302;MTH 1321、1322、2311、2321、3325、3326。
1.4.3 物理理学学位主修课程(医疗保健预科)
PHY 1420、1430、2135、2190、2350、2360、3175、3320、3330、3372、3373、4190、4340、4001;BIO 1305-1105、1306-1106、3000或4000层次任6学分、CSI任3学分、REL 1310、1350、ENG 3330、PSC 2302; MTH 1321、1322、2311、2321、3325、3326。
1.4.4 物理文科学位主修课程
PHY 1420、1430、2135、2350、2360、3175、3176、3320、3330、3372、4001;PHY 3373、4322、4340、4360、4372、4373、4374中任两门;CHE任3学分、CSI任3学分、REL 1310、1350、ENG 3330、PSC 2302、MTH 1321、1322、2311、2321、3325、3326。
1.4.5 天文理学学位主修课程
PHY 1420、1430、2190、2350、2360、2455、3320、3350、3455、4150、4190、4350、4351、4001;其它PHY 3000或4000任6学分;CSI任3学分、CHE任3学分、REL 1310、1350、ENG 3330、PSC 2302、MTH 1321、1322、2311、2321、3325、3326。
1.4.6 天文文科学位主修课程
PHY 1420、1430、2350、2360、2455、3320、3350、3455、4150、4350、4351、4001;CSI任3学分、CHE任3学分、REL 1310、1350、ENG 3330、PSC 2302、MTH 1321、1322、2311、2321、3325、3326。
1.4.7 天体物理理学学位主修课程
PHY 1420、1430、2190、2350、2360、2455、3320、3330、3350、3372、3373、4190、4340、4350、4351、4001;其它PHY 4000任3学分;CSI任3学分、CHE任3学分、REL 1310、1350、ENG 3330、PSC 2302、MTH 1321、1322、2311、2321、3325、3326。
1.4.8 天体物理文科学位主修课程
PHY 1420、1430、2350、2360、2455、3320、3350、3455、4150、4350、4351、4001;CSI任3学分、CHE任3学分、REL 1310、1350、ENG 3330、PSC 2302、MTH 1321、1322、2311、2321、3325、3326。
2 贝勒物理师范课程体系
贝勒基础物理师资培养脱离了物理系,由教育学院承担(但基础数学师资培养仍然在数学系,而化学系没有师范教育)。这样利于突出师范培训,增强毕业生的师范技能。美国的小学为1-6年级、中学7-12年级。下面的中小学指4-8年级,中学高年级指9-12年级。
2.1 教师教育课程
TED 1112 教育技术试验 I,达到德州教育委员会的认证要求。TED 2112教育技术试验 II。
TED 1312 教学导论 I:学习教学策略并应用于教学实践。TED 2330 中小学教学:中小学教师的职责作用及实践。TED 2340 中学高年级教师的职责作用及实践。TED 3340 中学高年级教学助理I:中学100小时的教学实习以及讨论会。TED 3341中学高年级教学助理II。
TED 3630 中小学教学助理I:中小学100小时的教学实习。TED 3631中小学教学助理II。
EDP 3650 优等生教学助理I。TED 3651 优等生教学助理II。TED 4312 英语第二语言教学方法。TED 4630 中小学教育实习I。
TED 4631 中小学教育实习II。TED 4632 中小学教育实习III。TED 4633 中小学教育实习IV。TED 4640 中学高年级教育实习I。TED 4641 中学高年级教育实习II。TED 4642 中学高年级教育实习III。TED 4643 中学高年级教育实习IV。EDP 4650 优等生教育实习I。EDP 4651 优等生教育实习II。
2.2 中小学科学教师专业课程
大一课程:ENG 1302、1304;REL 1310、1350;GEO 1408 地球科学;TED 1312、1112;LF 1134 体适能理论与实践;美术3学分;MTH 1320 微积分初步;HED 1145 健康与人类行为。
大二课程:TED 2330、2112、2381;BIO 1305、1105、1306、1106 现代生物科学概念及试验;GEO 地质学;STA 1380 统计初步;HIS 2365 美国历史;PSC 2302;LF 终身健康。
大三课程:TED 3630、3380、3631;CHE 1301 现代化学基本概念I;CHE 1101 普通化学实验I;PHY 1408、1409;CHE 1302 现代化学基本概念II;CHE 1102 普通化学实验II。
大四课程:TED 4630、4631、4325、4632、4633。
2.3 中学高年级物理科学教师专业课程
大一课程:ENG 1302、1304;REL 1310、1350;GEO 1408 地球科学;TED 1312、1112; LF 1134 体适能理论与实践;美术3学分;MTH 1321 微积分I;MTH 1322 微积分II;HED 1145 健康与人类行为。
大二课程:TED 2340、2112、2381;CHE 1301 现代化学基本概念I;CHE 1101 普通化学实验I;CHE 1302 现代化学基本概念II;CHE 1102 普通化学实验II;PHY 1420、1430;STA 1380 统计初步;HIS 2365 美国历史;PSC 2302;LF 终身健康。
大三课程:TED 3340、3341;TED 3387 中学高年级科学课程实习;TED 3380 教育中的社会问题;PHY 2000层次任一门;CHE 3331 有机化学I;CHE 3332 有机化学II;CHE 3238 有机化学实验。
大四课程:TED 4640、4641、4325、4642、4643。
可以看出,美国对中学物理教师的要求是数理化生地五门通修,没有专门的化学、地理、生物教师培养。注重教师职业道德和职业技能训练。
参考文献
[1] 丁持坤,肖月华.大众化高等教育时代地方院校物理学专业面临的办学危机与对策探索[J].湖南人文科技学院学报,2014.136(1):107-110.
[2] 王杰.访贝勒大学物理系简介[J].云南名族学院学报,1998.7(2):61-62.