简述有限元法的基本原理范文

时间:2023-11-14 17:40:54

导语:如何才能写好一篇简述有限元法的基本原理,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

简述有限元法的基本原理

篇1

【关键词】神经网络;塑性加工

1.引言

神经网络技术属于人工智能领域,最早在上世纪五十年代开始出现一些相关理论性的研究,由于受到当时软、硬件环境的约束,因此该技术的发展一直处于停滞状态,直到九十年代才得到足够的重视,并由于其在控制过程中独特的优势而受到广泛的关注和青睐,成为最热门的研究领域之一。人工神经网络的特点主要有大规模并行计算能力突出、数据存储的分布性好、超强的自学习和自适应能力等,甚至基于神经网络衍伸出的一些优化算法还可以具备相当程度的联想、识别和记忆功能,这大大强化了神经网络的适用范围。目前该技术已广泛的应用在生产控制、模式识别、网络控制、信号处理、医学工程以及其他需要智能优化处理服务的自动化控制场合。

2.人工神经网络概述

人工神经网络技术模拟人脑中由大量的神经元连接组成的复杂网络,在求解过程中充分的调动神经元之间的相互作用,从而实现对数据的感知、记忆和处理功能。虽然神经元个体相对简单且功能有限,但通过大量不同神经元的组合,便可使生成的网络系统具有多样化的功能。在人工神经网络中,神经元由三部分构成,分别是包含网络中每条连接权值的权集;用以存储某条组合连接中各个单位连接权值之和的求和单元;对加权和进行非线性映射并约束其强度的非线性激励函数。由这三部分组成的单个神经元可与其他多个神经元相连接,组成各种类型的神经网络。

神经网络的另一个优势在于其独特的分布式数据存储方式上,由于将采集到的大量数据分布存储在各个神经元之间的连接强度上,可大大增强数据的生存性和安全性,即使出现了局部数据的损毁,也不会对最终的计算结果造成太大的影响。从计算机技术方面分析,神经网络中的神经元实质上是一个非线性运算器,可同时接受多路输入数据参与运算,而计算结果则是唯一的单个输出。从数学建模的角度来看,通常使用三个函数来描述神经网络,分别是阶跃函数、分段线性函数和Sigmoid函数,如下所示:

在塑性加工领域,应用最多的是前馈型神经网络,在该类神经网络中,包括输入层、隐层和输出层三层结构。在这三层之间,内部节点相互独立,减少干扰,其实现的输入和输出之间的关联受到多种因素的影响,如节点数、层数、连接权值等等,若要实现该网络输出尽可能的逼近预设值,就必须采用误差函数来对各个连接强度进行动态调整,最常使用的是二乘误差,如下所示:

3.人工神经网络在塑性加工中的应用分析

3.1 工艺设计专家系统

工艺设计是塑性加工工序的开始,通过科学的工艺设计,可以将整个加工流程进行合理的安排,预设合适的参数组合,以使得生产出的产品合乎标准,在这一阶段,首先要完成的就是大量资料的收集,随后是数据提炼,计算量相当庞大。而利用人工神经网络来建立专家系统时可以实现大规模的数据并行处理,且不需要循序渐进的推理,直接通过大量的训练来得到最优的解集,这是其他智能算法所不具备的突出优势。而且在神经网络中,推理过程和计算过程是同步完成的,且相关信息分布存储在网络节点间的连接强度上,通过对样本不断的学习和更新来完成对存储知识的不断优化。

3.2 无损探伤及缺陷预测

在超声探伤、磁粉探伤等无损探伤中,由于得到的信息较为有限,因此传统的监测系统很难准确判断构件内部缺陷的具体情况,更谈不上精确定位了,且这种困难随着北侧物件体积的增大而直线上升。而神经网络所具有的非线性识别及映射能力则能很好的解决这一问题,通过反复的训练优化,最终定位出最有可能的缺陷位置和缺陷尺寸。若某平板内具有圆形缺陷,可先用有限元法模拟在一定载荷下圆孔的位置、尺寸变化对某些点的位移、应变的影响,将所得到的数据用来训练神经网络。一旦训练成功,就可以利用它确定同类试件内部的缺陷及其尺寸位置。

3.3 预测材料性能及参数识别

在塑性加工理论研究中,材料塑性变形行为的表述能否准确反映材料在外载作用下的响应,直接影响到理论结果的准确性。在利用传统方法建立本构模型时要引入许多假定的前提条件,还要通过大量的实践经验和实验验证来选择合适的参数组合,通过在不同环境下的仿真实验,并对结果进行对比分析,不断修正乃至最终确定本构模型,这一过程显然占用了过多的时间和资源。而利用神经网络却可以实现应力―应变的直接映射,直接从实验数据“学习”应力―应变关系,从而避免了大量的数学推导过程和验证―修改的不断反复过程。网络实现对应力―应变关系模拟就是在“训练”过程中不断改变自身各神经元间的连接强度,训练完成后,网络将应力―应变关系(某种材料)“记忆”在其连接强度上即可。

4.结束语

虽然神经网络已经被广泛的应用到各种工业控制场合并表现出强大的学习和自适应能力,但其算法的收敛性和鲁棒性仍有待加强,相信人工智能领域的不断突破,人工神经网络比价发挥出更大的作用。

参考文献

[1]时慧焯.基于人工神经网络的注塑成型翘曲优化方法[D].大连:大连理工大学,2012

[2]付子义.基于BP神经网络优化的PID控制器研究[J].软件导刊,2015,(12):45-48