纳米技术在生物医学的应用范文

时间:2023-11-10 18:14:50

导语:如何才能写好一篇纳米技术在生物医学的应用,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

纳米技术在生物医学的应用

篇1

1.纳米材料的特性

当一种物质被不断切割至一定程度,其粒子小至纳米量级,即为纳米材料。科学家发现纳米材料有许多鲜为人知的性质,比如体积效应、表面效应、量子尺寸效应、宏观量子隧道效应和介电限效应等。而出现许多特性:光学性质、催化性质、化学反应性质、硬度高、可塑性强、高比热和热膨胀、高导电率和扩散性、高磁化率和高矫顽力等。正由于纳米材料具有诸如上述的性质,为生物医学、药学等许多领域带来新的生机。

2.纳米技术在生物医学中的应用

2.1生物兼容性物质的开发

在生物医学中应用纳米技术,可以使得材料生物的相容性得到最大限度的提升,同时还能够降低生物的毒性、增强生物的传导性从而使得材料生物可以最大限度的满足生物组织的需求,达到生物组织规定的标准。纳米技术应用到生物医学中,衍生出各种纳米材料,如纳米无机金属生物材料,这种材料不具有毒副作用,其与人体的组织具有相容性,有利于人体相关组织的生长。同时纳米具有较强的生物活性,能够对人体的血液进行有效的净化处理,将人体中的有毒物质排出人体的体外,从而使得人体的抵抗力得到进一步的提升,降低人体患病的可能性。

另外,相关的生物医学研究学者利用纳米技术已经研制出一种新型的骨骼亚结构纳米材料,这种材料在实际的临床应用中应用较为广泛,现如今已经成功的取代了原有的合金材料,并且其他成功研制的纳米材料也在临床中得到了应用,可以说,在生物医学领域中,纳米技术无处不在。

2.2 DNA纳米技术

DNA纳米技术主要是依据DNA的理化性质来实现对纳米技术的合理设计和应用,这种DNA纳米技术在实际的应用中,主要是用来实现对分子的组装,在对DNA进行复制的过程中,也能够应用这种技术实现对碱基各种特性的体现,同时也能够使得遗传信息的多样性得到最大限度的体现,在纳米技术进行设计的过程中,所遵循的原理也包括这几方面的特性和内容。

3.纳米技术在药学领域中的应用

3.1纳米控释系统改善药动学性质

将药物制成纳米制剂后,不但达到缓控释效果,而且改变其药物动力学的特性。比如有人以环抱素A为模型药物,以硬脂酸制备了纳米球以市售CYA微乳型口服液为对照,测得口服CYA-SA-NP在大鼠体内相对利用度接近80%,达峰时间推迟,具有明显效果。还有人以链脉霉素糖尿病大鼠为模型,皮下注射胰岛素纳米囊实验,其结果降糖作用持续3天,且在药物吸收相具有明显的量效关系。本品3天一次与一天3次的常规胰岛素疗效相当。

3.2纳米释药系统增强药物靶向性

纳米材料生物相容性好,采用可生物降解的高分子材料作药物载体制成纳米释药系统,可增强抗肿瘤药物靶向性,就相关的阿霉素免疫磁性毫微粒的体内磁靶向定位研究可以了解到,AIMN具有超顺磁特性,在给药部位近端和远端磁区均能产生放射性富集,富集强度为给药量的60%-65%,同时其在脏器的分布显著减少,从而证实了AIMN具有较强的磁靶向定位功能,为靶向治疗肿瘤奠定了结实的基础。

3.3纳米技术在药理学研究上的应用

在药理学研究上,人们可以利用尖端直径小到可以插入活细胞内而又不严重干扰细胞正常生理过程的超微化传感器或纳米传感器用以获得活细胞内大量的动态信息,反映出机体的功能状态并深化对生理及病理过程的理解,为药理学研究提供精确的细胞水平模型。

4.展望

纳米技术属于一种新型的学科技术,在未来的社会发展中,这种技术将会对生物医学以及药学领域带来更为积极的影响,在未来的社会中,这种技术的应用会使得生物医药与药学领域之间的联系性得到进一步的加强,就这方面来说,这项技术在生物医学以及药学领域中的应用主要包括以下几个方面:

(1)在未来的生物医学以及药学领域中,对于分子的研究会更加的深入,而其对于分子的要求也会进一步的提升,而纳米技术的应用就会进一步的提高分子之间相互的作用效果,从而实现对分子的有效组装,而且其在未来的社会发展中,主要的应用方向会是细胞器结构细节以及自身装配机理上等方面。

(2)随着纳米技术的深入发展,这种技术在应用于生物医学以及药学领域中后,会使得诊断以及检测技术的水平更上一层楼,同时这种技术的应用也会在微观上以及微量上实现有效的应用,并且在未来的发展中,这种技术也会逐渐向着功能性以及智能化的方向发展,以实现生物医学以及药学领域各项技术功能水平的提升,还会使得生物医学以及药学领域在管理上实现智能化和数字化,从而对生物医学以及药学领域的发展形成有效的推动作用。

(3)纳米技术在未来的生物医学中以及药学领域中会实现靶向性的转变,纳米技术会将药物的作用进行有效的转向处理,在一定程度上可以将药物的药效得到最大限度的提升,同时也能够对药物的成本进行有效的降低,从而推动生物医学以及药学的发展。

篇2

关键词:纳米材料 生物医学 应用

1应用于生物医学中的纳米材料的主要类型及其特性

1.1纳米碳材料

纳米碳材料主要包括碳纳米管、气相生长碳纤维也称为纳米碳纤维、类金刚石碳等。

碳纳米管有独特的孔状结构[1],利用这一结构特性,将药物储存在碳纳米管中并通过一定的机制激发药物的释放,使可控药物变为现实。此外,碳纳米管还可用于复合材料的增强剂、电子探针(如观察蛋白质结构的afm探针等)或显示针尖和场发射。纳米碳纤维通常是以过渡金属fe、co、ni及其合金为催化剂,以低碳烃类化合物为碳源,氢气为载体,在873 k~1473 k的温度下生成,具有超常特性和良好的生物相溶性,在医学领域中有广泛的应用前景。类金刚石碳(简称dlc)是一种具有大量金刚石结构c—c键的碳氢聚合物,可以通过等离子体或离子束技术沉积在物体的表面形成纳米结构的薄膜,具有优秀的生物相溶性,尤其是血液相溶性。资料报道,与其他材料相比,类金刚石碳表面对纤维蛋白原的吸附程度降低,对白蛋白的吸附增强,血管内膜增生减少,因而类金刚石碳薄膜在心血管临床医学方面有重要的应用价值。

1.2纳米高分子材料

纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1 nm~1000 nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。

1.3纳米复合材料

目前,研究和开发无机—无机、有机—无机、有机—有机及生物活性—非生物活性的纳米结构复合材料是获得性能优异的新一代功能复合材料的新途径,并逐步向智能化方向发展,在光、热、磁、力、声[2]等方面具有奇异的特性,因而在组织修复和移植等许多方面具有广阔的应用前景。国外已制备出纳米zro2增韧的氧化铝复合材料,用这种材料制成的人工髋骨和膝盖植入物的寿命可达30年之久[3]。研究表明,纳米羟基磷灰石胶原材料也是一种构建组织工程骨较好的支架材料[4]。此外,纳米羟基磷灰石粒子制成纳米抗癌药,还可杀死癌细胞,有效抑制肿瘤生长,而对正常细胞组织丝毫无损,这一研究成果引起国际的关注。北京医科大学等权威机构通过生物学试验证明,这种粒子可杀死人的肺癌、肝癌、食道癌等多种肿瘤细胞。

此外,在临床医学中,具有较高应用价值的还有纳米陶瓷材料,微乳液等等。

2纳米材料在生物医学应用中的前景

2.1用纳米材料进行细胞分离

利用纳米复合体性能稳定,一般不与胶体溶液和生物溶液反应的特性进行细胞分离在医疗临床诊断上有广阔的应用前景。20世纪80年代后,人们便将纳米sio2包覆粒子均匀分散到含有多种细胞的聚乙烯吡咯烷酮胶体溶液中,使所需要的细胞很快分离出来。目前,生物芯片材料已成功运用于单细胞分离、基因突变分析、基因扩增与免疫分析(如在癌症等临床诊断中作为细胞内部信号的传感器[5])。伦敦的儿科医院、挪威工科大学和美国喷气推进研究所利用纳米磁性粒子成功地进行了人体骨骼液中癌细胞的分离来治疗病患者[6]。美国科学家正在研究用这种技术在肿瘤早期的血液中检查癌细胞,实现癌症的早期诊断和治疗。

2.2用纳米材料进行细胞内部染色

比利时的de mey博士等人利用乙醚的黄磷饱和溶液、抗坏血酸或柠檬酸钠把金从氯化金酸(haucl4)水溶液中还原出来形成金纳米粒子,(粒径的尺寸范围是3 nm~40 nm),将金纳米粒子与预先精制的抗体或单克隆抗体混合,利用不同抗体对细胞和骨骼内组织的敏感程度和亲和力的差异,选择抗体种类,制成多种金纳米粒子—抗体复合物。借助复合粒子分别与细胞内各种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下呈现某种特征颜色(如10 nm的金粒子在光学显微镜下呈红色),从而给各种组织“贴上”了不同颜色的标签,为提高细胞内组织分辨率提供了各种急需的染色技术。

2.3纳米材料在医药方面的应用

2.3.1纳米粒子用作药物载体

一般来说,血液中红血球的大小为6000 nm~9000 nm,一般细菌的长度为2000 nm~3000 nm[7],引起人体发病的病毒尺寸为80 nm~100 nm,而纳米包覆体尺寸约30 nm[8],细胞尺寸更大,因而可利用纳米微粒制成特殊药物载体或新型抗体进行局部的定向治疗等。专利和文献资料的统计分析表明,作为药物载体的材料主要有金属纳米颗粒、无机非金属纳米颗粒、生物降解性高分子纳米颗粒和生物活性纳米颗粒。

磁性纳米颗粒作为药物载体,在外磁场的引导下集中于病患部位,进行定位病变治疗,利于提高药效,减少副作用。如采用金纳米颗粒制成金溶液,接上抗原或抗体,就能进行免疫学的间接凝聚实验,用于快速诊断[9]。生物降解性高分子纳米材料作为药物载体还可以植入到人体的某些特定组织部位,如子宫、阴道、口(颊、舌、齿)、上下呼吸道(鼻、肺)、以及眼、耳等[10]。这种给药方式避免了药物直接被消化系统和肝脏分解而代谢掉,并防止药物对全身的作用。如美国麻省理工学院的科学家已研制成以用生物降解性聚乳酸(pla)制的微芯片为基础,能长时间配选精确剂量药物的药物投送系统,并已被批准用于人体。近年来生物可降解性高分子纳米粒子(nps)在基因治疗中的dna载体以及半衰期较短的大分子药物如蛋白质、多肽、基因等活性物质的口服释放载体方面具有广阔的应用前景。药物纳米载体技术将给恶性肿瘤、糖尿病和老年痴呆症的治疗带来变革。

2.3.2纳米抗菌药及创伤敷料

ag+可使细胞膜上蛋白失去活性从而杀死细菌,添加纳米银粒子制成的医用敷料对诸如黄色葡萄球菌、大肠杆菌、绿浓杆菌等临床常见的40余种外科感染细菌有较好抑制作用。

2.3.3智能—靶向药物

在超临界高压下细胞会“变软”,而纳米生化材料微小易渗透,使医药家能改变细胞基因,因而纳米生化材料最有前景的应用是基因药物的开发。德国柏林医疗中心将铁氧体纳米粒子用葡萄糖分子包裹,在水中溶解后注入肿瘤部位,使癌细胞部位完全被磁场封闭,通电加热时温度达到47℃,慢慢杀死癌细胞。这种方法已在老鼠身上进行的实验中获得了初步成功[11]。美国密歇根大学正在研制一种仅20 nm的微型智能炸弹,能够通过识别癌细胞化学特征攻击癌细胞,甚至可钻入单个细胞内将它炸毁。

2.4纳米材料用于介入性诊疗

日本科学家利用纳米材料,开发出一种可测人或动物体内物质的新技术。科研人员使用的是一种纳米级微粒子,它可以同人或动物体内的物质反应产生光,研究人员用深入血管的光导纤维来检测反应所产

生的光,经光谱分析就可以了解是何种物质及其特性和状态,初步实验已成功地检测出放进溶液中的神经传达物质乙酰胆碱。利用这一技术可以辨别身体内物质的特性,可以用来检测神经传递信号物质和测量人体内的血糖值及表示身体疲劳程度的乳酸值,并有助于糖尿病的诊断和治疗。

2.5纳米材料在人体组织方面的应用

纳米材料在生物医学领域的应用相当广泛,除上面所述内容外还有如基因治疗、细胞移植、人造皮肤和血管以及实现人工移植动物器官的可能。

目前,首次提出纳米医学的科学家之一詹姆斯贝克和他的同事已研制出一种树形分子的多聚物作为dna导入细胞的有效载体,在大鼠实验中已取得初步成效,为基因治疗提供了一种更微观的新思路。

纳米生物学的设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。纳米机器人是纳米生物学中最具有诱惑力的内容,第一代纳米机器人是生物系统和机械系统的有机结合体,这种纳米机器人可注入人体血管内,进行健康检查和疾病治疗(疏通脑血管中的血栓,清除心脏脂肪沉积物,吞噬病菌,杀死癌细胞,监视体内的病变等)[12];还可以用来进行人体器官的修复工作,比如作整容手术、从基因中除去有害的dna,或把正常的dna安装在基因中,使机体正常运行或使引起癌症的dna突变发生逆转从而延长人的寿命。将由硅晶片制成的存储器(rom)微型设备植入大脑中,与神经通路相连,可用以治疗帕金森氏症或其他神经性疾病。第二代纳米机器人是直接从原子或分子装配成具有特定功能的纳米尺度的分子装置,可以用其吞噬病毒,杀死癌细胞。第三代纳米机器人将包含有纳米计算机,是一种可以进行人机对话的装置。这种纳米机器人一旦问世将彻底改变人类的劳动和生活方式。

瑞典正在用多层聚合物和黄金制成医用微型机器人,目前实验已进入能让机器人捡起和移动肉眼看不见的玻璃珠的阶段[13]。

纳米材料所展示出的优异性能预示着它在生物医学工程领域,尤其在组织工程支架、人工器官材料、介入性诊疗器械、控制释放药物载体、血液净化、生物大分子分离等众多方面具有广泛的和诱人的应用前景。随着纳米技术在医学领域中的应用,临床医疗将变得节奏更快,效率更高,诊断检查更准确,治疗更有效。

参考文献

[1]philippe p,nang z l et al.science,1999,283:1513

[2]孙晓丽等.材料科学与工艺,2002,(4):436-441

[3]赖高惠编译.化工新型材料,2002,(5):40

[4]苗宗宁等.实用临床医药杂志,2003,(3):212-214

[5]崔大祥等.中国科学学院院刊,2003,(1):20-24

[6]顾宁,付德刚等.纳米技术与应用.北京:人民邮电出版社,2002:131-133

[7]胥保华等.生物医学工程学杂志,2004,(2):333-336

[8]张立德,牟季美.纳米材料和结构.北京:科学出版社,2001:510

[9]刘新云.安徽化工,2002,(5):27-29

[10]姚康德,成国祥.智能材料.北京:化学工业出版社,2002:71

[11]李沐纯等.中国现代医学杂志,2003,13:140-141

[12]张莉芹.武汉科学大学学报(自然科学版),2003,(3):23

篇3

1·1细胞分离用纳米材料

病毒尺寸一般约80~100nm,细菌为数百纳米,而细胞则更大,因此利用纳米复合粒子性能稳定、不与胶体溶液反应且易实现与细胞分离等特点,可将纳米粒子应用于诊疗中进行细胞分离。该方法同传统方法相比,具有操作简便、费用低、快速、安全等特点。美国科学家用纳米粒子已成功地将孕妇血样中微量的胎儿细胞分离出来,从而简便、准确地判断出胎儿细胞中是否带有遗传缺陷。

1·2纳米材料用于细胞内部染色

利用不同抗体对细胞内各种器官和骨骼组织的敏感程度和亲和力的显著差异,选择抗体种类,将纳米金粒子与预先精制的抗体或单克隆抗体混合,制备成多种纳米金/抗体复合物。借助复合粒子分别与细胞内各种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下呈现某种特征颜色(如10nm的金粒子在光学显微镜下呈红色),从而给各种组合“贴上”了不同颜色的标签,因而为提高细胞内组织的分辨率提供了一种急需的染色技术。

1·3纳米药物控释材料

纳米粒子不但具有能穿过组织间隙并被细胞吸收、可通过人体最小的毛细血管、甚至可通过血脑屏障等特性,而且还具有靶向、缓释、高效、低毒且可实现口服、静脉注射及敷贴等多种给药途径等许多优点,因而使其在药物输送方面具有广阔的应用前景。德国科学家将铁氧体纳米粒子用葡萄糖分子包覆,在水中溶解后注入肿瘤部位,使癌细胞和磁性纳米粒子浓缩在一起,通电加热至47℃,可有效杀死肿瘤细胞而周围正常组织不受影响;挪威工科大学的研究人员,利用纳米磁性粒子成功地进行了人体骨骼液中肿瘤细胞的分离,由此来进行冶疗;SharmaP等[1]用聚乙烯吡咯烷酮包覆紫松醇制得的纳米粒子抗癌新药,体内实验以荷瘤小鼠肿瘤体积的缩小程度和延长存活时间来评价药效,其疗效较同浓度游离紫松醇明显增加;Damage等[2]用聚氰基丙烯酸己酯包覆胰岛素制得的纳米胶囊,给禁食的糖尿病鼠灌胃,2天后使血糖水平降低50%~60%,按每千克体重50单位胰岛素以纳米胶囊给药,降血糖作用可维持20天,而同样条件下,口服游离胰岛素却不能降低血糖水平。

1·4纳米抗菌材料及创伤敷料

按抗菌机理,纳米抗菌材料分为三类:一类是Ag+系抗菌材料,其利用Ag+可使细胞膜上的蛋白失活,从而杀死细菌。在该类材料中加入钛系纳米材料和引入Zn2+、Cu+等可有效地提高其的综合性能;第二类是ZnO、TiO2等光触媒型纳米抗菌材料,利用该类材料的光催化作用,与H2O或OH-反应生成一种具有强氧化性的羟基以杀死病菌;第三类是C-18A°纳米蒙脱土等无机材料,因其内部有特殊的结构而带有不饱和的负电荷,从而具有强烈的阳离子交换能力,对病菌、细菌有强的吸附固定作用,从而起到抗菌作用。

由于纳米银粒子的表面效应,其抗菌能力是相应微米银粒子的200倍以上,因而添加纳米银粒子制成的医用敷粒对诸如黄色葡萄球菌、大肠杆菌、绿浓杆菌等临床常见的40余种外科感染细菌有较好抑制作用。深圳安信纳米生物科技有限公司已开发出粒径约25nm的银抗菌颗粒,其具有广谱、亲水、无抗药性,对大肠杆菌等致病微生物有强烈的杀灭作用。由其进一步研发出的纳米创口贴,其外观、价格都与普通创口贴相近,具有护创作用,还具有超强活性,能激活细胞、修复病变组织、加速伤口恢复的作用;相应方法还制备了纳米材料抗菌溃疡贴。此外,青岛化工学院等已开发出具有抗菌功能的多种纺织品;南京希科集团用纳米银粒子同棉织品复合,制成了广谱抗菌的新型医用棉。

1·5纳米颗粒中药及保健品

微米级中药有50%以上不溶于水,而纳米级中药粒子则可溶于水,从而有效提高药物利用率。利用纳米技术将中药材制成极易被人体吸收的纳米粒子口服胶囊、口服液或膏药,不但克服了中药在煎熬中有效成份损失及口感上的不足,而且可使有效成份吸收率大幅度提高。将制成的纳米中药膏直接贴于患处,纳米粒子很易经皮肤直接被吸收。研发纳米中药产品是促进中药走向世界、提高产品附加值、实现传统中药产业升级的发展方向之一。用纳米技术将不易被人体吸收或毒性较大的药物或保健品制成纳米胶囊或纳米粒子悬浮液,则可制得具有极高效/费比的纳米保健品。如微量元素硒具有防癌、护肝、免疫调节等作用。中国科技大学率先用纳米硒开发出“硒旺胶囊”,生物试验证明,其急性毒性是无机硒的1/7,是有机硒的1/3,其清除羟基自由基活性是无机硒的5倍,清除过氧阴离子和过氧化氢的活性也大幅度提高,使其在免疫调节和抑制肿瘤方面的灵敏性显著提高,纳米硒的安全性和生物活性使硒的保健功能可以更充分地发挥出来。

1·6纳米医用陶瓷

纳米陶瓷在人工骨、人工关节、人工齿以及牙种植体、耳听骨修复体等人工器官制造及临床应用领域有广阔的应用前景。四川大学李玉宝教授等[3~4]用硝酸钙、磷酸铵为原料,二甲基甲酰胺为分散剂,在常压下制备出晶体结构类似于人骨组织的纳米级羟基磷灰石针状晶体,可用作人骨组织修复材料;Luo等[5]用TEOS在氢氟酸催化下,经溶胶/凝胶法制得纳米孔结构的SiO2,再用TEGDMA经光引发原位聚合制得SiO2/PTEGDMA纳米复合材料,其比传统的牙科用复合材料具有更优异的耐磨性及韧性。通常方法制备的羟基磷灰石人工骨植入物,其强度和韧性都较低,不能满足应用要求。国外已制备出含有ZrO2的纳米羟基磷灰石复合材料,其硬度、韧性等综合性能可达到甚至超过致密骨骼相应性能。通过调节ZrO2含量,可使该纳米复合人工骨材料具有优良的生物相容性[6]。美国Arizona材料实验室和Princeton大学的研究人员用聚二甲基丙烯酸酯、聚偏氟乙烯和钛盐作原料,应用溶胶/凝胶工艺合成的纳米TiO2/聚合物复合材料,用其作人工骨,其强度和韧性等力学性能与人体骨相当。

1·7生物活性材料

自Hench[7]首先报道某些组成的玻璃具有生物活性以来,国内外对生物玻璃的研制十分活跃,但生物玻璃较脆、不能满足人工骨材料的使用要求。随着纳米技术发展,生物活性杂化材料在保持柔韧性的同时,弹性模量已接近硅酸硼玻璃,而且便于加入活性物质,因此是一种开发生物材料的理想途径。Jones等[8]用TEOS、甲基丙烯酰胺在偶氮类引发剂作用下,加入氯化钠制备出含钙盐的纳米SiO2/聚合物复合材料,将其在人体液中(SBF)放置1周后,可以观察到其表面有羟基磷灰石层形成,因而具有较好的生物活性,OKelly等[9]总结了借助仿生过程制备具有生物活性的纳米复合材料的思路和研究成果。应用溶胶/凝胶技术制备纳米复合材料,同时在体系中引入胺基、醛基、羟基等有机官能团,使材料表面具有反应活性,可望在生化物质固定膜材料、生物膜反应器等方面获得较大应用。

Schtelzer等[10]较早研究了在凝胶玻璃中固定胰蛋白酶的特性;Cho等[11]开发了有机—无机纳米复合材料固定α-淀粉酶,其稳定性超过1个月,可望用于研制生物膜反应器。含钛硅的纳米复合材料具有优良的透光率、氧气透过率和吸湿性,是理想的隐形眼镜材料。Schmidt等[12,13]在环硅氧烷、TEOS、异丙醇钛、甲基丙烯基硅烷、丙烯酸甲酯体系中,加入稀酸,使其在酸性条件下水解/聚合,得到隐形眼镜材料。该材料具有良好的透氧性、润湿性及较高的强度,良好的弹性和柔韧性,其透明度和折光率等均满足隐性眼镜的性能要求。我国浙江大学及华南理工大学等单位也开展了类似研究并已取得良好进展[14]。聚氨酯材料是重要的生物医学材料,因其良好的生物相容性和优异的力学性能常用来制作血管移植物、介入导管、心脏辅助循环体系及人工心脏等。许海燕等[15]用聚醚型聚氨酯与纳米碳经溶胶/凝胶法制得的纳米碳/聚氨酯复合材料,具有较好的微相分离结构,改善了材料表面的血溶相容性;Huang等[16]用带羟基的线性聚氨酯(Mn=6000)与TEOS作用,调节二者配比,可得到从柔韧的弹性体到坚硬的塑料等不同性能的纳米复合材料,以满足不同使用要求;Xu等[17]用聚氨酯和有机蒙脱土经溶液插层、溶胶/凝胶制得的纳米复合材料,在改善聚氨酯材料力学性能的同时,显著地降低了水蒸气及空气的透过率,更好地满足全人工心脏等植入人工器官的应用要求。

用溶胶/凝胶法制备的纳米微孔SiO2玻璃,可用作微孔反应器、功能性分子吸附剂、生物酶催化剂及药物控释体系的载体等[18];利用聚二甲基硅氧烷(PDMS)/纳米SiO2复合材料无毒及优良的生物相容性,通过调节PDMS含量控制其硬度和弹性,可用作生物活性材料;用纳米粒子直接分散法制得的表面带有胺基或羟基的SiO2/聚吡咯纳米复合材料,可用作凝集免疫测定中高显色的“标记器”微粒;利用聚吡咯的良好导电性,其纳米复合材料在组织工程及神经修复等领域具良好应用前景[19,20]。

2展望

篇4

           synthesis and applications of gold nanoparticle probesma li-na,liu dian-jun,wang zhen-xin*(state key laboratory of electroanalytical chemistry,changchun institute of applied chemistry,chinese academy of sciences,changchun 130022)abstract  during last decade,gold nanoparticled(aunps)-based assays have been well-developed and widely used in biological analysis and biomedical detection because aunps have unique physical and chemical properties which depend on the size,shape and degree of aggregation.the aunps-based assays have already been employed for detecting practical samples with high simplicity and selectivity.this review discusses the recently development of the synthesis and biological molecular functionalisation of aunps and their applications on the heavy metallic cations,small organic compounds,nucleic acids and proteins detection and cellular analysis.

keywords  gold nanoparticles;probe;synthesis and functionalization;chemical sensing;review

1  引言

纳米技术与化学、生物学、物理学和医学等领域的结合,对分析科学和生命科学领域的超灵敏检测和成像方法的发展起着越来越重要的作用[1~5]。由于aunps具有独特的光学性质(表面等离子体吸收和共振光散射)、易进行表面修饰以及良好的生物相容性(通常认为裸aunps是无生物毒性的,而修饰后的aunps的生物毒性由其配体决定),因此功能化aunps的应用领域不断被拓宽,特别是其在生物分析和生物医药等领域的应用引起了人们广泛关注[2,3]。本文综述了生物分子修饰的aunps探针的合成及其在检测金属离子、小分子、dna、蛋白质和细胞内分析等方面的新进展,以若干应用实例突显一些技术突破及发展趋势。

2  金纳米粒子的合成、稳定性和功能化

2.1  金纳米粒子的合成方法

金纳米粒子的制备方法可分为化学法和物理法。化学法是以金的化合物为原料,在还原反应生成金纳米粒子时控制粒子的生长,使其维持纳米尺度。化学合成法包括氧化还原法、电化学法、晶种法、模板法、微乳液法、微波合成法和光化学法等[2],其中最具代表性并被广泛应用的有:(1)turkevich-frens法[6,7],即在100 ℃下,通过改变还原剂(柠檬酸钠)和三价金的化合物(氯金酸或氯金酸钠)的比例来控制aunps粒径的大小,从而获得粒径在10~60 nm范围内且分散性较好的aunps。该方法制备程序简单,且包裹在aunps表面的柠檬酸根容易被其它配体置换(如巯基修饰的dna等)[2,4];(2)brust-schiffrin法[8,9],即在两相(液/液)体系或单相体系中,以四正辛基溴化铵(toab)为相转移剂,将三价金的化合物(氯金酸或氯金酸钠)转移到有机相中,以烷基硫醇为稳定剂,nabh4为还原剂,制备粒径为1~8 nm的aunps;硫醇/金盐的比例越大、加入还原剂速度越快,冷却溶液可以制得尺寸更小和单分散性更好的粒子,进一步通过配体交换反应改变aunps表面的配体而实现其功能化;(3)聚合物保护法:通常以含有聚乙二醇、硫醇或硫醚基团的聚合物为配体,以nabh4为还原剂,制备水溶性或具有疏水性的粒径小于10 nm的aunps。聚合物稳定剂决定纳米粒子的溶解性;例如,文献[10,11] 采用硫醚或硫醇修饰的聚合物配体(烷基硫醚终端修饰的聚甲基丙烯酸等)一步法合成了具有高分散性的粒径小于5 nm的aunps,粒子的大小和分散性可以通过改变聚合物的结构、浓度和配体上能与金属结合的基团个数来控制,并且可以将粒径为1.1~1.7 nm的无荧光纳米粒子转变为荧光纳米粒子。

物理法是利用各种技术将块状固体金分散为金纳米粒子,包括真空沉积法、电分散法、激光消融法等[12]。物理法容易控制aunps的形状并能获得图案化的aunps的阵列,但通常需要特殊的设备和技术,制备过程较复杂。

2.2  金纳米粒子的稳定性和功能化

将不同的识别分子(如功能基团)修饰到aunps上,获得功能化纳米粒子(aunps探针),有助于拓宽aunps的应用范围,发展基于aunps的分析/检测方法。已有很多文献对金纳米粒子的功能化及应用进行了综述[1~5,13]。在介质中保持单分散性和稳定性是aunps在实际应用中的关键。因此,人们不断寻找新型稳定剂和修饰方法以提高aunps的分散性。这些方法将有助于改善方法选择性和准确度,其中最具代表性的方法[1]如图1所示。在生物分析中可以应用静电吸附法、共价偶联(aus共价结合等)法和特异性识别法(抗体-抗原,生物素-亲和素,dna杂交等)将生物分子修饰到aunps表面,合成aunps探针。 

图1  金纳米粒子探针合成示意图[1](略)

fig.1  schematic representation of formation of gold nanoparticle probes[1]

copyright wiley-vch verlag gmbh & co.kgaa and reproduced with permission.

将配体通过静电吸附作用固定在aunps表面的方法简单、省时[3],但是配体与aunps结合强度小,稳定性差。如果反应缓冲溶液中含有二硫苏糖醇(ddt,含有两个巯基、不带电的小分子,常用作蛋白保护剂)或在高盐缓冲溶液(一般用于dna杂化实验)进行长时间的孵育时,表面不稳定的aunps探针很容易产生非特异性结合,从而降低了检测的选择性。   

与静电吸附法相比,共价偶联的方法较复杂,需要进行更多的配体合成工作。但是,配体与aunps通过共价键结合稳定性好。在共价偶联中通常以au-s共价结合获得aunps探针,这种方法必须使用含有s的配体,如硫醇或二硫化物修饰的dna、多肽calnn等[1~5,13~15],通过共价法获得的aunps探针可以承受很高的盐浓度(2 mol/l nacl), 并在某种程度上可以抵抗二硫苏糖醇或带巯基或氨基的分子的攻击。特别是将具有双亲性的配体(有s端具有疏水性,另一端具有亲水性,如烷基硫醇修饰的聚乙二醇、多肽calnn等)通过共价键法修饰到aunps上,在其表面形成疏水-亲水层,将极大提高aunps在水溶液中的稳定性。

利用某些生物分子之间的特异性识别,如,(1)链霉亲和素修饰的aunps可以结合生物素化的蛋白(如免疫球蛋白和血清蛋白)或寡聚核苷酸[16];(2)蛋白a修饰的aunps用于连结不同免疫球蛋白的fc碎片[17];(3)糖修饰的aunps用于识别其相应的结合蛋白,也可以设计功能化的aunps探针。

3  金纳米粒子探针的应用

3.1  重金属离子检测

基于aunps的比色法已经被广泛应用于有毒重金属离子(pb2+,cd2+和hg2+等)的检测[18,19],这种方法克服了传统方法中诸如使用有机溶剂、光敏感的染料分子,实验过程繁琐以及仪器操作复杂等缺点。wang等[19]研制出基于dnazyme修饰的aunps比色传感器,可以快速、简单、实时及线性范围可调地检测pb2+(见图2)。他们选择对pb2+有高特异性识别的dnazyme,dnazyme由底物链和识别链组成。底物链5′末端和识别链3′末端分别连有8个互补碱基做为延长链,两个互补碱基链可以使底物链和识别链在特定的温度下稳定杂交,同时也能够保证在pb2+存在时,后者将dnazyme另一端分裂后释放出单链dna(ssdna)。该体系在tris和nacl调节离子强度后加入aunps,当pb2+存在时,pb2+作用于dnazyme的识别位点将ssdna释放出来并与aunps结合,阻止后者聚集,而使溶液呈现纳米金单分散状态的红色。没有pb2+或有其它金属离子存在时,不发生分裂反应,加入的aunps无ssdna保护而发生聚集,溶液变为蓝紫色。这种传感器对pb2+的检出限为3 nmol/l,远远低于美国环境保护局(epa)对饮用水中pb2+浓度的检出限[18,19]。li等[20]报道了另一种基于dna修饰的aunps探针检测hg2+的比色方法,这种方法灵敏度更高,检出限可达1 nmol/l。xue[21]和lee[22]等依据hg2+可与胸腺嘧啶形成t-hg2+-t复合物,建立了一种高灵敏性和高选择性检测hg2+的方法,即在特定温度下因hg2+诱导dna修饰的aunps聚集状态的改变导致溶液颜色改变来检测hg2+。如果使用对其它金属离子具有选择性的碱基对取代胸腺嘧啶,可实现对其它金属离子的检测。

图2  (a)左图:包含识别链17e(8)和底物链(8)17s的dnazyme,右图:非标记的比色传感器;(b)ph=7.2时,加入不同浓度的pb2+后aunps溶液的颜色变化图,线性范围0.003~1.0 μmol/l;(c)ph=5.5时,加入不同浓度的pb2+后,aunps溶液的颜色变化图,线性范围0.120~20 μmol/l [19](略)

fig.2  (a) left:secondary structure of dnazyme complex,which consists of an enzymestrand(17e(8)) and a substrate strand((8)17s).right:schematic of label-free colorimetric sensor.color change of the gold nanoparticle(aunp) solution with different concentrations of lead in the solution at ph 7.2(b) and 5.5(c);the dynamic range of the assay is 3 nmol/l to 1 μmol/l at ph 7.2 and 120 nmol/l to 20 μmol/l at ph 5.5,respectively [19]

copyright wiley-vch verlag gmbh & co.kgaa and reproduced with permission

3.2  小分子检测

将对特定小分子具有亲和性的官能团修饰到aunps表面,可发展基于aunps的应用于小分子检测的比色法[23]。ai等[24]基于分子识别原理,建立了原奶和婴儿配方奶中三聚氰胺的检测方法,无需借助任何仪器,1 min内裸眼检出限可达20 nmol/l。最近,发展基于适配子(通过体外筛选技术“指数级富集的配体系统进化技术(selex)”)修饰的aunps比色法并应用于小分子(腺苷,可卡因等)检测也引起了人们的广泛关注[25,26],如wang等[27]用适配子修饰的aunps设计了一种“preudo”夹心反应,通过spr光谱检测小分子(腺苷)。

3.3  dna检测

dna修饰的aunps与目标dna杂交后可以形成有序的聚集体,溶液颜色发生改变,从而实现对目标dna的检测。已有大量文献对基于aunps比色法检测dna及其在生物传感器、疾病诊断、基因表达等方面的应用进行了报道和综述[1~5]。结合相应的光/电分析方法,人们还发展了一系列新的基于dna修饰的aunps的检测手段。hill等[28]以dna修饰的aunps为探针,将生物条形码方法和微流体芯片技术相结合,建立了一种新的生物条形码分析法(基因组的条形码分析方法),快速、精确地检测dna。这种方法使用阻断链抑制靶标物再次杂交,可以检测双链基因组dna(见图3)。这项工作为生物条形码方法从实验室到实际应用开辟了道路。dai等[29]结合动态光散射(dls)技术,提出了基于aunps探针一步法高灵敏性检测同源dna的方法。该方法操作简单且无需分离和信号放大步骤,检出限约1 pmol/l,优于其它光吸收法4个数量级,并可以很容易地区分单碱基对错配dnas和完全匹配的靶标物dnas。zhang等[30]研制出一种基于三明治结构的脱氧核糖核酸计时电量传感器(cds)。将一个单链dna探针固定在金电极上,每个探针侧面与一个或两个靶序列的碎片相连,然后浸入含有目标单链dna分子的溶液中,此时电极上单链dna探针与溶液中互补序列的目标dna单链分子杂交并用dna修饰的aunps进行信号放大,用计时电位法观察[ru(nh3)6]3+与单链dna的静电吸附情况(见图4)。

图3  (a)基因组的条形码分析方法示意图[28];(b)扫描芯片图,检出限为2.5 fmol/l;(c)5次平行实验得出的扫描信号密度数据(略)

fig.3  (a) schematic representation of genomic bio bar code assay.for details of the assay,readers are advised to see ref.[28];(b) representative slide from a single assay showing that 2.5 fmol/l is distinguishable from the 0 fmol/l(no target) sample;(c) the data shown above are the average of 5 independent runs of the genomic dna bio bar code assay[28].

copyright acs and reproduced with permission

 

图4  cds法检测dna示意图(a)巯基修饰的单链dna捕获探针在金电极上自组装;(b)单链dna探针与溶液中互补序列的目标dna单链分子杂交,一个捕获探针只能与一个目标分子杂交;(c)dna结合aunps放大检测信号,aunps上成百上千的dna探针可与目标分子杂交[30](略)

fig.4  chronocoulometric dna sensor(cds) strategy for dna detection.(a) gold electrode self-assembled with thiolated capture probe dna and spacer molecule,mch.(b) dna hybridization brings target dna to the electrode surface.of note,in the absence of amplification,one capture probe only captures one target molecule at the most.(c) aunp-amplified dna detection.one hybridization event brings an aunp loaded with hundreds of reporter probes proximal to the electrode[30]

reproduced with permission from nature publishing group(略)

3.4  蛋白质分析

aunps与蛋白质结合获得用于电子显微镜的aunps探针,在电子显微镜甚至光学显微镜水平上对抗原、抗体进行定位、定性及定量研究,是aunps应用于免疫细胞和组织化学的重要里程碑[2,3,31,32]。利用aunps的光学和电化学性质结合不同的检测技术同样可以检测蛋白质[33,34]。最近,gupta等[31]设计了一种吸附可控的动力学模型,实现了对稀溶液中抗原的有效检测。ambrosi等[33]合成了一种新的基于人抗igg过氧化酶(hrp)修饰的双编码aunps(dc-aunps)探针,探针与抗体结合后增强了分光光度法和电化学法检测人抗igg信号,检出限远远低于通过酶联免疫吸附法(elisa)[33]。依据相同的检测原理,cui等[34]设计了aunps/碳纳米管(cnt)杂化平台,用辣根过氧化酶修饰的aunps探针检测人igg。

分子与aunps结合后可以增强拉曼信号,据此可以利用aunps作底物,通过基于表面增强拉曼效应(sers)的光谱分析法来快速检测蛋白-蛋白之间相互作用[35~38]。manimaran等[35]用荧光素修饰的aunps结合人抗igg检测1~100 mg/l 人igg。li等[36~38]提出了基于sers的芯片分析法检测蛋白-抗体之间的相互作用,即将多肽结合到aunps上,然后银染将信号放大,再用拉曼光谱进行检测。基于适配子(aptamer)修饰的aunps也可以用来检测蛋白质。wang等[39]研制出基于aptamer-aunps的比色传感器,通过aptamer和α-凝血酶的反应检测α-凝血酶,这种传感器具有高灵敏性和高选择性,可以检测人血浆中的蛋白。

酶的活性检测和动力学参数分析是生物分析和生物医学的一个重要课题。研究人员结合aunps的光学和电学性质提出了许多新的检测酶活性的方法[40~44]。文献[14]详尽阐述了aunps探针用于分析蛋白激酶和蛋白磷酸酶的新进展。xu等[44]用aunps作指示剂,分析dnase ⅰ酶的活性并筛选酶抑制剂。该方法可以通过裸眼观察,并且能高通量的筛选核酸内切酶的抑制剂。根据aunps的生物催化过程,willner研究组设计了几种纳米粒子-酶(葡萄糖氧化酶(godx)、乙醇脱氢酶(nad(p)+-dependent enzyme)、乙酰胆碱酯酶[40]和酪氨酸酶等)杂化膜电化学传感器,通过酶催化反应增大电极上aunps的粒径使其导电性显著地增强,加速了godx电子的转移[45~49]。

3.5  细胞分析

利用aunps独特的光学性质及良好的生物相容性还可以进行细胞表面和细胞内多糖、蛋白质、多肽、抗原、激素、核酸等生物大分子的精确定位,因而在临床诊断及药物检测等方面受到广泛关注[13,50]。癌症的早期精确检测通常需要昂贵的仪器且耗时,为了克服这些缺点,medley等建立了一种可直接检测癌细胞的比色分析法[50]。这种方法将aptamer的高选择性和高亲和性与aunps的光谱性质相结合,高灵敏地检测癌细胞。在癌细胞存在的情况下,加入aptamer修饰的aunps探针,样品溶液颜色能发生明显的变化,可以通过裸眼直接观察,获得相对灵敏的检测结果[51,52]。kneipp等[52]在aunps探针存在下测得了活体上皮细胞膜和巨噬细胞的表面增强拉曼(sers)光谱,并结合tem等表征手段分析细胞内物质。

4  结论和展望

aunps因其具有特殊的稳定性、小尺寸效应、量子效应、表面效应和良好的生物亲和效应等,已被广泛应用于化学和生物学研究。生物分子修饰aunps探针拓宽了aunps的应用范围,然而,aunps探针的应用仍然有许多亟待解决的问题,如实验结果的可重复性,合成方法的可靠性,aunps的使用寿命以及修饰后的aunps的生物相容性等。可以相信,通过各学科研究者的共同努力,一定能克服aunps探针的缺点,研制出新型简单、高灵敏度和高选择性的分析方法,从而实现其在实际样品,特别是临床样品检测中的应用。

【参考文献】

  1 niemeyer c m.angew.chem.int.ed.,2001,40(22):4128~4158

2 daniel m c,astruc d.chem.rev.,2004,104(1):293~346

3 katz e,willner i.angew.chem.int.ed., 2004,43(45):6042~6108

4 rosi n l,mirkin c a.chem.rev., 2005,105(4):1547~1562

5 wang z,ma l.coord.chem.rev.,2009,253(11-12):1607~1618

6 turkevich j,stevenson p c,hillier j.faraday soc.,1951,11:55~74

7 frens g.nature,1973,241:20~22

8 brust m,walker m,bethell d,schiffrin d j,whyman r. j.chem.soc.,chem.commun.,1994,(7):801~802

9 brust m,fink j,bethell d,schiffrin d j,kiely c j.j.chem.soc.,chem.commun., 1995,(16):1655~1656

10 wang z.x,tan b,hussain i,schaeffer n,wyatt m.f,brust m,cooper a i. langmuir,2007,23(2):885~895

11 schaeffer n,tan b,dickinson c,rosseinsky m j,laromaine a,mccomb d w,stevens m m,wang y,petit l,barentin c,spiller d g,cooper a i,levy r.chem.commun., 2008,(34):3986~3988

12 borja s,paula c,laura m,luis m.nano today,2009,4(3):244~251

13 murphy c j,gole a m,stone j w,sisco p n,alkiany a m,goldsmith e c,baxter s c.acc.chem.res.,2008,41(12):1721~1730

14 ghadiali j e,stevents m m.adv.mater.,2008,20(22):4359~4363

15 wang z,levy r,fernig d g,brust m.bioconjugate chem.,2005,16(3):497~500

16 gestwicki j e,strong l e,kisseling l l.angew.chem.int.ed., 2000,39(24):4567~4570

17 sergeev b m,kiryukhin m v,rubtsova m y,prusov a n.colloid j., 2003,65(5):636~638

18 kim h k,rasnik i,liu j w,ha t j,lu y.nat.chem.biol., 2007,3(12):763~768

19 wang z,lee j h,lu y.adv.mater., 2008,20(17):3263~3267

20 li d,wieckowska a,willner i.angew.chem.int.ed., 2008,47(21):3927~3931

21 xue x j,wang f,liu x g.j.am.chem.soc., 2008,130(11):3244~3245

22 lee j s,han m s,mirkin c a.angew.chem.int.ed.,2007,46(22):4093~4096

23 zhao w,chiuman w,brook m a,li y. chem.bio.chem.,2007, 8(7):727~731

24 ai k l,liu y l,lu l h.j.am.chem.soc.,2009,131(27):9496~9497

25 liu j,lu y.j.am.chem.soc.,2007,129(27):8634~8643

26 zhao w,chiuman w,lam j c f,mcmanus s a,chen w,cui y.j.am.chem.soc., 2008,130(11):3610~3618

27 wang j,zhou h s.anal.chem.,2008,80(18):7174~7178

28 hill h d,vega r a,mirkin c a. anal.chem.,2007,79(23):9218~9223

29 dai q,liu x,coutts j,austin l,huo q.j.am.chem.soc., 2008,130(26):8138~8139

30 zhang j,song s,wang l,pan d,fan c.nat.protoc.,2007,2(11):2888~2895

31 gupta s,huda s,kilpatrick p k,velev o d.anal.chem.,2007,79(10):3810~3820

32 maier i,morgan m r a,lindner w,pittner f.anal.chem.,2008,80(8):2694~2703

33 ambrosi a,castaeda m t,killard a j,smyth m r,alegret s,merkoci a.anal.chem., 2007,79(14):5232~5240

34 cui r,huang h,yin z,gao d,zhu j j.biosens.bioelectr., 2008,23(11):1666~1673

35 manimaran m,jana n r.j. raman spectrosc.,2007,38(10):1326~1331

36 li t,guo l,wang z.biosens.bioelectro., 2008,23(7):1125~1130

37 li t,guo l,wang z.anal.sci.,2008,24(7):907~910

38 li t,liu d,wang z.biosens.bioelectro.,2009,24(11):3335~3339

39 wang y,li d,ren w,liu z,dong s,wang e.chem.commun., 2008,(22):2520~2522

40 wilson r.chem.soc.rev.,2008,37(9):2028~2045

41 wang z,lee j,cossins a r,brust m.anal.chem.,2005,77(17):5770~5774

42 wang z,levy r,fernig d g,brust m.j.am.chem.soc.,2006,128(7):2214~2215

43 sun l,liu d,wang z.anal.chem.,2007,79(2):773~777

44 xu x,han m s,mirkin c.a.angew.chem.int.ed.,2007,46(19):3468~3470

45 xiao y,pavlov v,levine s,niazov t,markovitch g,willner i.angew.chem.int.ed.,2004,43(34):4519~4522

46 xiao y,pavlov v,shlyahovsky b,willner i.chem.eur.j., 2005,11(9):2698~2704

47 shlyahovsky b,katz e,xiao y,pavlov v,willner i.small, 2005,1(2):213~216

48 baron r,zayats m,willner i.anal.chem., 2005,77(6):1566~1571

49 yan y.m,tel-vered r,yehezkeli o,cheglakov z,willner i.adv.mater.,2008,20(12):2365~2370