逆向思维培养方法范文
时间:2023-11-08 17:17:09
导语:如何才能写好一篇逆向思维培养方法,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
引言
以往的数学教学体现出一个特点,那就是教学方法和教材的编写专注于学生对数学基础知识、公式理论、解题思路的记忆背诵。传统数学教学培养的是学生的正向思维,但是这种方法容易造成学生思维方式的固定。新课程标准谋求教学方式的转型,注重学生逆向思维方式的形成,并能够应用逆向思维解决实际生活中的问题。逆向思维的形成需要长时间、系统化的培养,需要教师转变教育方法,加强逆向思维模式在教学中的应用。
一、逆向思维方法的总特征
发散性思维模式是逆向思维模式的基础。逆向思维模式又被称为反向思维模式,逆向思维模式是指从已经相关思考方向的反面进入,进行系统化的分析、整理问题。逆向思维模式带来对问题更深入的思考,具体的运用方法可以体现在对公式或者定义的方向运用,对法则的变化处理,等等。培养学生逆向思维模式可以使学生打破传统的理解方式,从新角度思考问题,建立系统化的分析方法。在对旧知识的重新思辨中,加深对新知识的应用和记忆,并从新知识中再得出新知识。数学教学中的逆向思维培养至关重要,能够对学生建立科学、理性的思维提供极大的帮助,指引学生通过逆向思维进行思考[1]。
二、逆向思维方法的作用
为了通过培养逆向思维模式改变学生就有思考方法,实现对问题的创新分析、重新思考。在当今社会复杂多变的局势下,使学生成长为适应文化多元变化、社会急速发展的全能型人才。数学教学的主要目标就是让学生形成主动的逆向思维模式。学生建立起自己的逆向思考方法可以很好地理解课上所学的基本知识。面对数学问题时能够思考出更多的集体思路,极大地提高数学解题速度。形成良好的逆向思维后学生可以进行逆向思考,促进独立思维的形成[2]。
在新时期新课标要求下进行数学逆向思维的培养有利于激发学生的想象力。数学知识体系中有很多需要灵活应用的地方,可以用多种方法进行思考。传统教学中,大多数教师倾向于从上至下地逐步教学,都是正向的思维方式。学生从教师的教育方法中学到的都是固定思维,引导学生对知识记忆、解题模式形成固定套路,不利于学生自主学习。一旦学生产生了思维定势,往往会影响学生的自主性、独立性,影响学生未来的发展。
三、逆向思维方式的引导
教师该如何进行对学生逆向思维方式的引导呢?举一个例子,教师可以在数学课堂教学中提问:2+2=?
如果教师以这个问题提问高中学生,首先,学生会觉得这个问题幼稚而可笑,并对教师的行为感到困惑。对于高中生,这个问题的答案在幼儿阶段就已经知道了。但是应用反方向思考方法,教师接着提问学生?=2+2,并询问学生?=2+2可以得到多少种可能。通过简单的方式就能够培养学生的反向思维模式,学生也能从中学到逆向思维的思考方法及对问题进行反向思维加以解决的技巧。这个简单的事例既让学生理解了逆向思维模式的最简单方法,又开发了学生的想象力,拓展了学生想象的空间。
数学教学需要用逆向思维方法增强学生的理解力。基础知识的深化学习是通过教师讲解课本的主要内容,学生自我进一步学习为不仅能对数学知识有深刻的了解,还能对其他学科的学习起到促进作用。逆向思维模式教学作为数学教学的重要环节,使学生在普通的数学学习生活中开发出自己独特的对概念、法则的运用方式。
四、在教学中实践逆向思维
在数学教学中,教师传授新内容的同时要注重培养学生的逆向思维能力,教师既可以直接讲解数学教材中的基本内容,对公式、定理做出解析,又可以对学习过的基础知识反向讲解。在教学过程中,教师作为课程的设计者要注重教学环节结合逆向思维模块设计,也要关注学生能够理解的范围。教学知识要根据学习内容做出调整,首先应该设计例题,其次让学生自我探索,最后对立体中包含的数学概念进行反向思维的讲解。以上就是反向思维方式中的根据结果找原因的具体方法。习题练习是培养学生逆向思维的一个基本方法。数学知识强调基础性,教材中在数学知识体系后都配有相应的、形式多样的习题,教师可以通过习题教学培养学生的逆向思维,教师在习题讲解中可以根据不同的习题,设计不同的逆向思维的训练方式,习题教学中的逆向思维可以大致分为例题示范和学生对习题的训练[3]。
整体解题思路能够体现出学生思维的整体意图,日常教学活动分析学生的解题思路。学生在练习过程中,以分析题为例,所有人都习惯从已知条件出发,配合已经学习过的知识分析解决数学难题。但是整个数学思维方法中包括反向思维法,很多练习题的思路就是逆向破解,从结论找出原因会使得问题能够得到更好的解决。在学生掌握初中数学基础知识体系和一般解题思路与方法后,引导学生进行逆向思维,是对知识体系的再巩固和加强,对基本概念、规律的强化,帮助学生对逆向思维解题思路的整体理顺和分析,最终使学生的思维方式朝正确的、多维的方向发展[4]。
结语
为了提高学生的综合素质,需要以数学的学习促成逆向思维模式。这要求数学教师在平常的教学活动中充分利用基础知识培养学生的逆向思维,对学生能力进行深入开发,顺应课程改革的潮流成为教师队伍中的变革者。数学教育需要关注学生的能力,注重思维方式的培养,开拓学生的视野。教师在锻炼学生独立解题能力的同时,还要对学生分析问题的思维模式进行引导、培育。
参考文献:
[1]杜薇.逆向思维在平面教学中的应用[J].才智,2015,34(07):71.
[2]林永德.数学合作式学习,令学生勤学好问[J].华夏教师,2015,11(11):77-78.
篇2
一、什么是逆向思维
逆向思维,也叫做求异思维,这种解决问题的思维方法是通过打破传统的思维方式,对司空见惯的方法或原理进行逆向的思考。从数学学习方面来讲,逆向思维就是在学习数学原理、公式以及推理的过程中,通过结论推导出已知条件的思维方法。
逆向思维能够在初中数学教学中得到充分的应用,究其原因,主要是以下两点:首先,逻辑性和严密性是数学这一学科所具有的特点,而其高度的严密性又体现在知识点之间的相互衔接,使解题过程中存在明显的因果关系;其次,学生在初中阶段,会有明显的抽象思维能力提升,再通过老师对学生逆向思维的培养,可以帮助他们更加轻松地掌握数学的基础知识。
二、如何进行初中数学教学逆向思维的开发
(一)概念教学中的逆向思维培养
以往的概念教学过程中,教师总是会忽略概念、定义等元素的双向性特征,一般只是采取从左到右的讲解方式,这就导致了学生定向思维的产生。因此教师在讲解具有双向性的概念、定义时,需要注意激励学生进行反向思考,看一看这一概念反过来是否依然可行。例如,在讲解“互为余角”这一定义的过程中,教师可以先为学生讲解:因为A、B两角相加等于九十度,那么由此证明A、B两角互为余角。待学生了解了这一定义之后,可以鼓励学生进行逆向思考,是否可以因为已知A、B两角互为余角,从而证明A、B两角相加等于九十度呢?通过这样的学习,学生就能够对定义、概念有了更全面的了解,从而在今后的解题过程中能够举一反三。
(二)公式、命题教学中的逆向思维
学生在课堂中学会某个公式的用法之后,基本上都能够将标准的公式熟记心间,可是在实际解题过程中,运用这样的标准公式有时无法将题目解答出来,这不是题目超纲的问题,而是需要学生们转换思维,逆用公式进行解答。因此,在进行公式教学时,教师可以让学生学习如何将公式从左解出右,再从右解出左。
那么在日常的公式、命题教学中如何培养学生的逆向思维呢?首先,要引导学生对该命题的逆向推理是否正确进行思考;其次,让学生思考:如果逆命题成立,应该怎样进行应用。最后,若这项逆命题不成立,还有无其他简洁的方法解答题目。
逆向思维的方法既可用在代数题中,也可用在几何证明题中,“反证法”就是逆向思维在几何证明题中的运用。“反证法”的应用一方面可以帮助学生拓宽解题思路,另一方面还能使题目的解答更加简洁。教师若要适应新课标的要求,在公式和命题教学中提高学生逆向思维的能力,应在课前进行充分的备课工作,在课堂实践和课后作业中培养学生运用逆向思维。
(三)使学生在丰富多彩的活动中体会数学,学会运用逆向思维
学生若在活动中能够自己发现数学问题,并自行解决,这样的学习方法要比老师在课堂上教导学生进行逆向思考有效得多,因此教师在教学过程中应当适当布置学生自己探索数学问题的活动。例如在教授储蓄和银行利息计算的时候,老师可以让学生进行分组,让每组学生到银行对各种储蓄方式的利息计算方法进行了解。回校后,各组学生根据自己了解到的数据编写题目,在课堂上,各组拿出自己的题目相互进行探讨,看一看所编写的题目是否合理。这样,一方面培养了学生双向思考的能力,另一方面又加强了他们的团队意识和合作交流能力,还能激发学生的学习兴趣,可谓是一举多得。
(四)将逆向思维方法渗透到日常教学之中
教师想要学生获得逆向思维模式,掌握用逆向思维方法分析问题、解决问题的能力,需要在日常的教学过程中,不断将逆向思维的方法渗入数学教学之中。分析法、反证法以及归纳总结法等都是良好的数学思维方法。在课堂教学中,教师可以将这些数学思维模式逐渐渗透给学生。例如,在讲解“角平分线”这一知识点时,教师可以让学生将其同“线段的中点”知识进行对比,这样学生不仅掌握知识的速度更快,而且更牢固。
篇3
关键词:高中数学 逆向思维 培养
逆向思维是正向思维的补充,在高中数学教学中,教师应当引导学生逆向思考问题,充分发挥创新能力,调动学生的积极性,扩大他们的思维空间。通过对学生逆向思维的培养,全面加强了学生思维的灵活性和敏捷度,使学生的思维品质和思维能力得到提高。
一、学生逆向思维意识的培养
逆向思维作为思维的一种形式,它克服了思维所具有的保守性,转变人们的思维方式,起到激发创新能力的作用。在高中数学教学中,教师对学生进行逆向思维的培养,首先要以知识作为首要条件,把逆向思维渗透到教学中去,让学生自觉地遵循这个原则。教师在教学过程中,要注意教材的逻辑顺序,由于各种原因,教材的顺序与学生所特有的心理顺序不一致,就会影响到学生的思维能力,使教学无法正常地开展下去。因此,教师在备课时候要充分考虑这个问题,把教材的章节和内容之间的思路理顺,找出矛盾之处,并加以分析。特别是一些章节存在学科之间联系的时候,教师则可以在授课的时候使其融会贯通在一起,便于学生理解。这样既能完善学生的知识结构,也能开阔他们的思维,从而激发他们学习数学的兴趣。
二、在数学公式中注重逆向思维
在现今的数学教学中,一般数学公式都是从左到右进行运算的,也有从右向左运用的时候,也可以说成是正向思维转变为逆向思维的方式。在许多的数学习题解答过程中,会不同程度的出现要求把公式和法则转换来进行解题,然而许多学生在解题时都缺乏相应的自觉性和基本功。因此,教师在数学教学过程中要全面培养学生逆向思维,让他们学习逆向应用数学公式和法则。在讲解完一个应用题或者公式以后,教师可以紧接着寻找一些关于公式逆向应用的例题给学生练习,使他们在练习中掌握逆向应用的方法,给学生留下深刻的印象。下次学生再遇到类似的问题时,可以自己独立解决。在三角公式中,逆向应用所涉及的方面很多,例如诱导公式的逆应用、三角函数关系公式的逆应用等等,这些公式在运算工程中,如果使用正向思考却只能解决一小部分,而使用逆运算则可以充分解决问题。因此,逆向思维在数学公式中的作用是非同小可的,它可以培养学生的思维能力,激发他们的学习兴趣,使学生的主观能动性得到有效的发挥。
三、利用逆向思维完善高中数学的教学方法
在高中数学的教学中,制订一套完整的教学方法是教师成功的关键。逆向思维中的反证法和逆推分析法则是培养学生逆向思维的主要方法。例如在一些几何命题中,教师往往用传统的方法让学生从所要证的结论入手,结合题目中所提到的已知条件和图形分析进行解答,使学生养成独立思考和解决问题的能力。其中反证法也是集中了这种思维方式,教师可以引导学生反向思维,例如一道题无法用正向思维的方式来解决,则可以反过来思维,假设问题不成立,通过层层分析来证明假设是错误的,从而来证明定理是成立的。在高中数学课上,教师在教学过程中,要不断加强学生的逆向思维训练,例如在一组逆向思维题中,教师引导学生对题目进行求证和转换,并把题目变成与原题相似的新题型,让学生能够充分开发自己的思维能力,去研究和解答问题。这种巧妙的逆向思维方法,可以帮助学生解决许多在学习当中无法解决的问题,教师在教学过程中,经常引导学生逆向思维,可以开阔学生的思维,使学生能够更为轻松地学习数学,有效地提高教学质量。
四、总结
篇4
关键词:逆向思维;数学解题;应用
中图分类号:G712 文献标识码:B 文章编号:1002-7661(2017)01-024-01
所谓逆向思维法,就是指人们为达到一定目标,从相反的角度来思考问题,从中引导启发思维的方法.逆向思维是一种比较特殊的思维方式,它的思维取向总是与常人的思维取向相反,比如人弃我取,人进我退,人动我静,人刚我柔等等.这个世界上不存在绝对的逆向思维模式,当一种公认的逆向思维模式被大多数人掌握并应用时,它也就变成了正向思维模式.逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式.敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象.
逆向性思维在各种领域、各种活动中都有适用性,由于对立统一规律是普遍适用的,而对立统一的形式又是多种多样的,有一种对立统一的形式,相应地就有一种逆向思维的角度,所以,逆向思维也有无限多种形式.如性质上对立两极的转换:软与硬、高与低等;结构、位置上的互换、颠倒:上与下、左与右等;过程上的逆转:气态变液态或液态变气态、电转为磁或磁转为电等.不论那种方式,只要从一个方面想到与之对立的另一方面,都是逆向思维.逆向是与正常比较而言的,正向是指常规的、常识的、公认的或习惯的想法与做法.逆向思维则恰恰相反,是对传统、惯例、常识的反叛,是对常规的挑战.它能够克服思维定势,破除由经验和习惯造成的僵化的认识模式.循规蹈矩的思维和按传统方式解决问题虽然简单,但容易使思路僵化、刻板,摆脱不掉习惯的束缚,得到的往往是一些司空见惯的答案.其实,任何事物都具有多方面属性.由于受过去经验的影响,人们容易看到熟悉的一面,而对另一面却视而不见.逆向思维能克服这一障碍,往往是出人意料,给人以耳目一新的感觉.
在逆向思维的解题中,适当的强化学生本身的逆向思维能力训练,有利于学生在发觉新的知识点和领域;有利于培养学生的逆向思维品质;有利于健全学生思维品质的周密性.有些数学问题的条件比较简单,而讨论过程却比较复杂,这些题目难以直接求解,这时应用逆向思维,从题目结论的“补集”入手,会增加推导的条件,或使所考虑的情形较为简单,推导较易进行,避免陷入困境.某些数学问题只给出了条件, 而结论往往需要我们去探求.这类数学问题如果运用正向思维去思考, 往往会造成思维障碍, 不能求得问题的解决.此时如果利用逆向思维方式去寻求解答的方案, 则可使问题简化, 解题方向明确.逆向思维法实质是一种转化思想, 利用它一方面可使某些数学问题达到避繁就简、化难为易、事半功倍的效果, 另一方面也为学生思维能力及创新意识的培养开辟了一条很好的途径.沟通不同学科方法之间的横向联系是提高解题能力的一个有效途径.通常, 人们强调代数法解几何题, 代数法解三解形, 三角法解几何题.而忽视问题的反面, 即几何法解代数题, 三角法解代数题, 几何法解三角题.如果能把几何法和三角法应用于代数, 常常可耳目一新, 趣味横生.
逆向思维在解题中应用应该注意的事项:通过以上各种解题的方式、方法和思想的应用,我们应该全面地认识到,学生思维素质的好坏,直接关系到解题水平的提高,而思维的灵活性制约着智力的发展,多向思维又是思维灵活性的保证,逆向思维是多向思维的重要组成部分,解题中培养学生的逆向思维又是一个实际可行的策略,但其在解题中应做到以下几方面:在解题中应用逆向思维,必须有扎实而丰富的基础知识和基本的思想方法为前提,只有具备大量的知识信息才能从事物的不同方向和不同系上去考虑问题.在解题中应用逆向思维,要注意类比、引伸、拓广、举反例等多种思维方法的培养,使之形成习惯.在解题的过程中,要克服阻碍逆向思维建立的一些因素.如正向思维的顽固习惯,正逆混淆,忽视正、逆转化的限制条件,以及缺乏运用逆向思维分析问题寻求解题方法的能力和不良的思维定势等.
总之,在解题的过程中学生要有意识地对自己进行双向思维交替的训练,从而提高自己由正向思维转换到逆向思维的能力,为逆向思维的形成和建立奠定了良好的基础.另外,逆向思维解题方法的培应用,对克服思维定势和思维的呆板性起到了积极的作用,也为创造思维提供了灵活的思维方式.
参考文献:
[1] 莎茹莉.数学教学中逆向思维法[J].呼伦贝尔学院学报,2002, 10(4):49-51.
篇5
关键词:逆向思维;受阻表现;训练;实施;策略
中图分类号:G632 文献标识码:B 文章编号:1002-7661(2015)15-202-01
数学是思维的体操,思维是智力的核心。逆向思维是数学的一个重要法则,其特点表现在:善于从不同的立场、不同的角度、不同的侧面去进行探索,当某一思路出现阻碍时,能够迅速地转移到另一种思路上去,从而使问题得到顺利解决。
一、阻碍学生逆向思维的因素
从教学形式看,最主要是教师在数学课的教学中,往往采用“建立定理--证明定理--运用定理”这三部曲或采用“类型+方法”的教学模式,忽视了逆向思维的培养与训练,以致学生不能迅速而准确地由正向思维转向逆向思维。
二、逆向思维受阻的具体表现
1、缺乏显而易见的逆向联想
由于学生在学习过程中,进行了较多的是由此及彼的单向训练,而忽视了逆向联想,这就造成了知识结构上的缺陷和思维过程中顽固的单向定势习惯。
2、混淆重要定理的正逆关系
对于运用正逆关系的数学命题,学生经常混淆题设与结论的顺序。如:勾股定理的逆定理的运用,“在ABC中,AC=5,BC=12,AB=13,那么ABC是直角三角形吗?请说明理由。”学生认为运用的是勾股定理,理由是“AC2 + BC2 = AB2,52 +122 =132 ,ABC是直角三角形。”其实有“AC2 + BC2 = AB2”,已经是直角三角形了,还要“52 +122 =132”干什么呢?
3、忽视正逆转化的限制条件
如:已知……(条件),则……(结论) ;但反过来由结论推出“条件”就不全面了,遗漏了另一种情况。特别是对一些限制条件的反求,学生更是束手无策,如:当cbc,则a
4、缺乏逆向变形的解决能力
如:计算 ,有些学生竟然对它进行通分,却不会用变形。
5、缺乏逆向分析的解题思路
学生在分析问题时只习惯于从条件到结论,却不会从结论出发去寻求解题思路,缺乏双向思维解决问题的能力。
三、逆向思维训练在教学中的实施
心理学家研究的结果表明,中小学的学生思维发展中所表现的思维方向和水平是不同的,最初只能是单向的,没有逆向思维,以后才逐渐形成思维的可逆性和反复性。对于学习能力不同的学生,从正向思维序列转到逆向思维序列程度也不同:一般地,能力较强的学生几乎在建立正向思维的同时,就建立了逆向思维,只需稍加点拨;能力中等的学生,要建立逆向思维必须进行适当的训练;能力较差的学生,要形成这种逆向的心理过程是非常困难的,对于这些学生还是把重点放在正向思维的建立上,在巩固了正向思维的基础上,通过教师长期多方面的引导和特别训练,才能逐步地接受逆向思维。本文从以下几个方面探讨如何在教学中实施逆向思维。
1、定义教学中逆向思维的训练
作为定义的数学命题,其逆命题总是存在,并且是成立的。因此,学习一个新概念,如果注意从逆向提问,学生不仅对概念辨析得更清楚,理解得更透彻,而且能够培养学生养成双向考虑问题的良好习惯。
2、公式教学中逆向思维的训练
数学中的公式总是双向的,可很多学生只会从左到右顺用公式,对于逆用,尤其是利用变形的公式更不习惯。事实上,若能够灵活地逆用公式,再解题时就能得心应手,左右逢源。
在此应特别注意两点:第一、强调公式的顺用和逆用,“聚合”和“展开”。第二、逆用公式是求代数式的值、化简、计算的常用手段。
3、运算法则教学中逆向思维的训练
数学中的很多运算都有一个与它相反的运算作为逆运算,如:加法和减法、乘法和除法、乘方和开方都是互为逆运算,彼此依存,共同反映某种变化中的数量关系。而且在同一级运算中,可以互相转化,如利用相反数的概念减法可以转化为加法,利用倒数的概念可以转化为乘法。
4、定理教学中逆向思维的训练
不是所有的定理的逆命题都是正确的,引导学生探究定理的逆命题的正确性,不仅能使学生学到的知识更加完备,而且能激发学生去探索新的知识。勾股定理、一元二次方程根的判别式定理、韦达定理的逆定理都是存在的,应用也十分广泛。
四、逆向思维训练的实施策略
在学数学的过程中,经常会遇到这样一些问题,当从正面考虑时会出现很多障碍,或者根本解决不了,而从反面着手,往往可以使问题迎刃而解,再或者证明问题的不可能性,等等都需要有非常规思路去解决。比如“正”难则“反”。
反证法是一种逆向思维的方法,被誉为“数学家最精良的武器之一”,是解数学题常用的方法。当题目出现有“至少”或“至多”字样,或以否定形式给出时,一般采用反证法。
五、逆向思维的训练应注意的问题
实践证明,在教学中,关注学生的逆向思维的训练,不仅能培养思维的灵活性、敏捷性、深刻性和双向性,而且还能克服由单向思维定势造成解题方法的刻板和僵化,以及不善于在新条件下独立发现新方法、新结论等不足之处。
在数学教学中培养学生逆向思维值得说明的是:首先,必须有扎实而丰富的基础知识和基本思想方法为前提,只有具备大量的知识信息,才能从事物的不同方向、不同联系上去考虑问题;其次,在教学中要充分注意类比、引申、拓广、举反例等多种思维方法的培养,使之形成习惯;再者,提倡变式教学,“模式化+变式”是逆向思维训练的高效率的形式之一;最后,培养学生的逆向思维的能力,必须量力而行,应注意学生的可接受性,因为许多逆向问题对中、下学生来说,考虑起来还是比较困难的,该回避的还是不涉及为好,让这些学生集中精力掌握好基本内容;对学有余力的学生,加强逆向思维的训练,对培养他们的学习兴趣,拓广思路,提高能力都起着十分重要的作用。
参考文献:
篇6
一、顺应新课程标准要求,明确逆向思维能力的重要性
对学生逆向思维能力的培养不仅是为了弥补学生综合发展过程中自身存在的不足,也是为了满足新课程标准的要求.逆向思维能够引导学生更全面地看待问题,进而从对问题的逆向推理过程中找寻出解决问题的办法.初中生处于特殊的年龄阶段,加强学生逆向思维能力的培养不仅能增强学生对数学基础知识的理解,还能提高他们的思维严谨性.在教学工作过程中,教师应摆脱传统的机械式思维习惯与思维方式,提高学生的逆向思维能力,改善他们的思维方式,以引导他们形成良好的思维习惯.同时,注重学生逆向思维能力的培养能够使学生形成良好的思维品性,从而提升学习兴趣与自身的综合素质.
二、合理运用概念教学,培养逆向思维意识
我们平时的概念教学中,多是遵从教材的概念、定义,从左往右地运用.久而久之,学生形成了定向思维模式,遇到一些未遇到的问题时就束手束脚,无从下手,不懂得举一反三.对于逆向看待教材中出现的概念、定义很不习惯.然而,事实上教材中的很多数学概念、定义等元素都是双向的.因此,在概念教学过程中应有意识地培养学生的逆向思维意识.
例如,在讲“互为余角”时,可以采用这样的讲解步骤:在一个三角形中,如果两个角的和为90°,则这两个角互为余角,(正向思维);在一个三角形中,若两个角互为余角,则这两个角的和为90°,且该三角形为直角三角形,(逆向思维).
作为教师,应首先明确哪些概念的定义是可逆的,并根据自身不同情况,选择难度适中的题目来对学生加以正确引导,以促进学生逆向思维能力的提升.
三、合理运用数学公式,培养逆向思维意识
公式与法则是初中数学内容比较重要的知识内容,运用逆向思维不仅有利于学生对于数学公式法则的理解,还能够激发他们对于公式法则精髓的学习.从判定定理到性质定理、从多项式的乘法到分解因式等都是培养学生逆向思维能力的素材.同时,对于有些问题而言,如果用正向思维来解算会比较复杂,但如果用逆向思维来解题就相对比较简单.
运用逆向思维能够有效提高学生的解题速度与效率,并且能够激发起他们解题与钻研公式法则的兴趣.对于教师而言,应有意识地培养学生的逆向思维能力,比如可在日常的教学工作过程中有意识地引导他们判断逆命题的正确与否,倘若逆命题成立,应该考虑逆定理如何运用;若不成立,则应考虑其他的解题方法,以提高学生的思维灵活性,顺利完成初中数学的教学目标.
四、合理运用反证法,培养逆向思维意识
合理利用逆向思维引导学生去探究定理的逆命题的真假,不仅能使学生更加系统完善地学习知识,激发起他们的探究欲望,还能培养学生创造性地把定理题设与结论相互转化,进而形成有异于传统基本思想的逆向思维.反证法的思维特点与其他的方法不同,它是通过证明一个命题的逆命题或否命题来间接证明原命题的正确与否,这是运用逆向思维的一个典范.利用反证法解题是运用逆向思维方式解题的一种体现,并且该方法也是初中阶段较常用的一种证明方法,能够有效提升学生的逆向思维能力.
例如,有关于x的三个方程2x2+3mx-3n+3;x2+(2n-1)x-2n+n2;x2+5nx-n,它们中至少一个有实根,求实数n的取值范围.“至少一个有实根”包括有一个实根、两个实根、三个实根三种状况.若我们用逆向思维思考,考虑其反面则是:m为何值时,三个方程都无实根,则问题就会变得很简单.
篇7
关键词:小学数学;逆向思维;顺向思维;多种训练;教学质量
中图分类号:G421 文献标志码:B 文章编号:1008-3561(2015)34-0046-01
在数学教学中,培养学生的顺向思维能力机会比较多,培养他们的逆向思维能力的机会相对较少。其实,在社会生活中,逆向思维同顺向思维同等重要,有时逆向思维比顺向思维还要重要。因此,要重视培养学生的逆向思维能力。
一、从直观入手,形成逆向思维能力
培养小学生的逆向思维,最好从直观入手,比如通过操作,采用看看、摆摆、说说等,帮助学生由顺向思维过渡到逆向思维。例如3+2=5这个算式是顺向的合并,学生很容易看出是3和2组成5,而5=3+( )算式则是逆向的分解,学生就不容易看出5可以分成3和2。为了形成逆向思维能力,这时,笔者就采用直观教具进行演示,帮助学生理解互逆关系。把3个和2个合起来是5个,35,25,反过来,把5个分成3个和2个两个部分,53,52,学生通过对图形的观察比较,初步了解组成和分解是互逆关系。在初步了解的基础上,让学生动手进行合和分的操作,学生就很快地理解了3+2=5,5=3+( )。在以后的教学中,还会出现许多实物、图片,可以扩展到与实际的联系和比较。要求学生针对实物的多少、大小,线段的长短、粗细,人的高矮,说出相互之间的互逆关系。这样,学生就初步理解了互逆关系,形成了逆向思维能力。
二、依据教材,从不同内容入手培养逆向思维能力
为了巩固已形成的逆向思维能力,可以让加减法和乘除法教学同时进行。有一道题:左边有2只公鸡,右边有3只母鸡……列式为5-3=2。这样,学生就理解部分与整体的互逆关系,加法与减法是互逆运算,而且又进一步理解数的组成与分解的互逆关系,逆向思维得到了训练。又如,在教表内乘、除法时,问学生:有4个相同的部分数3,可以合并成一个整体,这整体是多少?怎么列式?学生列式3×4=12。反过来,把整体12分成4个相等的部分数,这个相等部分数是几?怎么列式?学生列式12÷4=3。之后,学生能够根据已学的知识很快列出相关算式。比如,3×5=15写成除法,算式是15÷3=5、15÷5=3。同时还能归纳结论:每份数×份数=总数,总数÷每份数=份数,总数÷份数=每份数。这不仅巩固和提高了学生逆向思维能力,而且培养了学生的迁移能力。在数的应用方面,笔者也非常重视可逆思维能力的培养。在观察一幅图时,要求学生从顺、逆两方面来想,然后要求编写出两道加法、两道减法的应用题,还根据实际情况进行改编加减乘除应用题训练。比如在黑板上写出“3”“6”两个数后,要求学生先编出加法应用题,再改编成减法应用题。部分学生说:“李刚有6本书,王强有3本书,他们一共有几本书?”改编成减法则是:“李刚和王强共有9本书,李刚有6本,王强有几本?”或者“李刚和王强共有9本书,王强有3本,李刚有几本?”编写乘法应用题:“有3组同学做卫生,每组6人,共有多少人做卫生?”改编成除法应用题:“有18个学生做卫生,6个同学分一组,可以分几组?”或者“有18个学生做卫生,分成3组,每组几人?”通过编写与改编应用题的练习,发展学生逆向思维能力,调动学生积极性,课堂气氛很活跃。“问题是思维活动的开始。”因此,要激发学生积极思维,使之产生解决问题的欲望。低年级学生知识面窄,经验少,识字不多,而且刚刚有了一些逆向思维能力,学习数学时肯定会遇到各种困难。教师应当适时地创设问题加以点拨,开拓学生思路。例如,在教“城东小学秋季种树82棵,比春季多种18棵,春季种多少棵”这类应用题时,部分学生对题意不理解,出现了82+18=100(棵)的错误解答。为此,笔者适时地创设以下几个问题加以点拨:“按题意谁比谁多?”(秋季比春季多)“不改变题意换一种说法应该怎么说?”点拨逆向变顺向思维,学生对题意就容易理解了(实际春季比秋季少18棵)。“求比一个数少几的数用什么方法?”(用减法)通过这样顺逆关系的点拨,以后学生遇到逆解应用题,就会运用逆向思维去解决,激发学生的进取心和学习兴趣,提高逆向思维能力。
三、通过多种方法的训练,提高和发展逆向思维能力
一种能力的培养不是一朝一夕的,需要经常性地训练才能形成。根据学生心理特征,训练的形式和方法要多种多样,要有意识、有计划、有目的地培养,能力才能得到巩固和提高。在充分利用教材有利条件下,采取图形排列推理、数列推理、计算训练、口语对话、编写应用题和改编应用题等方式进行训练。形式上可以采用对口令、放鞭炮、送信、查岗哨、找朋友、开火车等游戏活动,使学生逆向思维敏捷灵活,并具有创造性。
四、结束语
在依据教材巩固逆向思维能力时,教师还要注意创设问题,激发思维,点拨关键,开拓思路。实践证明,通过对学生逆向思维能力的培养,可以明显缩短教学时间,突破教材中许多难点,提高教学质量。
参考文献:
篇8
一、重视在概念、定义教学中培养学生的逆向思维
数学中的定义是通过揭示其本质而来的,定义都是充要条件,均为可逆的。所以,其命逆题也是成立的。因此,定义即是某一个数学概念的判定方法,也是这一概念的性质。在教学中应充分利用这一特征,尤为注意定义的逆用解决问题。在定义的教学中,除了让学生理解定义本身及其应用外,还要善于引导启发学生逆向思考,从而加深对定义的理解与拓展。
如绝对值是这样定义的:“正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值是零”除了从正向去理解计算,还要教学生逆向去理解,如“计算︱5︱=?︱-5︱=?”,这是从正向去理解计算,“一个数的绝对值等于5,这个数是多少?”这是逆向去理解计算。
二、重视数学公式、法则、性质的可逆性教学
数学公式本身是双向的,由左至右和由右至左同等重要,但习惯上讲究由左至右或化繁为简的顺序。为了防止学生只能单向运用公式,教师应通过对公式的推导、公式的形成过程与公式的形式进行对比,探索公式能否逆向运用,从而培养学生逆向思维能力和逆用公式,鼓励他们别出心裁地去解决问题,在“活”字上下工夫。
公式从左到右及从右到左,这样的转换正是由顺向思维转到逆向思维的能力的体现。因此,当讲授完一个公式及其应用后,紧接着举一些公式的逆应用的例子,可以开阔学生的思维空间。
三、重视引导学生探讨命题(定理)的逆命题
每个定理都有它的逆命题,但逆命题不一定成立,经过证明后成立即为逆定理。在平面几何中,许多的性质与判定都有逆定理。因此教学时应重视定理和逆定理,强调其可逆性与相互性,对培养学生推理证明的能力很有帮助。例如:“互为余角”的定义教学中,可采用以下形式:∠A+∠B=90°,∠A、∠B互为余角(顺向思维),∠A、∠B互为余角。∠A+∠B=90°(逆向思维)。
当然,在平常的教学中,教师本身应明确哪些定理的逆命题是真命题,才能适时给学生以训练。如:平行线的性质与判定,线段的垂直平分线的性质与判定,平行四边形的性质与判定等,注意它的条件与结论的关系,加深对定理的理解和应用,重视逆定理的教学对开阔学生思维视野,活跃思维大有益处。
四、注意逆向思维能力的培养
1.在解题中进行逆向思维能力的培养
我们知道,解数学题最重要的是寻求解题思路,这就需要我们解题之前,综合运用分析和综合或先顺推,后逆推;或者先逆推,后顺推;或者边顺推边逆推,以求在某个环节达到统一,从而找到解题途径。由此可见,探求解题思路的过程也存在着思维的可逆性,它们相辅相成,互相补充,以达到此路不通彼路通的效果。中学数学课本中的逆运算、否命题、反证法、分析法、充要条件等都涉及到思维的逆向性,在数学解题中,通常是从已知到结论的思维方式,然而有些数学总是按照这种思维方式则比较困难,而且常常伴随有较大的运算量,有时甚至无法解决,在这种情况下,只要我们多注意定理、公式、规律性例题的逆用,正难则反,往往可以使 问题简化,经常性地注意这方面的训练可以培养学生思维的敏捷性。
2.教学设计中进行逆向思维教学的运用
教学设计是中不仅注意反映教材的重点、难点,还要注意到对学生思维能力的培养,特别要注意逆向思维的运用。因此经常逆向设问,以培养学生的逆向思维意识。
同时教师应经常地、有意识地从正反两反面探索数学问题,引导学生从对立统一中去把握数学对象,解决数学问题。
教师在总结思维过程时应告诉学生有的问题从“正面”不易解答时,从其“反面”思考往往有突破性效果。通过分析启发很容易掌握,既激发了学生解题兴趣,又培养了学生正确思维方法和良好的思维习惯,思维能力逐步提高。因式分解一章教材本身就明确提出了“因式分解与整式乘法的互逆关系”,教学中抓住“互逆”、“反过来”这条主线,就能让学生真正理解因式分解的意义,并得到逆向思维的训练从而提高思维能力。
3.巩固对逆向思维的理解和掌握
篇9
【关键词】方法;换位思考
学生的思维能力一般是指正向思维即由因到果,分析顺理成章,和逆向思维是指由果索因,知本求源,从原问题的相反方向着手的一种思维。加强从正向思维转向逆向思维的培养,能有效地提高学生思维能力和创新意识。
培养学生的逆向思维能力,不仅可以帮助学生接触更多的新知识,还能打破传统思维的束缚,加强学生全面思考问题的能力,并在思考过程中实现。通过逆向思维的培养,学生懂得从不同层面去分析问题,从整体上解决问题,并学会用不同的方式来学习知识,为今后的学习拓展出一片新的空间,在学习中会有不同的思维来应对不同的问题。
既然逆向思维对学生这么重要,那么怎么培养学生的逆向思维呢?我总结出以下四点。
第一,运用反证法,培养逆向思维能力。
很多数学问题都不是一看就很清楚地反应出来的,对于学生不是随便看一眼就能找到答案的,需要学生反复思考,从不同角度看待问题,正面解决不了,就要反过来看问题。反证法是通过命题给学生提出一个问题,要判断它是对是错,只需要找出满足这个命题或者不满足这个命题的一些特殊的例子就可以了。就是找出使该命题不成立的例子,就足以否定这个命题,而这样的例子通常是和之前相反的。这种方法可以加深学生对问题的认识,深入理解所学的内容,同时还能纠正常见错误,这是培养学生逆向思维的重要手段和方式。这种反证法让学生对某一问题豁然明白,以最深入的方式了解其不成立的真正原因,锻炼了学生的主观思维能力和逆向思维能力。
第二,运用分析法,培养逆向思维能力。
我们一般解决数学问题,大多数是通过分析题目所给出的条件来找规律,最后总结。但对于很多繁琐的数学问题,这个方法就很不实用了。我们对学生的要求不能只停留在这个初级的阶段。逆向思维就是从问题的结论出发,逐步追溯充分条件,指导追溯到问题提出的条件为止,这就是分析法。分析法对学生逆向思维的培养有很积极的作用。例如,将100个球放成一排,从1起查数,凡是奇数球就将其拿开,把留下的再从1起数,一样,再将奇数球拿开,这样反复下去,直到最后剩下一个球,问这个球是第一次查数时为多少?分析:如果根据第一轮的程序走,第一轮数后划掉:第二轮数后又划掉,这样下去,会因为涉及的数字太多而找出混乱,现在我们反过来思考,最后被留下的小球在倒数第1轮必数2,倒数第2轮必数4,在倒数第3轮必数8,于是,倒推过去此球是16,32,64,而第一轮数是64。
第三,逆用公式。
小学数学中的公式主要涉及求周长、面积等。公式主要是对解题起到一个便捷作用,它是数学家经过千锤百炼总结出的一个规律,数学公式都是双向性的,因此,在求解一个数学题时,可以有不同的解题思路,公式也是一个工具,我们要灵活运用,这样才能加强学生对公式的使用,还可以培养学生的双向思维能力。例如,学生在学习三角公式过程中,我提出以下练习题:一块三角形物体的面积是90平方厘米,高10厘米,那么这块三角形的底边长是多少厘米?学生在思考后,运用三角形的面积=底×高÷2的公式,逆推出三角形的底=面积×2÷高,最后得出90×2÷10=18(厘米)的答案,这就是对公式的灵活运用。
第四,倒推练习(还原法)。
倒推法是小学数学教学中一种很重要的方法,通过题目阐述事情的最后结果出发,经过对已知条件的倒推,追根究底,直到问题解决。倒推法的训练,可以将复杂的问题简单化,促进学生逆向思维的发展。就像办案一样,通过产生的结果一步一步往前推,慢慢的,事情的本质就会浮出水面,虽然刚开始只知道结果,但是最后还是能够找出出现这种现象的答案。又如考古一样,本来不知道的,但经过层层递推,总能找出答案的。这种方法并不是没有科学依据的,因为数学总存在一个个因果关系。
在小学数学教学中,老师应有意识地培养学生的逆向思维,并引导学生开展逆向思维,这样不仅能加深学生对问题的认识,还能够运用逆向思维,全范围的解决数学问题,达到学以致用的目的。学生虽然都做对了同一道数学题,但他们的方法用的肯定不一样,逆向思维这种方法可以让有的问题简单化,所以是不容忽视的。毫不夸张的说,掌握了这种学习方法可以让学生终身受益,不论是在学习探讨上还是在社会生活中。数学在大多数学生看来都是比较枯燥乏味的,没有主动学习的意识,学习起来就更加困难了,因此找到一个正确的学习方法就尤为重要了。
【参考文献】
[1]陈岳.在教学中培养小学生的数学逆向思维能力[J].教学研究,2007(04):21
[2]姚海洋.逆向思维在数学课堂教学中的应用[J].科技信息,2008(27):619
篇10
地理教学往往对正向思维关注较多,长期正向思维形式的思维定势会影响逆向思维的建立;又由于经正向思维转向逆向思维需要重新调整心理过程,重建心理过程的方向,这在一定程度上增加了正逆向思维联结的难度。凡此种种,使得培养学生逆向思维能力成为地理教学中的一个难点。通过怎样的途径来培养学生的逆向思维能力呢?我在高中地理教学中做了以下一些尝试:
一、在讲授新课中加强对学生逆向思维能力的培养
1、因果索因,讲解地理概念、地理原理和地理规律。在地理教学中,我们既可以引导学生通过正向思维去获得地理概念、地理原理和地理规律,也可以挖掘教材中的某些探索性内容,因果索因,引导学生利用逆向思维去掌握地理概念、地理原理和地理规律。例如,在讲授“海底扩张学说”这一原理时,首先可引导学生阅读“太平洋洋底地层年龄分布图”,然后利用学生读图所得的结论提出问题:①为什么海底岩石离海岭愈近,年龄愈年轻,并在海岭两侧呈对称分布呢?②为什么大洋地壳岩石年龄都不超过二亿年?接着引导学生阅读“大洋板块俯冲示意图”,让学生自己表述大洋地壳的生成、移动、消亡的原理,最后由师生共同归纳总结得出这一理论:喷出——生成——推移——俯冲——消亡——循环。通过因果索因,启发学生自己去猜想、推理、判断、验证这一学说,启迪了学生逆向思维的思路。这样做,不仅使学生知道这一理论的来龙去脉,而且教给学生科学家是如何运用地理思维去逐步得出该学说的方法。
2、反向逆推,探讨某些命题的逆命题的真假。探讨某些命题的逆命题的真假,是研究地理科学的方法之一,也是学生学习地理的一种行之有效的方法。例如,在学完“流水沉积物的颗粒由大到小,循序排列,分选性较好”这一特点后,可以引导学生反向逆推:分选性较好的沉积物是否一定是流水沉积物呢?(否,风力沉积物分选性亦较好)。象这样的反问,学生可能一时答不出来,但只要教师略加点拨,学生就可通过自己的思考获得正确答案。通过反向逆推,引导学生利用逆向思维去发问、发现,可以进一步扩大和完善学生的认知结构,深化和升华所学的课本知识。
3、辩证分析,从矛盾的对立面去思考问题。任何事物都是矛盾的统一体,如果我们从矛盾的不同方面去引导学生逆向思维,往往能认识事物更多的方面。在学习“人类活动对气候的影响”时,我们既要阐述大气中二氧化碳含量增加使气温升高产生“温室效应”,又要说明大气污染使尘埃增多,可能使气温下降,产生“阳伞效应”。这样讲解,可以提高学生辩证地分析问题和解决问题的能力。
4、运用“反证”,证明地理事实和结论的正确性。反证法是正向逻辑思维的逆过程,是一种典型的逆向思维。反证法是指首先假设与已知地理事实和结论相反的结果成立,然后推导出一系列和客观地理事实、地理原理和地理规律相矛盾的结果,进而导致否定原来的假设,从而更加有力地证明已知地理事实和结论的正确性。例如,当我们讲解“地球的公转”时,不少学生对地球公转的特征及其产生的意义感到理解困难,一些空间想象力差的同学更是如此。为此,我在讲究有关内容后,提出一个假设:“如果黄赤交角为0,地球公转的特征及意义如何?”,在学生思考议论的基础上,再由教师演示讲解,学生的疑难点也就迎刃而解了。在正面讲解某些内容比较困难时,反证法不仅可以起到化难为易、事半功倍之效,而且培养了学生的逆向思维能力。
二、在习题教学中强化对学生逆向思维能力的训练
1、例题示范,克服思维定势的消极影响。在习题教学中,教师有意识地讲解一些与学生原有认知相冲突的范例,可以打破思维定势的消极影响,开拓学生逆向思维的思路。例如:近年来,科学家在青藏高原的一些高寒地区发现了十分发育的喀斯特地形,试解释这种现象。由于学生一般都知道喀斯特地形发育的两个基本条件,即首先要有范围广大的可溶性岩石,其次必须具有高温多雨的气候条件。现在的青藏高原气候高寒,不具备上述条件,这样的思维定势无疑会使学生感到求解无路。如果教师引导学生利用逆向思维,从青藏高原发展历史寻求答案,则会产生“山重水复疑无路,柳暗花明又一村”之效:青藏高原在地质史上曾是一片海洋,沉积了巨厚的石灰岩,后来地壳上升,在上升的初期高度不大,气候高温多雨,发育了喀斯特地形。青藏高原急剧抬升后,喀斯特地形亦随之上升。以上分析可以看出,这道题既锻炼了学生的逆向思维能力,又串联了有关知识,使学生以其所知解决其未知的新问题。
2、一题多变,活跃逆向思维的思路。很多习题,只要改变某些条件,或将条件和结论相互对调,或将已知和未知相互对调,就可供训练逆向思维之用。这样做,既可以收到举一反三之效,又可以活跃逆向思维的思路。