人工智能时代概念范文

时间:2023-11-02 17:37:10

导语:如何才能写好一篇人工智能时代概念,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

人工智能时代概念

篇1

郑子斌

百度副总裁,百度美国研发中心总经理

毕业于美国斯坦福大学并获得计算机科学硕士学位。曾任职于Google、阿里巴巴、Oracle等知名企业,有二十余年的硅谷与国内研发管理经验,其中十余年致力于互联网营销技术创新,是人工智能与大数据领域资深实践者。2010年5月正式加盟百度,目前全面负责百度搜索公司大商业体系。

无论在PC时代,或移动时代,还是正在到来的人工智能时代,搜索一直是最便捷的信息获取途径。不同的是,用户将会拥有越来越智能、多样化的搜索手段。例如语音搜索,图像搜索等新兴搜索方式正在逐渐被广泛的使用。百度作为代表中国人工智能最高水平的互联网公司,在人工智能方面的应用体现在很多方面,从推出语音输入法,到开放深度学习平台,再到开放百度大脑平台,百度正在尝试在更多层面上将人工智能与搜索无缝衔接。

进入信息分发2.0时代,用户不仅需要更便捷智能地找到信息,也需要个性化的信息主动推荐;在“人找信息”的同时,实现“信息找人”。百度能够向用户提供双向智能适配的信息分发服务,通过搜索+推荐相结合,实现信息分发2.0。“手机百度信息流”是百度“信息分发2.0”落地的一个缩影。2016年,短短三个月其流量快速增长了20倍,背后是优质内容与用户信息需求的精准匹配,百度的人工智能技术始终扮演着重要角色。

人工智能在智能互联网的时代背景下,重新定义了商业关系,也必将带来商业模式的改变。2017年,在“人工智能+”新商业环境中,百度商业将会把更多领先的人工智能技术应用到整个产品和服务体系中,并向第三方合作伙伴开放,推动更多产品和服务智能化。百度将对大数据进行深度学习、深度应用、得到深度数据,从而帮助合作伙伴在商业决策、企业创新、行业重构上做出正确抉择,完成生产流程、产品设计、解决方案及市场策略向人工智能时代的跨越,并实现行业突破与升级。

百度商业的“因智而能”让营销理念正在从“Big Data”到“Deep Data”进行转变。数字化营销的目标从之前被动捕捉迎合消费者需求,进入到下一个层级“激发、诱导”消费者需求。未来随着技术发展,用户的注意力成稀缺资源,因此,只有精准触达目标用户,输出用户关注的内容,才能获得更大的商业价值。在数据层面,百度基于搜索数据的海量沉淀,百度大脑强大的数据处理技术,通过对用户的实时匹配计算和动态建模,将信息标签和人群标签智能匹配,通过“搜索”+“推荐”相结合,实现真正双向智能适配的信息分发服务。

基于百度营销大脑的意图引擎,百度打造了一种全新的人工智能营销思维。通过搭建搜索、地图、糯米等多元化的平台,可以化媒体、广告主及消费者间的沟通交流,并借助人工智能技术洞察消费者的意图,在合适的时间和合适的地点向消费者推荐需要的服务。更为重要的是,百度正在把这些人工智能技术开放给更多的合作伙伴,赋能包括商业在内的各行各业。同时,百度也将在语音交互、图片交互、自然语言交互等方面不断智能创新,与广大合作伙伴一起共享人工智能的红利。

2016营销感悟

技术与营销越来越密不可分。当前媒介分散化,信息碎片化、用户消费个性化的移动互联网时代,快消品行业广告的浪费率不是50%,可能是90%。百度“双向智能适配的信息分发服务”可以帮助广告主全面布控消费者决策路径的不同环节,减少流量在跨媒体、跨平台之间的流失。如今不论是效果类广告,还是品牌类的营销都离不开技术,运用技术可以帮广告主更加智能的匹配信息,同时运用搜索+推荐的精准分发,让用户对信息消化的效率提高,这些不仅仅阐释了互联网的未来趋势,每个做企业的人都应该把握住这个趋势。因为,今天是互联网的升级,明天就是整个产业链的升级。

篇2

【关键词】互联网信息时代 人工智能 应用研究

当前,世界已全面进入以大数据共享、信息爆炸为特点的互联网信息时代。富有智能化和人性化的计算机网络技术服务成为了人们青睐和关注的焦点。人工智能作为互联网信息时代凝聚高端技术的超值网络服务,在增强互联网安全性、提高网络操作自动化等方面意义重大。现阶段,已有更多行业领域的用户在应用人工智能,体验这一技术所带来的新生活。

1 人工智能简述

人工智能,即Artificial Intelligence,是现代社会特有的综合类前沿学科,交叉云集了计算机、网络技术、控制方法论、信息论、神经生物学、语言学等多学科知识,主要用来研究机器在思考、学习、规划等行为的拟人态进化,使之解决问题的能力大幅提升。人工智能发展至今已有超过60载岁月,其成就在整个历程中熠熠生辉,代表着人类文明的不断发展与超越。人工智能经历了三个阶段的发展变革:第一阶段是以人工智能驱动机器设备,代替或辅助人类思考并解答难题;第二阶段是研发智能机器人,处理不同系统及环境信息的交互工作,如不确定性信息的处理工作;第三阶段的代表成果就是数据挖掘系统,可实现海量模糊信息采集与分析,可视化技术发展迅猛,计算机具有自主学习能力。

2 人工智能的应用领域代表成就

任何一项技术的创新与发展,都源于人类开展生产生活的实际需求,人工智能技术的研究也不例外,发展至今已经为解决不同领域的实际需求提供了众多技术应用。目前,人工智能在下列应用领域中取得了代表性成就:

2.1 专家系统

专家系统,其实是由庞大的程序组编写完成的数据系统,广泛积累不同专业的知识经验,这些知识均可事先归纳分析,可按具体模式表示,从而帮助用户凭借领域专家的固有知识进行推理解决问题。专家系统可系统化分析输入信息并结合已有知识体系进行全面推理,提出建O性的决策建议,相当于发挥行业专家的作用。

2.2 数据库智能检索

人工智能想要做到全面模拟人类思维和动作,需要建设强大的数据库资源,便于及时开展智能检索。数据库基于计算机软件开展,存储了海量专业学科知识,也称之为知识库系统,一旦有用户需要查阅解决该学科的专业问题,都可通过智能检索功能实现快速精准地检索。

2.3 程序自动设计

自动化的程序设计就是借助更高规格高标准的程序设计系统来完成指定功能的程序设计,该系统需要用户输入所设计程序的需求目标,并对整个流程和架构有更为高级的描述,系统就能自动组织对应程序完成设计。高度自动化的程序设计编写方式,也展现了人工智能系统的思考、学习、修正自身缺陷的拟人态功能。

2.4 目标模式识别

模式识别,顾名思义正是为识别不同物体的特征是否匹配目标对象而具备的功能。现代计算机加强了模式识别系统功能,能够提高机器对外界信息的感知能力,不断接受外界信息,对所处环境的特征进行识别,加强概念理解。当前,目标模式识别已由二维向三维层面升级,为研究智能机器人提供了坚实的基础。

当然,人工智能的应用领域远不止上述这些,还在机器学习、机器视觉图像处理(machine vision)、自然语言理解(Natural Language Understanding)、自然信息博弈论等方面发挥着重要的作用。

3 不同行业的人工智能技术应用实例

目前,众多企业为求发展,与内部运营管理中加强了人工智能的应用,聚力解决各项问题,为企业赢得了经济效益,推动着社会发展。

3.1 企业管理应用

将人工智能应用于企业管理中,需要人的智能和人工智能之间的辩证关系,灵活运用工智能应用平台加强对企业内部各项管理智能软件的开发工作,借助灵活的人工智能技术帮助企业实施科学决策。

3.2 水利管理应用

人工智能能够在水情控制与洪灾预报中发挥作用。如可使用人工神经网络和遗传算法等技术,模拟汛期的最大洪峰与洪水总量,研究更有针对性的抗洪模型,提高了洪灾预报精度和汛期准度,有效发挥防洪降灾、拦洪储水的重要作用。同时,人工智能还能够分析大江大河的复杂地质与环境系统,对治理河流起到良好的辅助作用。

3.3 建筑行业应用

目前,建筑行业的用地规划、给排水工程、暖通空调工程、施工管理等内容都在应用人工智能。已有企业基于神经网络算法发明了结构节点探伤法,可查探建筑结构损伤度;也可在市政工程建设中不断强化正反向混合推理的理论思想,查明城市污水处理管网故障;可构建用于分析建筑工程性能效益的系统,加强建设项目性能效益预测和实际效益分析。

3.4 机械行业应用

人工智能同样成为互联网时代下的机械行业技术中的重头戏。如:人们利用人工神经网络算法,设计出土方工程的机械调度的优化方案;多个工程都可搭建含多目标的寻优函数模型。许多大型机械装置,都配置了人工智能操作平台,可提高安全风险监控水平,增强机械操作自动化,进一步优化生产效率。

3.5 商品销售预测应用

人工智能的各种函数模型或优化算法,可在商品销售金额的预测中发挥巨大作用。如:在计算机中输入不同商品某一时间段的销售额,形成非线性系统进行分析,评估各种影响因素。采用人工神经网络,不断放大自分布处理、自组织学习、自适应与自容错等特性,体现强大的预测功能。

当然,人工智能还广泛应用到电子网络技术应用、企业财务管理、航班信息查询、教学服务、心理咨询公路建设、焊接制造、等众多方面,为更多企业带来可观的经济效益。

4 结束语

互联网信息时代的人工智能应用,将会随着科技力量的不断壮大而实现更多的应用。人们应该高度重视人工智能理论与技术的探究,从而更好地为全人类服务。

参考文献

[1]何承.计算机网络技术中人工智能的应用探讨[J].信息通信,2016(03):180-181.

[2]韩晔彤.人工智能技术发展及应用研究综述[J].电子制作,2016(12):95-95.

[3]王宇飞,孙欣.人工智能的研究与应用[J].信息与电脑,2016(05):115-117.

作者简介

李君,男,江西省上饶市人。上海财经大学浙江学院,主要从事教学软件管理类工作。

篇3

关键词 人工智能技术;交通管理;人工智能系统

中图分类号:V355 文献标识码:A 文章编号:1671—7597(2013)041-118-01

1 研究背景

随着时代的发展,计算机技术因其优越性在多个领域得到广泛应用。“计算机学科的一个重要分支就是人工智能,它与基因工程、纳米科学被列为21世纪三大尖端技术”,它为人工智能技术在航空业的应用创造了条件。现代航空业的迅猛发展,带来空中交通流量的飞速增长。目前,航空业经常出现空中交通堵塞、拥挤等现象,迫切需要引进先进的技术手段,提升空中交通技术,改进管理手段,有效提升空域容量与空间利用率。

根据空中交通管理的理论特点,以及空中交通管理技术特点,人工智能技术在空中交通管理中的应用研究逐渐引起了人们的重视,并取得较大发展。人工神经网络在空中交通流量预测、飞行间隔控制、飞行冲突智能调配等方面的研究初见成效。但我国空中飞行流量需求的日益增大,迫切需要将人工智能技术有效运用到空中交通管理中,建立人工智能空中交通管理辅助系统,真正实现类似专家功能的新型空中交通管理系统。本文基于这样的认识,尝试将人工智能技术应用到空中交通管理系统中,有效提升空中交通的空域容量,使空中交通更加有序,更好地服务于积极社会的发展,提升人们的生活质量。

2 人工智能技术概况阐述

“人工智能也称机器智能,它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的”从计算机应用系统的层面来理解,人工智能研究的主要内容是如何制造出人造的智能机器,以及人造的智能系统,具备模拟人类智能活动的能力,从而延伸人们智能的一门科学。

人工智能领域的研究始于1956年,“人工智能”这个术语第一次出现于达特茅斯大学召开的一次会议上。随后人们逐渐在问题求解、自然语言理解、自动程序设计、专家系统、逻辑推理与定理证明、博弈、学习以及机器人学等领域展开研究,成功建立了具有一定程度的人工智能计算机系统。随着研究的不断深入,人工智能理论得到不断的丰富与发展。随着计算机硬件的快速发展,计算机的存储容量不断扩大、运行速度不断提高、价格低廉,人工智能技术的发展将会给人们的生活、工作等带来更大的影响。

3 空中交通管理人工智能系统构成简述

人工智能技术在空中交通管理中的应用有助于建立人工智能辅助系统,建立新的空中交通管理模式。“但不要忘记采用不同的技术和运作概念也会带来不同的空中交通管理模式,特别在新技术层出不穷的今天,我们更不能忽略这个方面。”,它能使空中交通流量管理高效、有序、安全,有效提升空中交通的空间与时间利用率,对空中飞行冲突进行有效的预测与解决。空中交通管理的核心是科学合理安排空中交通流量。飞行流量的智能化管理、飞行冲突的预测、飞行冲突的解决等方面是人工智能辅助系统研究的侧重点。空中交通管理人工智能辅助系统由飞行流量管理模块、冲突探测与解脱模块、辅助决策模块等三个附属系统构成。这几个模块间的关系是在冲突探测与解脱模块与飞行流量管理模块之中渗透辅助决策模块,最终形成智能飞行流量管理、智能冲突探测与解脱模块系统,它们能够为空中管制员提供有效的决策辅助信息,切实减轻空中管制员的工作负担,提高空中飞行的安全性与管制效率。

4 空中交通管理人工智能辅助系统的实现方式

4.1 飞行流量管理辅助决策的实现

人工智能系统飞行流量管理模块主要将空域资源“空闲”的概念与A算法与辅助决策进行结合。其具体操作过程是根据飞行流量管理数据库,储存或读取数据,计算流量,预测冲突,依据基本容量模型,建立A算法数学模型,对空中航班进行动态与静态排序,最终完成人工智能技术对空中飞行流量的辅助决策作用。

建立准确客观的飞行流量管理数据库非常重要。这些原始数据必须可靠、准确、及时,因为它直接影响到辅助决策的有效性;开放数据库间的互连主要依靠ODBC ,它是数据库之间连接的标准,为SQL语言的存取提供标准接口;再依据数据库的信息,运用飞行动力学知识计算出飞机在具体时间应该到达的位置,以及到达具置的准确时间,合理的安排飞行架次;飞行流量冲突预测主要通过将流量与相应的容量比较,列出具体的冲突时间、冲突地点、存在冲突的飞机架次;最后调整航班与起降,对冲突航班及时调整,确保交汇点、航路、机场、管制区等畅通。人工智能中的A 算法可以有效针对基本容量模型对飞机进行排序,对飞行计划的来源、内容及状态转化等进行研究,生动模拟飞行计划实施过程。“空闲”概念可以使冲突航班时刻调整在受限区域内。

4.2 飞行冲突探测与解脱辅助决策的实现

飞行冲突探测与解脱辅助决策系统能够向空管员提供高效的避撞辅助方案,有效弥补管制员决策过程中的不足,对飞行冲突情况进行分析,寻找出积极的解脱方案。

飞行冲突探测与解脱辅助决策系统推理过程大致包括以下几个方面:突中航空器、突中航空器优先等级评估、冲突类别评定、避撞应对方案、建立避撞路线。推理选择最主要的过程是推理机制,为了完成推理过程,该系统中还必须包括一系列的规则:航空器优先级别评定规则、避撞方案确定规则、避撞空管规则、建立避撞路线规则等;还要建立层次型结构及模块化知识库,确保避撞推理的有效运作,保证知识库得到有效维护,并且能够及时的更新。

5 结束语

人工智能技术在空中交通管理中的应用,必将使空中交通管理更高效、更安全、更有序,必将最大程度的提升空域的利用效率。人工智能技术的应用领域是广泛的,相信随着人们对人工智能技术研究的不断深入,人工智能技术必将在更多方面提供智能化辅助管理服务,使人工智能技术不断的服务于社会经济,服务于人们的需要。

参考文献

[1]杨焱.人工智能技术的发展趋势研究[J].信息与电脑,2012(08).

篇4

虚拟大脑 谷歌AI创新高

自1956年,人工智能(Artificial Intelligence)的理念被提出后,人们对人工智能的研究就从未停止过,人们期待人工智能帮助他们更快、更准确地完成原本需要大量人工才能完成的任务,从而解放人力。正如美国麻省理工学院的温斯顿教授所说的:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”

但与此同时,对于人工智能的争议也从未停止过,人们既期待又恐惧、既渴望又害怕。不少科幻作品中都提出设想,当人工智能发展到极致就有可能产生自我意识,真正替代人类或是干脆消灭人类。尽管这可以看作是文人艺术家的空想之谈,但不可否认,这也是人们潜意识中隐隐的恐惧。

50多年来,世界各国的科学家从未放松过在人工智能领域的研究,虽然取得了一定的成果,但显然还处于研究发展的初步阶段,因此倒是不必现在就杞人忧天、因噎废食,放弃人工智能的研究。

谷歌、苹果、IBM等科技巨头也坚持将大量资金人力投入人工智能研究,苹果的语音智能Siri、IBM的超级计算机沃森(Watson)等都是具有代表性的科研成果。谷歌也毫不落后,今年夏天,谷歌Google X实验室开发出了一项新型人工智能技术:一款模拟人脑并具备自我学习功能的软件,可以称之为谷歌虚拟大脑。

据悉,谷歌的“虚拟大脑”是模拟人脑细胞之间的相互交流、影响而设计的——模拟人脑中一群又一群相互连接、相互沟通、相互影响的“神经元”,由1000台计算机、16000个处理器、10亿个内部节点相连接,形成一个“神经网络”。当有数据被送达这个神经网络的时候,不同神经元之间的关系就会发生改变,这种关系的变化使得该系统形成某“概念”,对某些特定的数据形成反应机制,从而让系统具备了学习能力,并且能够在新输入的数据中找出与学到的概念对应的部分,以达到识别的效果。

研究过程中,Google X的科研人员曾进行一项意义特殊的实验——在没有预先输入“猫”的概念的情况下,这个虚拟大脑分析了1000万帧从Youtube上随机抓取的无标签视频剪辑图片,利用10天时间,终于“领悟”了什么是猫,并在接下来输入的2万张图片中准确找出了有猫的照片。

这款有着自学功能的软件在人工智能领域有着划时代的意义,研究人员无需预先输入某一概念,它就可以自己决定关注数据的哪部分特征、注意哪些模式,从而自动从输入的大片数据中“领悟”这一概念,十分类似人脑的学习过程,也意味着人工智能领域对人工干预的需求进一步降低。

AI提高 智能产品受益

谷歌虚拟大脑不仅可作为研究示范使用,更是可以应用于商业,此前就有消息称这项技术即将投入使用,谷歌的产品也将随之受益,变得更加智能化,而语音识别很可能将最先获益。

两年前谷歌推出了一款语音识别应用Voice Actions,通过它,用户可以使用声音来进行搜索、发送信息、拨打电话、播放音乐甚至给自己留一个邮件备忘录,既快速又准确。谷歌为之收集声音数据达数年之久,但在用户中的反馈,Voice Actions却不如稍后苹果推出的Siri,原因便在于Voice Actions在人机互动、语义识别上的体验远逊于Siri。

语义识别是即将到来的下一场人机互动伟大革命,而人机互动对科技未来发展的影响也让诸多科技巨头投身这一领域。

苹果Siri作为一款“革命性的产品”,对语音控制和人工智能技术的发展起了非常大的推进作用。乔布斯曾说:“虚拟个人助理(VPA)代表着下一代互联网交互方式。”之前,人们通过搜索引擎或网址来获得内容或服务,而VPA可以通过分析交互历史,得出个人偏好,来联结众多服务和信息源以帮助人们解决具体的事务,就像一个真实的助理。

IBM也不落于后,他们将沃森超级计算机应用于智能手机,研制出一个超级版的Siri。IBM负责创新业务的副总裁伯尼·梅尔森称,“这一应用未来可以想象成为一个带有语音功能的‘沃森’实时回答你的问题,虽然沃森目前在移动设备上会消耗过多电力,但IBM正在积极开发沃森2.0,希望降低耗电量,并为这款超级计算机增加更多‘意识’。”

谷歌一直在开发的新一代语音软件“Majel”,Majel是Voice Actions的革新版本,增加了对自然语言的处理能力,力争在智能程度上与苹果Siri抗衡,而虚拟大脑技术的应用很可能帮助谷歌实现这一愿望。谷歌语音识别部门负责人文森特表示,“通过使用我们最新的神经网络,以前识别错误的情况,20%至25%已经得到改善,也就是说,这些提升能够让更多的用户拥有完美的、没有错误的使用体验。”

AI技术的提高,也让谷歌的一些其他产品得到改善,如谷歌的图像搜索工具,可以更好地理解图片内容,而不再仅仅是依靠文字的描述;谷歌的无人驾驶汽车,可以更全面地获得周围的音像、数据,大大增加无人驾驶的识别度和安全性。

美国斯坦福大学人工智能研究中心尼尔逊教授曾对人工智能下了这样一个定义:“人工智能是关于知识的学科——怎样表示知识以及怎样获得知识并使用知识的科学。”谷歌虚拟大脑研究成果的取得,无疑在人工智能怎样获得知识的研究上迈出了一大步,让人类离人工智能的终极目标又进了一步。

加拿大蒙特利尔大学的一位研究机器学习的教授Yoshua Bengio表示,“Google的这个虚拟人脑有点类似于哺乳动物大脑中一个叫做视觉皮层的部位,能够通过视觉发现物体。该系统的运行模式已经和哺乳动物、甚至人类大脑的某些工作模式有些像了。”

篇5

看上去,人工智能(AI)在与人类的进化较量中占了上风。

4月下旬,著名物理学家史蒂芬?霍金在北京举办的全球移动互联网大会上做了视频演讲,“生物大脑可以达到的和计算机可以达到的,没有本质区别。计算机在理论上可以模仿人类智能,然后超越”,“人工智能可能是人类文明的终结者”。

5月下旬,目前围棋世界排名第一的中国职业九段柯洁将与人工智能程序AlphaGo(阿尔法狗)进行终极对弈,尽管柯洁早已放出豪言,“我会抱必胜心态、必死信念。我一定要击败阿尔法狗”,但是此前德州扑克人机大赛中,人工智能完胜已经让部分看客有些心灰意冷,一旦柯洁失败,或许会再次加深这一悲观情绪。

当然,“文明终结”的忧虑还为时尚早,无论是世界上最强的象棋、围棋还是黑白棋程序,尚属“弱人工智能”。

在人工智能拥有自主意识的“强人工智能”时代到来之前,企业家、投资者以及创业者们可能更担心另一些现实的问题,比如,怎么把人工智能商业化。这是过去数十年人工智能一直温而不火的重要原因。

真正的爆发

无论是科学家的危言耸听式担忧,还是商业巨头们疯狂的攻城略地,总之,“人工智能”已然成了这两年最火的科技热词。

创新工场创始人李开复对《财经国家周刊》记者说,“我们每个礼拜都会收到5家巨大的企业的请求,基金公司、汽车公司、管理公司、国企、甚至政府,都希望能够利用人工智能帮他们解决问题。”

人工智能的概念第一次被提出硎窃61年前,尽管之后持续有些热度,但它在最初50多年里几乎没有得到爆发性的关注。

“人工智能”关注度爆发的导火索,或许是去年3月韩国著名围棋棋手李世石以1:4输给AlphaGo。

它让不少人错误估计了人工智能的爆发节点。就好比在1997年,名为深蓝的IBM计算机也曾经击败世界象棋冠军,但人工智能并没有从此进入人类日常生活。

李开复也曾错误地预判人工智能的技术趋势,从而导致创业失败――2000万美元的投入、100个员工,几乎全军覆没。

李开复反思道,“创新固然重要,但不是最重要的,最重要的是做有用的创新”,而判断它能否成为科技主流的重要标志,就是能否商业化。

Deep Mind创始人、AlphaGo之父杰米斯?哈萨比斯也表示,“我们发明AlphaGo,并不是为了赢得围棋比赛,我们是想为测试我们自己的人工智能算法搭建一个有效的平台,我们的最终目的是把这些算法应用到真实的世界中,为社会所服务。”

那么,人工智能商业化的时候真的到了吗,会不会又是一阵虚火?

4月25日,在JIC投资沙龙上,阿里云战略资深总监李树解释,“AI的基础是三个理论,第一是算法,第二是必须得有计算的支撑,第三是必须有数据作为序列或者教化算法的基础”,这三方面都在走向成熟。

2016年,百度董事长兼CEO李彦宏曾在2016贵阳大数据博览会上表达过类似观点,“越来越多的数据每天产生,我们可以利用这些数据做一些过去只有人能够做的事情,同时,计算能力越来越强大,计算的成本越来越低廉”。

出门问问创始人兼CEO李志飞则以“虚拟个人助理”为例,称“四年前跟现在相比,我们都不知道能用在哪里,手机也没有习惯”,而今天,“家庭、车等场景我们都能看得清楚,产业、用户的需求变得比以前更加成熟了。”

在这种情况下,毫无疑问,4月10日德扑人机大战最终以人工智能“冷扑大师”完胜,成了真正引爆AI商业化的导火索。

这是因为,围棋是一种“完全信息博弈”,比赛双方所有信息都呈现在棋盘上;而扑克和电脑游戏这些由多人对战的游戏是“不完全信息博弈”,计算机无法获知所有信息。

人工智能冷扑大师的胜利,意味着在尔虞我诈、概率不确定、非完美信息需要推理和情商的游戏里,机器一样可以获胜,它最大的价值就在于赋予了人工智能商业化的可能性。

德州扑克冷扑大师和中国龙之队对决结束的时候,李开复发了一条朋友圈,“据闻AlphaGo近期即将来华和柯洁对战,其实已经不再具有科学意义了。以后我们应该更关注商业领域的人工智能,在金融、医疗、教育等领域产生商业价值。”

生活在“弱人工智能”时代的我们,还远没到担心人类会“永生”还是“灭绝”这样庞大而沉重的课题,但毫无疑问的是,人工智能的商业化时代,真的来了。

开始总是美好的

“中国任何浪潮来了都会来得太猛,大家都跳进去瞬间就有可能蓝海变成红海”,李开复如是说。

不出所料,浪潮之下,巨头们闻风而来。

4月28日,百度公布了2017年第一季度未经审计的财务报告,李彦宏在财报中明确提到,百度的战略已经从“移动先行”变成“AI先行”。

同一天,刚刚上任100天的百度集团总裁兼COO陆奇,在百度与小鱼在家联合的搭载了百度DuerOS操作系统的视频通话机器人“分身鱼”会上重申,“对百度公司来讲,不光是一个搜索引擎的公司,基于AI,从现在到将来会逐渐成为一个平台,这是一个战略上和文化上的改变。”

这让人联想到早先陆奇的到来和百度前首席科学家吴恩达的离开。在曾与吴恩达有过接触的首席科学家林晖看来,这某种程度上反映了百度对于人工智能需求的变化,从“学术派”走到了“实干派”。

随后,5月3日,据美国科技网站报道,腾讯宣布任命语音识别技术顶级专家俞栋博士为AI Lab副主任。这个2016年4月成立的人工智能实验室,现有50多位世界知名院校的AI科学家(90%为博士)与200多位应用工程师,此举或意味着腾讯在AI领域的正面回击。

相对低调的阿里巴巴事实上也在伺机而动,去年以来,阿里逐渐抛弃了AI产品头上的“云”背书,直接用“人工智能”给产品定位。

今年3月9日的阿里巴巴技术峰会上,马云推出了“NASA”计划,称面向未来20年组建强大的独立研发部门,同时点名了五大技术,机器学习、芯片、IoT、操作系统和生物识别都与人工智能相关。

随着互联网三巨头BAT的布局加速,一场真正的商业化战争,已经蓄势待发了。

根据猎云网研究院4月13日的《2017人工智能投融资白皮书》显示,2016年1月~2017年2月,共发生365起人工智能领域融资事件。

其中,来自投资界的数据显示,仅2017年第一季度,就有超60家人工智能公司获得了融资,金额超亿元的融资事件至少有5起。

这幅“人工智能”的“烽火狼烟图”,不禁让人联想起一年以前VR概念风头正盛的时候。

去年一季度,共有29家VR/AR公司总共获得融资超过10亿美元。

然而,仅仅一年后,市场研究公司Crunchbase的报告显示,今年一季度全球VR/AR的风险投资额只有2亿美元,不仅暴跌八成,而且被26家公司分食,创出了过去一年中投资的最低纪录。

AI会不会重蹈VR覆辙,还不好说,但资本一定有也有低谷。更何况,即便是在当下,也并不是所有投资者都对人工智能持乐观态度。

建投华科投资股份有限公司董事总经理戴D认为,“比尔?盖茨说有关人工智能领域的重大进步的所有预言,都已经被证明过于乐观。这一点对于22年后的今天这些投资人来说,仍然有一定的警示意义。”

在他看来,“人工智能处于初期发展阶段,对于投资、尤其是对于我们产业并购的整合者来说,可能为时尚早。”

小心陷阱

τ谌斯ぶ悄埽科学家在渲染危机感,投资者在夸大它的神奇,然而创业者需要警惕:人工智能的创业路径跟过往的经验完全不同。

其中,最大的不同就是创业门槛的高低,起步资金就是最重要的一项。

“移动互联网时代让创业成本达到历史新低,一个产品经理带着一个工程师就可以零元创业”,李开复调侃到,“但AI的创业成本却达到历史新高,挖人、买数据、买机器,每一项都要投重资”,以创新工场投资的一家创业公司为例,“第一个月就花了500万买机器”。

并且,人工智能创业大部分是“B端”的,然而大多数投资公司已经习惯了投资“C端”创业者,这就决定了融资的难度。

李开复这样对《财经国家周刊》记者描述过去很长一段时间“C端”创业公司的投资模式,“给你一笔钱搞100万个用户,再给你一笔钱搞1000万个用户,再给你一笔钱开始变现,再给你一笔钱你就盈利了,再给你一笔钱你就上市了,这一定程度上成为了投资的四步曲或五步曲”,这与大多数“B端”创业者要去苦苦哀求企业级用户的门是完全不同的。

然而,矛盾之处在于,创业者要想避免被BAT碾压,最好的方式就是去寻找一个巨头不能碾压的领域,避开社交、游戏、电子支付,而“卖企业级软件给银行”、“卖解决方案给医院”等等“B端”领域,虽然BAT可能不会去做,但创业公司也很难成功。

并且,在人工智能领域创业,一个很大的问题就是“想象力不够”,导致从一开始同质化竞争就很严重。

“大家都做一样的应用,人脸识别现在大概有15个公司”,李开复反问道,“人脸识别当然有商业价值,但是需要15家公司来做吗?”

当然,作为最早一批回国创业的科学家,曾在谷歌担任高级工程师的李志飞对《财经国家周刊》记者阐述了不同的看法。

“早期有一些趋同,这个不值得奇怪”,因为,“这就跟摘果子一样,最大的摘完了之后大家才会动脑筋去想,是不是可以再自己培养果子或者到另一个地方去摘,关键是后面这个产业是不是真能够进一步地升华。”

那么,创业过程中最需要注意的问题是什么?

最显而易见的一点,是要找到强需求而不是伪需求,然后判断这个强需求能不能被技术解决,同时,让场景和产业深度结合起来。

其次,脱离工程师的思维,把焦点放在用户身上。

李志飞说,“工程师的思维就是特别喜欢做一个自己觉得很牛的、技术很复杂的东西,但这个可能跟用户的需求完全不一样。”

以语音识别软件出门问问为例,李志飞说,“过去我们喜欢演示特别复杂的句子,比如一句话把‘帮我查一下附近的餐厅、人均50块钱、带wifi、带停车场的’讲完,但用户真实的习惯可能是把它分成几个短句,通过渐进式的交互去完成查询。”

此外,不要急于打造平台级技术和场景,什么都想做。

过去的创业经验告诉创业者,通过一味的“铺场景”也可以拉高估值,但是危险在于,一旦业务方向不像设想的那么顺利,就会无形中拉高B轮融资的难度,造成现金流枯竭,这对于现金需求量极大的人工智能创业尤为危险。

在这一点上,李志飞很坦诚,“我们也跟热点,这是肯定的,因为你不跟热点的话,拿不到钱”,“但是热点一定是辅助的,公司业务的核心一定要以AI技术推动,然后才会有各种各样的使用场景,如果你随着资本波动而波动的话,一定会死得很惨。”

李志飞称,“对于技术型公司,你的扩张速度要永远保证你的账上还有18个月的经费”,因为“钱是很贵的”。

除此之外,团队的协调、合伙人之间的契合度也在技术导向型公司被无限放大。这是因为,跟过去移动互联网时代的产品经理和工程师不一样,AI的工程师和产品经理的价值观和思维方式并不相同。

篇6

关键词:人工智能;图形编程;创新实践

近年来,人工智能已成为一个高频词,各种与人工智能相关的智能家居、自动驾驶、智能语音、图像识别等新技术,深刻影响着社会的方方面面,也逐步改变人们的工作及生活方式。许多国家已经开始积极尝试,大力推进小学人工智能教学。2017年,国务院正式颁布《新一代人工智能发展规划》,明确提出了“在中小学阶段设置人工智能相关课程,逐步推广编程教育”;如今,计算思维培养又成为热点。在这样的一个时代背景下,学校和教师有责任和义务组织、引导学生去接触、了解、学习、应用人工智能技术,以适应未来学习和工作环境的变化。人工智能涉及的学科内容较为广泛复杂,小学生相对年龄较小,储备的相关知识较少,学校应如何在小学阶段有效开展人工智能教学,推进人工智能教学真正落地?笔者结合自己的教学实践,从“巧”借活动、“巧”设场景、“巧”编程序、“巧”创项目等方面,积极探索小学人工智能教学的推进路径。

一、“巧”设场景体验人工智能

人工智能的知识结构具有较强的逻辑性和抽象性,与之前信息技术课上所教的内容相比,难度及复杂性更高。在日常人工智能教学中,教师应根据学生的心理特点以及不同教学要求,改变教学方式,把体验搬进课堂,让学生通过具体的体验活动逐步理解人工智能的相关知识,把重难点从对概念、原理、技术的学习转换到了解相关概念、技术实现的过程、体验人工智能技术的应用上。丰富有趣的教育实践活动可以让学生在愉悦的教学情境中,从不同的思维角度、用不同的思维方式来认识和理解与生活密切联系的一些人工智能概念,如机器学习、大数据、神经网络等,体验人工智能在实际生活中的应用。例如在《人脸识别》一课教学中,需要让学生了解人脸识别技术的应用、影响、实现过程和原理,其中人脸识别的原理和过程较为复杂,如果教学中只进行简单说教,无法有效达成教学目标。本课设计了一个“人脸大比对”体验活动,活动分两个部分,第一部分就是通过百度AI开放平台里的人脸检测与属性分析功能,体验人脸检测中具体检测哪些属性;第二部分就是通过人脸对比功能,完成教师提供的三组人像照片的对比分析。在第一部分的实例体验中,学生通过自己上传照片进行检测,主要是通过对人脸的面部、肤色、毛发、眼睛、嘴、鼻和轮廓等150个特征的精准定位来准确地识别和计算出一张人脸的特征和属性信息,包括年龄、性别、颜值、情绪、是否戴眼镜等。这样的体验让学生非常感兴趣,也能很好地理解特征提取的过程。第二部分的体验是人脸对比,教师提供给学生三组照片,第一组是一对相似度很高的双胞胎;第二组是同一个人戴口罩和不戴口罩的照片;第三组是同一个人的两种表情。学生先自己观察,记录三组照片的结果,再上传照片到百度AI体验人脸对比过程,并查看对比结果。经过体验,学生认识到在现有的技术下,人脸识别的准确度还是非常高的,对人脸识别的过程也留下了非常深刻的印象。

二、“巧”编程序理解人工智能

从当前人工智能技术应用的实际情况分析来看,主要应用领域为大数据及机器学习,这些功能的实现得益于算法的不断完善。可见,算法学习是实现人工智能的关键,而对算法的学习又是计算机编程教学中的一大难点。推进小学编程教学将有利于帮助学生理解人工智能的相关知识。小学生相对抽象思维偏弱,采用图形化的编程教学,更加有利于他们接受,有助于提高学习的积极性。通过编程教学引导学生学会分析问题、抽象与建模、设计算法、编写程序脚本,在验证过程中不断改进和完善,并最终实现问题的解决,能有效培养学生的计算思维,并过渡到对人工智能所需要的其他知识的学习上。例如在五年级的《创编游戏》教学中,情境任务是设计制作一个猫捉老鼠的小游戏,目标是让学生认识“碰到颜色”“如果……那么……”等指令,能够用它们的组合来编写判断角色是否碰到边缘和老鼠的脚本。人工智能的概念主要体现在“碰到颜色”和“如果……那么……”语句的应用上,“碰到颜色”是侦测识别,“如果……那么……”则是逻辑判断的处理。在教学中,首先通过问题引导学生思考完成游戏需要考虑哪几个要素,从问题和答案中帮助学生提炼出“舞台”“角色”“动作”三个要素,进而帮助学生厘清实现游戏功能的基本思路。在程序编写中,让学生具体体验侦测模块的编写与判断语句的应用。简单的编程实践,能让学生逐步了解人工智能的基本概念及其实现流程。

三、“巧”创项目实现人工智能

知识的学习必须与学生的生活实际结合起来,如果学生在掌握人工智能知识和技能后能将所学知识应用于实践,解决生活中的实际问题,那么这样的学习就是真实有效的。学生通过设计创作具体作品,可以大大增强分析和处理问题、解决实际问题的意识和能力,培养逻辑思维和动手实践能力,这也是人工智能教育的方向和目的。根据学生的实际生活经验,教师将人工智能的具体应用案例巧妙引入课程中,引导他们科学地确定项目内容;通过对项目的梳理分析,建立逻辑关系和模型;用编程语言描述逻辑关系;采用硬件设备实现人工智能的具体功能,这种基于真实任务的学习活动,能有效促进学生的理解。例如四年级实践小组的“智能垃圾桶”作品,便是以垃圾桶为课题进行探究,先让学生对现有垃圾桶的优劣势进行分析,思考怎样改造垃圾桶才能真正实现智能化。通过教师的引领和自身观察,学生很快认识到智能垃圾桶应该具有的功能:一是能检测什么时候有人投放垃圾;二是垃圾桶盖能自动开启和关闭。确定了目标之后,就是思考达成上述目标需要哪些条件。学生根据已有知识,确定可以用超声波检测是否需要打开垃圾桶盖子,打开和关闭动作可以通过舵机和连杆来实现。通过探究后,学生根据设计的方案自主完成了智能垃圾桶的作品搭建,接下来就是通过编写程序和不断调试验证来实现预期的功能。作品完成后,学生可以根据实际情况进行功能的增加与修改,如增加桶内垃圾超过一定高度时能自动提醒的装置等,让智能垃圾桶更加智能。本次作品的创作过程,不仅锻炼了学生分析实际问题、解决实际问题的能力,又锻炼了他们的编程思维和计算思维,更重要的是体验了自己创作人工智能作品的乐趣和成就感。在人工智能应用日益普及的今天,人工智能课程进入小学课堂是大势所趋。在小学阶段开展人工智能课程教学,主要是为了让学生掌握人工智能知识,体验和运用人工智能技术,培养学生的信息技术核心素养、创新意识、实践应用能力,为学生适应未来社会打下扎实的基础。但人工智能教学具有其特殊性,如何有效推进人工智能教学,还面临着许多需要解决的问题。学校和教师应尽最大努力创设更好的人工智能教学环境,探索更有效的教学策略,促进学生对人工智能相关知识的学习。

参考文献

[1]丁华.人工智能教学中对学生计算思维的培养[J].华夏教师,2020(13):42-43.

[2]徐欣彦.引入体验活动创新小学人工智能教学模式[J].中小学信息技术教育,2019(9):62-64.

篇7

如果你坐在车里,对着空气说,“我想在附近找个地方吃饭”。你的车会立即回应说“已为您找到附近10个餐厅”。你接着说:“我想吃火锅,还想看场电影。”汽车会筛选出周边有电影院的海底捞王府井店。如果你说现在前往,导航就会立即开始线路规划。

注意,这不是说梦话,这是千真万确。整个过程,你不需要打招呼,也不需要动手进行任何操作。对于开车的司机来说,这套由科大讯飞研发的“飞鱼助手”语音操作系统简直是梦寐以求的行车神器。

现在,讯飞、百度等企业的人工智能已经把科幻片一样的黑科技变成了现实。汽车、电视机、电冰箱、电灯,任何你能想到的电器都能跟你愉快地聊天,并按照语音指令完成各N操作。

这些都是基于深度神经网络的语音识别技术来实现的。语音识别技术,简单说就是让计算机“听懂”人类的语音,将语音中包含的文字信息提取出来。该项技术在智能计算机系统中扮演着重要角色,相当于给计算机装上了“耳朵”,使其实现人机通信和交互。目前语音识别准确率可达到97%。

“随着万物互联时代到来,以语音为主、键盘触摸为辅的人机交互正逐渐成为刚需。未来5到10年,人工智能会像水和电一样成为我们生活的必需品,深刻改变我们的世界。”科大讯飞董事长刘庆峰说。

如今,以智能语音技术为主的人工智能已在手机、教育、家具、汽车、医疗、服务机器人等多个领域显示出巨大的应用潜力。

事件

国内首个动漫IP定制儿童智能语音灯在京东众筹

国内首个结合《虫虫派》动漫IP进行深度定制的智能家居产品――虫虫派系列智能语音灯已在京东火热开启众筹。据悉,虫虫派系列智能语音灯是轻生活科技根据中国领导力学术带头人杨思卓的作品《虫虫派》3D动漫进行IP深度整合定制的智能语音灯,是给12岁以下的小朋友特别定制的成长玩伴。

杨思卓长期致力于领导力研究和少儿教育,非常关注儿童成长,其漫画图解领导力的《虫虫派》用寓教于乐的形式,依据现代心理学特点,塑造了6个生动活泼的动漫形象,通过他们的成长故事来引导小朋友提升面对困难和人际关系的处理能力,而虫虫派系列智能语音灯正好对应了这6个动漫形象。

动漫IP与智能语音灯完美结合。每台智能语音灯那肤如凝脂又亭亭玉立的陶瓷灯身上都有与之相对应的动漫形象,并在灵动的宽檐帽上搭配有与动漫形象性格相匹配的色彩,还动用了《虫虫派》原班声优为角色对应的智能语音灯进行声音录制,希望通过动漫IP整合和人机交互的形式,将《虫虫派》积极向上的思想理念潜移默化的传递出来,陪伴每一位小朋友更健康快乐的成长。

离线智能语音技术强大又有趣。作为主打“智能语音”的灯,虫虫派系列智能语音灯的语音操控功能是核心亮点。依托轻生活科技对于智能语音交互、物联网技术和云服务软件技术的超强整合能力,推出了处于行业前沿的离线智能语音技术,即无需联网和下载手机App,只需对着智能语音灯喊话就能与《虫虫派》中的动漫角色交谈,并按你的语音指令进行开/关灯、亮度调节、延迟关灯、歌曲播放等的操作。

另外,经过超1W条录音样本的检测调教,虫虫派系列智能语音灯的语音识别正确率高达到95%,真正做到了让小朋友与智能语音灯沟通无阻碍、玩得更尽兴。

设计细节有更多人性化考量。虫虫派系列智能语音灯造型婀娜,通体曲线优雅柔和,触感温润不硌手,该设计还斩获了红帆工业设计大奖,小朋友可以放心使用。

此外,智能语音灯采用了寿命超过5W小时的LED灯,光线柔和,不伤眼睛,可调节光线强弱来适应不同生活氛围对光线的要求,还可通过喊话自动设置5~20分钟的熄灯时间,为了不惊醒浅睡眠的小朋友,智能语音灯采用了渐进熄灯方式自然过渡到睡眠环境。

当小朋友困了或者睡眼惺忪,不想说话的时候,可以用手掌轻压宽檐帽来调节开关和亮度,也可以通过关闭智能语音灯底部语音交互按键,进入到手摸触控模式。

背景 人工智能迎来第三次浪潮

人工智能(AI)是2016年除了共享自行车(摩拜、OFO等)外最火的投资主题了,特别是自去年3月份阿尔法狗(AIphago)战胜韩国围棋高手李世石的世纪之战开始,很多投资者及创业者的目光都聚焦于人工智能,资本跑马圈地,创业BP(商业计划书)言必称AI+,不时冒出机器学习、深度学习等炫酷概念,就像几年前的团购、O2O、P2P、共享经济的创投浪潮一样。

实际上,人工智能不是新鲜事物,这已经是人工智能的第三次,第一波是源于1956年的达特茅斯会议,人工智能概念初出茅庐就得到各界的吹捧,然而,人工智能并不如人们所想象的那样乐观,1970年左右,研究几乎停滞,热情消退。

上世纪80年代,日本提出雄心勃勃的“人工智能电脑”计划,该计划随着1987年Lisp机器商业化的失败,AI再次进入低迷期,人们意识到人工智能的问题不仅仅是硬件,更多的是软件及算法层面得不到突破。

第三次浪潮源于上世纪90年代,由于摩尔定律所到来的产业变革,人工智能得到长足发展,代表性事件如1997年IBM的深蓝在国际象棋比赛中战胜世界冠军卡斯帕罗夫,Geoff Hinton在2006年发现了训练高层神经网络的有效算法,并且在2012年的ImageNet评测领域大大突破了以前的算法。深度学习算法的应用使得语音识别、图像识别取得长足进步,围绕语音、图像、机器人、自动驾驶等人工智能技术的创新企业大量涌现。

篇8

前言

2017年,人工智能全面爆发,资本大量涌入,政策不断加持,各企业趋之若鹜。在此时刻,中国完全掌握着弯道超车的良机,只是,我们更需要理性认知,毕竟健康发展、蹄疾步稳的人工智能发展才会对未来有益。

风口已来,静待腾飞……

在不久前结束的2018年全国研究生招生统一考试中,“人工智能对人类社会产生哪些影响,对经济发展带来哪些改变”成为管理类联考综合能力考试中一道分值很重的作文题目。这从一个侧面可以看出,2017年成为国家战略的人工智能之火热程度。

在浙江乌镇落幕的第四届世界互联网大会上,人工智能同样是最热门的话题,在以人工智能为主题的分论坛会场,已经到了人满为患、不得不限制进场人数的地步。

回顾2017年的科技创新,坦率地说并没有给人太多惊喜,最引人关注的,莫过于人工智能。这一年,人工智能全面爆发,成为国家战略。

2017年7月,国务院印发的《新一代人工智能发展规划》中,明确新一代人工智能发展分三步走的战略目标,到2030年使中国人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心。这是中国首个面向2030年的人工智能发展规划。随着人工智能上升为国家战略,顶层设计框架搭建完成,产业发展有望持续提速,带来投资新机遇。

实际上,在政策出台前,对市场异常敏感的企业层面已经开始布局,2017年只是进入到了发轫期。

也许,不少“吃瓜群众”此刻方才明白,为何做搜索引擎的百度提出“all in”(全面进入)人工智能战略,阿里巴巴也提出了数据是生产资料的概念,而腾讯早已经开始“连接”一切。

“作为一项改变世界的技术,人工智能已经到了从实验室走入真实的生产环境和日常生活的‘临界点’。”阿里巴巴集团副总裁刘松说。

在政策信号如此明确的背景下,人工智能几乎到了“人人争说”的地步。如今的中国,人工智能缺的不是关注和热度,而是理性的思考,是对未来风向的把握。

人工智能发展如何脱虚入实?人才与核心技术瓶颈如何取得突破?法律伦理责任如何界定?将会砸了谁的饭碗?背后的算法歧视如何解决?梳理过去一年人工智能发展,理性看待目前的阶段,这五大关键之问可能将是人工智能发展的风向标。

与实体经济结合去泡沫化

到了2017年年尾,曾经让各界争得面红耳赤的实体经济和虚拟经济之辩似乎已经没有太多意义。因为“取代谁”在当下已经成为非常不明智的设问。答案已经越来越明晰:实体经济是根本,虚拟经济也需要结合实体。换句话说也许更清楚,脱离实体的人工智能发展很难不出现泡沫。

于是在2017年,我们看到,很多的互联网工程师开始进入工厂深度研究流水线,拜师高级技工,在工厂写代码,而结合了人工智能的生产线大大提高了生产率。

阿里云总裁胡晓明认为,人工智能的发展要去泡沫化,下一站将是“产业AI”。目前,该公司在城市、工业、零售、金融、汽车、家庭等多个场景推出ET大脑等“产业AI”方案,这些能力、产品和解决方案都通过虚拟的云端结合了扎实的工业流水线。

胡晓明告诉记者:“现在人工智能领域有种浮躁的氛围,有些企业靠AI讲资本故事、炒作股价。人工智能不应仅仅是实验室里的、PPT里的‘概念上的AI’,更应是‘产业AI’。”

人工智能若要健康发展,首先必须要有场景驱动,人工智能在解决什么问题、为这个社会的成本降低了多少、效率提高了多少;人工智能背后,是否有足够的数据来驱动AI能力的提升;是否有足够的计算能力支撑算法和深度学习?只有在这三个场景同时具备的前提下,人工智能才会有价值。

在2017年,工业大脑走进车间,突破了良品率提升、故障率预测等制造业核心难题,互联网与工业的结合帮助类似协鑫光伏、中策橡胶、天合光能、盾安新能源等大型制造企业创造利润数十亿元。在天合光能,工业大脑帮助其提升了电池片A品率达7%,而之前预设的目标是1%。

机器观察世界,机器学习规律,数据的积累、计算能力的提升,让人工智能由此变得真正聪明可用。

猎豹移动CEO傅盛认为,传统行业的智能化核心是把传统行业数据化,今天人工智能有机会把传统的物理世界数据化。物理世界的数据化是传统行业真正转型的核心。如果实体经济想实现10倍数增长,关键是要实现物理世界的数据化,用更多人工智能的方式,去获取更多来自于这个产业的数据。

2017年,时髦的城市大脑、工业大脑、无人驾驶、无人超市、无人机、语音识别、唇语识别,无一不是人工智能与实体结合的应用。

进入商店的每一张人脸,其实就是每一个访客的访问,在里面顾客拿起的每个动作都可以被识别。进入无人超市看上去是一个人脸识别签到,其实就是一个数据的来回流动。线上和线下没有界限,电商开始进军零售店,融合的前提就是数据化。

傅盛说自己的公司在美国硅谷只干了一件事,就是投了一个小基金,让它每次带自己去看硅谷的创业公司,从中可以知道美国企业在干什么。后来傅盛发现在数字化这一点上,美国公司在做的事情就是把物理世界数据化。

将物理世界数据化,与实体经济结合,降低社会成本,而不是空炒概念,数字对数字,将是人工智能未来健康发展的重要一环。

人才还得自己来培养

得人工智能者得天下,得人才者得人工智能。

人工智能火热自不待言,但是必须清醒认识到,在人才储备和核心技术方面我们尚存突破空间。

打开某知名招聘网站,搜索“人工智能”后马上会出现很多招聘岗位,具有诱惑力的薪酬让人眼前一亮。以人工智能算法工程师为例,该职位少则月薪一两万元,多则年薪百万元。

这种供需不平衡的现象,不仅在中国有,在美国硅谷亦是如此。

早在2016年,创新工场创始人李开复曾公开透露:“在硅谷,做深度学习的人工智能博士生,现在一毕业就能拿到年薪200万到300万美元的录用通知。”

据领英近日的《全球AI领域人才报告》显示,截至2017年一季度,基于领英平台的全球AI(人工智能)领域技术人才数量超过190万,其中美国相关人才总数超过85万,高居榜首,而中国的相关人才总数也超过5万人,位居全球第七。

然而,这些人才仍不能满足互联网行业的需求。不少互联网企业人士告诉记者,目前互联网行业中最稀缺的就是人工智能人才,甚至很多行业巨头会用月薪几十万元招聘人工智能顶级人才。

傅盛表示:“下大力气把海外人才引入中国是合理的,但核心人才还是要中国自己来培养。”

目前,业界对AI人才的争抢近乎白热化,但是“缺口”同样明显。来自第三方数据显示,过去一年中,人工智能人才需求量增长近2倍,2017年第三季度,人工智能人才需求量相较2016年同期增长高达179%。中兴研究院副院长董振江坦言:“去年招人非常困难,在人工智能领域,大家都在抢人,薪酬也一再加码。”

AI技术人才是主导这一变革的中流砥柱。人工智能的竞争说到底是对人才的竞争,在国内人才竞争中,数字挖掘、算法分析、语言识别、自然语言处理是人才竞争的核心。

而在核心技术方面,虽然我国已经取得了多项创新,但主要偏向应用和数据积累,在核心技术方面与美国尚存差距。我国虽然已从跟跑走向领跑,并有了弯道超车的机会,但美国仍是目前出台人工智能战略最多、核心技术和人才最多的国家。

如何在人才和核心技术方面取得突破,将是未来我国在人工智能发展中最需要注意的问题。

意味着更多从业机会

当机器越来越像人,能够做人的工作时,这是否意味着它们会抢走人类的饭碗?

来自互联网业界的声音相对乐观,一个普遍的观点是:人工智能对就业的冲击正在发生,但被取代的主要是重复性的工作。实际上,人工智能也会带来新的职位,让人类可以从事更多创造性的工作。

阿里巴巴集团副总裁刘松对记者说,人工智能将是人类历史上的第四次工业革命,其实每次新的工业革命到来的时候,都有类似“砸饭碗”的恐慌,事实证明,创新带来的更多的是机会。

他认为,未来人工智能意味着更多从业机会。确实会有很多职业被人工智能取代,但人类可以空出来更多时间做创造性的东西,或是享受创造性的内容。这将为设计师、艺术从业者带来更多可能性。

“什么人才最缺,可能是艺术类的创造者,而大量简单重复类工作会遇到冲击。”刘松表示。

数据似乎同样在支撑这样的说法。来自智联招聘的一份研究报告显示,程式化、重复性、依靠反复操作实现的熟练工种已经开始受到冲击,投资银行业务、校对录入这两个典型职位在过去三个季度连续出现大幅同比负增长。咨询公司德勤的报告也显示,人工智能已经在英国取代了80万个低技能工作岗位,但同时也创造出350万个新就业机会,后者的年收入比前者多1.3万英镑。

人工智能的研发者认为,机器永远不可能取代人的作用,人工智能只能解放人类,让人类从事更多的创造性和服务性工作。机械化程度越高的工作,人们越希望由人工智能完成,而需要创作的工作,则需要人类来完成。

问题的关键在于,这些“新饭碗”谁来端?

懂得学习、勇于迎接挑战的人,将是未来端“新饭碗”的人。具体而言,艺术创造者、心理医生等精神层面的从业者,未来将越来越受欢迎,而高危和恶劣环境的稳定岗位将大量被人工智能取代。

相关法规需要不断突破

伴随人工智能的应用不断落地,法律责任的划分和承担是人工智能发展面临的首要法律挑战。其涉及如何确保人工智能和自主系统是可以被问责的。

百度创始人李彦宏第一次正式介绍百度无人车时就遇到了这一问题——他驾驶无人车到会场后不久,就收到了交管部门的罚单。而最近百度无人车在河北雄安进行试驾,当地相关部门特别出台了临时交通规则让其上路,这就是法规上的突破。

由此说明,伴随着人工智能的进步,法规也需要不断取得突破。“无人车收到罚单了,距离大规模上路还会远吗?”李彦宏如此认识这个问题,而在世界各国,关于无人驾驶的立法也正在不断取得突破。

然而,当此人工智能的发轫期,有一个绕不过去的法律问题就是数据隐私保护。

人工智能的发展越来越依赖大量的数据分析,大规模的数据收集、分析和使用,使传统社会走向透明化,在万物互联、大数据和机器智能三者叠加后,人们或许不再有隐私可言。

如今,商家越来越夸大大数据、人工智能给人类的生产、生活带来的极大便利,而用户本身也往往忽视了这些新技术新应用对隐私和个人数据带来的危害。

人工智能能带来精准营销,而精准营销的背后可能就是“精准诈骗”。因此,在发展人工智能的过程中,个人隐私和数据保护是国际社会长期以来重点关注的内容。近年来,随着大数据、云计算以及人工智能新技术的快速发展和应用,给现有个人信息保护法律制度带来了新的挑战,各国立法、修订法律活动更加频繁。

人工智能时代要负起责任

今日头条是过去一年各界争相关注的一个信息平台,基于一种设计后的算法,今日头条作为信息集合平台为用户推荐最感兴趣的内容。由于对用户注意力的精准抓取,今日头条取得了巨大成功,其身价不断增高。

今日头条的成功之处,在于其所谓基于算法的精准推送,但问题的关键还在于,这种算法已经越来越成为一种“看不见的正义”。这种算法是不是用户真正所需要的?对此,一些用户抱怨,往往因误点了一两条新闻,或者仅仅出于好奇点了一下相关新闻,就导致之后不断大量地被推送相关内容的新闻。这实际上也变相剥夺了用户的选择权。

必须明确的是,就目前发展阶段而言,认为算法可以为人类社会中的各种事务和决策工作带来完全的客观性只是一厢情愿。无论如何,算法的设计都是编程人员的主观选择和判断,他们是否可以不偏不倚地将既有法律和道德原封不动地写入程序,值得深究。

算法歧视由此成为一个值得重视的问题。

今日头条的出现说明这样一个问题,算法开始越来越多地左右着移动互联网,比如可以决定你看到什么新闻,听到什么歌曲,看到哪个好友的动态。那么,算法可以做到公平正义吗?

互联网上的算法歧视早已有之,图像识别系统就曾犯过种族主义大错,比如,谷歌公司的图片软件曾错将黑人的照片标记为“大猩猩”。

英国《卫报》曾发表评论指出,人工智能可能已经开始出现了种族和性别偏见,但这种偏见并非来自机器本身,而是计算机在学习人类语言时吸收了人类文化中根深蒂固的观念,从而出现了种族和性别偏见。这些发现令人担忧现有的社会不平等和偏见正在以不可预知的方式得到强化。

篇9

“互联网金融是场景革命,在场景里为用户提供独到的金融服务。而Fintech是技术革命,需要把技术逻辑和业务逻辑结合在一起。人工智能是Fintech里最核心的东西之一。”万向控股副董事长、通联数据董事长肖风表示。

通联数据是万向集团旗下子公司,成立后一直低调运作,万向集团斥资3亿元初期投入,前博时基金创始人肖风出任董事长,前博时基金股票投资部总经理王政担任CEO。

近年来资管行业蓬勃发展,有着深厚金融基因的通联数据的管理团队却没有跟风去做“掘金者”,而是选择“卖水”,为资产管理机构提供金融信息服务。致力于将云计算、大数据和人工智能技术与先进的投资理念相结合,为资产管理行业打造创新、高效的金融服务云平台。

迎接资产管理行业新时代

在陆家嘴的万向大厦,通联数据所在的楼层新增加的座位又坐满了,大家以互联网公司的高效率、快节奏忙碌着,这群具有金融、计算机、算法等各种背景的精英正全力投入Fintech时代,他们正在做一件对资管行业具有革命性意义的事件。

随着互联网的快速发展,海量的数据爆炸式增长,通联数据应运而生,从最底层做起,建立了强大的数据平台。

“只有做好数据端的质量,做到别人都做不到的数据,才是成功,这一过程就持续了3年。”肖风表示。

“通联数据现在的数据来源分为三部分,一是自己搜集整理,二是从第三方购买,三是数据商把数据整合过来放在云平台,未来会有更多数据商的数据接入进来。”通联数据CEO王政介绍说。

打好数据的地基后,就需要用最新的金融科技建造资产管理的大厦,因为Fintech的核心就在于科技与金融的深度融合。

在底层数据库之上,通联数据又构建了两个平台,萝卜投研和优矿,其中萝卜投研是针对基金经理和研究员提供智能投资研究服务的平台,而优矿则是一个众包的、分享式的量化平台。

王政表示,通联数据将使投资更趋智能化,更加依靠模型和数据去寻找规律,效率得到飞速提升,这将重构资产管理行业的生态。

据了解,目前已经有数十家机构在试用通联数据的产品,包括公募、私募、保险等资管机构,也包括非资管机构。

Fintech的前沿是人工智能

除了资深的基金业人士外,通联数据还吸引了来自阿里、百度、腾讯、微软等公司的技术骨干加盟,众多IT工程师在探索将智能搜索、自然语言处理、机器学习等人工智能技术应用于投资管理行业。

肖风表示:“人工智能是Fintech里最核心的东西之一,人工智能正对我们的社会发生深刻影响,人工智能将帮助研究员、交易员、基金经理提升工作效率,这是未来的一个方向。”

人工智能是一项战略性前沿技术。近年来,人工智能产业发展迅猛,进入高速创新期。将人工智能和金融投资深度融合,使金融智能化也成为大势所趋。

通联数据打造的萝卜投研就是一个智能平台,收集海量信息,然后通过自然语言处理和机器学习等技术,高效而专业地提炼出对研究有用的信息,帮助投资人从大量重复、繁杂的底层数据处理过程中解脱出来,有针对性地帮助投资者提高投研效率。

例如,在底层数据收集层面,先对数据进行清洗;在数据整理层,会对数据进行专业分类,对信息进行初步智能处理;然后是机器学习的层面,通联数据专门训练了一个垂直搜索引擎,用人工智能模拟人类的思维方式,使它理解交易员、基金经理有什么样的需求。让计算机对大量数据进行提取、整理、分析,把精炼后的信息,或初步发现的逻辑线索呈现给用户。

以大数据创建知识图谱

通联数据还首创了以大数据为依托的知识图谱,包含了A股所有上市公司的多重股权关系、高管、产业链、主题概念等重要信息,让投资者可以一目了然地把握影响上市公司股价的重要信息,发现隐藏的线索,抓住转瞬即逝的投资机会。

篇10

自古以恚数字就有着另外一种用途――占卜未来。无论中国的八卦图还是欧洲的塔罗牌,都和数字有着不解之缘,更不用提吉祥数字和忌讳数字了。这些占卜看起来都是随机的,但都是以归纳法为基础,在若干人、若干事的印证下认为有效,才被社会认可然后得以广泛流传。正是因为我们人类对未来不确定性的迷茫,所以使得占卜、预测之术大肆流行。

面对未来,难道真的只能依靠掷骰子才能预测吗?近现代,随着统计学的盛行,特别是香农通过热力学中“熵”的概念引入了“信息熵”的概念,用信息论将世界的不确定信息联系在了一起。对于未来的发展,人类已经找到了解决这种不确定性的良方,而以信息技术和网络技术为基础的大数据提供了解决不确定性问题的良药。

对于大数据和人工智能的发展历程以及对社会的影响,甚至对未来不确定性的思考,曾经负责谷歌计算机自动问答项目和腾讯搜索项目的吴军博士,在总结数字发展历程的基础之上,编著了《智能时代:大数据与智能革命重新定义未来》一书,对大数据和人工智能的前世今生进行了详细的回顾,对其发展方向进行了大胆想象,认为人工智能和大数据的广泛应用将彻底改变未来的商业模式,甚至改变人类生活习惯,给未来的我们带来全方位的冲击。

2016年,注定是不平凡的一年。这一年,AlphaGo火了,依托大数据与深度学习的技术优势的人工智能最终以4:1的成绩,取得了“人机大战”的胜利,向人类宣告人工智能已经成为现实。与1997年深蓝战胜卡斯帕罗夫的事件相比,AlphaGo的胜利更令人激动。这种差别不仅仅体现在国际象棋和围棋的难度上,更体现在AlphaGo获胜的技术上。AlphaGo不是依靠逻辑推理,而是依靠大数据和智能算法获胜的。这就给人工智能的发展提供了良好的发展思路和发展方向。

新书信息

《我的职业是小说家》

作者:【日】村上春树

定价:45.00元

这本书首次全面梳理村上春树对人生、创作、幸福等精彩话题的看法,这是村上春树身为职业小说家的故事,更是他追逐梦想与幸福的人生故事。

《罗曼蒂克消亡史》

作者:程耳

定价:36.00元

程耳的小说如同他的电影,循环推进,起落得当,总要人怀着好奇与疑惑,绝难一览无余。他通过冷静自律又舒缓细腻的叙述,连接往昔与现在,抖落隐秘。

《在线:数据改变商业本质,计算重塑经济未来》

作者:王坚