人工智能时代的思考范文
时间:2023-11-01 17:26:09
导语:如何才能写好一篇人工智能时代的思考,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
在刚刚过去的2016年,围棋领域的“人机大战”掀起一股人工智能的浪潮,以“阿尔法狗”为代表的人工智能战胜了韩国的围棋高手李世石,由此人工智能的发展引人深思。很多人会觉得人工智能是一个很遥远的事情,始终抱以一种怀疑的态度去看待人工智能。其实不然,人工智能从上世纪40年展至今,且不说现在家家都在使用,但是在我们的生活中至少是随处可见的,比如,计算机行业、银行业、会计业等都在使用的智能处理系统,而且范围越来越广,技术越来越具有深度。在传统的会计行业中,会计核算工作从凭证到报表都是由人工来完成的,但是现如今财务会计中的大部分工作都可以由财务软件来完成,大大的解放了会计中的人力。也是在去年的3月份,著名的会计师事务所德勤对外宣布将人工智能引入会计行业,这一宣布也是几家欢喜几家愁。虽然人工智能让会计实务变得更加便捷、精准,但是传统会计行业中那些被人工智能替代的手工记账人员将何去何从?笔者从一个会计人的角度对人工智能时代下的会计行业进行探讨,目的是明晰人工智能对会计行业的影响,以及传统的会计人员如何应对人工智能时代的到来。
二、我国人工智能在会计行业的应用现状和展望
(一)我国人工智能在会计行业的应用现状
会计行业主要涉及的是企事业单位、政府机构和会计师事务所,这三大类是有会计核算系统的主要主体。就我国来说,很多涉及会计工作主体对于人工智能的应用仅限于会计系统,而且在会计系统中一些类似于审核、判断等主观行为还是要财务人员手工进行操作。目前市场上已经存在各种可以满足不同类型组织结构会计主体业务需求的会计软件,可以说应用已经十分广泛了。但是就会计师事务所来说,作为主要业务之一的审计业务在人工智能方面应用的稍微较少,因为对于上市公司审计业务而言,需要填制大量的审计工作底稿,包括电子版和纸质版,这些数据的录入目前还是依赖于手工。
(二)对人工智能在会计行业中应用的展望
任何一位会计人都清楚地知道,会计行业是一种具有严瑾性、及时性的行业,并且会计工作程序多,处理起来比较繁杂。所以对于会计人员来说加班是家常便饭,从某种程度上来说,会计人员也希望有一天能有人工智能来替代这繁琐而枯燥的工作。目前已经应用的人工智能解决了一些基本的操作,比如凭证和报表的生成等等,但是还远远不能满足目前会计主体多样性的需求。比如人力资源会计,就需要一个适合企业特点的模型来对企业的人力资源进行计量和报告,此模型可以对企业的人力资源进行大数据的分析,从而可以合理的进行人力资源管理,这也是有效降低成本的途径之一。这样的需求在管理会计,环境会计等众多会计的分支中都是需要的,因为现在会计的职能越来越倾向于决策,决策过程中就需要会计提供相应的资料,这些资料通过会计的手工计算和分析往往难以获取,如果人工职能可以进一步运用科学知识来解决这个难题就再好不过了。
三、人工智能对会计行业的影响
(一)提高了会计信息的及时性和精准性
不管是企事业单位还是政府机构或者会计师事务所,在运用会计软件之后,一方面对于当日发生的各项经济业务都能及时的进行处理。因为会计人员的只需要登录系统进行相关事务的选择或者审核就可以了,期末系统会根据已经有的数据自动生成相关报表,相比较传统会计的手工填制凭证和编制报表要及时得多。另一方面,在传统的会计业务处理时,会计员手误记错账是常有的事,虽说现在的财务系统也需要手工录入一些数据,但是当录入出错时系统给予提示,所以这种情况下,大大降低了数据出错的概率,即提高了会计信息的准确性。
(二)一定程度上抑制了财务信息造假
在提高准确性和及时性的基?A上,人工智能在会计行业中的应用还可以相对防止财务信息造假。在特定的会计核算系统下,每一位登录系统的人员都会有唯一的账号和密码,以及自己的权限,可以说分工明确,相比较传统的会计核算中岗位相容现象十分严重,尤其是在中小企业里,人工智能的应用对于职能清晰划分有助于遏制信息的人为造假。但也不是说人工智能可以杜绝财务造假,因为尽管大部分工作在系统中完成,每个人只能进行自己职能范围内的操作,但是系统终归还是由人来控制的,还无法应对管理层凌驾于会计人员之上的内部操纵现象。
(三)会计行业中传统岗位需求减少
随着人工智能在会计行业的应用领域越来越广,传统会计岗位就不需要那么的职员了,这是显而易见的变化。会计电算化早在上世纪八十年代就在我国有所发展和普及,发展至今,已经商品化,为各种会计主体所使用,使得原本那些简单的会计记录和核算工作被人工智能所取代,相应的,这些岗位上的会计人员也就不再需要。
(四)会计信息安全性受到威胁
目前应用广泛的各种电算化核算系统,都是以电子形式对会计主体的各种财务数据进行保存,电子存储的数据保存形式有很多优点,比如保存方便,数据容量大,便于查找和使用等。另一方面,现在的系统如果防护措施不到位很容易被黑客攻击,同时目前网络的安全性也大大降低,信息在网络传输过程中可能会被拦截,所以企业的财务信息就会被泄露出去,严重的话,还会造成重大商业秘密的外泄,给企业带来损失。
四、会计人员如何应对人工智能的“入侵”
(一)学习会计电算化处理,跟上人工智能的步伐
作为一名会计人员,如果在智能时代还停留在传统会计处理方法上,那只能被时代所淘汰,这个社会本来就是优胜劣汰,新的技术方法已经产生,你没掌握那你就是被打败的那个,至少要跟上时代的步伐。国家目前对于会计人员有接受继续教育的要求,会计人员可以借助这一平台学习当前的人工智能在会计领域的应用,也可以自主的学习会计电算化的相关应用。
(二)由简单的财务会计向综合型会计人才转变
虽然人工智能时代减少传统会计岗位的需求,但是随着国家近几年来对于管理会计的发展的鼓励,各会计主体尤其是企业对于管理会计的需求增加,而目前管理会计的工作是人工智能无法完成的,因为这其中涉及大量的职业判断以及包括审计业务里也是含有很多的会计估计。所以会计人员应该在人工智能时代努力学习会计其他方面的知识,比如管理会计和审计业务的内容等,掌握多方面知识,使自己成为一名复合型会计人才。
(三)以积极的视角来看待人工智能
现实中有很多会计从业人员狭隘的认为人工智能可以取代他们,甚至完成他们完成不了的工作,于是乎就开始说会计行业没有前景,进行转行,而不去想着提升自己的执业能力。从以上的分析可以看出,这种消极的观点是不对的,不仅不利于会计人员自身的发展,也不利于整个会计行业的发展。
篇2
关于“人工智能”最热的讨论之一,就是如果人工智能超越人类智能,人类是否将遭遇自己给自己制造的威胁?在《人工智能的未来》的作者,奇点大学校长、谷歌工程总监雷・库兹韦尔看来,2045年,人工智能将超越人类智能,储存在云端的“仿生大脑新皮质”与人类的大脑新皮质将实现“对接”,世界将开启一个新的文明时代,“奇点”到来!当智能机器的能力跨越这一临界点之后,人类的知识单元、链接数目、思考能力,将旋即步入令人眩晕的加速喷发状态――一切传统的和习以为常的认识、理念、常识,将统统不复存在。
有一种说法认为,机器人无法取代人类,因为它永远体会不到妈妈的手抚摸它的感觉。这理由大大地让人放心!但《情感机器》告诉我们,通过对人类思维方式建模,创建能理解、会思考、具备人类意识、具备常识性思考能力的情感机器是可行的。所以未来的挑战不是没有。就如尼古拉斯・卡尔在《玻璃笼子》中所说,当计算机和一切智能设备变成我们生活中的伴侣时,应更加留心它如何改变了我们的行为和身份。
随着技术发展的不断加快和机器自动化的发展,对人的需求将会减少。很多工作将会消失,所谓的“好工作”也会过时。马丁・福特在《机器人时代》中表示,在可预见的将来,机器人行业将与大数据、移动通信等进行跨领域技术融合,基于服务创新的机器人产业体系也许很快就要到来。
篇3
人 工 智 能 作 业
拥抱人工智能
学院:
年级:
专业:
学号:
姓名:
拥抱人工智能
摘 要:介绍了人工智能的含义以及模式识别的领域。
关键词 人工智能;模式识别;AlphaGo
1 人工智能
1.1人工智能的含义
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。AlphaGo的胜利,无人驾驶的成功,模式识别的突破性进展,人工智能的的飞速发展一次又一次地挑动着我们的神经。作为人工智能的核心,机器学习也在人工智能的大步发展中备受瞩目,光辉无限。
我所理解的人工智能,就是如下五个定义。定义一:AI就是让人觉得不可思议的计算机程序。定义二:AI就是与人类思考方式相似的计算机程序。定义三:AI就是与人类行为相似的计算机程序。定义四:AI就是会学习的计算机程序。定义五:AI就是根据对环境的感知,做出合理的行动,并获得最大收益的计算机程。如今人工智能的时代到来,给予了我们很大的便利。如智能图像理解软件Google照片、智能美图软件美图秀秀、只能搜索排序软件Google、智能出行自动驾驶软件滴滴优步司机、智能机器翻译软件有道翻译官等。
1.2 人工智能的发展历史
迄今为之,人工智能诞生已有62年。1956年,John McCarthy创造人工只能一次。1962年,IBM的阿瑟··萨缪尔开发的西洋跳棋程序就战胜过一位盲人跳棋高手。1987年到1993年现代PC的出现,让人工智能的寒冬再次降临。1997年IBM计算机“深蓝“成功击败世界顶级国际象棋高手之后,国际商用机器公司(IBM)又尝试一轮新的人机博弈。2016年AlphaGo在围棋人机大战中击败韩国职业九段棋手李世石。
1.3 人工智能的复兴
人工智能的复兴可分为以下两次。第一次AI热潮由图灵测试掀起。艾伦.图灵是人工智能的开拓者,他所提出的图灵测试,直到今天仍然是我们判定一部机器是否具有人类智慧的重要手段。假如有一台宣称自己会"思考"的计算机,人们该如何辨别计算机是否真的会思考呢?一个好方法是让测试者和计算机通过键盘和屏幕进行对话,测试者并不知道与之对话的到底是一台计算机还是一个人。如果测试者分不清幕后的对话者是人还是机器,即,如果计算机能在测试中表现出与人等价,或至少无法区分的智能,那么,我们就说这台计算机通过了测试并具备人工智能。第二次AI热潮则由语音识别掀起。20世纪80年代到90年代的第二次AI热潮中,语音识别是当时最具代表性的几项突破性进展之一。今天我们拿出手机,使用苹果手机内置的语音输入法,或者使用中文世界流行的科大讯飞语音输入法,我们就可以直接对着手机说话以录入文字信息。技术上,科大讯飞的语音输入法可以达到每分钟录入400个汉字的输入效率,甚至还支持十几种方言输入。
1.4人工智能所带来的警示
AlphaGo带来的警示是:如果计算机可以在两年内实现大多数人预测要花20年或更长时间才能完成的进步,那么,还有哪些突破会以远超常人预期的速度来临?这些突破会不会超出我们对人工智能的想象,颠覆人类预想中的未来?我们已为这些即将到来的技术突破做好准备了吗?AI真的会让人类大量失业吗?哪种工作最容易被AI取代?这一系列的问题,都引起我们的思考。
1.5 分析人工智能
人工智能的应用场景有:自动驾驶、智慧生活、智慧医疗、艺术创作、智慧金融、和人类同场竞技等。今天的人工智能还不能做什么?情感、审美、自我意识、跨领域的推理、抽象能力、常识等。人工智能时代,程式化的、重复性的、仅靠记忆与练习就可以掌握的技能将是最没有价值的技能,几乎一定可以由机器来完成;反之,那些最能体现人的综合素质的技能,例如,人对于复杂系统的综合分析、决策能力,对于艺术和文化的审美能力和创造性思维,由生活经验及文化熏陶产生的直觉、常识,基于人自身的情感(爱、恨、热情、冷漠等)与他人互动的能力,这些是人工智能时代最有价值,最值得培养、学习的技能。
2 识别模式
如今,机器学习的应用已遍及人工智能的各个分支,如专家系统、自动推理、自然语言理解、模式识别、计算机视觉、智能机器人等领域。其中模式识别就是计算机用数学技术方法来研究模式的自动处理和判读。我们把环境与客体统称为“模式”。当我们人眼看到一幅画时,我们能够很清晰的知道其中哪里是动物,哪里是山,水,人等等,但是人眼又是如何识别和分辨的呢,其实很简单,人类也是在先验知识和对以往多个此类事物的具体实例进行观察的基础上得到的对此类事物整体性质和特点的认识的,并不是人类原本就有对这类事物的记忆,就好比婴孩时期的我们,并不知道什么是狗,什么是帅哥,什么是美女,但是随着我们的慢慢长大,我们观察的多了,见的多了,再加上过来人的经验指导,我们就知道的多了。 其实,每一种外界的事物都是一种模式,人类平均每天都在进行着很多很多的各种各样的模式识别,人们对外界事物的识别,很大部分是把事物进行分类来完成的。而我们对事物进行辨别,就是模式识别。
2.1 识别模式的主要方法
解决模式识别的方法主要有:模板匹配法,ANN法,基于知识的方法和基于数据的方法。基于知识的方法就是专家系统,句法识别就属于基于知识的,但是句法识别不常用。基于数据的方法也就是基于统计的方法,即依据统计原理来构造分类器,来对未知样本进行预测,这种学习过程是机器学习中研究最多的一个方向,也是模式识别采用的最主要方法。顾名思义,ANN也就是大名鼎鼎的神经网络。模式识别的研究范畴,存在两个极端,要么分类和特征之间的关系完全确定,要么完全随机。
2.2 监督与无监督
简单来说,类别已定的就叫做有监督分类,反之就是无监督分类;前者因为我们有已知划分类别的训练样本来作为学习过程的“导师”,所以很多时候,有监督和无监督,又叫做有导师学习和无导师学习;
后者,在不知道要划分的是什么类别时,我们要做的工作是聚类(clustering),根据样本特征将样本聚成多少类,使属于同一类的样本在一定意义上是相似的,不同类之间的样本则有较大差异,通过聚类得到的类别也称作为聚类,但是通常在聚类中存在一个尺度问题,当设置的尺度不一样,得到的聚类也不一样。所以在很多无监督识别问题中,分类结果并不一定是唯一的,因此在没有特别指定的目的情况下,很难说哪种分类方案更合理。另外,用一种方法在一个样本集上完成了聚类分析,得到了若干个聚类,这种聚类结果只是数学上的一种划分,对应用的实际问题是否有意义,还需要结合更多更专业的知识来进行解释。
2.3 识别模式应用
主要有:语音识别,说话人识别,OCR,复杂图像定目标的识别,根据地震勘探数据对地下储层性质的识别,利用基因表达数据进行癌症的分类等等。
2.4 模式识别系统的构成
一个模式识别系统通常包括典型的四个部分(如下图):对原始数据的获取和预处理,特征提取与特征选择,分来或聚类,后处理;以上四个部分,无论是监督的还是无监督的都共有的,可以说是整个系统的核心所在,也是模式识别学科的主要研究内容。
3 总结与期望
AI来了,有思想的人生并不会因此而黯然失色,因为我们全部的尊严就在于思想。机器带给人类的不是失业,而是更大的自由与更加个性化的人生体验。未来也将是一个人类和机器共存、协作完成各类工作的全新时代。正如谭铁牛院士在中科院第十九次院士大会上的报告《人工智能:天使还是魔鬼?》所说的那样,高科技本身没有天使和魔鬼之分,人工智能也是如此,这一把双刃剑,是天使还是魔鬼取决于人类自身。人工智能在天使手里是天使,在魔鬼手里就是魔鬼。因此我们有必要未雨绸缪形成合力,确保人工智能正面效应,确保人工智能造福于人类。
参考文献
[1]张学工,模式识别[M].北京:清华大学出版社,2000.1
篇4
关键词:人工智能,电子工程,应用价值
引言
随着科学技术的高度发展,社会信息化进程的加快,人工智能技术得到了很大的发展。科学技术的发展,比如,智能芯片、信息处理技术等相关高新科技的完备,极大地影响了人工智能技术的发展,为人工智能技术的进步提供了科学技术支持。人工智能的发展,大大提高了人们的生产效率和工作效率,极大地保证了社会经济的发展,使得社会现代化速度越来越快,人工智能技术的高速发展,将会推动电子工程领域的发展进程,电子工程领域会因为人工智能在其领域的应用,使得自动管理水平得到显著的提升。
1人工智能与电子工程
人工智能的出现可以追溯到17世纪中期,历史上第一台计算机就是在17世纪被发明出来的,不过当时的计算机是非常巨大的,这种计算机的数据处理和运算能力在当时是数一数二,应用范围很广,造成了很大的社会反响,为后世人工智能技术奠定了理论基础。从那以后,计算机技术不断发展壮大,一直到17世纪中期,人工智能技术才获得了比较大的进步,在到后来的20世纪初期,人工智能技术才被正式命名,这为如今人工智能技术的高度发展奠定了基础,21世纪初期,随着社会现代化进程的加快,科学力量不断壮大,计算机对于数据的处理和运算越来越强大,互联网技术不断发展,为人工智能的发展提供了积极影响,人工智能技术的发展为高新技术产业提高了效率。电子工程是以提高企业工作效率为目的的科学技术,在过去,由于社会科学技术手段的落后,生产主要通过人工力量进行工作,生产效率低下,从而导致生产质量也得不到保证,随着科学技术的进步,如今人工智能技术的广泛应用,使得现代电子机械企业运用人工越来越少,极大地提升了生产力,加快了现代化社会进程。随着现代信息化进程的加快、互联网技术的发展、大数据技术、云计算技术的发展,人工智能技术的科学技术依托越来越多,电子工程领域获得了诸多的基础技术,极大地提升了生产力,可以有效地减少生产过程中的失误,并且能有效提升产品质量[1]。
2技术特点
(1)人工智能技术的特点。人工智能,顾名思义,人工智能就是利用科学技术手段模拟人类思考,不同于人脑的是,人工智能的思考是通过对于数据的处理与运算,进行比对与分析,从而不断完善自身的数据库做到与时俱进,人工智能作为人类创造出来的东西,它是建立在人类科学技术手段之上的一项高新技术,所以网络上很多人所谓的人工智能危害论都是无稽之谈,人类的智慧产物造就人工智能,人工智能不可能会超越人类社会的科技水平,人工智能是建立在当今科学技术的基础上的。从目前人工智能的发展状况来看,人工智能对于人类社会的帮助巨大,在我国各行各业都有应用,人工智能技术能够有效地代替人工,降低生产成本与人力成本,并且人工智能作为人类科技力量的体现,有着高度的智能化,普通人通过简单的学习就可以操作,极大提升了社会生产力[2]。
(2)电子工程的特点。电子工程领域覆盖面很广,主要包括机械工程、电子工程、计算机软件工程等多门技术,能够提高生产效率、降低成本,是一门综合性的学科。但是电子工程在实际运用中却有很多难点,因为电子工程领域覆盖面极广,涉及的学科很多,这让电子工程的日常维护工作的难度加深了很多,导致人们在电子工程领域的应用产生了负面影响。现代企业不断发展,为了适应社会以及自身的发展,电子工程也必须做到与时俱进,但是电子工程的升级非常复杂,需要专业人才进行研发并且要投入大量的资金,在一定程度上加深了企业人力物力的投入,可能会影响到企业的效益[2]。
3应用价值
(1)合理利用人工智能可以提高电子工程设备的精度。人工智能技术在数据处理与运算方面有着高度的自主性,能够显著的提高电子设备的精准度,从而帮助企业提高生产效率,提高企业整体效益。并且精准度的提高有效地减少了生产过程中的失误,提高了产品的合格率,节约了生产成本。并且通过人工智能操作的电子设备远高于人工控制,提升了产品精度,使得产品质量更加优越,更加适应市场需求。电子设备在日常生产过程中,随着时间的增加,往往会出现精度失准,造成非常规操作,按照传统模式的生产方式需要人工进行调试,定期对其设备进行检查维护,耗时耗力,通过人工智能技术操作的电子设备,相比于传统模式下的人工,效率要高很多,人工智能技术通过其强大的数据处理和运算功能,对电子设备定期自动维护,调整设备精准度,提高了产品的质量和生产效率[3]。
(2)合理利用人工智能可以促进自动化和智能化。电子工程领域涉及面极广,种类繁多技术复杂,设备相互之间都有关联性,在其日常维护工作中,对于维护人员的专业素养要求很高,这对于企业电子设备的日常维护造成了很大的困扰,传统模式下的设备维护工作费时费力,影响了企业的日常生产活动,针对这一情况,自动化以及智能化一直是企业想要达成的,人工智能技术如今在电子工程领域的应用中看,加速发展完全可以达到智能化及自动化,对于企业突破传统模式的桎梏是十分有效的措施,需要得到人们的重视。人工智能自身具备强大的数据处理和运算能力,并且人工智能有着类似于人类的学习能力,通过数据的整合与分析能够不断地吸收科学技术,完善自身,所以加快人工智能技术在电子工程领域的应用,可以实现电子设备自动化维护,通过人工智能的定期检查,做到电子设备的维护与管理。人工智能在设备维护中从两方面入手:①可以定期的排查设备故障与精度失准,快速查明人工无法分析的故障,高效完成设备故障排查工作。②在检查出故障的原因时,可以代替人工进行维护,一方面维护了设备,一方面完善了自身的维护水平,提高了维护的精准度[3]。
(3)合理利用人工智能可以促进人类思维的转变。随着人工智能技术的广泛运用,各行各业深刻的意识到了人工智能技术的重要性,研究与发展人工智能技术的热度越来越高,不断有专业技术人才开发研究人工智能技术,一方面研发人工智能,另一方面也是推动了电子工程的发展速度,突破传统模式的桎梏,转变了人类固有的思考模式,让人们明确了科学技术才是第一生产力,传统模式的思想严重阻碍了时代的进步,落后就要挨打,只有不断地顺应时代潮流,才能在日益严峻的市场竞争中站稳脚跟,现代企业只有不断利用人工智能技术完善自身生产模式,将人工智能技术融入电子工程领域中,才能紧跟时代步伐[4]。在电子工程初期,由于人工智能技术没有应用在这一领域,人们通常会降低电子设备的精准度,从而降低设备的维护难度,这在企业初期有很好的效果,但是随着企业的不断发展,精准度低下的电子设备无法满足企业的生产需求,严重影响了企业的效益。随着人工智能技术的进步,电子工程领域利用人工智能技术能够做到电子设备的自主维护与检修,大大提高了设备的进准度,有效的增加了生产效率,所以从长远利益来看,人工智能技术的研究必须要与时俱进,当今社会,各行各业已经无法离开人工智能技术,人工智能技术能够给企业提供庞大的经济效益[5]。
篇5
关键词:大数据时代;人工智能;计算机网络技术
1引言
随着互联网技术的不断发展,人工智能作为一项应用前景非常广阔的技术手段,不断深入到人们的生活中。在互联网发展的今天,人工智能的运用越来越广泛,无论是日常的生活、学习、娱乐还是工厂操作、科技研究等。智能化科技的出现,不但丰富了人们的日常生活,也给计算机的发展提供了可行性方向,亟待深一步的研究。
2人工智能的概念及意义
人工智能是计算机科学的一个分支,集研究、开发于一体,用于模拟、延伸和扩展人类智能的理论、方法、技术及应用的一门技术科学。人工智能的研发包含哲学、语言学、心理学等学科,能够模拟人类对外界图像、声音的反应。基于大数据时代数据多、规模大的特点,将机器智能化来帮助人们解决一些生活上的问题,从而提高人们的生活质量和生活安全水平。人工智能的系统过程可以把人类日常的行为习惯、思考习惯转换成数据的形式进行储存,以实现人类日常生活的模拟,进而实现机器的自动操作。人工智能的运用实现了我国计算机技术领域的发展,丰富了人们的生活,为社会带来了更多的便捷,同时也是计算机技术发展的必然趋势和必经过程。人工智能和计算机网络技术两者之间相互结合,互相促进,为未来发展提供了新的方向。从某种意义上讲,网络计算机的发展是以人工智能技术为核心基础,进行更深层次的研究。从简单的数据计算、人工搜索转变为机器的智能操作,直到人工智能对计算机网络安全和网络管理中的有效运用,无一不体现了人工智能的核心地位。给予人工智能强大的优势,将计算机系统局部资源进行处理分析,能够快速得到对人们有利的信息,提高信息的准确性和快捷性。此外,人工智能有非常强大的协作能力,通过对资料的有效整合,根据不同用户的不同需求来互相交换信息和资源,有效利用信息资源。
3人工智能现状
人工智能的到来,大大提高了数据处理和数据判断的准确性。大数据时代的到来,有着惊人的数据分析和处理能力,人们的隐私问题也越来越暴露,人工智能在计算机网络技术中的运用提高了计算机在信息处理过程中的复杂性和安全性。对于一些模糊、不确定的信息,人工智能能够模拟人类思维,使得信息更加准确、具体,从而提高计算机处理信息的效率。同时,能够提高信息管理体系的有效性和灵活性。但是,随着人工智能的运用越来越广泛,在运用过程中人工智能获取的信息只能根据系统设定的命令处理信息,无法辨别给定的信息准确与否。数据太多没有针对性,是人工智能处理问题的一大弊端,不但增加了时间和空间的使用,还不一定能找到想要的准确信息[1]。
4大数据时代人工智能在计算机网络技术中的运用
人工智能在网络技术中的运用主要集中在两个方面:计算机网络安全管理系统中的应用和计算机网络管理系统中的应用。在计算机网络安全管理系统中主要通过入侵检测智能防火墙技术、数据挖掘数据融合、人工免疫以及智能型反垃圾邮件四个方面,对计算机网络安全进行保护。在计算机网络管理上,主要运用专家系统数据库、人工智能问题解答、Agent技术三个方面。
4.1入侵检测和智能防火墙技术
入侵检测技术和计算机智能防火墙技术是人工智能的核心技术,也是计算机网络安全的重要组成部分。不但能够保证计算机网络系统中的资源数据安全完整,智能防火墙技术还可以对计算机网络系统中一些没有意义的有害信息进行拦截,防止其流入计算机系统中,确保计算机的安全状态。人工智能中入侵检测和智能防火墙技术可以很好的在计算机系统中建立一个自动防范功能,使计算机能够高效识别病毒木马的入侵,从而有效进行遏制。所以,应用入侵检测技术和智能防火墙技术不仅能够保护计算机网络信息的安全,还能够推动计算机网络的健康发展[2]。
4.2数据挖掘和数据融合
数据挖掘是结合网络连接和主机会话,找出两者共同的特征利用审计程序分别加以描述,再通过人工智能捕捉到的入侵规律和计算机网络没有遭到入侵时的运行状态,将结果记录储存在脑中。在这种情况下一旦计算机系统遭受入侵,系统会提示异常,自动识别入侵对象,从而进行拦截,这也是人工智能自我记忆与自我学习功能的体现。数据挖掘的运用能够有效提升检测入侵对象的效率,提高计算机网络的安全。数据融合是根据人类处理信息的方式研发出的一项把资料协同化的技术。该技术能够将计算机网络系统中多个传感器进行融合,使其发挥最大作用来提升系统的性能。同时,能够缩小传感器入侵的几率和范围,打破原有的局限性,保证入侵检测的有效性和安全性。
4.3人工免疫技术
人工免疫技术是模拟人类处理方式而研发的一项新型技术,弥补了入侵检测时未能识别病毒的缺陷。人工免疫技术分为基因库、否定选择、克隆选择三部分。虽然基因库的建设有待发展,但是,基因片重组和突变模式能够识别入侵病毒,从一定程度上可以阻止病毒入侵。否定选择即是系统检测病毒的另一种计算方式,通过否定选择计算合格才能进行系统下一步的操作,反之则被系统阻止运行。尽管人工免疫技术在计算机网络技术中还不够成熟,但是其作用不可小觑,有着很大的应用价值,值得人们进一步的研究探讨[3]。
4.4智能型反垃圾邮件系统
很多人在计算机网络邮件中经常遇到一些垃圾邮件。人工智能在计算机网络安全系统的运用,很大程度上屏蔽了这些垃圾邮件,让客户信箱免受干扰,进一步保护了客户的隐私安全,不会对客户的信息安全造成任何影响。人工智能的有效应用还能实时检测用户邮箱,及时扫描出邮箱内部的垃圾邮件,并分类推送给用户,提示用户及时处理,保证了邮箱的安全性,提高了邮箱内部利用率[4]。
5大数据时代人工智能在计算机网络管理系统中的应用
5.1专家系统数据库
专家数据库作为专家系统中的核心部分,具有独立性、启发性、透明性,包含了专家系统中的基本理论和直接、间接经验。通过系统运行把已知的内容转化成代码的形式存入数据库,再经过人工智能的转换,举一反三将初级的内容转换成复杂的程序,并且不断进行判断、处理和优化,找到最佳方式来运用到计算机网络管理的系统中来,从而实现最有效的管理和评价。人工智能与数据库技术的全面整合,弥补了传统数据库技术在数据加工能力上的不足和人工智能在逻辑推理和知识处理方面的弱势,使其无论在存储空间上还是工作效率上都有很大的提高。可以说专家系统数据库的建立,是人工智能和数据库技术相结合的优秀产物,成为了计算机网络管理系统中的一个重要领域,也是不可或缺的部分。
5.2人工智能问题解答
这项技术的运用主要是依照给出的特定条件,通过搜索、解析等功能搜寻最有效的信息,以达到网络资源的有效利用,从而提高网络资源的利用率。人工智能问题解答技术的运用摒弃了以往繁琐的解答方式,只需要一个简单的指令即可对信息进行有效筛选,自动对搜索信息进行判断、过滤、处理和优化,从而找到需要的信息。大大缩短了搜索时间,提高了网络资源的利用率。例如,用户在计算机上查找苏轼的《水调歌头》信息时,用户忘记了作者和词牌名,只记得是“明月几时有”就可以以“明月”作为搜索对象,经过系统的人工智能问题解答,自动带出“明月几时有”的搜索标签,能够很快查找到《水调歌头》的完整词牌和注释。不但保证了搜索的准确性,还缩短了搜索时间,提高了搜索效率。
5.3Agent技术
Agent技术是人工智能问题解答的一个补充技术,也称作是人工智能管理。Agent技术的应用是在用户完成工作后,对数据补充搜索统计的技术,为用户下一步的工作提供更加人性化、智能化的服务。Agent技术的应用,可以帮助用户通过自行设置有效搜索信息,并将搜索内容通过指定的路径传输到指定位置,是一项高水平智能化和人性化的定制服务机制。例如,用户在查询过某一地区的酒店价格后,系统会根据用户的查询,通过Agent技术对用户查找的信息进行分析和处理,从而给用户推送类似信息,帮助用户能够方便快捷的找到有效信息,从而节约用户时间,提高计算机网络技术效率。
篇6
关键词: 人工智能;创新驱动;发展建议
人类对于智能机器的探索活动,古已有之。不过,以“人工智能”来命名这一探索并成为一个学科领域,却发生于1956年夏季在Dartmouth举行的一次小规模学术研讨会上。因此,2016年是人工智能学科问世的60周年,在这个不同寻常的年份,世界各地的人工智能科技工作者都在密切关注人工智能的发展动向。
2016年3月,DeepMind研制的人工智能围棋系统AlphaGo以4:1的战绩击败了韩国的围棋高手李世石,把世界对人工智能的关注推向了前所未有的。各种各样的议论喷涌而出。悲观者大呼:“人工智能对于人类的潜在威胁太严重,应当通过立法限制甚至禁止人工智能的研究”;乐观者高喊:“人工智能是人类的真正福音,只要把自己的思想意愿转嫁给人工智能机器,人类就可以通过机器来实现长生不老的千年梦想”。在科技界,人们则在激动着、讨论着:我们应当在什么样的热点技术上发力?是深度学习?是认知技术?还是类脑计算?
回想这些年来,互联网、云计算、大数据、物联网、移动互联、智能制造、智慧城市、人工智能、机器人一波又一波的高新技术登台亮相,中国科技界、教育界和产业界都在一个个地紧紧追赶。虽然在跟踪追赶的过程中取得了不菲的进展,但是人们不禁都在思考:对于人工智能来说,当前社会的需求是什么?什么才是有效的创新战略?怎样才可以摆脱跟踪追赶的被动局面,争取到引领创新的话语权?
发展人工智能不应当是一种孤立性、局部性的行动,而应当是能够带动和引领整个科学技术的创新和发展。
1 人工智能是当代重要交叉科学群的创新前沿
为了阐明“人工智能是当代重要交叉科学群的创新前沿”这个论断,需要逐个澄清相关的基本概念,包括:什么是人工智能?什么是当代的重要交叉科学群?以及什么是当代重要交叉科学群的创新前沿?
1.1 什么是人工智能
人工智能是一门“探索人类智能机理,创制人工智能机器,增强人类智力能力”的科学技术。从这个意义上可以理解,只要人类的智力能力得到了增强和扩展,人们从事各种科学技术以至各种经济社会活动的智力能力就会得到有效提升,从而能够有效促进各行各业的创新与发展。
那么,什么是人类智能?人类智能主要表现在人类主体为了不断改善生存发展的水平而发现问题、定义问题、解决问题的能力。其中,发现问题和定义问题的能力依赖于主体的目的、知识、直觉、理解力、想象力、灵感、顿悟、审美等内在能力,因此被称为“隐性智能”;解决问题的能力则主要依赖于获得信息,生成知识,创生策略等外显能力,因此被称为“显性智能”。
显然,隐性智能十分抽象,几近神秘,不仅研究起来甚为困难,就连理解起来也颇感玄奇,而显性智能则相对可理解,可研究。因此,人工智能研究遵循的原则是:基于人类主体给定的问题、知识、目标(这就是人类发现问题和定义问题的能力)这些前提,研究如何利用信息、生成知识、创生策略来解决问题,达到目标。也就是说,人工智能的研究遵循人类智能与人工智能相结合的原则:人类智能负责发现和定义问题,人工智能则负责在人类所给定的问题框架下解决问题。这样,人工智能机器就可以成为人类认识世界和改造世界的聪明助手。
由此可见,没有生命,没有目的,没有灵感,也没有审美能力的人工智能机器系统,原则上不具有隐性智能的能力,因而不可能独立地发现问题和定义问题,只能在人类所发现和所定义的问题框架下去解决问题。因此,人工智能超越人类的恐惧缺乏科学根据。
1.2 什么是当代重要的交叉科学群
当今的时代是信息时代,认识信息资源和利用信息资源为人类服务的信息科学是当今时代的标志性科学。具体来说,信息科学是“研究信息的性质及其运动规律的科学”,也就是以信息为研究对象,以信息的性质及其运动规律为研究内容,以信息科学方法论为研究指南,以增强和扩展人类信息功能(全部信息功能的有机整体就是人类的智力功能)为研究目标的科学。换言之,信息科学的研究目标就是扩展人类的智力功能,而研究信息的性质及其运动规律和信息科学方法论都是为了实现扩展人类智力功能这个目标服务的。
由此就可以清楚地理解:人工智能的研究是信息科W的最高目标,也是信息时代科学技术发展的基本目的;而为了使人工智能系统能够在人类发现和定义的问题框架下成功地解决问题,人工智能的研究必须从人类求解问题的能力中得到启发。这表明,人工智能的研究需要向认知科学学习,因为认知科学就是研究人类自己是如何面对问题解决问题的。另一方面,认知科学所研究的人类解决问题的机理又建立在脑科学的基础之上,因此,人工智能的研究必须理解脑科学的工作机理。再者,人类发现问题、定义问题、解决问题的能力并不是永远固定不变的,而是不断进化和发展的。因此人工智能的研究还必须学习信息生物学,后者深刻地研究和揭示了人类能力不断进化的机制。可见,脑科学、认知科学、信息科学、信息生物学、人工智能是当代最具重要意义的交叉科学群。这个科学群还包含更多的学科,恕不一一阐述。
1.3 什么是当代重要科学群的创新前沿
虽然脑科学、认知科学、信息科学、信息生物学、人工智能各有各的研究内容,但是所有这些学科共同的目标都是智能,如人类的智能(脑科学)、生物的智能(信息生物学)、人类智能的物质基础(脑科学)、人类智能和生物智能的工作机理(认知科学)、人类智能和生物智能的进化机制(认知科学与信息生物学)、人类智能的信息基础和研究方法论(信息科学)、人类智能的机器模拟和实现(人工智能)等。
所以,人类智能和人工智能是当代这一重要交叉科学群共同的创新前沿。人们对于脑科学、认知科学、信息科学、信息生物学的理解深化了,就会促进人工智能研究的发展;反之,一旦人工智能的研究取得了突破和创新,也必然能够带动脑科学、认知科学、信息科学、信息生物学的突破与创新。
2 中国人工智能发展的现状:差距与优势
中国人工智能的发展现状,大家平日都亲身感受得到,应当比较熟悉,似乎无需赘言;但是国情是我们思考问题的基础,因此不可不察。而且,我们对于中国在人工智能发展方面所存在的差距和优势的认识,确实还有必要进一步深化。
2.1 差距:显差距,隐差距
大家都意识到,中国在人工智能的发展方面确实存在不少的差距。普遍J为,由于中国缺失了工业革命这个历史阶段的洗礼,因此在工业基础和工艺水平方面天然存在明显的不足。特别是中国微电子工业领域的高性能芯片制造能力有待进一步加强,人工智能硬件系统的水平也有待进一步提高等,这些都是众所周知的显差距。
然而,更值得深思的问题是:在人工智能的科学研究方面,长期以来,中国同行普遍习惯于跟踪学习,缺乏突破创新的民族自信心,更缺乏引领国际的强烈意识。无论是互联网、物联网、语义网、云计算、大数据、移动互联这些大概念,还是深度学习、无人驾驶、类脑计算这些技术思想,都是外国学者率先提出,然后才是中国学者蜂拥而上。加上这些年滋长蔓延起来的急功近利和学术诚信缺失,往往在蜂拥而上之后的一夜之间就会冒出许多“新成果”!这是中国人工智能发展存在的隐差距。
需要指出的是,显差距正因为“显”,已经得到各有关方的高度重视,并且正在不断地被缩小;但是,隐差距则因为“隐”,不容易被察觉,至今还没有引起各方面必要的重视,因此仍然是实现突破创新和引领战略的隐患。
2.2 优势:现优势,潜优势
那么中国在人工智能研究中是否也存在什么优势呢?表面看来,似乎中国在人工智能研究领域一直处于跟踪学习状态,谈不上存在什么优势;但是仔细考察发现其实不然,中国在人工智能研究中的确存在不可忽视的优势。
中国目前虽然在整体上还处于相对落后状态,但在某些技术研究上却处于国际领先地位。例如:语音识别技术,中国已经在近期多次国际评测大赛中夺得世界冠军;在汽车自动驾驶方面,中国的研发水平也与国际上旗鼓相当;特别是在理论研究方面,中国在人工智能通用理论研究方面的机制主义人工智能理论、人工智能逻辑理论研究方面的泛逻辑学、人工智能数学方面的因素空间理论都是国际领先的成果。这些都是已经涌现出来的现优势。
更加重要的是,像人工智能这样既十分复杂又极其深刻的科学研究,势必自觉或不自觉地受到科学方法论的影响。几十年来,国际人工智能的研究形成三大学派,就是受了以分而治之为特征的机械还原方法论的影响,把复杂的人工智能研究分为结构模拟的人工神经网络学派、功能模拟的物理符号系统学派、行为模拟的感知动作系统学派,而且长久以来互不认可,不能形成人工智能研究的合力。科学论证充分表明,适于人工智能研究的科学方法论不是“机械还原论”的方法论,而应当是“信息生态论”的方法论。后者与中国历来的“整体论”和“辨证论”思维传统息息相通。因此,在人工智能的研究领域,中国握有方法论的潜在优势(潜优势),只要自觉地加以运用,这种潜在优势完全可以转化为强大的现实优势(现优势)。
3 人工智能的社会需求和发展中国人工智能的战略建议
3.1 人工智能的社会需求
中国的信息化建设全面启动于20世纪90年代,得益于现代信息技术的支持,取得了举世瞩目的辉煌成就,进入了迎接复杂问题的新时期,面临着巨大挑战。从整个经济社会发展和全面改革的大局判断,在多次讲话中也明确指出,中国的改革开放进入了攻坚克难的深水区。众所周知,人工智能技术是信息技术的高端前沿;因此,为了迎接复杂问题的挑战,为了成功走出深水区到达胜利的彼岸,中国亟需人工智能科学技术的全面支持。
另一方面,纵观当今的国际环境不难发现,一些发达国家在中国黄海、台海、东海、南海不断制造紧张局势,企图以武力遏制中国的和平崛起。他们声称要长期投资人工智能,要用人工智能武器战胜中国,对此不能不高度警惕,并采取果断措施。
3.2 加快发展中国人工智能的建议
为加快发展中国人工智能,从战略性、系统性、可操作的角度出发提出5项建议。
(1)顶层规划。
火车跑得快,全靠车头带。建议设立国家级智能科学技术发展规划与协调专家委员会,负责研究和提出中国智能科学技术发展的中长期规划,制订智能科学技术产学研发展的实施政策,协调和促进中国智能科学技术的快速有序健康发展。
(2)人才培养。
万事都紧要,人才是根本。建议国务院学位委员会把中国现有的“智能科学与技术”二级学科提升为一级学科,以形成系统完整的智能科学技术人才培养体系;同时建议教育部在中小学开设智能科学与技术基础知识课程,开展课外兴趣培育活动。
(3)创新研究。
跟踪不可废,创新更关键。在国家自然科学基金设置“智能科学技术基础理论”专门领域,大力推进智能科学基础理论的突破创新;同时在国家“十三五”规划设立智能制造、智能农业、智能服务业、智能交通、智能网络空间安全、智能教育等应用专项。
(4)产业标准。
创新是尖兵,产业是后盾。大力促进中国智能化产业的发展,并在国家标准委员会建立智能产品标准工作委员会,鼓励有条件的单位和学术团体开展各类智能技术产品的测试、评价和检验标准的研究,引导智能化产业和产品市场有序健康发展。
(5)持续发展。
篇7
Abstract: In view of the characteristics of artificial intelligence curriculum, including abstract content and complex algorithm, and the actual needs of undergraduate teaching, combined with teaching practice, this paper discusses and sums up the teaching reform and innovation of undergraduate artificial intelligence curriculum from the teaching system, teaching content, teaching methods and assessment methods.
P键词: 人工智能;创新;本科
Key words: artificial intelligence;innovation;undergraduate
中图分类号:G642 文献标识码:A 文章编号:1006-4311(2017)22-0230-02
0 引言
人工智能是计算机科学的一个分支,是当前科学技术中正在迅速发展、新思想、新观点、新理论、新技术不断涌现的一个学科,其属于一门边缘学科,同时也是多个学科交叉而成的一门学科,包括语言学、哲学、心理学、神经生理学、系统论、信息论、控制论、计算机科学、数学等[1]。当前人工智能已经是很多高校计算机相关专业的必修课程,它是计算机科学与技术学科类各专业重要的基础课程,其教学内容主要包括自然语言理解、计算智能技术、问题求解和搜索算法、知识表示和推理机制、专家系统和机器学习等,国内外很多大学都意识到了其重要性,纷纷对其展开了教学和研究。人工智能课程包含多个学科,具有内容抽象、理论性强、知识点多等特点,且算法复杂,但是多数高校采用的教学方式仍是传统的课堂教学方式,即“教师讲、学生听”的教学模式,这种信息单向传输教学模式以教师为主体,学生只是在被动的接收知识;存在过分重视理论教学,忽视实践活动教学的问题,导致教育内容无法和社会接轨;人工智能教材理论性过强,学生在学习过程中常常感到枯燥乏味,进而对学习该课程失去热情[2],久而久之,不仅人工智能课程的教学质量和效果无法达到预期,甚至学生还会产生厌学心理。针对人工智能课程中现有的各项问题,本文作者结合自身丰富人工智能教学实践经验,参考人工智能课程特点和教学目标,从多个方面探讨和总结了人工智能,包括教学内容、教材选择、教学方法和考核形式等。
1 教学内容优化与更新
人工智能是一门崭新的学科。开设本课程首先是确定教学内容。通常来讲,人工智能学科的内容包括两个部分,具体:一是知识表示和推理;二是人工智能的应用。前者是人工智能的重要基础,后者主要介绍了几种人工智能应用系统,包括自动规划和机器视觉、机器学习、专家系统等。另外,课程内容中还包括了一些人工智能应用的实例,将实践和理论紧密结合起来[3]。
随着时代的发展和科技的进步,人工智能学科也取得了较大发展。基于此,人工智能学科也应该与时俱进,更新人工智能教学大纲,进一步完善其教学内容。修订后的人工智能教学大纲将人工智能分成两个部分,即基础部分和扩展应用部分。前者包括计算智能、搜索原理、知识表示等,后者包括智能机器人、智能控制、多智能体、自然语言理解、自动规划、机器学习、知识工程等。
教学内容的选择和确定应综合考虑多项因素,不仅要重视基础知识,也应注意推陈出新,随着科技的进步做到与时俱进,同时教学内容应符合现实的需求,能够与社会接轨,将理论和实践紧密结合起来,只有这样人工智能课程的教学质量和效果才能事半功倍。
2 教学策略及教学方法的改革创新
由于人工智能课程具有算法复杂、内容抽象、理论性强、 知识点多的特点,传统的教学模式已经无法满足人工智能课程的需求,教师应探索更加有效的教学模式和方法,确保人工智能课程能够取得良好的教学质量和教学效果。具体的改革和创新人工智能课程的手段和方法主要包括以下几个方面:
2.1 激发学生的学习兴趣 无论是经验还是常识都在告诉我们每个人最好的老师就是兴趣,学生只有对某门学科存在兴趣,才会更加主动积极的学习该门课程,从而获得良好的教学效果。比如,作者在课程的一开始先播放了一段著名导演斯蒂文・斯皮尔伯格的《Artificial Intelligence》的相关片段,由这个电影学生知道了世上存在人工智能的机器人,学生们随着电影情节的发展而深深感动,与此同时教师让学生思考和谈论人工智能是什么?研究人工智能的意义在哪里?实践发现,在课堂中加入电影因素,能够大大提升学生们的注意力,让学生更加专注在教学任务中,有效提高了学生探索人工智能的积极性和主动性。此外,在教学中还可以用动画、视频、图片等手段将反映人工智能最新研究和应用的成果展示出来,让学生更直观的感受人工智能的奥妙,从而投入更多热情学习人工智能课程。
2.2 面向问题的案例教学法 案例教学法是一种以案例为基础、以能力培养为核心的一种教学方法[11]。针对学校学生特点,我们采取了以下几种教学形式实施案例教学。①讲解式案例教学:这种案例通过教师的讲解,帮助学生理解抽象的理论知识点。案例的呈现有两种基本形式:一是“案例―理论”,即先给出教学案例,然后再讲解理论知识;二是“理论―案例”,即教师先讲解理论知识,再给出教学案例;通过情境体验与案例剖析激发学生认知的兴趣,引导学生对将要学习的内容产生注意,有利于教师导入新课。②讨论式案例教学:在课程初期将学生分成若干学习小组,每小组3~4人;教师将提前设计好的一题多解的教学案例以及收集的相关资料分配给每个小组,要求学生在课余时间通过自学和组内讨论的方式给出问题的不同解决方案。③辩论式案例教学:在课程后期,采取专题辩论的方式对综合应用案例进行讨论,能有效地启发学生全方位地思考和探索问题的解决方法,加深学生对人工智能的理解。
2.3 个性化学习与因材施教 在开展课程教育过程中应注意对学生进行个性化教学,结合学生特点因材施教。比如,在日常教学中多观察学生情况,鼓励那些应对教学任务后仍存在余力的W生深入探索较深层次的课程及相关知识,同时友善面对学习较差的学生,分析其学习过程中面对的困难,有的放矢地采取应对措施,帮助其不断进步;在教学过程中让学生以读书报告的形式多多思考,鼓励学生发散性思考问题,鼓励优秀学生进行深一步的探讨,并且教师应帮助具有新颖思想或论点的学生将其智慧以科技论文和发表文章的形式转化为成果。
2.4 注重综合能力培养 在研究型教学中任务驱动是一种常用的教学方法,其中心导向是任务,学生在完成任务的同时也在吸收和掌握知识。通常来讲,该教学方法的步骤是:教师提出任务师生共同分析以得出完成任务的方法和步骤适当讲解或自学、协作学习完成任务交流和总结。”[3]该教学模式不仅有利于培养学生的创新能力和创新意识,还能够培养学生解决实际问题的能力,提高其综合实力。不仅如此,由于该教学模式通常是以小组协作的方式进行,教师给出研究范围,学生自愿结组并选择具体的题目,经过分析和讨论后以程序设计或者论文的形式协作完成研究。由此可知,学生是在以团队的力量解决问题,这十分考验学生的团队协作能力,对于学生团队合作精神的培养至关重要,且在完成任务的过程中学生需要查阅大量的资料,久而久之学生收集资料和创新能力势必会得到提升。
2.5 采用启发式教学 人工智能的很多问题都较为抽象,对学生理解力的要求较高,因此,在实际的教学过程中教师应有意识的就课程内容提出相关问题,让学生自己独立思考,鼓励学生提出自己的想法和解决方案。然后回归到课程上,对比分析教材上的解决方案和学生自己的解决方案,如此不仅培养了学生独立思考的能力,也增加了学生参与教学活动的意识,提高了学生的学习热情。比如,在讲到较为抽象的“遗传算法”时,先提出一个问题,即“遗传算法如何用于优化计算?”,然后从“达尔文的生物进化论”入手,讨论“遗传”、“变异”和“选择”作用,之后举例分析,启发学生思考“遗传”、“变异”和“选择”的实现,最后师生一起导出遗传算法用于优化计算的基本步骤。如此既完成了教授遗传算法的目的,也锻炼了学生逻辑思维的能力,教学效果良好[4]。
3 作业和考核方式的改革创新
过去的课程作业都是单一书面习题作业,发展至今,课程作业形式已经发生了变化,更加丰富多样,包括必须交给教师评阅的书面家庭作业和不必交给教师的课外思考题目、口头布置的思考题或阅读材料以及大型作业等。其中通过网络就可以完成上交作业,并且教师批阅作业后也可以通过网络返回给学生,实现了网络化。课程的考核方式较之以前也发生了较大变化,加强了平时思维能力的考核,更加注重学生实验能力和动手能力的培养,不再是绝对的一次考试定成绩,而是在总评成绩中加入30%的平时成绩,如此不仅减轻了学生的期末负担,也迫使学生更加重视平时的学习思考,有利于课程教学质量的提升。
4 结束语
本文是以提高教学质量为目标,结合教学实践,从教学体系、教学内容、教学方法、考核方式等方面对本科人工智能课程的教学改革进行了探讨,总结了该课程在教学和实践方面的一些教改举措。这些举措符合二十一世纪高校教学的要求,可以支持教师提高教学手段现代化的水平,同时更贴合学生的学习需求。作为该课程的授课教师应始终保持对教学内容的不断更新、教学方法的多样化,才能激发学生的学习兴趣,培养他们的思维创新和技术创新的能力,最终提高本课程的教学质量。从学生的反馈来看,作者所总结的教学实践具有明显的教学效果。但仍有许多方面做得不够,今后将继续在教学过程中不断总结成功的经验,吸取失败的教训。
参考文献:
[1]蔡自兴.人工智能及其应用[M].三版.北京:清华大学出版社,2007.
[2]谢榕,李霞.人工智能课程教学案例库建设及案例教学实践[J].计算机教育,2014(19):92-97.
[3]蔡自兴,肖晓明,蒙祖强.树立精品意识搞好人工智能课程建设[J].中国大学教学,2004(1):28-29.
篇8
关键词:人工智能教育;创新思维;实践能力;信息技术课
新课改要求教学应当促进学生全面发展,其中,对创新思维和实践能力的培养尤为重视。初中阶段如何科学、有效地培养学生的创新思维与实践能力是每一个教育者需要思考和研究的问题。
一、创新思维与实践能力的培养
1.创新思维与实践能力的重要性
每个人都拥有创造能力,这种能力是可以开发的,并对学生人生发展起重要作用,如何科学开发学生的创造能力,离不开对创新思维和实践能力的培养。教师应该有意识的发现和训练学生的创新思维,多锻炼学生的动手能力,提高他们的实践能力,为学生主动创造做准备。
2.培养创新思维与实践能力的途径
培养创新思维和实践能力的途径有很多,初中阶段学校的数学课、自然科学课、社会实践课、信息技术课等课程是培养学生创新思维和实践能力的有效途径。其中以人工智能教育为重点的信息技术课可以利用编程技术、信息化技术、大数据技术的学习,高效、系统地开发学生创新思维,科学地提升学生的实践能力。
二、人工智能教育与信息技术课的融合
当前,人工智能技术发展得如火如荼,语音识别、机器翻译、计算机交互、计算机视觉、机器阅读识别等技术的突破,向我们展示了人工智能的优越性和未来前景,很多地区和学校也已将人工智能教育,如编程、信息处理,作为必修内容纳入了学校的教学大纲之中。人工智能教育包含编程、大数据、机器人等多个技术领域的学习,中学阶段可以利用信息技术课将人工智能教育的相关内容融入教学中,例如:Python编程、APP制作、机器人教育。
在初中信息技术教学中,应当向学生传授编程的相关知识,让学生初步认识编程、了解编程常识,并引导学生利用计算机进行编写代码。利用现代教学思路和教学创新激发学生兴趣,提高学生信息技术课学习效率和实践能力。为学生打造智能化、个性化,富有创造性的学习体验。
三、人工智能教育的实践要求
在信息技术课程的教学过程中融入编程等人工智能知识,可以丰富教学内容,拓宽学生视野,增加学生知识储备,同时也能有效激发学生兴趣,满足学生好奇心,转化为实践、创新的动力。但是在实施人工智能教育的过程中,需要注意以下几个问题,以信息技术课中编程教学为例:
1. 要考虑学生的接受度,体现量力性教学原则,不超纲不越级。
2. 要注重环境的创设,打造轻松愉快的学习环境,充分调动学生热情,帮助激发学生创新思维和实践动机。
3. 要注重编程常识的普及和实践引导,给学生充足的思维空间和操作机会。
4. 要注重教学的系统性和连贯性,加强编程技术同信息技术知识、其他人工智能技术的关联,为学习的水平、顺向迁移打好基础。
只有明确教学目标,不断地优化教学过程,监控各个环节,加强与学生沟通,积极开发和训练学生的创新思维和实践能力,才能将人工智能教育的效果最大化,从而不断提高人工智能教育的教学质量。
四、人工智能教育存在的问题
自新课改提出了信息化教育后,我国不少地区已经开始探索人工智能教育问题,尤其在义务教育阶段,开展了各种形式的人工智能教育,但是由于各地区经济发展水平不同,教育基础、教学水平和资源条件不同,正面临着诸多问题。
目前在我国中学阶段,人工智能教育发展水平整体较低,存在着地区不均衡、教育资源不均衡、教学水平不均衡、学生学习程度不均衡等多方面问题,需要人力物力财力的持续投入,优化人工智能教育平台,完善人工智能教育基础设施,让人工智能教育更规范。同时,教育工作者也需要不断研究、调整教学模式,更好地激发学生创新思维,提高实践能力。
五、结语
本文通过中学生信息技术课和人工智能教育的结合,浅谈人工智能教育与培养学生创新思维、实践能力的关系。人工智能教育的实施有利于中学生开发创新思维,提升动手能力,可以和多学科联动教学,加强学科间的联系,促进学生全面发展。目前在我国中学阶段,人工智能教育发展水平整体较低,存在着地区不均衡、教育资源不均衡、教学水平不均衡、学生学习程度不均衡等多方面问题,仍需教育工作者不断研究改进,让人工智能教育更规范,更好地激发学生创新思维及实践能力。
参考文献
[1]李宏堡,袁明远,王海英.“人工智能+教育”的驱动力与新指南——UNESCO《教育中的人工智能》报告的解析与思考[J].远程教育杂志,2019,37(04):3-12.
篇9
机器人真的能思考吗?人工非生命体能够拥有智能吗?世界各地对人工智能的研究很早就开始了,但对人工智能的真正实现,还得从计算机的诞生开始算起,因为人类直到这时才有可能以机器形态模拟人类的智能。其实,人工智能后来的研究进展并不如我们期待的那样迅速,因为它的基本理论还不完整――我们还不能从本质上解释我们的大脑为什么能思考,这种思考来自于什么,这种思考为何得以产生等一系列问题。但经过几十年的发展,人工智能正在以它巨大的力量影响着人们的生活。
实际上,在1950年,数学家阿兰・图灵便试图用一个小游戏来解答“机器人能否思考”这个问题:让一个人通过电报机分别与另一个人和一个电脑交谈,如果他分辨不出哪一个是电脑,那么,在阿兰・图灵看来,这个电脑就是会思考的。如今,由于人工智能的发明,Turing的这个游戏开始在网络上流行起来。
“你做梦么?”
“做。”
“那么,你能记住你的梦么?”
“我能非常清晰生动地回想起它们。”
“是怎么样的?”
“我还不想跟一个机器人瞎掰。”
想不到吧,以上这段风趣幽默的寻常对话,竟然出自于两位聊天机器人Alice和Jabberwacky!但无须怀疑,这种“把戏”对于现代的聊天机器人来说,简直是小菜一碟。要实现“聊天”也非常简单,编程者只要输入数量足够庞大的聊天话题数据库,就能让机器人之间顺利地进行“交流”。而我们要和机器人进行交谈,同样必须先把我们的思想“灌输”进机器人的“脑子”,它才会懂得回应我们丰富多彩的话题!
篇10
关键词:人工智能;SEO技术;搜索算法;启发信息
中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2016)30-0200-02
随着大数据和“互联网+”时代的到来,网络、计算和信息技术也取得飞速发展,人类社会正朝着信息化时代迈进,给各行各业和人们的日常生活与工作也带来了深刻的变革。同时,信息技术的发展与创新,离不开人工智能技术的支持。通过人工智能技术的应用,能推动信息技术变革,让人们各项工作的开展都有技术支撑。例如,当前迅速发展的SEO技术,就离不开人工智能技术的应用。尤其是在现代社会,上网人数越来越多,对网速要求也越来越高,广大网民在互联网搜索信息时,很多问题离不开人工智能技术的应用,这就迫切需要全面分析和认识人工智能技术,并对其应用进行研讨。本文将结合大数据和“互联网+”的时代背景,探讨分析人工智能及其在SEO技术中的应用,并提出相应策略,希望能为人工智能的有效利用,作用的充分发挥提供启示与参考。
1 人工智能的概念与特点
在技术不断发展和创新的时代背景下,人工智能出现并逐步受到重视与关注,对各行各业带来深远影响,下面将介绍人工智能的概念与特点。
1.1 人工智能的概念
人工智能又被称为人造智能,它的英文全称是“Artificial Intelligence”,简称为“AI”。目前,人工智能是指用计算机模拟或实现的智能,根据这种含义,人工智能又被称之为机械智能。人工智能是随着技术创新而发展的,该技术最早出现于1956年,其出现和发展与心理学、逻辑学、计算机科学、脑科学、神经生理学、信息科学等紧密相联。实际上,这些技术的发展和综合应用,对人工智能的诞生和发展具有积极作用,使之能够更好服务于各行各业。总之,人工智能是一门综合性的交叉学科和边缘性学科,也是这些学科不断发展和进步的结果,对人们的生活与学习,各行各业发展产生重要影响。通常来说,人工智能是指那些与人的思维相关的活动,包括决策、问题求解和学习自动化等内容。并且,人工智能与人类生产生活和各项活动密切相关。同时也贯穿于计算机应用的多个程序,例如,计算机能够执行下棋、猜谜语等任务,通常可以认为计算机在某种程度上具有“人工智能”的特征。计算机在具体应用中,通过设置相应的程序,让计算机能够思考下棋的程序,能根下棋的具体内容对此作出判断,完成整个下棋任务。目前,计算机中有关下棋的程序比较完善,功能相对成熟,甚至可以建立具有人类“专家”角色的实验系统。需要注意的是,人工智能虽然可以完成下棋任务,但仍然存在不足,因为计算机人工智能系统的下棋技术没有国际象棋大师的技术那样好。计算机程序能对每个可能的走步空间进行搜索,对比赛中可能的走法进行综合全面考虑,甚至可以考虑比赛中后面的几个走步,与一般棋手一样考虑走步。并且将人工智能应用到计算机当中,计算机可以同时搜索几千种走法,这比一般棋手的技术可能会更高。通常来说,一般棋手只能考虑十步左右。然而,尽管如此,计算机不能战胜人类最好的棋手,因为,“向前看”不是制胜的关键,也不是下棋胜负的决定性因素。从这里可以简单得知,用计算机来表示和执行人类的智能活动就是人工智能。同时,人工智能的出现与计算机技术发展和进步息息相关,如果没有计算机出现,人工智能也不可能出现,也将难以得到有效应用,其作用也难以有效和全面发挥。
1.2 人工智能的特点
人工智能的应用中,为促进其作用发挥,离不开计算机和互联网技术的支持。在高度发达的信息时代,随着云计算和互联网技术应用,人工智能的特点和优势进一步显现,其显著特点表现在以下方面。此外,由于人工智能的应用,有利于保障计算机安全和稳定运行,同时也为网络运行提供支持。
1)辅助信息的模糊处理。通过人工智能技术的应用,可以将不明确的信息进行模糊处理,为顺利完成某项任务创造条件。在具体的某项任务处理过程中,采用模糊处理手段对网络进行分析,能避免固定数学模型对程序的限制,有利于进行类似人类的各项操作,让计算机完成具有人类智能的操作任务。此外,模糊处理方式的应用,增加了网络管理新形式,有利于更好管理计算机系统当中的不确定信息,防止对系统运营带来不利影响,也有利于网络跨越式发展。
2)帮助网络层次化管理。计算机网络和系统应用中,在人工智能的辅助下,有利于更好实现网络的层次化管理。网络的构成内容复杂,包括不同层次和不同信息。而整个管理过程中,通过人工智能的应用,能实现上级对下级的有效约束,下级对上级进行监控。并且还可以增进上级与下级的联系,相互协作,共同完成任务,促进网络系统更好运行和发挥作用。
3)具备一定的学习能力。人工智能的灵活性较好,具有较为强大的功能,有利于增进不同管理者之间的联系与合作,让不同网络相互协作,联系在一起。同时,人工智能具有一定的学习能力,可以增进人工智能对信息技术进行处理的能力,探寻系统当中比较难的词汇,对其进行全面分析。并确定词汇的含义,进而对网络进行全面监控和有效管理,促进网络系统作用的充分发挥。
4)耗费的资源相对较少。在计算机系统当中,通过人工智能技术的应用,所耗费的资源相对比较少,还能节约成本,降低不必要损失。在人工智能的支持下,可以对数据进行全面分析,对其中存在的问题进行处理,进而有利于用户在较短时间内获取他们需要的信息资源,满足人们搜索信息资源的需要,节约时间,提高工作效率。
2 人工智能及其在SEO技术中的应用
作为重要的技术措施,人工智能的出现和应用,给很多行业带来变革,也大大方便人们的日常生活。下面将结合SEO技术的基本情况,就人工智能应用进行介绍和分析。
2.1搜索算法是关键
SEO是“Search Engine Optimization”的英文缩写,它的基本含义是搜索引擎优化。其出现和应用,对提高人们的搜索效率,更好开展各项工作具有积极作用。事实上,SEO技术指的是网页内外各种可以用来提高网站在搜索引擎中排名的设计策略。搜索引擎的构成包含多方面内容,并且每个部分缺一不可,分别发挥相应的作用,进而让整个系统更好运营。在这些构成内容当中,搜索算法是关键的组成部分,也是促进人工智能系统充分发挥作用,有效满足人们日常生活和工作需要的关键。
2.2搜索是基本技术
利用人工智能技术解决实际问题时,搜索是最基本的技术,也是解决问题过程中不可忽视的内容。具体应用中,符号智能、计算智能,解决具体问题的应用、智能行为本身,都离不开搜索技术的应用。
2.3应用启发式搜索法
在搜索路径对信息进行控制的过程中,增加被解问题的某些特征,进而更好指导搜索,让搜索朝着最有希望达到目标节点的方向前进,进而满足实际工作需要,节约成本,降低劳动强度。启发式搜索法指导排序时,可以分为局部排序和全局排序两种不同方式。
2.4启发信息的三种模式
决定要扩展的下一个节点,防止在宽度或深度优先搜索过程中,出现盲目扩展现象。扩展节点的过程中,决定要生成的后继节点,防止盲目生成所有可能的节点。决定需要从搜索树中抛弃或者剪切的节点,促进节点生成和计算顺利进行,有利于搜索顺利进行,更好完成相应的工作任务。
2.5搜寻算法的应用
启发式通常用于资讯充分的搜寻算法,图1展示的是启发式搜索符号,包括开始节点、一条弧的代价、不同的节点等内容。在图1中,最好优先贪婪算法会为启发式函数选择最低代价的节点,如果h(h)是可以接受的,未曾付出超过达到目标的代价,那么在计算和具体应用中,一定会找到最佳解。
f(n0)=到达一个目标的最低代价(最优)路径的代价
f(n)=g(n)+h(n)=到达一个目标的最低代价路径的代价――仅通过节点n
g(n)=从n0到n的最佳路径的代价
h(n)=从节点n到一个目标的优化路径的代价
2.6 n-puzzle的应用
为直观形象了解启发式算法的好处,下面将进引入这方面的经典问题――n-puzzle的应用。该问题在计算错误的拼图图形、计算任意两块拼图的曼哈顿距离总和、距离目的地的距离时,都会得到具体应用。在应用过程中,必须保证应用条件在可以接受的范围之内。曼哈顿距离是一个简单的n-puzzle问题,假设移动一个方块到想要的位置,不考虑移动其他方块问题,计算中采用的是启发式函数式。
2.7 利用启发式算法
搜寻问题中,每个节点都有b个选择,同时还要明确到达目标的深度d。最为简单,操作方便的算法是搜寻bd个节点,然后才能探寻到最佳答案,顺利完成计算任务。事实上,为顺利完成计算任务,首先应该了解两个节点的距离和位置,并在启发式算法的应用中,一般采用某种切割机制来降低分叉率,达到提高搜寻效率的目的。启发式算法的计算工作简单,计算效率比较高,能有效满足实际工作需要,可以为搜寻树的每个节点提供较低分叉率,对提升计算能力也具有积极作用。
3 结束语
总之,人工智能是技术创新和发展的结果,其出现和应用对各行各业以及人们的生活和工作产生重要影响。为此,实际工作中应该重视人工智能的应用,完善系统设置,注重技术创新,让人工智能更好服务于各行各业。本文介绍了人工智能及其在SEO技术中的应用,并探讨了具体的应用对策。事实上,在SEO技术当中,通过启发式搜索算法的应用,能够获得需要解决的问题,包括需要搜索的单词或短语,方便读者了解这些内容,然后熟练应用相应的算法完成工作任务。使用者在获取单词或短语的基础上,有利于快速浏览所需要的关键字,进而节约劳动力,缩短单词的搜索时间,在搜索中查找需要的信息,进而能够快速完成工作任务,促进人工智能在SEO技术中取得更好的应用效果。
参考文献:
[1] 史忠植.高级人工智能[M].2版.北京:科W出版社,2006.
[2] 陈真诚,蒋勇.人工智能技术及其在医学诊断中的应用及发展[J].生物医学工程学杂志, 2002(3):505-509.
[3] 马龙.人工智能技术在电气自动化控制中的应用[J].山西焦煤科技,2014(z1):50-52.
[4] 滕国文,滕硕.人工智能及其在SEO技术中的应用[J].吉林师范大学学报:自然科学版, 2012(2):41-43.
[5] 廉师友.人工智能技术导论[M].2版.西安:电子科技大学出版社,2002.