学校人工智能教育范文
时间:2023-10-31 17:58:38
导语:如何才能写好一篇学校人工智能教育,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词:机器人教育 教育机器人 认知发展 教学目标
一、引言
据预测,21世纪中期,人类社会将全面进入以智能机器人为代表的智能时代,机器人的广泛应用将极大促进社会生产力的发展与产业结构的调整。近年来,随着机器人价格的下降、简易性的提高、其潜在的巨大教育价值逐渐得到社会的认可,使得机器人进入了教育领域。在发达国家,尤其是英、美、日等国家,已将机器人作为一种教学辅助工具,上至高等院校、研究机构,下至中小学、幼儿园,都正在积极开展机器人相关的教研活动。为了适应未来科技社会对人才培养的需要,我国教育部从2003年起把中小学机器人比赛纳入全国中小学电脑制作活动中,2003年颁布的普通高中新课程标准又将“人工智能初步”及“简易机器人制作”列入选修内容。
机器人是一种能够通过程序控制,自主完成某类任务的机器系统。教育机器人则是一类应用于教育领域的机器人,它一般具有以下特点:首先是教学适应性,符合教学使用的相关需求;其次是具有良好的性能价格比,特定的教学用户群决定了其价位不能过高;再次就是它的开放性和可扩展性,可以根据需要方便地增、减功能模块,进行自主创新;此外,它还应当有友好的人机交互界面。
国内中小学机器人教育教学的开展虽已有近十年的时间,但仍然游离于日常课堂教学之外。究其缘由,其中一主要因素是当前教育机器人产品缺少规范,品牌繁杂,开放性低等教育机器人产品自身的问题。以下,我们将结合各个教学阶段学生的认知发展水平和机器人教学的要求,在对此进行阐述分析的基础上对不同阶段使用者所需的配件、人机界面等产品功能和结构设计提出一些意见和建议。
二、各阶段学生的认知发展与机器人教育目标
1.小学阶段学生的认知发展与机器人教育目标
著名的儿童教育学家和心理学家皮亚杰认为:儿童的认知是由他自身与外部世界不断地相互作用而逐渐形成的一种结构。儿童在观察事物时,往往注意新鲜、感兴趣的东西,他们对周围世界有着强烈的好奇心和探究欲望,乐于动手操作具体形象的物体。因此,这一时期是培养科学兴趣、体验科学过程、发展科学精神的重要时期。
小学阶段的机器人教育,主要是让学生了解智能机器人的应用价值,培养学习使用机器人的兴趣。具体到教学要求上,对于硬件部分则要求学生了解简易机器人的基本构造;说出各类传感器(如声音、光敏、红外、温度、触摸)的功能及其对人类功能的模拟。能描述机器人各部分的功能更和工作原理,能描述机器人各部分的功能和工作原理,如通过传感器搜集信息、通过程序来判断处理信息、控制外部动作等;如果条件允许,则可要求学生根据设计要求和已有的模块化组装部件,尝试动手制作或组装简单的实物机器人,将编制好的控制程序导入到实物机器人;在程序设计方面,学习LOGO等简易语言或图形化操作界面,能够结合使用传感器模块和流程控制模块等编写程序,感受利用程序解决问题的一般过程。
2.初中阶段学生的认知发展与机器人教育目标
初中阶段正是“形式运算”阶段(12~15岁)。这个阶段的主要思维特点是,在头脑中可以把事物的形式和内容分开,可以离开具体事物,根据假设来进行逻辑推演,能运用形式运算来解决诸如组合、包含、比例、排除、概率及因素分析等逻辑课题。初中生思维活动的基本特点是抽象逻辑思维已占主导地位,但有时思维中的具体形象成分还起作用。
初中阶段的机器人教育,不仅要求培养学生使用机器人的兴趣,还要教授机器人的基本工作原理,了解机器人领域的发展前沿。在硬件知识部分,除了在制作和操纵简单的机器人的基础上,探究机器人的机械装置、电子装置、传感器装置等,能力强的学生可对机器人构件功能进行拓展应用,例如用继电器和声音传感器组装声控灯;在软件部分,了解计算机控制机器人做出各种动作的简单流程,感知程序和程序设计语言,理解程序的基本结构,了解“确定算法,编程实现”这一计算机解决问题的一般过程。
3.高中阶段学生的认知发展与机器人教育目标
高中生认知结构的完整体系基本形成。高中生认知结构的各种要素迅速发展,各认知能力不断完善,认知的核心成分――思维能力更加成熟,抽象逻辑思维占了优势地位,辩证思维和创造思维有了很大的发展。思维的目的性、方向性更明确,认知系统的自我评价和自我控制能力明显增强。他们情感丰富、意志力增强,兴趣更广泛和稳定,学习动机更强烈。
高中阶段的机器人教育,已经出台了一些课程标准,如新课标“简易机器人制作”模块要求学生知道单片机和机械传动的基本知识,能设计与制作单片机和传动机械等组成的简易自动控制机器人或简单的自动控制系统。对于硬件知识部分,学生除了对各部件功能结构的了解外,也会自行改造;在程序设计方面,考虑到对学生算法与程序设计能力的培养,因此除了对图形化编程的掌握外,还要求使用更高级的程序设计语言,如Qbasic、C、Java等,通过代码编辑器直接设计程序来控制机器人运行,在编程的过程中锻炼学生的逻辑思维能力。
三、教育机器人的功能设计分析
综上所述,不同阶段学生的认知水平和教学要求都各不相同,那么不同层次的教学对象就需要选用不同的教育机器人产品,以便提供合适的功能、配件以及人机界面。那么,目前的教育机器人产品能否满足各种年龄层次的学生的需要呢?市场上不乏有很多好的教育机器人产品,但也存在一些不近如人意的地方,因此根据上述不同阶段学生的认知水平和机器人教育的要求,我们对四个阶段所用机器人产品在结构与功能、程序设计与传输、机器人本体三部分的设计进行研究,提出了如下表1所示的教育机器人的结构功能及标准要求简表1。
1.应用于小学阶段的教育机器人的设计
适用小学阶段的教育机器人,在结构设计上,主要体现在插件应用上,对于机械传动系统可选用积木式或插件式或变形式三种类型。这样的结构设计利于学生在机器人外形上做创新,凭自己的想象任意搭建机器人,设计出形态各异的机器人;对于机器人控制系统和执行系统,这部分知识要求超过了这一年龄段学生的认知,因此可选用模块功能封装的形式,分别采用一体化控制模块和成品设备;在人机交互上,可以采用人工控制的方式,例如遥控;也可用程序控制,选用简易的可视化图形编程语言,如用LOGO语言做一些简单的编程。儿童学习LOGO语言,有利于他们元认知能力的发展。考虑到学生的能力水平和教学要求,可选用程序传输这种安全简便的方式把程序导入到实体机器人当中;对于小学生来说,还应选用结实耐用的、安全的机器人产品。小学教师认为,除了以上几点外,选用的机器人产品也要方便管理。除此之外,根据学校的条件可选用一些有外形的机器人,例如,AIBO机器狗,这样可以提高学生对机器人的兴趣。
2.应用于中小学阶段的教育机器人的设计
初中阶段使用的机器人在设计上不再以外形为主,需要附加一定的功能,要求学生了解简易传感器原理及其使用,并能体现出机器人在焊接和控制应用方面的知识,其机械传统系统设计时可采用遥控式或单片机式,这样学生对单片机的原理将有初步的了解。同时,采用单片机还可以大大降低产品的价格,利于机器人教育的普及推广;控制系统可直接采用控制版,使得单片机的相关知识更为直观的展现在学生面前;对于执行系统,设计成半成品的形式,使之功能封装成模块化,利于学生自行组装;在人机交互上,除了选用遥控式外,弱化益智类玩具的概念,体现出机器人一定的智能化,可选用一些较LEGO语言要复杂些的程序设计语言,如Qbasic,为后续学习VB语言作了铺垫。传输技术还是采用安全系数高、操作简便的数据传输形式。初中教师提出,除了以上几点功能设计要求外,所设计的教育机器人不仅可以用于课堂教学,还可以用于参加比赛。
3.应用于高中阶段的教育机器人的设计
适用高中阶段的教育机器人,在结构设计上要求有更好的可扩展性和开放性,注重产品功能的综合应用,最终达到可在多门课程中通用的要求。因此,机械传动系统除了可选用初中阶段所采用的单片机形式外,还可选用嵌入式。但要注意的一点是单片机方面的设计要紧密结合通用技术模块的要求,选择可多次烧录的单片机型号和简单易学的单片机编程语言;在控制系统和执行系统部分,可采用套装散件。采用单片机和散装化套件都极大的促进了学生在实践过程中动手实践能力的提高和创新思维的培养;在人机交互方面,除了保留简易的图形编程软件平台之外,鉴于高中生的认知水平和今后计算机编程角度考虑,设计相对较抽象的编程语言接口,如Java、NQC、C++、C、汇编语言等。对于程序的传输除了选用数据线和红外线发射传输之外,还可选用烧录技术。
四、结束语
教育机器人作为机器人教育的实施平台,其建设水平的高低对机器人教育具有至关重要的影响。研制适用于不同阶段符合学生认知发展水平和教学要求的教育机器人,不仅有利于解决教育机器人产品的开发、选用,教学实施等当前机器人教育中所存在的问题,而且有利于机器人教育资源、实验经验的共享,对于推动我国机器人教育健康、规范、可持续发展有着积极的作用。同时,规范化的教育机器人产品设计开发需要教育政府、高等院校、中小学学校、机器人厂商等各方面的共同协作与努力。
参考文献
[1]张国民,张剑平.我国基础教育中机器人教育的现状与对策研究[J].现代教育技术,2008,5:92~95.
[2]彭绍东. 论机器人教育[J].电化教育研究,2002,6:3~7.省略/fuwu/jyfg/200703/142790.html
[6]郑和钧,邓京华.高中生心理学[M].浙江:浙江教育出版社,1993
篇2
一、顶层设计,构建全方位、多层次、可操作的指导体系。
为了保障人工智能教育在我校真正落实和长期发展,学校将人工智能教育工作纳入到学校整体三年发展规划中,并作出明确要求。
为了让师生更加重视人工智能教育,促进学生全面发展,特修订了我校“五美”能行课程体系,将人工智能课程进行了重新定位和设计。
为了建设符合我校校情、学情的人工智能课程体系,学校成立了人工智能课程建设与实施的探索与研究项目管理团队,制定了项目计划书,从项目名称、项目团队、项目背景、项目创新点及解决问题、项目推进措施、项目完成期限等方面进行了具体规划。
二、支撑保障
完善软硬件设施和文化建设,为人工智能教育开展做好支撑和保障。除了四楼独立的人工智能实验室,我校还自主改造了五楼的创客教室和阅览室,扩宽了人工智能教育场所,尽全力满足学生人工智能上课需求。
学校高度重视人工智能教育,不断加大投入。在资金紧张的情况下依然给学生购买了小学生C++趣味编程书和人工智能超变战场的场地。
三、具体做法
1.基于校情和学情的人工智能课程设计
课程设置:开学之前,课程部整体规划,实行信息技术课两节联排。
人工智能课程开设内容安排:基于校情学情,本学期3-6年级全面铺开人工智能课程,3年级以信息技术基础知识、编程猫、乐高搭建基础入门为主;4年级AI神奇动物,5-6年AI变形工坊,是集搭建和编程于一体的人工智能课程体系。本学期信息技术类人工智能特色社团的开设:人工智能机器人社团、信息学奥C++社团、创意编程社团。
2.三位一体,三组联动推进人工智能课程的开发与实践。三组是:项目组、教研组和集备组。具体做法是:
项目组的做法:根据人工智能项目管理计划书的内容和要求,3月初进行项目工作总结和4月份计划汇报,5月份进行了中期汇报。进一步梳理人工智能校本课程的内容,促进人工智能课程实施与落地,进行了生本AI人工智能校本课程的开发与研究,重点对课程目标和课程内容进行了设计和探索。
教研组的做法:1.参加区首次信息技术教研活动,明确方向和工作重点。组织信息技术教师按时参加区里首次信息技术教研活动,并将区里的要求传达给每一位信息技术老师,为接下来的工作做好铺垫指明方向。2. 教研组内进行磨课,四年级潘倩老师执教了四年级AI神奇动物—敏捷的蛇;徐娜老执教了五年级AI神奇变形工坊—设计“地雷”,课后及时听评课,提出优点与不足,并进一步改进完善。
集备组活动:各年级备课组利用双周周二上午时间进行集备,研究本周的上课内容、梳理课堂具体流程及教学设计。
3.加强教师培养力度,积极组织教师参加人工智能培训和学习。学校鼓励教师进行小课题的研究,提升教学专业素养。2019年区级小课题《小学人工智能课程体系、教学策略和教学评价的研究》顺利结题。2020年区级小课题《奎文区人工智能教育专项课题--小学人工智能教育教学策略及评价方法的研究》立项。
4.为了拓宽视野,为人工智能教育的发展进一步指明方向。落实请进来:邀请区教研室专家进校为学校人工智能开展情况进行诊断;邀请优必选指导老师入校指导人工智能课程,并进行赛事辅导和培训。
5.为了给学生的学习搭建更广阔的平台,丰富学生的课余文化生活,促进学生信息素养的提升。以赛促学,积极组织学生参加各级各类比赛。
四、取得成效
1.学校层面:以人工智能教育为契机近年来,我校的信息化、数字化、智能化水平不断提升,互联网+教育、智慧校园工作取得了巨大的进步,学校获得省市区多项荣誉。
篇3
关键词:新工科;人工智能导论;实践教学;校企合作;案例库
随着物联网、大数据、5G及人工智能等信息技术的发展,为了应对中国产业变革及新一轮的科技革命,适应“中国制造2025”国家战略需要及产业经济创新发展,同时将国际工程教育思想本土化,“新工科”应运而生[1]。信息技术发展催生出了人工智能相关的专业,国内高校纷纷设立了智能科学与技术专业。近年来,人工智能技术的发展引领着人类社会正逐渐走进智能社会,人工智能将深刻影响人类社会。随着人工智能的进一步发展,高等教育的价值也将进一步提高[2]。因此,各高校应尽快建立与新工科相一致的智能科学与技术专业,并深入研究我国人工智能的人才培养体系、课程设置、实验平台及成果转化等方法,改革传统人工智能的教育教学方法,形成有新工科特色的智能科学与技术专业工程教育方法。由于传统的专业是按学科划分的,因此,目前的智能科学与技术专业课程体系以理论为主,强调学科知识的系统性和完备性[3]。人工智能导论作为智能科学与技术专业的核心课程,同时也是人工智能“入门性”和“引导性”的课程。但是,目前人工智能导论的课程设置上主要存在课程内容陈旧、实践课程不足、教材理论过强、教学模式老旧及实践教学与企业需求不适应等问题。尤其是人工智能导论课程,缺乏实践教学将会降低学生学习人工智能的兴趣和积极性。因此,为了解决这些问题,并使高校跟上人工智能时代的脚步,抓住高等教育发展的新机遇,进行面向新工科的人工智能导论实践教学模式探索具有重要的现实意义。
1人工智能对新工科人才的新要求
1.1具备多学科交叉知识。人工智能导论是一个多个学科交叉而成的一门课程。人工智能导论主要包括知识系统、智能搜索技术、脑科学、机器学习、神经网络、支持向量机、专家系统、智能计算及分布式智能等内容[4]。因此,一个合格人工智能专业人才需要具备多学科知识。1.2具备多领域应用能力。人工智能导论的应用领域广泛,基本包含工业、农业及社会生活的各个行业(如工业生产、通信、医疗、金融、社会治安、交通领域及服务业等)[5]。人工智能导论课程要求学生在学好理论前提下也应该掌握各行业的相关知识,只有这样才能提高人工智能技术在各领域的应用。1.3具备人工智能创新创业精神。目前,创新驱动发展成为了我国现阶段发展的重要力量,人工智能成为经济发展的新引擎[5]。在大众创业、万众创新的号角下,人工智能技术作为创新创业过程中的一个大趋势。因此,当今新形势下培养具有创新创业精神的人工智能专业人才对我国经济发展及大学毕业生创新创业具有重要意义。1.4具备人工智能人文素养。人的内在品质就是人文素养,人文科学的知识水平和研究能力是人文素养的重要组成部分,人文素养是人文科学体现出来的以人为研究对象和中心的精神[6]。人工智能对人类社会带来的是便利还是带来灾难,关键是使用者的思想道德和人文素养。因此,培养具有人文精神的人工智能专业人才具有重要的意义。
2人工智能导论课程教学现状
目前,许多高校已经认识到传统的人工智能导论课程已经不能适应社会和学生发展的需要。尤其是地方普通高校在师资、科研及学科力量薄弱情况下进行人工智能导论的实践教学。目前人工智能导论的课程设置上主要存在的问题如下:⑴本科生课程内容陈旧。近年来,随着云计算、大数据、5G等信息技术的快速发展,也带动人工智能技术发展日新月异。对于高校来说,要紧跟人工智能技术前沿,传授学生的知识也要紧跟人工智能的发展。目前,虽然也出现了不少新的人工智能导论教材,但在课堂上能够教学的新内容仍然不多,教材内容仍然集中在传统的人工智能技术(如问题求解、知识表示、归结原理及经典推理等技术)上。⑵研究生课程内容重叠。研究生的人工智能导论课程应作为本科生课程的一个延续,但部分高校对研究生人工智能导论课程的教学重视不够。很多本科生已经学过的内容在研究生阶段又进行了重复。因此,在新工科背景下培养高层次的人工智能人才,就必须要在研究生阶段加强新工科人才实践能力的培养,选择合理的人工智能导论课程,改革研究生阶段人工智能导论的教学理念和教学模式。⑶实践课程不足。实践教学是提高人工智能新工科人才能力的重要路径。目前,大多数院校的人工智能导论课程理论与实践联系不够紧密,对学生实践能力的培养不够,只知道理论,而不进行实际的实践应用就不能成为合格的人工智能新工科人才。另外,大多数地方高校的人工智能实验室建设投入不足,实验条件差,验证性的实验较多,实验课时不足,学生对人工智能新技术的接触不够。⑷人工智能导论教材理论性过强。目前,现有的人工智能导论教材以理论为主,缺乏人工智能实践内容。在课程教学过程中学生经常会感觉索然无味,当实践课程开设不足时,这种情况会非常明显。学生会渐渐的对人工智能导论课程失去兴趣和热情,最终会导致课程的教学质量和效果下降,不能达到新工科人工智能专业人才培养的预期。⑸教学模式老旧。人工智能导论是多学科交叉的课程,课程内容理论性强、抽象、多知识点是新工科的特点。然而,大多数地方高校仍然采用过去的课堂教学模式(即“教师讲、学生听”的教学模式),这种单向灌输的教学方式以教师为主,学生的主动性不够,只是在被动接收知识。学校这种重视理论不重视实践的教学模式,在一定程度上影响了新工科人才的实践能力,从而导致教学内容与企业社会需求脱节。
3人工智能导论实践教学初探
3.1人工智能导论课程实践平台建设。为了提高学生对实践教学的兴趣,南阳师范学院计算机科学与技术学院在人工智能导论授课过程中广泛应用多种计算机实验教学平台,如采用开源的PaddlePaddle百度飞桨深度学习平台,希冀一体化人工智能实践教学平台及大数据综合实验平台。教师可以在实践教学过程中方便的使用这些平台进行授课,学生也可以在课堂中跟随老师完成相关实验,并能够在课下进行相关实验练习及提交作业。3.2人工智能导论课程实验内容优化。在人工智能导论实践教学过程中,以学生兴趣为导向,开展相关应用课程实验,南阳师范学院计算机科学与技术学院对人工智能导论实验课程内容进行优化。优化后的主要实验课程包括搜索优化算法实现、智能计算实现、贝叶斯分类实验、最近邻算法实验、机器学习实验及神经网络实验。最后,通过期末课程设计进一步提高学生解决实际问题及创新创业的能力。3.3人工智能导论实践教学模式改革。⑴校企合作为使人工智能导论实践教学不与企业脱节,校企合作是关键。应积极派遣教师进企业进修,了解企业需求,并提高教师的工程能力。从2018年以来,南阳师范学院计算机科学与技术学院每年暑假期间累积派遣教师58人/次前往百度、中兴、科大讯飞、神舟数码及江苏传智播客公司等进修培训。同时已经在固定时间邀请相关企业讲师到学校进行人工智能方面的项目教学。建立起了具有地方区域特色的师资队伍及校企协调的实践教学模式,从而避免人工智能导论课程实践与企业实际脱节。⑵“双导师”负责制人工智能导论实践课程实行“双导师”制,邀请企业中实践经验丰富的人才任教或任职,校企合作建立实践教师指导团队,改革教学策略及教学方法,以项目为牵引,将人工智能导论实践课程作为第二课堂学分。还要积极制定人工智能相关的科技作品竞赛的奖励机制,积极引导学生参加各种人工智能相关的比赛,从而进一步提高学生在创新实践方面的能力。⑶采用案例教学法以案例导入进行教学,提高学生兴趣。首先,从人工智能竞赛的部分赛事中、(如百度的人工智能大赛,“2020年全国人工智能大赛”,“2020中国高校计算机大赛人工智能创意赛”等)中选取贴近实际问题的案例作为人工智能导论实践课程的案例来源。然后,采用目前主流的人工智能开发软件进行算法代码的编写,引导学生采用Python语言调用第三方接口库进行算法的实现。最后,让学生使用主流的编程语言(如C++、Java等)开发完善算法或进行系统设计与实现。
4结束语
在新工科背景下,人工智能导论作为智能科学与技术专业的基础核心课程,人工智能人才培养应注重提高学生解决问题的能力。在这种背景下,笔者结合近年来了解到的企业需求和上课的实际,对人工智能导论实践教学模式进行初探,具体如下:①校企合作,构建人工智能实践平台;②建立案例库,优化实践的内容;③校企“双导师”制,采用案例教学,从而进一步提高学生在创新实践方面的能力。
参考文献:
[1]杨晴,王晓墨,成晓北等.新工科背景下的新能源科学与工程专业——哈佛大学工科教育在学科交叉方面的启示[J].高等工程教育研究,2019.S1:23-24,33
[2]李明媚,成希,罗娟.人工智能时代的高等教育之变与不变[J].黑龙江高教研究,2020.2:41-44
[3]陈义明,刘桂波,张林峰等.智能科学与技术专业课程体系建设的理论思考[J].计算机教育,2020.309(9):103-107
[4]刘永,胡钦晓.论人工智能教育的未来发展:基于学科建设的视角[J].中国电化教育,2020.2:37-42
[5]姚琳,石志国.人工智能课程体系与教学方法研究[J].中国大学教学,2019.10:19-22
篇4
关键词:人工智能;理论传授;实验训练;科研训练
人工智能(Artificial Intelligence,AI)是计算机科学与技术专业的一门重要专业课程,是一门研究运用计算机模拟和延伸人脑功能的综合性学科。它研究如何用计算机模仿人脑所从事的推理、证明、识别、理解、设计、学习、思考、规划以及问题求解等思维活动,并以此解决需要人类专家才能处理的复杂问题,例如咨询、诊断、预测、规划等决策性问题[1]。人工智能是一门涉及数学、计算机、控制论、信息学、心理学、哲学等学科的交叉和综合学科。目前,人工智能很多研究领域,如自然语言处理、模式识别、机器学习、数据挖掘、智能检索、机器人技术、智能计算等都走在了信息技术的前沿,有许多研究成果已经进入并影响了人们的生活。
2003年12月5日,国内第一个“智能科学与技术”本科专业在北京大学诞生[2],它标志着我国智能科学与技术本科教育的开始,对我国智能科学技术人才培养和智能科学与技术学科建设起到极大的带动作用。目前,人工智能课程的教学存在几个问题:首先,注重讲授理论知识,实验环节滞后,这不利于培养学生的实践能力,更谈不上实践创新。其次,人工智能是交叉学科,内容比较繁杂,各种教材的内容不一样,授课没有统一的体系,学生学习时抓不住重点,不能理解人工智能的根本方法和思想。一般说来,计算机专业的其他课程,如网络技术、数据库技术、算法分析与设计等,都是求解结构化问题的基本技术,而人工智能技术则是解决非结构化、半结构化问题的有效技术。最后,人工智能科学与技术飞速发展,但目前人工智能只被视为一门专业课,课程讲授和人工智能没有作为一个研究方向结合起来,也没有把传授课本知识和引导启发创新结合起来。
适应知识经济发展的高等教育,要把培养创造精神和创新能力摆在突出的位置。创新是基础研究的生命,而高等学校的教学只有与科研紧密结合,才能在培养学生的创新精神方面有所作为。为此,针对人工智能的课程特点,我们积极开展研究型教学、研究型学习,提高大学生的学习能力、实践能力和创新能力的研究与实践。在教材上,我们选用了清华大学出版社出版、马少平等编写的《人工智能》。我们的教学研究与实践的主要内容包括三个方面:启发式传授人工智能解决问题的非结构化的思想;成体系的实验训练;以及与毕业论文,学校大学生科研项目资助计划,国家大学生创新性实验计划相对接的科研训练。这三个主要方面,层层递进、环环相扣,是体系完整的创新型人工智能教学实践。下面,我们就这三个方面内容展开探讨。
1启发式传授人工智能解决问题的非结构化思想
现实世界的问题可以按照结构化程度划分成三个层次[1]:1)结构化问题,能用形式化(或称公式化)方法描述和求解的一类问题;2)非结构化问题,难以用确定的形式来描述,主要根据经验来求解;3)半结构化问题,介于上述两者之间。一般说来,计算机专业的其他课程如网络技术、数据库技术、算法分析与设计等,都是求解结构化问题的基本技术。而人工智能技术则是解决非结构化、半结构化问题的有效技术。人工智能的教学可以让学生在体验、认识人工智能知识与技术的过程中获得对非结构化、半结构化问题的解决过程的了解,从而达到培养学生多角度思维的目的。
我们使用的教材主要内容包括搜索和高级搜素、谓词逻辑和归结原理、知识表示、不确定性推理方法、机器学习等。这些主要内容也可以相应地归结为若干个典型算法,如启发式A*搜索算法、 剪枝算法、元启发式算法(模拟退火,遗传算法)、谓词逻辑归结算法、贝叶斯网络、决策树、神经网络(BP算法、自组织网络和Hopfield神经网络算法)。元启发式算法是一种启发式的随机算法,是用来解决非结构化问题的典型算法,其思想和传统的决定性算法如动态规划、分支限界完全不一样。学生在刚一接触到这些元启发式算法一时难以接受和理解其机理,对算法的有效性往往半信半疑。根据非结构化、半结构化问题的特点,讲解和演示算法在解决此类问题的具体步骤和详细过程,从而让学生掌握人工智能算法的基本思想。在讲解不同的元启发式算法的时候,学生会问,是模拟退火算法强,还是遗传算法强;在讲到机器学习算法的时候,学生会问到底哪个分类算法最好,这时候我们可以把搜索(优化)领域和机器学习领域的“没有免费午餐”定理进行适当的讲解和解释,从而把具体算法实现层面之上的一些人工智能的哲学思想进行传授。
在人工智能的具体教学中,采用问题教学法和参与式教学法。在问题教学法中,围绕人工智能的知识模块,在引导学生发现各种各样问题的前提下,传授知识。教学活动中,尝试使人工智能知识围绕实际问题而展现,使问题不仅成为激发学生求知欲的前提,也成为学生期盼、理解和吸收知识的前提,以此激发学生的创造动机和创造性思维。在参与式教学中,打破人工智能算法的枯燥、沉闷的传统教学法,尝试开放式教学内容;提问式讲课;无标准答案的课程设计;查找文献,分组动手实现人工智能算法等参与式教学方法,培养和发扬学生的参与意识,通过参与式教学提高学生学习的主动性、积极性和效率,培养学生的动手能力和创新能力。
2成体系的实验训练
独立开展人工智能实验课程,开发一批新型、富有创意的实验案例库,搭建一个创新实验和虚拟学习社区平台。人工智能实验课程的特点是应用各种人工智能方法,根据问题的约束、结构、信息进行表示建模和计算机上实现,是与人工智能原理同步的实验课程。学生必须掌握的人工智能的基本原理和计算机操作技能,它对于学生的知识、能力和综合素质的培养与提高起着至关重要的作用,在整个教学过程中占有非常重要的地位,是计算机软件、计算机应用、计算机网络、软件工程等专业的一门重要的必修专业课程。通过实验,学生得到严格的训练,能规范地掌握人工智能的基本理论和主要方法、基本问题求解技术,熟悉各种计算环境的基本使用。
在培养学生掌握实验的基本操作、基本技能和基本知识的同时,努力培养学生的创新意识与创新能力。为实现这一目标,在课程内容安排上采用适量基本原理与方法的实验内容为基本内容,增加一系列综合性实验和开放性创新实验问题,在实验内容方面更注重研究性实验中的创新问题。实验内容方面分为三个层次:基本原理的基础性实验、综合实验和研究性实验。在后两个层次的实验中,部分引入人工智能课程小组团队的最新科研成果,目的在于通过完成这些研究性实验,培养学生独立解决实际问题的能力,以提升学生的科研素质与创新意识。我们将这些设计实验称为新型实验案例库,它被放在人工智能课程小组网站上,以此搭建一个创新实验和虚拟学习社区平台。通过实验课程的学习和训练,学生应达到下列要求。
1) 掌握人工智能方法的优点及其在实际中的应用。
2) 学会对人工智能问题进行分析建模和应用各种计算工具实现问题求解,熟悉对实验现象的观察和记录,实验数据的获取与设计,最佳实验条件的判断和选择,实验结果的分析和讨论等一套严谨的实验方法。
3) 巩固并加深对人工智能原理课程的基本原理和概念的理解,培养学生勤奋学习,求真求实的科学品德,培养学生的动手能力、观察能力、查阅文献能力、思维能力、想象能力、表达能力。
4) 通过完成综合研究性实验,培养学生独立解决实际问题的能力,提高学生的科研素质与创新意识。
在培养学生掌握实验的基本操作、基本技能和基本知识的同时,进一步培养学生分析问题和解决问题的能力,培养学生的创新意识、创新精神和创新能力,为学生今后从事科研、教学或企事业单位的分析检验以及新技术的研发工作打下扎实的基础。
在实验组织方面,根据各实验的目的和要求,学生分为5人1组,指定一个组长,每组选择1套实验题目。基础实验题目要求达到27学时、综合性实验题目选择1题和研究性实验题目选择1题,基础实验题目要求在规定时间内,小组独立完成实验测定、数据处理,并撰写实验报告。实验过程中, 要求学生勤于动手, 敏锐观察, 细心操作, 开动脑筋, 分析钻研问题, 准确记录原始数据, 经教师检查,实验及其原始数据记录才有效。同时,团队作业,需要多人分工合作、相互帮助,这样可以提高人际交往和沟通能力,学会与他人合作,培养团队创新能力。
3课程学习与毕业论文,科研训练相结合
人工智能技术在一定程度上代表着信息技术的前沿和未来,通过学习和体验人工智能的知识和技术,学生能够在一定程度上了解信息技术发展的前沿知识,这有助学生开阔视野、培养兴趣,为今后继续深造或走向社会奠定坚实的基础[3-4]。
人工智能的理论和方法广泛应用于数据挖掘、机器学习、模式识别、图像处理中,这些内容既是高年级的后续课程,又是现在热门的研究方向。学习和深刻理解人工智能的理论、方法和应用,对后续课程学习以及今后的研究具有重要的意义。
我院规定大学三年级的学生开始联系毕业论文指导导师,同时确定毕业论文的研究方向,提前进行科研实践,以培养实践能力和研究素质。人工智能课程正好是大三高年级开设的专业课,因此,我们把课程实验及设计与同学的兴趣相结合,引导学生,并提炼和形成学生的毕业选题和课外的科研方向,它是提高本科生研究创新能力的有效手段。
基于新的教学实践,很多学生的选题都与上述归纳的人工智能若干算法相关,如算法本身的研究和改进,或是算法在各领域,如数据挖掘、图像处理等的应用。在我们的科研能力训练计划中,一批项目和课题,如混合神经网络的研究与应用、差分演化算法研究与应用、基于协同训练的推荐系统等,分别受到国家和学校本科生科研项目立项资助。一批三四年级的本科生以第一作者身份在国内核心期刊、国际会议和期刊上发表学术论文,这激发了学生的科研兴趣,使学生体会到了创新的乐趣。
总之,课程学习与毕业论文、学校大学生科研项目资助计划、国家大学生创新性实验计划相对接的科研训练,极大地提升了学生的创新能力和科研基本素质。
4结语
针对人工智能的课程特点,我们积极开展研究型教学、研究型学习,提高大学生的学习能力、实践能力和创新能力的研究与实践。我们的教学研究与实践主要内容包括三个方面:启发式传授人工智能解决问题的非结构化的思想;成体系的实验训练;以及与毕业论文、学校大学生科研项目资助计划、国家大学生创新性实验计划相对接的科研训练。这三个主要方面,层层递进、环环相扣,是体系完整的创新型人工智能教学实践,新的改革和实践在教学中取得了令人满意效果。
参考文献:
[1] 张剑平. 关于人工智能教育的思考[J]. 电化教育研究,2003(1):24-28.
[2] 谢昆青. 第一个智能科学技术专业[J]. 计算机教育,2009(11):16-20.
[3] 罗辉,梁艳春. 大学生毕业论文与科研能力培养及就业[J]. 吉林教育,2003(10):18.
[4] 金聪,刘金安. 人工智能教育在能力培养中的作用及改革设想[J]. 计算机时代,2006(9):66-69.
Reform and Practice of Innovative Teaching in Artificial Intelligence
WANG Jia-hai, YIN Jian, LING Ying-biao
(Department of Computer Science, Sun Yat-sen University, Guangzhou 510006, China)
篇5
要实现《中国教育现代化2035》的目标,难点和重点是在农村。面对时代挑战,解决农村教育现代化的问题,需要我们把目光投向农村,充分运用信息技术、人工智能、大数据等手段,帮助农村教师提升信息素养,帮助农村提高教育质量,促进教育公平,让农村的孩子能享有公平而有质量的教育。农村教育和城市教育有相同之处,也有各自不同的优势。在信息技术与教育融合的道路上,农村不能完全套用城市的发展思路和模式,不能盲目追求硬件设备的高大上,而要探索出与自身优势结合的发展路径,解决好人机关系的问题。
第一,始终把提高教育质量放在首位,但要避免重蹈应试教育的覆辙。在技术与教育深度融合的过程中,最重要的问题是要明确目的和手段的关系。教育的根本任务是立德树人,培养德智体美劳全面发展的社会主义建设者和接班人。技术应用到教育中的最终目的,是为了培养人。相较于城市,农村教育的基础较为薄弱,可以充分利用信息化手段,把城市优质资源输送到农村,并且使用技术提高教学效率。但要避免走入技术助长应试教育的误区,要以育人为前提,在实际教育教学中恰当融入信息技术。
第二,要进一步加强农村地区教师队伍建设,提高教师的业务水平和信息素养。免费师范生政策、特岗教师计划及乡村教师支持计划等政策的出台,解决了一些偏远农村教师“下得去、留得住”的问题。
教育部的《全国中小学教师信息技术应用能力提升工程2.0的意见》中明确指出,“信息技术应用能力是新时代高素质教师的核心素养”。要实现“教得好”的目标,可以充分发挥信息技术的优势,一方面通过网络等手段,为他们提供更多进修、培训、同行交流的机会和平台;另一方面帮助农村教师提升信息素养,借助技术手段提高教育教学质量,增强农村教师的成就感和自信心。
篇6
人工智能技术的诞生,为人类探索计算机科技、便捷生活展望了美好的前景,提供了丰富的想象空间,在社会科学中的应用广泛。教育手段革新,需要一种新的技术作为保障和支持。人工智能技术应用的普遍性和网络教育技术发展的需求性一拍即合,成为一种新的教育发展模式。本文将对人工智能在网络教育中的应用进行探究。
【关键词】人工智能 网络教育 具体应用
1 网络教育模式的发展现状
1.1 网络教育的优势
网络教育模式是对传统课堂教育模式的更新与演进,传统课堂教育模式具有交流便捷、课堂管理方便的优势,但是也受到空间和时间的双重限制,需要缴纳昂贵的场地和设施费用,难以追赶新时期人们快捷的工作步伐。网络教育通过互联网远程传递,在继承和发展了传统课堂优势的同时,弥补了缺点和不足,在虚拟的网络环境,摆脱了有关时间、空间、身份等诸多限制,促进了教育手段的创新,为人们提供了更多接受教育的机会,促进了国民教育水平的提高。
1.2 网络教育存在的问题
网络教育的问题主要体现在以下方面:
1.2.1 操作平台的局限性
网络教育登录界面的首页,一般包含着课程选择、成绩查询、习题演练、师资介绍等基本内容,这容易导致众多网络教育平台具有相同的首页模板和计算机程序,不同平台、不同学科、不同专业没能充分体现出其独一无二的课程特色。操作平台具有局限性,无法充分体现人性化特色和该课程的特殊化要求。
1.2.2 教学方式的一致性
网络教学中,一般采用计算机程序设定好的流程,授课、复习、习题演练、期末考试、综合评估为基本程序,流程化操作,无法根据学生的学习特点和成绩要求制定相应的教学方式。教学评价流程过于死板,无法像教师一样考虑其他综合因素进行分析,这就容易导致考试系统的公平性、评分的合理性受到质疑,无法体现教学权威性。
1.2.3 服务系统的落后性
网络教育是以计算机的软件程序为表现载体,将教学课程和学习方式相融合。随着知识体系更新换代的不断加快,学术纠错的发生,课程及时更新也是十分重要的。但是网络教育服务系统具有一定的落后性和延时性,传递的知识和答疑手段相对落后,影响着网络教育的准确性和科学性。
2 人工智能在网络教育中的具体应用
网络教育缺陷的存在,其重要原因是教育流程系统的“刚性”无法符合学习者不同的教学需求,不懂得如何具体因人而异、因材施教;而人工智能“柔性”的工作特点,可以有综合考虑各种影响因素,并及时调节,恰好是对缺陷的补充。事实证明,人工智能在网络教育中的具体应用也取得了较好的效果,主要体现在以下方面:
2.1 专家系统的应用
专家系统是对智能教学系统、决策系统、导学系统以及先进的智能化硬件设备的总称。传统的网络教育是流程化、规范化的,智能化教学系统是对每个流程应用智能化手段,促进教学过程的科学性。
2.1.1 智能决策系统。
在课程开始之前,增设智能决策功能即智能决策系统,类似于学校的入学考试,对学生的学习能力、成绩水平、智力状况进行基本的分析和了解,以学生能力而不是教师要求为教学依据,制定合理的教学计划和学习方案;通过智能化设计,确定学习成绩分阶段测试计划、智力开发方案和考试模拟系统等,通过这些方式,实现对学生能力的充分开发。
2.1.2 智能导学系统
这是通过对学生一定时期学习环境的营造,通过对环境内各影响因素施加措施,为学生的学习提供优质条件。影响因素包括教师、学习资源、外部因素等,一旦学生学习没有达到预定的目标,教师模块就会对学生的动态行为做出科学正确的指导,并向正确的学习轨迹纠正;学生学习所需要的参考资料、试卷分析、时事热点等,会根据学生的学习进展情况及时更新资料库;学生在学习中遭遇困境,系统会根据智能化发挥引导和提醒功能。
2.1.3 智能教学系统和智能化硬件设备
智能教学系统和智能化硬件设备分别是智能学习系统的软件和硬件载体。智能教学系统是智能决策和智能导学子系统的综合,是几种不同模式的组合与搭配,最终出现适合学生自身的学习模式,并且让系统关系更加稳固;硬件系统是网络学习的基础和载体,包括传输设备中的路由器、交换机设备,终端的打印机、摄像头等。
2.2 其他人工智能系统的应用
2.2.1 语言处理系统
语言处理系统在人工智能领域是一种应用较为广泛的技术,系统内部拥有录音模块、语言识别模块、转换模块和输出模块。学生向录音系统发出声音,语言识别和转换模块将语言转化为文字显示在计算机界面上。就目前的技术来说,语言处理系统可以处理简单口语和书面语言,局限在普通话,随着语言库的升级,语言处理系统的功能会越来越强大。这一功能的出现,对学生学习语言口语和减少文字任务有很大的帮助。
2.2.2 知识库系统
知识库系统是对知识和数据的整合、汇总和储存,学生仅依靠记忆中对知识的只言片语和残损记忆,发挥知识库强大搜索功能,自动分辨出关键词,并提供完整的数据。这对学生学习记录的查找和知识的复习有很大帮助,也有助于系统的升级和完善。
3 促进人工智能在网络教育中应用的具体措施
3.1 加大资金支持
资金支持是发展新科技的坚实保证,政府和相关机构应该重视人工智能在网络教育发展中的巨大作用,提供政策的优惠和资金拨款,给予场地和设备的支持。有了资金的支持,可以吸引优秀人才开展系统研发和技术升级工作,可以为人工智能的应用提供高性能、高水平、先进的硬件设施保障。
3.2 开展教学实施
应该积极促进人工智能在网络教育中的教学实施活动,通过一线学习的监测和实验,推动新技术的普及与应用。在相关专业院校安装人工智能软件,也是促进教学实施的有效途径。
4 结束语
综上所述,人工智能是一项应用广泛,可研究性强的计算机前沿技术。通过人工智能相关技术的研究,能够解决网络教育中存在的诸多问题,提高学生的学习质量和效率,方便老师的教学管理,以及对教育教学模式将产生深刻影响。
参考文献
[1]冯佳.虚拟机技术在计算机网络课程教学中的应用[J].计算机光盘软件与应用,2011(17).
[2]王世刚,王纪凤,尚玉莲,赵学军.计算机网络课程教学中的虚拟机技术应用[J].中国现代教育装备,2011(01).
[3]刘健.人工智能在网络教育中的应用探索[J]. 计算机光盘软件与应用,2014(06).
[4]陈建锋.人工智能及其在计算机网络技术中的应用[J].城市建设理论研究.2015(03).
作者简介
侯燕(1981-),女,山东省济宁市人。硕士学历。现为齐鲁师范学院讲师。研究方向为计算机应用。
篇7
关键词:航天类专业 人工智能 教学探索
中图分类号:G64 文献标识码:A 文章编号:1674-098X(2014)10(b)-0155-02
面对航天科技迅猛发展,现代军备技术快速提升,培养具有专业性的高素质航天类人才,是我国航天科技发展的战略选择,也是航天重点高校面向并有效服务航天事业的历史责任。航天类本科生的教育形式也需要突破传统的方式,着重多样性、前沿性、工程性,因此,该专业的各门课程教育都应该结合专业特点,探索新的教学模式。
人工智能自1956年诞生50多年以来,引起众多科研机构、政府和企业的空前关注,已成为一门具有日臻完善的理论基础、日益广泛的应用领域和广泛交叉的前沿学科。由于航天领域的特殊要求,人工智能在其发展中发挥着不可替代的重要作用,各发达国家都相继开展了人工智能与航天技术相结合的研究,致力于实现可重构的、具有容错能力的、智能的飞行系统和管理系统。因此,“人工智能”作为航天类专业的一门特色选修课,应结合专业特点展开更具有实用性和创新性的教学。
1 人工智能课程特点
一方面,“人工智能”是一门多学科交叉的综合学科,它涉及计算机科学、数学、心理学、认知科学等众多领域,具有知识点多、涉及面广、内容抽象、不易理解、理论性强等特点,使得该课程的教学具有较大的灵活度和较高的难度。另一方面,“人工智能”是一门正在发展中的学科,具有较强的前沿性,计算机科学、信息科学、生物科学等相关学科的发展不断的提出了许多新的研究目标和研究课题,使得人工智能的技术和算法也需要不断更新,这在很大程度上增加了“人工智能”课程的教学难度。
2 航天类专业特点
首先,航天类专业具有较强的工程性。在专业的教学改革中有统一的特点,即强调要体现航天工程技术的综合性、系统性, 注重培养复合型人才。其次,航天类专业具有一定的前沿性。因为航天飞行器作为现代高科技和多种学科技术综合应用的结晶,应及时把现代先进科技融入到了专业基础和专业类的课程教学中, 专业知识更新快成为又一特点;另外,航天类专业应注重实践性教育。尊重个性和兴趣,强调动手能力,实验室对学生开放,要求学生自主地设计完成实验,强调对学生设计理念和创造能力的培养。最后,航天类专业应重视产学合作。产学合作的目的在于推动学校与航天产业的持续全面合作,造就一支科学技术研究和工程实践兼备的教师队伍。
3 教学模式的探索
3.1 教材的选择
人工智能作为一门新兴的学科,其理论与方法都还在不断的发展与完善中。就目前来看,关于人工智能的定义和范围都没有一个统一的标准,不同的教材所介绍的内容也不尽相同。在教材选用方面,需要综合考虑专业特点和学生的知识背景。本课程主要针对航天类专业高年级本科生,该类学生具有一定的数学、计算机、信息论、通信理论等基础知识,对航天应用的基本需求有初步的了解,因此,“人工智能”课程难度应该控制在中级,可以较深入的介绍人工智能的基础算法和应用案例。
中南大学蔡自兴教授积累了多年的教学与科研经验,借鉴了国内外其他专家和作者的最新研究成果,吸取了国内和国外人工智能领域学术书籍的长处,于1987年编写了“人工智能及其应用”一书,该书根据人工智能学科的新发展不断修订,推出四个版本。本课程采用“人工智能及其应用(第4版)”,其中大部分内容适合本科生学习。另外,本课程还给学生提供其他一些参考书目,如N.J.Nilsson 的“Artificial Intelligence:A New Synthesis.Morgan Kanfmann”等经典教材。
3.2 课堂教学形式的探索
“人工智能”课程内容较抽象,概念较为繁多,若采用单一的课堂讲授的方式,学生容易概念混淆、理解不透,逐渐产生厌倦情绪,导致教学效果差。本文探索不同的课堂教学手段,根据不同内容采用不同的教学手段,有利于学生对课程内容的理解与吸收。另外,考虑到航天类的专业特点,突出课程内容的工程应用,增加研究性质的教学内容与形式,有利于培养学生的创新能力和实践能力。
(1)课件采用图文并茂的PPT。综合利用文字、图像、声音、视频等多种媒体表示方法,在介绍原理和概念时采用精辟的文字,介绍算法流程时采用图像,介绍算法应用时采用视频。在PPT中适当利用不同的字体、颜色或动画来突出重点,细化流程,引导学生的思路,便于集中注意力接受重点内容。
(2)适当增加课堂讨论与练习。对于人工智能的一些基本问题,可以引导学生进行调研和讨论,来深化课程内容的了解,并提高学生的学习兴趣;对于重要的算法和理论,可以增加课堂练习,让学生实际动手进行公式的推导或演算,并在练习中分析学生对问题的理解程度,有针对性的增加讲解或指导。
(3)适当采用类比的讲解方式。对人工智能的不同学派,不同方方法,以及方法的不同应用,广泛的采用类比的形式进行讲解,不仅可以复习已学习的内容,也利于对新内容的理解。并且,通过对不同内容的比较总结相似点、区分不同点,可以避免概念的混淆,清晰的掌握课程内容。
(4)增加研究性教学。研究性教学强调通过问题来进行学习,有必要将实际应用案例或者授课教师的科研项目融入日常的教学工作中去,用“启发式”、“案例式”教学激发学生“自主学习”能力。
3.3 课程内容的探索
一方面,鉴于本科生知识结构还不够完善,“人工智能”课程的内容要控制在适应本科生学科基础的中等难度;另一方面,鉴于航天类专业的特点,课程内容应更注重与航天应用相结合的内容,并且在课程中增加具体应用的介绍。具体的课程内容如表1所示。
3.4 考核形式的改革
“人工智能”课程注重学生创新能力和实践能力的培养,传统的试卷形式不能全面的反应学生的学习效果,因此,应采用课堂表现和课程报告相结合的方式进行综合考核。
一方面,重视学生提出问题、分析问题和解决问题的能力,对学生课堂讨论与练习的表现进行考核评分,作为总成绩的参考;另一方面,注重学生课题调研和实践的能力,采取提交课程论文的形式进行考核。正确引导学生根据个人兴趣、课程内容、可行性、实践难度进行合理选题,并根据所选题目进行文献查阅和总结,完成调研报告或算法实现报告。结合者两个方面进行最终成绩的评定,综合衡量学生问题分析能力、论文写作能力和创新实践能力。
4 结语
航天类专业的本科生教学需针对专业特点有的放矢,该专业的课程教育都应该趋向于前沿性、专业性和实用性。本文的“人工智能”课程教学改革方案不仅考虑到该课程属于前沿叉学科的特点,也综合考虑了航天类专业的特点。为了使课程教学更好地服务于学生,本文提出的改革方案打破传统的教学模式,将课堂理论讲解、课堂讨论、课后调研、项目实践等相结合,充分调动学生的学习兴趣和积极性,提高学生的创新能力,有利于培养真正符合航天领域所需要的综合型高级人才。
参考文献
[1] 王甲海,印鉴,凌应标.创新型人工智能教学改革与实践[J].计算机教育,2010(15):136-138,148.
[2] 刘兴林.大学本科人工智能教学改革与实践[J].福建电脑,2010(8):198-199.
[3] 怀丽波.32课时《人工智能基础》课程教学的几点思考[J].华章,2013(34):193-194.
[4] 纪霞,李龙澍.本科人工智能教学研究[J].科教文汇(上旬刊),2013(6):91-92.
[5] 肖春景,李建伏,杨慧.《人工智能》课程教学方法改革的探索与实践[J].现代计算机(专业版),2013(26):32-34.
[6] 熊德兰,李梅莲,鄢靖丰.人工智能中实践教学的探讨[J].宿州学院学报,2008(1):146-148.
[7] 张伟峰.本科高年级人工智能教学的几点思考[J].计算机教育,2009(11):139-141.
篇8
“农村地区的孩子,越来越难考上好学校。像我这种属于中产阶级家庭的孩子,衣食无忧,而且家长也都是知识分子,而且还生在北京这种大城市,所以在教育资源上享受了得天独厚的优越条件。”2017年北京高考文科状元熊轩昂的这一段话红遍了网络,人们再次掀起对教育资源分配不均现实的讨论。与此同时,另一位高考网红也出现了,没有知识分子家长和中产阶级的家庭,也没有享受北京的教育资源,却和高考状元们同场竞技并取得了134分的数学高分,这就是学霸君的智能教育机器人Aidam。
将人工智能应用到机器人参加高考是为了什么,像AlphaGo一样挑战极限?学霸君的创始人兼CEO张凯磊表示:“很多人都搞错了,我们做机器人自动解题,不是为了去挑战人类做题的能力,这是没有意义的,机器不可能自我觉醒地去发现一个新定理。” 他对智能教育机器人的期望是成为人类的助教,而且是可以针对每个学生的个性化助教。
超越“老中医”
在初高中阶段,一个优秀的教师是怎么样的呢?假设他在考试后批阅学生的卷子,除了卷子上题目的对错,他还会回忆学生近期的表现,分析学生为什么会错,是知识点没掌握,还是无法将题目的信息和已有的知识相联系。优秀的教师由此在脑海中对每个学生有一个整体的感觉,知道如何因材施教,然而这种感知能力是要靠长期经验积累的(而且并非人人都能达到),难以表述和传授,只有靠少数极优秀的老师进行方法总结,但代际传承的效果并不好。
张凯磊认为,教育资源的不足,本质是优秀教师数量的不足。如果能在降低教师负担的同时,将优秀教师的能力“复制”给普通教师,同时“放大”这种能力,将大大缓解教育资源不足的问题。
他将教师的工作和医生进行了类比。医生的工作可以划分为诊断和治疗两部分,对应教师对学生的能力判断和知识讲解。目前的教育模式恰似传统的中医,诊断同样是要靠医生 “望闻问切”的个人水平,而且传授不易。“没有清晰的数字可让人理解,也没有可供分析的系统。”但现在医院已经靠数字化很大程度上解决了诊断的问题,“未来教育也会变成一个有科学依据,有信息数据做支撑,数字驱动的领域,因为这样的效率更高。”张凯磊说。
相较人类教师,计算机的问题在于机器的理解能力,要如何看懂题目。这也是学霸君利用人工智能在做的核心工作。智能机器人Aidam在考试中被扣掉的16分,全是在理解上出的问题,当然这也意味着人工智能已经能看懂134分的题目了。想象这样一个场景,学生做完作业和测试后,将结果传输给机器进行判卷,除了判别对错,还和以往的数据进行比对,通过算法发现学生知识的薄弱点,给出针对性训练的题目,并将学生的学习状态以可视化图表的形式传递给教师。
这个场景已经开始实现。学霸君在安徽落地的合作学校中,数学、物理、化学和生物使用了学霸君软硬件服务的班级,这几门学科的成绩都大幅提升。通过学霸君研发的数据采集笔,在不改变学生书写习惯的情况下,将整个过程的数据全部采集,然后由机器进行识别判卷。“目前批改作业,机器批70%,正确率会在99%以上,机器判断不了(主要是无法识别)的交给人工,未来会全部交给机器。”张凯磊说,每天仅批改作业,教师就能节省接近2个小时,而数据分析结果将通过云服务展示给教师,“作业数据和考试数据实时更新,学生的学习能力、掌握的知识点、学习态度,全部在表上清清楚楚”,学科主任、年级主任和校长还可以看到学科、年级和全校层面的数据分析。
和时间做朋友
追根溯源,中国的教育源自于普鲁士教学法,本质是“在规定的时间,以规定的课时和标准,学规定的内容,最后考一次试”。在张凯磊看来,这样的教育模式就像工业的标准化生产一样,而未来的教育模式将是高度个性化、规模化和专业化的,“个性化是解决教育负担过重和教育不公平的核心手段。”
这个发展可能会分为五个阶段:
第一阶段,进行教育基础数据的数字化,并且可以进行数据管理。
第二阶段,学生的学习数据被全面数据化,学校以数字化的形式对全校学科进度进行管理。
第三阶段,教育实现中度的个性化,学生开始按学习进度分层教学,出现小规模的教育集团推动数字化技术应用的进一步发展。
第四阶段,教育实现高度个性化,中度的规模化。出现少数的大型教育集团,“比如现在有7.6万所学校,未来2万所头部的学校,是由100家教育集团组成的。”一个校长可能会管理十几个校区,体系内高度信息化,体系外形成学科、教学理论的竞争。
第五阶段,教育高度个性化、规模化、专业化。不再有教布置作业,学生使用系统进行个性化的自我训练,并依据能力和学习效果,在两个月或更短时间内分为不同层次接受教学。由最顶级的教师,通过系统观察学习数据,对班级进行针对性辅导。通过发达的视音频及时通讯技术,一名教师也许可以教学上万名学生。
“长期来看,学霸君会成为一个教育运营公司。”张凯磊认为,目前学霸君实施落地的学校中,有一两所已经达到了第二阶段,而从技术上来说,学霸君即将达到第三阶段。但这依旧“任重而道远”。以学霸君核心技术之一的手写识别为例,“我们可能是国内做得极好的了,但直到今天,还有17个主要的课题没解决,比如说离线环境下混合中英文公式的手写识别,没有任何突破性进展;联机环境下的中英文识别已经做到了高精度,但还不到大规模商业化的程度。”除此之外,学霸君的技术图谱中还有视觉自然、语言语义、中文符号识别、在线手写数学公式、提名推荐、深度学习,视音频通讯等数十项技术的落地,“但好在我们已经找到了模式,可以用海量的时间、数据来趟平它,然后让用户习惯和熟悉,带来真正的价值。”
篇9
关键词:信息化教学,高职院校,教学能力
随着科学技术的飞速发展,信息技术已渗透到经济发展和社会生活的各个方面,全民教育、优质教育、个性化学习和终身学习已成为信息时代教育发展的重要特征。目前,人工智能、大数据、虚拟仿真等现代信息技术广泛应用于教育教学过程,促进了优质教育资源的全面覆盖,缩短了不同地域间优质教育资源调配差异,实现了教育公平。在“双高计划”建设背景下,全面提升高职教师信息技术应用能力,充分发挥信息技术教学优势,运用信息化教学手段进行教育教学,有利于提升高等职业教育人才培养质量。
一、信息化教学的理论依据
人工智能、大数据、区块链、移动终端、物联网、大数据等新兴技术,促进“互联网+”融合,推动职业教育信息化发展,是适应教育现代化的必然趋势。越来越多的职业院校教师能够主动利用信息化技术及平台,探索教学方法。信息化环境下的教学与传统的教学方式相比,具有教学方法灵活、交流互动手段多样、教学资源丰富等优势。
二、教师信息化教学中存在的主要问题
从近几年信息化获奖作品的质量和参赛数量来看,高职院校对信息化给予极大的热情。大部分职业院校不惜重金打造比赛作品,从VR、AR等先进设备的引进和视频的拍摄等各个环节都耗费了大量的人力、物力,但是,学校管理者和教师没有真正认识到信息化教学对促进教学模式改革、教学理念更新的重要性。大部分教师在教学活动中还是简单地利用计算机、互联网、投影等,教学设计没有新意,没有创设情境,学生的主体地位没有得到充分的发挥,教师缺乏将信息技术与专业课程进行整合的能力。
三、信息化教学能力大赛对提升教师信息化能力的促进作用
(1)创新了教学模式。信息化教学环境依靠互联网、云计算、大数据、物联网、人工智能、虚拟仿真实训室、全息投影等技术来创设和营造情境,使授课、学习、评价等与教学流程相关的各个环节全部信息化,这样不仅为教师提供了优质的教学资源和灵活的教学模式,也为学生提供了多样化的学习途径与学习方式。(2)创设教学环境。获奖作品越来越注重利用信息化教学创设教学情境,激发学生学习兴趣。比如《影视鉴赏》,在传统教学中,教师一般是通过播放影视作品,引导学生感知人物形象,分析人物形象,掌握人物形象的塑造手法。信息化教学改变了传统教学方式,教师主要采用任务教学法,借助蓝墨云班课,自主微课,使学生对电影中的人物形象有初步的认识,学生在头脑风暴区上传喜爱的电影人物图片、在讨论版推荐影片,教师汇总后针对性地挑选并制成数字电影库,为课堂练习做好准备。(3)推动了教学资源的开发与建设。综览近几年获奖作品不难发现,大赛越来越重视教学资源的开发和建设。在线开放课程已成为职业院校必备的教学平台,为了在比赛中取得优异成绩,大部分职业院校从2016年开启了在线开放课程的建设历程。各省教育主管部门为了鼓励职业院校建设在线开放课程的积极性,开展了省级在线开放课程的评选,从政策、制度、评优等方面加大了在线开放课程的倾斜力度。
四、高职教师信息化教学能力提升的有效途径
(一)国家层面
1.以提质培优为契机,全方位提升高职教育信息化水平。“双高计划”和职业院校提质培优对职业院校提升信息化水平有明确指出,职业院校要加快智慧校园建设,适应“互联网+职业教育”需求,运用大数据、云计算、物联网、VR/AR、人工智能、5G网络、区块链等信息技术和教育理念的最新发展,构建信息技术支持下的教学空间、工作场所和虚拟场景及其相互融合的环境,促进学生自主、泛在、个性化学习。智慧教室、虚拟仿真实训室、虚拟工厂的不断完善,教学模式的改革,师生信息素养和信息化教学能力的提高,促进了信息技术与教育教学深度融合,提升了教师信息化水平。2.不断完善信息化教学大赛制度,积极转化大赛成果并广泛共享。国家对提升职业院校教师信息化水平非常重视,在中国特色高水平院校的申报环节中,把信息化国赛获奖经历作为必备条件之一。国家应出台转化大赛成果的制度,推动比赛成果转化。
(二)学校层面
1.推进智慧数字教室建设。全面改善学校网络条件,升级校园网主干带宽,实现无线WI-FI6和5G通信网络全覆盖,完成IPv6规模化部署。按照新一代互联网发展趋势,加快学校信息化基础设施建设,建设集现代技术为一体的智能教室,建成全向交互、全面感知、高效协同的智慧校园。运用信息技术推进教育教学改革,实施线上线下教学融合发展计划,全学段推动“课堂革命”。2.健全信息化教学考评制度。学校要高度重视信息化教学,完善学校信息化教学大赛机制,每年定期组织信息化教学比赛,积极打造优秀作品参加省级、国家级教学能力大赛,并对获奖教师在职称评定以及各种评优活动中倾斜。把学生信息化能力素养列入人才培养方案及日常学习计划中,提高学生利用网络信息技术和优质在线资源进行自主学习的能力。
篇10
1.1从“人工智能”到人机系统
Wiener的“控制论”和钱学森的“工程控制论”是人们研制较为简单的系统,且系统运行的环境也不复杂情况下的一面旗帜。
1956年,在美国Dartmouth举行的一个信息科学大会上,J.McCarthy和H.Simon倡议开展人类思维活动规律的研究,并给予其“人工智能”(ArtificialIntelligence)的命名。人工智能主要研究用人工的方法和技术来模仿、延伸及扩展人的智能,从而实现机器智能。迄今为止,这一方向虽然已取得了不少成就,如博弈、自动定理证明、模式识别、自然语言理解、自动编程和专家系统等,但是,传统的人工智能在方法论上以符号推理为中心,企图用机器来实现人类的思维活动。所以,许多年来的研究虽然取得了一些成就,但距离人工智能提出的目标还有很大距离。
近三十年来,人工智能进展缓慢。1979年,H.L.Dreyfus《计算机不能做什么?》一书的副标题就是“人工智能的极限”提出了人工智能存在不可逾越的障碍。紧接着,以人工神经网络为代表的“计算智能”和Brooks的反应式结构(“没有表示”、“没有推理”的系统)给传统的符号智能带来了巨大冲击。特别是日本提出的“第五代计算机”并没有达到预期的目标,仅以实现一个“人机对弈”而告终,这些事实都促使人们对“智能”(或“人工智能”)要有一个重新的认识。对人工智能四十年的研究进行反思,使人们从科学概念上明白了以往不自觉地企图用机器解决一切问题的局限性,并试图从科学观念、研究目标和方法论上打开思路,以重新认识,寻求新的途径。
另一方面,四十年来,特别是从最近二十多年科学技术的发展来看,在当前的信息社会中,信息技术是立国之本,信息化的进一步发展必然走向“智能化”因此,以“智能”为核心的技术是至关重要的。从两次海湾战争以及其他局部战争,我们可以十分清楚地看出,今后的战争是人——机结合的智能系统之间的对抗,而智能技术将会覆盖几乎所有的工程技术领域。
既然完全基于机器的符号推理(也包括其他的智能方法)不能达到实现人的思维的目的,那么有没有其他道路可循?这是人们都很关心的问题。解决这个问题要从两方面着手。一方面,需要脑科学、认知科学等一些研究人的智慧的基础学科继续研究人的思维规律一一这也是人类永远的追求。虽然目前还不能做到这一点,但人们总是在不遗余力、一步一步地向着这一目标前进。当然,这也是人类社会发展赋予智能学科的一个任务,这就是智能科学的目标。另一方面,社会生产、生活、科技、军事各个方面又提出了层出不穷的需求,迫切要求设备、系统、工程要“智能化”而现在尚没有真正能模拟人的智慧的计算机,因此计算机还不能代替人。解决这个问题只有从两方面入手,一方面实事求是,尽量开拓、发展当前的计算机科学技术,使计算机尽可能多地帮助人做工作;另一方面,尽可能把人的智慧包含到系统中去,人要起主导作用,但要充分发挥计算机科学与技术的优势,创造出最有“智能”的人机结合系统。
具体来说,人机结合的系统就是将人作为一个组成部分包括到系统之中,并能清楚地区分出哪些工作应该由人完成,哪些工作应该由机器完成。在运行过程中,当进行到需要人完成的工作时,系统就将工作交给人;而当需要机器完成时,就将任务转交给机器,最终构成一套和谐的、协调的、高效的运行机制,以保证系统目标的实现。
1.2“智能”学科的三个层次
根据研究任务的不同,智能科学技术的学科内容可以划分为智能科学、智能技术、智能工程三个层次。
(1)智能科学(IntelligenceScience)
这是基础研究的层次,它的主要任务是研究人的智慧,建立人机结合系统的理论,并用其模拟人的智慧。智能科学主要包括脑科学、思维科学、认知科学等在内的基础学科。
思维科学着重研究人的思维规律,也就是研究人是如何思维的,这种研究的目的是为了给人工智能提供基础,也就是告诉计算机要模拟什么。而认知科学则是研究人的认识,也就是人是如何认识事物的,并将其扩展去研究动物的智能。
智能科学的成果将是整个智能科技发展的基础和先导。
(2)智能技术(IntelligenceTechnology)
在智能科学的框架内创建人机结合的智能系统,需要有合适的方法、工具和技术,这就是智能技术。
信息的本质是知识,而知识是构成智能的基础。因此,信息化发展必然走向智能化。
(3)智能工程(IntelligenceEngineering)
用智能科学的理念和思想,充分运用智能技术工具去创建各种应用系统,这就是智能工程。“智能化”实质上就是智能工程实现的过程和归宿。智能工程是当前科学技术和社会发展的前沿阵地,特别是高技术发展的核心动力之一。同时,它也是当前新技术、新产品、新产业的重要发展方向、开发策略和显著标志。
2无处不在的智能科技
2.1前沿高技术是智能科学技术发展的动力和源泉
智能科学技术是一个融合计算机、人工智能、模式识别等研究领域的交叉性学科,这些前沿高技术也是当前智能科学发展的动力和源泉。
在所有系统中,体现智能行为的工具和载体就是计算机。所以,计算机科学很自然地成为智能科学发展最重要的支撑点和原动力之一。
以符号推理为基础的人工智能方法和以人工神经元网络为代表的计算智能方法仍然是当前智能技术的重要组成部分。它们从不同的途径和方法进行问题求解,在搜索、规划、学习等各类问题中取得了相当有价值的成果。
模式识别是人类智能的一种体现。“模式”是一个极为广泛的概念,如图像、图形、文字、语言都是一种“模式”。按Zadeh的定义,“模式识别”是一种从“模式”出发的一种非线性映射,它是一种技术,可以用来实现人类智慧的一部分功能,如文字识别(认字)、语言的说与听等。模式识别的目的是将对象进行分类,可以是图像、信号波形式或者任何可测量且需要分类的对象。模式识别在工业自动化以及信息处理和检索中变得日益重要,这种趋势把模式识别推向工程应用研究的高级阶段。在大多数机器智能系统中,模式识别是用于决策的主要部分。
模式识别技术在各种工程实际系统中大量存在。机器视觉的主要技术基础就是模式识别;OCR(光学字符识别)是模式识别的另一个重要应用,它是识别文字字符信息的很主要的手段;计算机辅助诊断也是另一个重要的应用,多种医学图像处理已成为当前信息产业的一个热点;语言识别当然是模式识别另一个研究和应用的热点。其他如指纹识别,以及其他生物器官的识别、签名认证、文本检索、表情和手势识别,都是很有趣的研究领域,也是用来开发人机结合智能系统的很有价值的技术。
当前,对复杂智能系统进行研究的核心是解决人与机器的结合问题,也就是人作为系统的一个组成部分参与到系统的运行中,系统功能中也应体现出人的一部分作用。人与机器的结合有两个层次,一是人作为一个成员,综合到系统的体系结构中;一是人和机器的结合通过某个“人机界面”来实现。当然,这种界面不仅仅是目前计算机普通采用的图标界面,而是包含了模式识别这类涉及感知方面问题的广义的人机界面。这是当前十分活跃的一个研究领域,最有代表性的包括多媒体技术和虚拟现实(VirtualReality)技术。
2.2现代工业生产和复杂工程急需智能科学技术
随着社会的发展,人类在生产、生活等各个方面也不断提出新的需求,因此现代工业生产不断壮大,并日趋复杂。现在,现代工业生产和复杂工程急需智能科学技术,一批已经在发挥重要作用的技术如下:
*智能自动化和控制技术生产过程监控、产品自动检测和质量控制、工艺参数的优化和自动设定、故障自动诊断的报警等;
*智能CAD复杂工程的优化设计智能仪表对工艺参数的自动分析、监测、报警和调整;
智能交通红绿灯管理、基于GPS与电子地图的定位与导航、安全监控、车流自动疏导等;
*智能仿真技术,这是大型复杂工程设计不可缺少的手段。
2.3智能科技是现代军事科技(包括航天领域)最重要的关键技术之一
智能科技是现代军事科技最重要的关键技术之一。近代科技发展的历史表明,军事的需求总是科技创新的最大动力之一,“以军带民”是一般规律。军用技术辐射和带动国民经济是一条促进社会经济发展十分有效的途径。因此,军事科技(包括航天领域)也是应用智能技术最多的领域之一。
未来战争的重要武器——无人作战平台(无人机、无人战车、自主水下机器人、机器人士兵等)的自动导航、路径规划、自动避障、目标识别、自动驾驶和其他自主控制技术等都是智能技术的典型应用。以无人机为例,它是现代战争中掌握制空权的重要手段,在近年来的几次局部战争中都发挥了很大作用,例如它可以进行侦察,发现目标后引导有人飞机实行攻击,并对攻击效果进行评估。
在地面军用机器人中,智能技术也发挥着重要作用。
地面军用机器人不仅可以在平时帮助人类排除炸弹,完成要地保安任务,还可以在战时代替士兵执行扫雷、侦察和攻击等各种任务。例如,美国的ALV是一种高水平的陆地自主军用机器人,它采用各种智能技术来实现自主操作。ALV装有高级彩色摄像机(视觉),用以识别道路,同时还配备有阵列激光测距仪,用以识别障碍;它可以根据道路场景规划行车路径,避免碰撞,躲避障碍,实现公路上的自动驾驶,行车速度可达60千米/小时。除此之外,车上还可装载各种仪器,以完成不同的侦察任务。
防爆(暴)机器人是机器人发挥威力的另一重要领域。暴徒、爆炸、火灾以及其他灾害都是非常危险的环境,因此用机器人去处理是减少危险、提高成功率的有效途径。在反恐斗争中,有针对性地研制这类机器人,是当前迫切需要解决的问题。
航天领域综合展现了最高水平的智能科技,人造卫星、航天器和各种太空探测器是当代高水平智能技术的综合体现。在2004年初,在火星成功着陆的火星探测机器人是最有说服力的例子之一。
2.4为人类生活服务是智能科技发展的广阔天地
为人类生活服务是科技的重要方向。随着人类生活水平的不断提高,生活质量也需要不断改善,服务要求更周到,做到方便、舒适、节约、安全,更具人性化。这种需要也为智能科技的发展增添了新的活力。
具有一定智能的机器人代替人做服务工作是一种发展趋势,这也是智能技术为人类服务最有代表性的事件之一。
这类机器人的典型例子有:可以自动完成清扫任务和自动充电的清扫机器人;能辅助医生进行外科手术的医疗机器人;能为病人服务的机器人护士;可在家中进行巡视、监测潜在危险情况并适时报警的家庭保安机器人;用于照顾老、病、残的服务机器人等。
总而言之,只要有需要的地方,就有可能是机器人可以服务的地方。
3对"智能科学与技术〃专业架构的思考
从上面列举的很少一部分实例,我们已经可以看出当前智能科技的发展状况。它无处不在、发展迅猛、功效卓著,已经成为当前科技发展不可缺少的部分。它是许多重大工程的支撑,引领许多传统领域向现代化方向发展,是当代前沿高技术发展的重要方向。
另一方面,计算机科学、信息科学、控制科学等学科的进步,也极大地促进了智能科技的快速发展,智能化科技已经展现出一幕幕诱人的场景。科技发展的根本是人才,“智能科学与技术”大学本科专业已经成功设立,迈出了培养高层次人才的关键一步,这必将推动我国的智能科技更快地向前发展。
目前,追溯各个设立“智能科学与技术”专业学校的本源,可以发现各校之间差别甚大。有的学校的“人工智能”专业从计算机科学延伸而来,有的则来自控制科学和控制工程,还有的由信息科学的其他分支演变而来。在归属方面,有的学校将其归于理科,而有的学校则将其纳入工程学科。此外,设置该专业的行政学院亦有所区别,不同学校的智能学科分别隶属于各类学院。这种现象正好说明“智能科学与技术”这一学科发展的多源性,学科发展的空间大,应用需求面广。
另一方面,面对这样一个蓬勃发展、涉及面极广的新兴学科,如果培养各层次的人才,高校教育应该有一个怎样的架构,已经成为一个不可回避的问题摆在我们面前。解决好这个问题,就可能推动学科和人才培养顺利发展。从学科发展的多源性和应用面的广谱性来看,智能学科不可能作为另一个学科的二级学科来发展。从学科的性质来说,“智能科学与技术”应该建立一级学科的架构。根据我国教育体制的结构以及多层次人才培养的需求,可以设想如下架构。
“智能科学与技术”作为一级学科,设一级学科博士点,根据各个学校的不同情况,将其分别归属为理学或工学。对于不同的归属,该专业在培养目标和培养方式上应有所区别,理学应偏重基础研究,而工学则应注重技术和工程。一级学科下设若干个二级学科,二级学科设硕士点和博士点。二级学科的设置需要更进一步考虑学科发展的多源性以及延拓应用的专业性,梳理分类,并结合现实的需要与可能,经过充分的讨论后来决定,这是多层次架构中最复杂的环节。
以上架构属于人才培养架构的高层次,即研究生培养阶段。目前,更有现实意义的是解决本科阶段培养中的问题。现在,多所高校招收了“智能科学与技术”专业的本科学生,并开始有毕业生走向社会,因此正是总结经验,走向新的发展阶段的时机。本科教育是学科发展的根本,有了本科基础,各层次人才培养就有了基础,高层次创新人才培养就有了希望。由于“人工智能”学科的多源性,各个学校的培养方案有不少差别,有的按理学,有的按工学。按照国家的教育体制和社会需求,按理学或工学适当规范本科教学方案,对当前推进“智能科学与技术”专业的健康发展是非常重要的。