集成电路辅助设计范文

时间:2023-10-30 17:57:45

导语:如何才能写好一篇集成电路辅助设计,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

集成电路辅助设计

篇1

关键词:电子线路辅助设计;Protel;项目化改造

中图分类号:G712文献标识码:B文章编号:1006-5962(2013)02-0047-01

下面我将本门课程的具体课程设计过程进行介绍:

1课程定位

我院电子专业培养的学生所面向的岗位主要是电子产品装接工、制版工或者是调试工,他们的后续晋升岗位主要是电子产品生产技术员、质检员以及电子产品设计初级助理工程师或助理工程师。《电子线路辅助设计》是为设计制作电子产品培养电路板的设计、生产、加工和检验调试等先期相关能力的课程。由于本学院依托大庆油田,所以本着“以大庆精神和铁人精神育人”的原则更注重增强学生克服困难的意识,培养学生分析、解决问题的能力,继承发扬老一辈的光荣传统。

2课程设计

2.1课程标准的制定。电子信息专业课程标准是依据行业、企业专家对本专业所对应的职业岗位群进行的职业能力分析来制定的,我们紧密结合《计算机辅助设计绘图员(电子类)》和《无线电调试工》职业资格中的相关考核要求,确定了本课程的教学内容。

2.2课程拓展。本课程所涉及的知识和能力在学生参加各级各类电子技能大赛中也占有重要地位。我们还依据本门课程申请相关的职业资格鉴定(即计算机辅助设计绘图员(电子类)职业资格证书)。目前我们已经具备了该鉴定的考评资质。

3内容组织

3.1内容设置。

结合学情分析根据课程标准我对课程内容进行了科学的排序,分别针对电子专业和电气专业制定了不同的学习情境,并制定了详细的教学目标和能力要求。针对电子专业本课程的总学时为78学时,每周6学时,设置了两个项目共10个任务,每个任务都设计了教学情境。根据项目任务的内容和进程,选择在多媒体教室和实训机房穿插结合共同完成。多媒体教学部分由教师布置任务、分析任务和演示举例为主,由学生制定实施方案和操作流程并进行汇报;项目实践操作部分,学生在老师的辅助指导下完成操作练习和项目任务,对于学生遇到的困难和问题给予适当引导,尽量由学生独立自主完成任务。

电子专业《电子线路辅助设计课程》教学项目和学时安排:

项目一 绘制电路原理图(38学时):任务1 安装卸载Protel 99 SE软件(2学时);任务2 创建数据库和保存管理文档(2学时);任务3 绘制振荡器和积分器原理图(8学时);任务4 绘制甲乙类放大电路原理图(8学时);任务5 创建与绘制原理图元件符号(6学时);任务6 绘制A/D转换电路原理图(12学时)。项目二 绘制电路PCB(40学时):任务1 绘制振荡器和积分器PCB(10学时);任务2 绘制单管放大电路的PCB(制作单面板)(12学时);任务3 绘制波形发生器电路的PCB(制作双面板)(12学时);任务4 绘制存储器扩展电路(6学时)。区别于电子专业,电气专业本课程的总学时为56学时,每周4学时,设置了四个教学情境,每个学习情境又设计了具体的操作任务。课程也是在多媒体教室和实训机房穿插结合共同完成。

电气专业《电子线路辅助设计》学习情境和学时规划:

情境一振荡器和积分器的设计(12学时):任务1安装卸载Protel 99 SE软件(2学时);任务2创建数据库和保存管理文档(2学时);任务3绘制振荡器和积分器原理图(6学时);任务4进行电气规则检查和报表文件的生成(2学时)。情境二继电器控制电路的设计(16学时):任务1制定原理图设计流程和实施工艺(2学时);任务2创建管理原理图元件库并熟练绘制元件(4学时);任务3绘制两级放大电路原理图(2学时);任务4继电器控制电路的设计(6学时);任务5创建网络表与电路原理图的输出(2学时)。情境三A/D转换电路的设计(8学时):任务1分析总线原理图和层次原理图设计方法(2学时);任务2绘制A/D转换电路的原理图(6学时)。情境四波形发生器电路的设计(20学时):任务1创建和管理封装库并绘制元件封装(6学时);任务2绘制振荡器和积分器电路的PCB(4学时);任务3绘制波形发生器的原理图(4学时);任务4 制作波形发生器电路的PCB(6学时)

3.2教学目标。

根据本课程的教学基本要求,根据教学内容的特点和高职学生的总体认知水平和思维发展水平,制定了知识、能力、情感三位一体的教学目标。(1)知识目标:①掌握Protel软件的使用和操作;②掌握Protel原理图和PCB图的设计和绘制方法;③学会制作各种报表文件的生成和管理;④掌握元件和封装库的绘制与管理。(2)能力目标:①能够学会规范化的绘制电路原理图和PCB图;②养成严谨的科学作风;③培养学生整体设计能力和操作流程的制定、修改调整和协调操作的能力;④学习新知识、新技术的能力和自主学习、独立学习的能力。(3)情感目标:①培养学生健康积极乐观的学生风貌;②培养学生类比思维,理论联系实际的能力;③培养学生克服困难的精神和解决困难的能力,树立主人翁和独立自主的意识;④培养类比思维,理论联系实际的能力;⑤按照“7S”活动标准要求学生,培养安全环保的意识。

我们采用的教材是高教版的教材另配一本实践指导书。为了保证教学效果,依据理论与实践结合、教材与实际结合、操作与管理结合,教学内容符合现场生产

管理要求等原则,我们也自己编写了适合本专业学生的情境教学教材和学材。教学过程中我们充分利用各种教学资源,包括工艺文件、教学课件、练习题、企业生产视频、国家应用电子资源库等网络资源,可以共享全国关于本门课程和本专业的各种教学资源与前沿资讯。

4教学评价

为更好的考察学生的操作能力和知识运用的情况,考核评价方式我也进行了改革。考试成绩:平时成绩50%(过程考核)+期末考核成绩50%(上机操作)。平时成绩:由各项目任务的评价单总评成绩组成,主要考察任务完成质量,课堂出勤,综合作业,职业操守,学习态度和合作精神等方面。上机考核:设置几个具有中等难度功能全面的电路,设置相应的考核要求,由学生抽签选择自己的考核任务,在规定时间内依照操作规范完成考核任务,教师根据完成情况评分。

参考文献

[1]戴仕弘.职业教育课程教学改革[M].北京:清华大学出版社,2007

篇2

关键词: 电路仿真;Protel;实验教学

中图分类号:TP391 文献标识码:A 文章编号:1671-7597(2012)0720039-02

随着计算机仿真技术的迅速发展和不断完善,电子线路的设计由原来的人工手段步入电子设计自动化的(EDA)的时代。采用虚拟仿真手段,使电子线路设计人员能在计算机上完成电路的功能设计、性能分析和测试,直至印刷电路板的自动设计,已成为一种发展的必然趋势。如何将实物实验和理论教学有机结合,一直是个难题。在计算机辅助教学广泛推广的今天,这个问题得到了解决。本人结合多年的教学工作,在这些方面进行了一些探讨,现介绍如下:

1 计算机辅助设计

目前,电子设计自动化(EDA)软件呈现多样化,功能越来越强大完善。流行的通用EDA软件主要有ORCAD、EWB、Protel等,其中ORCAD仿真技术出现早,功能强大,适合于对复杂电路进行全面的分析优化;EWB电子工作台短小精悍,直观易用;Protel综合性好,使用范围最大,普及率高,非常适合作为电路设计和电子线路教学的辅助教学仿真软件。而且,掌握好Protel软件的使用,使学生能为将来的学习和工作打下扎实的基础。实践证明,使用Protel 99SE进行电子线路仿真,使得电子技术实验更加直观,极大的提高教学效果和学生的实验兴趣。

借助计算机辅助设计CAD(computer aided design),可将人的创造能力和计算机的高速运算能力、巨大存储能力和逻辑判断能力很好地结合起来,在开发工程、产品设计中,有许多复杂的数学分析和数值计算任务,需要提出多种设计方案,并进行综合分析比较与优化,还要给出工程图样及生产管理信息等,这些均可以交给计算机完成。设计人员则可对计算、处理的中间结果做出判断、修改,以便更有效地完成设计工作。计算机辅助设计能极大地提高设计质量,减轻设计人员的劳动,缩短设计周期,降低产品成本,为开发新产品和新工艺创造了有利条件。

2 Protel 99SE电路仿真工具

Protel 99SE是目前非常流行的电子线路EDA软件,它不但在绘制原理图、PCB印刷板布线等方面功能完备,而且它为用户提供了功能强大、使用方便的电路仿真工具。它可以对当前所画的电路原理图进行即时仿真,在设计电路的整个过程中都可以仿真查看和分析其性能指标,能及时发现设计中存在的问题并加以改正,从而更好地完成电路设计任务。还能在电子线路教学仿真实验中,将抽象的理论公式和直观实验观察有机结合,极大的提高教学效果。在Protel 99SE中,集成了一个功能强大、支持模数混合信号仿真的工具软件SIM99,它同SCH99紧密结合,使得电路设计者能够在电路原理图上直接进行仿真操作,观察电路工作情况,如检查电路中的错误,修改元件的参数值等,观察欲了解的电路节点信号,最终达到理解电路工作原理的目的,设计出性能优越,功能完善的电路原理图。

Protel 99SE电路仿真软件具有丰富元器件库,包含有各种各样的分立元件和集成电路元件。这些器件库有常用的电阻、电容、二极管、三极管、MOS管、单结晶体管、晶振、开关和变压器等分立元器件,同时还有大量的数字器件和其它集成电路器件,如74系列、CMOS系列、运算放大器、比较器和数/模和模/数转换器(ADC,DAC)等。在Protel 99SE中,使用者可以在图纸的任意位置上放人元器件。元器件的放置方向是任意可调的,其属性是可以编辑的,元器件的属性包括元器件的封装、标号、管脚号定义等只要确定起始点和终止点,Protel99SE就会自动地在原理图上连线,连线可以任意角度切换,使得设计者在设计时更加轻松自如。同时该软件具有丰富的信号源,包括基本信号源、直流源、正弦源、脉冲源、指数源、单频调频源、分段线性源,同时还提供了齐全的线性和非线性受控源。具有足够的仿真模型库,这些器件库有常用的电阻、电容、二极管、三极管、MOS管、单结晶体管、晶振、开关和变压器等分立元器件,同时还有大量的数字器件和其它集成电路器件,如74系列、CMOS系列、运算放大器、比较器和数/模和模/数转换器(ADC,DAC)等。这些元器件可满足用户的一般需求,同时它还提供了一个开放的库维护环境,用户不但可以方便地修改原有器件模型,而且还可以创建新器件模型,以满足设计与实验的需求。Protel 99SE还提供了电气法则测试,在原理图全部设计完成后,为了确定原理图的正确无误,可以执行电气法则测试操作。该操作可以测试用户设计的电路是否存在错误,程序自动进入文本编辑器并生成相应的测试错误报表,系统会在原理图中发生错误的位置设置红色符号,提示错误的位置,方便用户进行修改。改正错误后,再进行电气法则测试,直到报告文件中不出现错误的标记,这样我们完成了初步的电路原理图的设计工作。

篇3

关键词:图形学;发展;应用

1计算机图形学的发展

计算机图形学是利用计算机研究图形的表示、生成、处理,显示的科学。经过30多年的发展,计算机图形学已成为计算机科学中最为活跃的分支之一,并得到广泛的应用。1950年,第一台图形显示器作为美国麻省理工学院(MIT)旋风一号——(Whirlwind)计算机的附件诞生.该显示器用一个类似示波器的阴极射线管(CRT)来显示一些简单的图形。在整个50年代,只有电子管计算机,用机器语言编程,主要应用于科学计算,为这些计算机配置的图形设备仅具有输出功能。计算机图形学处于准备和酝酿时期,并称之为:“被动式”图形学。

2计算机图形学在曲面造型技术中的应用

曲面造型技术是计算机图形学和计算机辅助几何设计的一项重要内容,主要研究在计算机图象系统的环境下对曲面的表示、设计、显示和分析。它肇源机、船舶的外形放样工艺,经三十多年发展,现在它已经形成了以Bezier和B样条方法为代表的参数化特征设计和隐式代数曲面表示这两类方法为主体,以插值(Intmpolation)、拟合(Fitting)、逼近(Ap-proximation)这三种手段为骨架的几何理论体系。随着计算机图形显示对于真实性、实时性和交互性要求的日益增强,随着几何设计对象向着多样性、特殊性和拓扑结构复杂性靠拢的趋势的日益明显,随着图形工业和制造工业迈向一体化、集成化和网络化步伐的日益加快,随着激光测距扫描等三维数据采样技术和硬件设备的日益完善,曲面造型在近几年来得到了长足的发展。

2.1从研究领域来看,曲面造型技术已从传统的研究曲面表示、曲面求交和曲面拼接,扩充到曲面变形、曲面重建、曲面简化、曲面转换和曲面位差。

曲面变形(DeformationorShapeBlending):传统的非均匀有理B样条(NURBS)曲面模型,仅允许调整控制顶点或权因子来局部改变曲面形状,至多利用层次细化模型在曲面特定点进行直接操作;一些简单的基于参数曲线的曲面设计方法,如扫掠法(Sweeping),蒙皮法(skinning),旋转法和拉伸法,也仅允许调整生成曲线来改变曲面形状。计算机动画业和实体造型业迫切需要发展与曲面表示方式无关的变形方法或形状调配方法,于是产生了自由变形(fFD)法,基于弹性变形或热弹性力学等物理模型(原理)的变形法,基于求解约束的变形法,基于几何约束的变形法等曲面变形技术和基于多面体对应关系或基于图象形态学中Minkowski和操作的曲面形状调配技术。

2.2从表示方法来看,以网格细分(Sub-division)为特征的离散造型与传统的连续造型相比,大有后来居上的创新之势。而且,这种曲面造型方法在生动逼真的特征动画和雕塑曲面的设计加工中如鱼得水,得到了高度的运用。

3在计算机辅助设计与制造(CAD/CAM)的应用

这是一个最广泛,最活跃的应用领域。计算机辅助设计(ComputerAidedDesign,CAD)是利用计算机强有力的计算功能和高效率的图形处理能力,辅助知识劳动者进行工程和产品的设计与分析,以达到理想的目的或取得创新成果的一种技术。它是综合了计算机科学与工程设计方法的最新发展而形成的一门新兴学科。计算机辅助设计技术的发展是与计算机软件、硬件技术的发展和完善,与工程设计方法的革新紧密相关的。采用计算机辅助设计已是现代工程设计的迫切需要。CAD技术目前已广泛应用于国民经济的各个方面,其主要的应用领域有以下几个方面。

3.1制造业中的应用。CAD技术已在制造业中广泛应用,其中以机床、汽车、飞机、船舶、航天器等制造业应用最为广泛、深入。众所周知,一个产品的设计过程要经过概念设计、详细设计、结构分析和优化、仿真模拟等几个主要阶段。同时,现代设计技术将并行工程的概念引入到整个设计过程中,在设计阶段就对产品整个生命周期进行综合考虑。当前先进的CAD应用系统已经将设计、绘图、分析、仿真、加工等一系列功能集成于一个系统内。现在较常用的软件有UGII、I-DEAS、CATIA、PRO/E、Euclid等CAD应用系统,这些系统主要运行在图形工作站平台上。在PC平台上运行的CAD应用软件主要有Cimatron、Solidwork、MDT、SolidEdge等。由于各种因素,目前在二维CAD系统中Autodesk公司的AutoCAD占据了相当的市场。

3.2工程设计中的应用。CAD技术在工程领域巾的应用有以下几个方面:①建筑设计,包括方案设计、三维造型、建筑渲染图设计等。②结构设计,包括有限元分析、结构平面设计、框/排架结构计算和分析等。③设备设计,包括水、电、暖各种设备及管道设计。④城市规划、城市交通设计,如城市道路、高架、轻轨等。⑤市政管线设计,如自来水、污水排放、煤气等。⑥交通工程设计,如公路、桥梁、铁路等。⑦水利工程设计,如大坝、水渠等。⑧其他工程设计和管理,如房地产开发及物业管理、工程概预算等。

3.3电气和电子电路方面的应用。CAD技术最早曾用于电路原理图和布线图的设计工作。目前,CAD技术已扩展到印刷电路板的设计(布线及元器件布局),并在集成电路、大规模集成电路和超大规模集成电路的设计制造中大显身手,并由此大大推动了微电子技术和计算及技术的发展。

3.4仿真模拟和动画制作。应用CAD技术可以真实地模拟机械零件的加工处理过程、飞机起降、船舶进出港口、物体受力破坏分析、飞行训练环境、作战方针系统、事故现场重现等现象。在文化娱乐界已大量利用计算机造型仿真出逼真的现实世界中没有的原始动物、外星人以及各种场景等,并将动画和实际背景以及演员的表演天衣无缝地合在一起,在电影制作技术上大放异彩,拍制出一个个激动人心的巨片。

3.5其他应用。CAD技术除了在上述领域中的应用外,在轻工、纺织、家电、服装、制鞋、医疗和医药乃至体育方面都会用到CAD技术。CAD标准化体系进一步完善;系统智能化成为又一个技术热点;集成化成为CAD技术发展的一大趋势;科学计算可视化、虚拟设计、虚拟制造技术是CAD技术发展的新趋向。

篇4

关键词微电子技术;课程建设;实验教学

中图分类号:G434文献标识码:A

前言微电子技术是现代电子信息技术发展的重要前沿领域,取得了很好的经济和社会效益。微电子技术的发展和应用为促进了电子产品设计及制造领域的变革。微电子技术是以半导体工艺为设计载体,通过器件电路或者硬件描述语言描述硬件电路的连接,再利用专业的开发和设计仿真软件进行工艺仿真、电路仿真和版图设计,最终完成半导体工艺流程、电路硬件集成。在实训教学的过程中,容易将学生带入到工作环境的实景,能够提高学生主动学习的兴趣,激发学生的求知欲。在微电子技术的实训教学过程中,利用设计辅助软件让学生加深对专业理论知识的深度理解,通过实训内容的合理安排,验证所学的专业知识,掌握设计方法和实现手段,从而达到理论和实践有机结合的教学目的,实现本专业学生素质教育培养的最终目的。

1现阶段微电子技术教学模式分析

微电子技术具有抽象、层次化、流程复杂的特点,在教学过程中,应该根据微电子技术的特点,在器件模型、硬件描述语言、配套软硬件、实验内容及课程内容设置等几个方面进行课程教学的改革。

目前,微电子技术的实训教学,主要围绕集成电路工艺、硬件描述语言、可编程器件等环节开展。硬件描述语言具有设计灵活、电路设计效率高的特点。大规模可编程逻辑器件通过编程来实现所需的逻辑功能,与采用专用集成电路设计方法相比,具有更好的设计灵活性、设计周期短、成本低、便于实验验证的优势,在实训环节得到了广泛的采用。现场可编程门阵列(FieldProgrammableGateArray,FPGA)能够提供更高的逻辑密度、最丰富的特性和极高的性能,因此,数字集成电路的实训内容,主要围绕FPGA的内部结构以及资源分布做相应介绍。

微电子技术的实训教学在本科教学中具有极强的实践特点,尤其是作为电子科学本科教学,对学生的电子设计思维模式的构建有着重要作用。实践教学离不开大量的实训反馈。目前大多数高校微电子技术的授课课时数一般安排为48课时,其中实验课占10课时,实践课和理论课的课时数比例约为1:3.8,且课程多安排在三年级。从课时安排来看,存在重理论轻实践的弊端,容易让学生产生盲目应试的想法,导致学生只注重考试,而忽略了至关重要的实践环节。另外,微电子技术课程最好作为专业基础课程,为学习其它多门课程打下良好基础。在微电子技术课程开展教学和实训的时候,最好与学生的其它专业实习的时间错开,让学生能够更加专心对待,避免专业知识和概念的混乱。如果将微电子技术课程课实训安排在四年级第一学期,非常容易与毕业实习、求职环节发生冲突,导致学生对微电子技术课程和实训内容认知不足,仓促应付课程和实训内容,不利于对学生电子设计能力的培养,也会降低学生的就业竞争能力。

微电子技术的实训环节对于本科生而言,会给学生产生软件编程的想法,不能真正将电路设计的理念深化,会造成实验内容的创新性不够,教学成果难以达到预期。

2微电子技术实践环节教学

本课题对现阶段微电子技术课程和实训环节做了深入分析,总结了教学过程中存在的问题及改进需求,对未来的微电子技术实训教学模式进行的理论和实践探索。自动化设计软件是的设计人员可以在计算机上完成很多复杂计算工作。微电子技术软件通常在服务器或者多线程工作站运行,自动化程度很好,具有很强大的功能和丰富的界面。在高校中开展的微电子设计类实训课程是一门实践性很强的专业基础性课程,既可以由学生独立完成,也可以设计成分工协作的实验项目。

为了提高学生对微电子技术的理解和设计能力的掌握,微电子实训由32个课时组成,其中课内实验分配了16学时、微电子设计实训分配16学时,重点提高学生的动手能力和主动思考能力,激发学生的创新思维。

2.1课内实验设计

微电子技术课程的课内实验包含基础验证性实验和研究型实验,其目的是掌握基本的硬件描述语言的编程方式及技巧,并能够采用模拟器件设计模拟集成电路,让学生能够具备独立设计集成电路的能力,熟悉集成电路设计计算机辅助设计手段,结合以往的电子电路知识,完成基本器件的设计和调用。

课内实验设计以工艺器件仿真、电路设计仿真手段为主,利用准确的工艺和器件模型,准确模拟集成电路工艺的流程和半导体器件的电学特性。软件仿真已经成为新工艺、新器件、新电路设计的重要支撑手段,可以在短时间内建立实验环节、调节参数、修改电路结构,弥补实验室硬件投入不足以及对多种实验室耗材的依赖,有利于学生建立系统性的知识结构。另外微电子技术的课内实验也包含综合性实验环节,通过调用基本功能模块,设计一个适当规模的数模混合集成电路,提高整体电路的综合性能指标,实现良好的信号控制和传输,提高学生的综合设计能力。

例如,半导体工艺演示实验可以快速呈现不同工艺流程和工艺环境对工艺结果的影响,能够设定不同的偏置条件来研究器件的能带、电场、载流子浓度分布、伏安特性等内部特征,避免恶劣繁杂的对物理过程的解析建模,具有直观和形象的特点,加深学生对理论知识的理解和提高学习的积极性。可以针对成熟工艺,利用仿真软件进行器件和电路设计。实际过程中,参照经典的器件结构和电路模块单元,开展新特性、新功能的设计性实验,锻炼学生综合知识的能力,面向工程实践,对专业知识进行融会贯通。这个过程需要授课教師根据学生的已开设课程和知识结构来编写适宜的实验辅助教材,对实验内容进行精巧的设计及和细致地指导。

2.2实训环节设计

微电子技术实训环节旨在锻炼学生的实践动手能力,掌握集成电路设计开发流程,能够根据系统的性能指标进行分层分级设计,根据硬件电路的额性能特点来构建规模化电路。在实训环节中,强调综合设计能力的培养,利用微电子设计的计算机辅助设计工具完成一定规模电路的设计、仿真、版图设计、版图检查等环节。通过微电子技术实训环节的练习,学生能够培养独立设计能力、系统分析能力、电路综合能力等,为将来进入研发设计类型的工作岗位打下坚实的基础。

对实训环节的考核,采用大作业或者设计报告的形式,让学生通过查阅参考文献进行设计选题,发挥学生的主观能动性。通过对参考文献的参考和综述,掌握课题的结构和流程设计,充分了解系统的模型,理解各模块对系统设计的影响。实训环节是的一次较为系统的设计方法训练,不仅可以巩固课堂和教材上的内容,还可以引入实际工程系统的指标要求,锻炼学生的综合规划和设计能力。

3微电子技术教学改革实施效果

通过微电子技术的教学和实训模式的改革,在实践中积极总结得失,发现微电子技术的教学该给能够帮助学生提高微电子设计的专业素养,主要体现在以下方面:

1)学生对微电子技术课程内容的理解程度大幅提高,原先学生对课本的知识抱有敬畏的心理,在课程和实践环节之后,都产生了很大程度的自信。微电子技术课程、实验、实训考核成绩的优秀率也大大提高,表明通过微电子技术的教学和实践改革,学生能够比较好地掌握课程大纲所要求的内容。

2)通过细致地设计实践环节,能够调动学生学习专业知识的积极性,实验项目的完成情况比较理想,报告内容的撰写也更加细致、全面。

3)通过综合设计实验和实训,让学生勤于动脑,在多种手段和方法中,寻找最优的方案,优化设计过程。

4结束语

篇5

关键词:计算机;特点;应用

中图分类号:G642 文献标识码:A 文章编号:1009-3044(2016)33-0260-02

1 计算机特点介绍

1.1 计算机运算处理速度快

运算速度作为衡量计算机处理数据能力的重要指标,是计算机最为突出的特点之一。一般认为,世界上第一台电子计算机(ENIAC)于1964年诞生于美国宾夕法尼亚大学,这台计算机以5000次每秒的运算速度,将人们带入了计算机的时代,在后来的将近70年的发展过程中,计算机大致经历电子管时代(1946年―1958年)、晶体管时代(1958年―1964年)、集成电路时代(1964年―1970年)、大规模和超大规模集成电路时代(1970年至今)四个发展阶段。每个阶段计算机数据处理速度都有了质的飞跃,电子管计算机的运算速度为每秒数千次至数万次,而且造价高昂、功耗极大;晶体管时代的计算机运算速度有了显著的提升,达到了10万次/每秒,功耗、体积以及系统的可靠性都有了较大的提升;再到后来的集成电路时代,计算机的速度达到了令人惊叹的百万次至数千万次/S的数量级,模块化、设计标准化产品逐渐出现;如今大规模和超大规模集成电路的时代计算机运算处理速度达到了几百万次到几千亿次,人们利用计算机技术可以处理复杂计算,对人们日常生产和生活都产生了重大的影响,可以说没有计算机急速飞跃的处理速度,就不可能有计算机如此广泛的应用,因此,计算机运算处理速度是计算机最为重要的特点。

1.2 计算机具有较强的数据存储能力

计算机中存储数据的介质从速度的快慢来划分,通常是这样的寄存器、高速缓存、内存、外部存储设备,其中高速缓存作为解决CPU运算速度和内存速度不匹配的问题而产生的,其容量相对较小,数据存储量较少,并且寄存器、高速缓存以及内存中数据断电丢失,不适合长期存储数据,其作用主要是为了与CPU配合完成计算机任务,通常计算机强大的存储功能都指的是外存。常见的外村设备包括硬盘、光盘、可移动磁盘等,现代技术使得计算机的外部数据存储量以及存储有效期都得到了极大的提升,从存储量上来讲,计算机可以提供海量的存储能力供用户的使用,其中网络云盘以及磁盘阵列的出现都是为了解决数据存储可靠性、存储量的问题;而数据存储质量也是也来越强,信息可以有效地保持几年至几十年,甚至更长时间,这位数据的可维护性和可用性都带来了极大的便利,满足了人们对于信息处理的最基本要求,因此计算机数据存储能力,是计算机应用的基础,也是计算机重要的特点。

1.3 计算机具有高精度的数据处理能力

现代计算机除了具有高速的数据处理能力和海量的数据存储能力,还具备高精度的数据处理能力,计算机可以根据人们的计算要求,被设计为各种计算精度,计算机数据处理类型既包括常见的整数类型计算和浮点数类型计算,同时还具备了逻辑运算能力,如果说整数型和浮点型数据的计算主要运用在科学计算和工程运算(科学计算和工程运算通常对计算结果的精确度有较高的要求,目前计算机可达到的计算精度可以达到小数200万位的∏值,这基本上满足绝大多数的日常生活和生产建设)过程中,那么逻辑运算则为计算机具备逻辑判断能力提供了重要的技术支撑,使得计算机可以进行智能的分析判断,从而实现智能化的计算控制,这也是近年来智能设备和应用出现的技术基础。总之,计算机高精度的数据处理能力也是计算机非常关键的特点。

1.4 计算机进行自动化任务的处理

现代计算机都是基于“存储程序”原理的冯诺依曼体系设计的,首先人们将预设数据和程序存储到计算机中,计算机就可以根据任务步骤进行自动的处理,这就是存储程序的基本原理。正是因为现代计算机具有高度自动化控制和任务处理过程,计算机才得以在工艺控制、辅助设计、人们日常生活中发挥广泛的作用。以最前沿的物联网技术而言,其技术核心在于将传感器技术与计算机控制技术有机地结合起来,通过计算机对传感器设备所捕获的不同数据进行不同的处理过程来实现计算机对于“物”的智能化控制。因此,计算机自动化的任务处理能力同样是现代计算机技术重要的特点,更是计算机技术得以广泛应用的重要因素。

2 计算机技术应用的场合

在现代社会中,几乎所有的领域都可或多或少的发现计算机技术的应用场所,按照不同的处理内容,通常将计算机的应用场所划分为以下几个方面,下文将简要的介绍计算机的不同应领域:

2.1 算领域的应用

计算领域的应用是指利用先进的计算机技术进行数值计算。计算领域不仅仅包括人们日常生活中的简单计算,同时还包括一些复杂数学模型的计算过程(以自然环境下,天气情况的计算而言,在过去,由于人们没有足够的计算存储能力,人们所构建的复杂计算模型无法得到快速的计算结果,而无法进行即时的天气预报,再比如生物研究中,人类基因图谱的绘制,需要高速计算机发挥举足轻重的计算存储作用)。常见的复杂计算包括科学研究方面的计算、自然界与人类复杂问题的计算分析、高难度的工程计算等等,这些行业需要计算机提供可靠的、持续的高速计算能力,从而为破解计算难题提供准确的计算结果。总之,计算机在计算领域的应用是计算机最基本的应用领域,更是计算机得以诞生最重要的原因。

2.2 信息的加工处理应用

信息的加工处理是根据用户需求,对相关数据信息进行收集、整理、再处理的过程。基本上所有的计算机应用都是在进行信息加工处理过程,无论信息表示形式是数值数据、文本数据、影音视频数据还是其他二进制形式的数据。此处的信息加工特指对信息收集、整理、再处理以达到用户特定需求的这么一个过程,常见的数据存储处理手段可分为文件系统存储、数据库存储以及更高级的DDS,其中文件系统存储主要是根据操作系统的文件系统将文件存储在磁盘上的过程,这是最初阶段人们对于文件管理的主要形式;随着数据量的增加、数据复杂关系的应用,简单的文件系统不能较好地满足人们的存储处理需求,应运而生的就是数据库存储,数据库存储主要是将数据进行格式化存储、并且可以根据用户需求对数据进行加工变换,一方面极大地节约了用户数据的存储空间,另一方面有利于用户对于数据的操作处理过程,从而有效地提升了数据的应用效率。再次,就是DDS数据信息处理,这是数据处理更加高级和智能化的应用,人们根据数据特点,依托于数据库管理系统,再构建数据模型以及操作方法,利用软件形式智能化的分析处理数据,为用户提供更加客观、真实的数据分析处理结果。当前流行的WEB互联网、信息管理系统、企业ERP系统等信息加工处理应用都有广泛的应用

2.3 计算机的辅助技术

辅助顾名思义帮扶的意思,而人则是处于主导地位,计算机辅助技术主要是在人操作下,利用计算机技术实现相关任务的完成。常见的计算机辅助技术包括、辅助制造、辅助教学、辅助工艺规划、辅助设计应用、计算机辅助测试、辅助质量控制等等。 以常见的辅助教学为例,这种计算机辅助技术主要是依托于计算机信息处理技术和多媒体处理技术,进行教学过程展开的应用,教学过程无论是教授内容的展现方式、教授过程的互动性都达到了传统教学过程无法企及的高度,对于现代意义的教学有着非常重要的意义。再以计算机辅助设计为例,通过将产品的各个参数、形态结构以及功能要求等相关数据在计算机辅助设计软件(如Auto CAD)的帮助下进行电子化设计,充分发挥辅助设计软件高度智能化以及计算优势,实现快速设计和高质量设计的要求,辅助设计被广泛地应用于电子工业、汽车制造、建筑、家居设计等相关行业。随着计算机技术的发展,为实现自动化设计、生产过程,企业通常将辅助设计、制造、测试等技术相结合,进行更加智能化、高效化的控制。总之,辅助技术的应用是计算机在产品生产、设计、制造等领域重要的应用。

2.4 工业控制管理应用

工I控制管理应用,主要是利用计算机技术进行工业生产过程的控制过程,工业控制管理与各种传感设备的应用和发展有着密切的联系,一定意义上可以说没有传感设备的飞速发展就没有工业控制管理现代化的应用。以常见的生物品产生产过程为例,通过各类传感设备将生物产品生产所需要的温度、湿度、PH环境以及各种有机质含量的实时监测,并根据生物产品的生产需求进行智能化控制,使得生物产品过程高度精细化,对于提高生产质量具有非常重要的意义。 一般而言工业控制领域的计算机应用运行环境相对恶劣,可能出现高温、高压、PH环境影响严重等非常严峻的环境,对于计算机以及周边设备的应用可靠性和应用持续性都提出了较高的要求,根据处理能力的强弱划分,当前工业控制管理计算主要分为单片机处理和以ARM为代表的的核心处理器处理处理。随着计算机技术的发展应用,未来计算机技术在工业控制必将朝着更加稳定、智能化管理过程大踏步地发展。

2.5 智能模拟以及其他方面的应用

智能模拟又被称为人工智能(AI),是利用计算机技术进行人的智力活动进行模拟的一种应用。该领域包括机器人的设计、自然语言识别、图像处理、专家系统等方面的应用,相对而言,智能模拟技术成熟度较低,但是也取得了令人瞩目的成绩,产品成果主要集中在人机博弈、模式识别、知识工程等领域,计算机高度智能化地模拟了人的感知、理解、学习和对问题的求解过程,相信随着计算机技术的不断发展智能模拟应用必将展现出前所未有的应用度。

除此之外,计算机技术还在智能家居、大数据云计算等诸多领域有着非常重要的应用,基本上只要是人类涉及的行业,都能够发现计算机应用的身影,限于篇幅的限制本文就不一一介绍了。

总之,计算机技术以其前所未有的发展速度,无论是传统的数值计算、信息处理、辅助设计,还是当前流行的人工智能、工业控制领域都有着不俗的表现,相信伴随着计算机技术的飞速发展,计算机技术必将对人类社会的发挥在那做出更加巨大的贡献。

参考文献:

[1] 魏宏玲.办公自动化中的计算机技术应用[J].赤峰学院学报:自然科学版,2013(22):28-29.

篇6

注意事项:

1. 用钢笔或圆珠笔将答案直接写在答题纸上,写在试题后面一律无效。

2. 试卷共10页。

3. 答卷前将答题纸上密封线内的项目填写清楚。

一、单项选择题(共70小题,每题1分,共70分。在给出的选项中,只有一项是最准确的,请将你选择的答案写在答题纸上相应位置处)

1.依据计算机采用的主要电子元器件,当前计算机发展处在_________阶段。

A.电子管 B.晶体管

C.大规模和超大规模集成电路 D.中小规模集成电路

2.计算机中表示信息的最小单位是______________

A.位 B.字节

C.字 D.字符

3.计算机的主要特点不包括__________________

A.运算速度快 B.计算精度高

C.显示器尺寸大 D.程序控制自动运行

4.计算机在企业管理中的应用属于_______________

A.科学计算 B.数据处理

C.计算机辅助设计 D.过程控制

5.“神舟七号”飞船应用计算机进行飞行状态调整属于_________

A.计算机辅助制造 B.计算机辅助设计

C.信息管理 D.实时控制

6.有关计算机程序的说法正确的是_____________

A.程序都在CPU中存储并执行 B.程序由外存读入内存后,在CPU中执行

C.程序在外存中存储并执行 D.程序在内存中存储,在外存中执行

7.计算机指令中的操作数部分指出的是_____________

A.数据的操作 B.数据的格式

C.数据或数据的地址 D.数据的编码

8.计算机中选择存储器单元的信号是通过________总线传输。

A.控制 B.地址 C.数据 D.USB

9.某微机内存1G,指该微机有1GB的________

A.RAM B.ROM

C.RAM和ROM D.高速缓存

10.在主存储器和CPU之间加高速缓存,目的是___________

A.解决CPU和主存之间的速度匹配问题

B.扩大主存储器的容量

C.增加CPU中通用寄存器的数量

D.扩大主存储器的容量和增加CPU中通用寄存器的数量

11.计算机系统由_________组成

A.计算机和外部设备 B.外部设备和程序

C.操作系统和应用程序 D.硬件系统和软件系统

12.裸机是指没有装入____________的计算机。

A.应用软件 B.CAD软件 C.任何软件 D.字处理软件

13.在计算机中,外设与CPU__________

A.直接相连 B.经过接口相连

C.无连接标准 D.在生产时集成在一起

14.操作系统的主要功能不包括________

A.处理机管理 B.存储器管理

C.设备管理 D.网站管理

15.提供用户与计算机之间接口的是__________

A.应用软件 B.操作系统

C.输入设备 D.输出设备

16.操作系统的英文缩写为________

A.AO B.OA

C.OS D.OP

17.二进制数1001110110转换成八进制数的结果为_________

A.4D6 B.1238

C.2326 D.4155

18.字符“A”、“a”、“2”、“9”中ASCH码值的是___________

A.A B.a

C.2 D.9

19.我国颁布的最新汉字编码标准是___________

A.GB1988 B.BG2312-80

C.BIG5 D.GB18030-2000

20.关于程序和软件,说法正确的是__________

A.程序仅指软件 B.软件包括程序

C.程序包括软件 D.软件仅有程序

21.资源管理器中不能按___________方式排列图标。

A.名称 B.大小 C.类型 D.内容

22.Windows XP中,通过“用户账户”组件不能进行________操作。

篇7

关键词:EDA技术 电子工程 作用

EDA是电子设计自动化(Electronic Design Automation)的缩写,是从CAD(计算机辅助设计)、CAM(计算机辅助制造)、CAT(计算机辅助测试)和CAE(计算机辅助工程)的概念发展而来的。EDA技术是以计算机为工具,集数据库、图形学、图论与拓扑逻辑、计算数学、优化理论等多学科最新理论于一体,是计算机信息技术、微电子技术、电路理论、信息分析与信号处理的结晶。

一、EDA技术的特点

1.现代化EDA技术大多采用“自顶向下(Top-Down)”的设计程序,从而确保设计方案整体的合理和优化,避免“自底向上(Bottom-up)”设计过程使局部优化,整体结构较差的缺陷。

2.HDL给设计带来很多优点:①语言公开可利用;②语言描述范围宽广;③使设计与工艺无关;④可以系统编程和现场编程,使设计便于交流、保存、修改和重复使用,能够实现在线升级。

3.自动化程度高,设计过程中随时可以进行各级的仿真、纠错和调试,使设计者能早期发现结构设计上的错误,避免设计工作的浪费,同时设计人员可以抛开一些具体细节问题,从而把主要精力集中在系统的开发上,保证设计的高效率、低成本,且产品开发周期短、循环快。

4.可以并行操作,现代EDA技术建立了并行工程框架结构的工作环境。从而保证和支持多人同时并行地进行电子系统的设计和开发。

二、EDA技术的发展过程

EDA技术的发展过程反映了近代电子产品设计技术的一段历史进程,大致分为3个时期。

1.初级阶段:早期阶段即是CAD阶段,大致在20世纪70年代,当时中小规模集成电路已经出现,传统的手工制图设计印刷电路板和集成电路的方法效率低、花费大、制造周期长。人们开始借助于计算机完成印制电路板一PCB设计,将产品设计过程中高重复性的繁杂劳动如布图布线工作用二维平面图形编辑与分析的CAD工具代替,主要功能是交互图形编辑,设计规则检查,解决晶体管级版图设计、PCB布局布线、门级电路模拟和测试。

2.发展阶段:20世纪80年代是EDA技术的发展和完善阶段,即进入到CAE阶段。由于集成电路规模的逐步扩大和电子系统的日趋复杂,人们进一步开发设计软件,将各个CAD工具集成为系统,从而加强了电路功能设计和结构设计,该时期的EDA技术已经延伸到半导体芯片的设计,生产出可编程半导体芯片。

3.成熟阶段:20世纪90年代以后微电子技术突飞猛进,一个芯片上可以集成几百万、几千万乃至上亿个晶体管,这给EDA技术提出了更高的要求,也促进了EDA技术的大发展。各公司相继开发出了大规模的EDA软件系统,这时出现了以高级语言描述、系统级仿真和综合技术为特征的EDA技术。

三、EDA技术的作用

EDA技术在电子工程设计中发挥着不可替代的作用,主要表现在以下几个方面:

1.验证电路设计方案的正确性

设计方案确定之后,首先采用系统仿真或结构模拟的方法验证设计方案的可行性,这只要确定系统各个环节的传递函数(数学模型)便可实现。这种系统仿真技术可推广应用于非电专业的系统设计,或某种新理论、新构思的设计方案。仿真之后对构成系统的各电路结构进行模拟分析,以判断电路结构设计的正确性及性能指标的可实现性。这种量化分析方法对于提高工程设计水平和产品质量,具有重要的指导意义。

2.电路特性的优化设计

元器件的容差和工作环境温度将对电路的稳定性产生影响。传统的设计方法很难对这种影响进行全面的分析,也就很难实现整体的优化设计。EDA技术中的温度分析和统计分析功能可以分析各种温度条件下的电路特性,便于确定最佳元件参数、最佳电路结构以及适当的系统稳定裕度,真正做到优化设计。

3.实现电路特性的模拟测试

电子电路设计过程中,大量的工作是数据测试和特性分析。但是受测试手段和仪器精度所限,测试问题很多。采用EDA技术后,可以方便地实现全功能测试。

四、EDA技术的软件

1.EWB(Electronics Workbench)软件。EWB是基于PC平台的电子设计软件,由加拿大Interactive Image Technologies Ltd.公司研制开发,该软件具有以下特点:①集成化工具:一体化设计环境可将原理图编辑、SPICE仿真和波形分析、仿真电路的在线修改、选用虚拟仪器、借助14种分析工具输出结果等操作在一个集成系统中完成。②仿真器:交互式32位SPICE强化支持自然方式的模拟、数字和数/模混合元件。自动插入信号转换界面,支持多级层次化元件的嵌套,对电路的大小和复杂没有限制。只有提供原理图网络表和输入信号,打开仿真开关就会在一定的时间内将仿真结果输出。③原理图输入:鼠标点击一拖动界面,点一点自动连线。分层的工作环境,手工调整元器件时自动重排线路,自动分配元器件的参考编号,对元器件尺寸大小没有限制。④分析:虚拟测试设备能提供快捷、简单的分析。主要包括直流工作点、瞬态、交流频率扫描、付立叶、噪声、失真度、参数扫描、零极点、传递函数、直流灵敏度、最差情况、蒙特卡洛法等14种分析工具,可以在线显示图形并具有很大的灵活性。⑤设计文件夹:同时储存所有的设计电路信息,包括电路结构、SHCE参数、所有使用模型的设置和拷贝。全部存放在一个设计文件中,便于设计数据共享以及丢失或损坏的数据恢复。⑥接口:标准的SPICE网表,既可以输入其他CAD生成的SHCE网络连接表并行成原理图供EWB使用,也可以将原理图输出到其他PCS工具中直接制作线路板。

2.PROTEL软件。广泛应用的Protel99主要分为两大部分:用于电路原理图的设计原理图设计系统(Advanced Schematic)和用于印刷电路板设计的印刷电路板设计系统(Advanced PCB)。

篇8

关键词:EDA技术 FPGA/CPLD VHDL

随着计算机技术的出现及快速的更新与发展,以此为基础并且在其强劲的推动下电子技术得到了远超以往的飞速发展。如今,现代电子产品几乎渗透入了人类生产生活中的各个领域。由于其的高性能,大复杂程度,价格的相对低廉及较快的更新换代速度,使得人类社会达到了一个高度发达的信息化社会阶段,进一步的促进了社会生产力的发展和社会信息化程度的提高。

作为现代电子设计技术的核心,EDA(Electronic Design Automation)技术是以硬件描述语言HDL(Hardware Description Language)为系统逻辑描述的主要表达方式,以可编程器件PLD(Programmable Logic Device)为实验载体,依赖功能强大的计算机,在EDA工具软件平台上,自动的完成逻辑编译,逻辑化简,逻辑分割,逻辑综合,结构综合(布局布线)以及逻辑优化和仿真测试,直至实现既定的电子线路系统功能。EDA技术的应用使得设计者的工作仅限于利用硬件描述语言和EDA软件平台来完成对系统硬件功能的实现,极大的提高了设计效率,缩短了设计周期,节省了设计成本。

一、EDA技术的发展

回顾自20实际90年代初到如今近30年电子设计技术的发展历程,EDA工具的发展经历大致可划分为三个阶段:计算机辅助设计(CAD),计算机辅助工程(CAE)和电子设计自动化(EDA)。

1.计算机辅助设计CAD(Computer Aided Design)阶段。

20世纪70年代是EDA技术发展的初期阶段,人们开始使用计算机辅助进行IC版图编辑和PCB布局布线,使设计者从繁琐,重负的计算和绘图中解脱出来,由于PCB布局布线工具受到计算机工作平台的制约,其支持的设计工作有限且性能较差。

2.计算机辅助工程设计CAE(Computer Aided Engineering)阶段。

20世纪80年代为CAE阶段,此时EDA工具主要以逻辑模拟,定时分析,故障仿真,自动布局和布线为核心,如果说CAD工具代替了设计工作中绘图的重复劳动,则CAE工具则代替了设计师的部分工作。然而,大部分从原理图出发的EDA工具仍不能满足复杂电子系统的设计要求。

3.电子设计自动化EDA(Electronic Design Automation)阶段。

20世界90年代,设计工程师逐步从使用硬件转向设计硬件,从单个电子产品开发转向系统级电子产品开发,即片上系统集成。这时的EDA工具不仅具有电子系统设计的能力,而且能提供独立于工艺和厂家的系统级设计能力,具有高级抽象的设计构思手段。可以说,20世纪90年代EDA技术的发展是电子电路设计的革命。

二、EDA技术的特征

EDA技术代表了当今电子设计的最新发展方向,其基本特征是设计人员按照“自顶向下”的设计方法,对整个系统进行方案设计与功能划分,系统的关键电路采用一片或几片专用集成电路(ASIC)实现。然后采用硬件描述语言(HDL)完成系统行为级设计,最后通过综合器及适配器生成最终的目标期间,这种设计方法被称为高层次的电子设计方法。下面介绍与EDA基本特征有关的几个概念。

1.“自顶向下”的设计方法

过去在较复杂的电子线路设计中,其基本思想是利用“自底向上”方法,用标准集成电路构造出一个新的系统,如同一砖一瓦构造金字塔,不仅效率低,成本高,而且容易出错。

“自顶向下”的设计方法则是从系统整体进行设计,从顶层进行功能方框图的划分和结构设计,在方框图一级进行仿真,纠错,并用硬件描述语言对高层次的系统行为进行描述,在系统一级经行验证。然后用综合优化工具生成具体门电路的网表。其对应的物理实现级可以是印刷电路板或专用集成电路.由于设计的主要仿真和调试过程是在高层次上完成的。这不仅有利于早期发现结构设计上的错误。避免设计工作的浪费。而且也减少了逻辑功能仿真的工作量,提高了设计的一次成功率。

2.ASIC设计

现代电子产品的复杂度日益加深,一个电子系统可能由数万中小规模集成电路构成,这就带来了体积大、功耗大、可靠性差的问题,解决这一问题的有效方法就是采用ASIC(Application Specific Integrated Circuits)芯片进行设计。AS1C按照设计方法的不同可分为:全定制ASIC,半定制ASIC。可编程ASIC(@ ~可编程逻辑器件)。

设计全定制AS1C芯片时,设计师要定义芯片上所有晶体管的几何图形和工艺规则,最后将设计结果交由IC厂家掩膜制造完成。优点是:芯片可以获得最优的性能,即面积利用率高、速度快、功耗低。缺点是:开发周期长,费用高,只适合大批量产品开发。

半定制ASIC芯片的版图设计方法有所不同,分为门阵列设计法和标准单元设计法,这两种方法都是约束性的设计方法,其主要目的就是简化设计,以牺牲芯片性能为代价来缩短开发时间。

3.硬件描述语言

硬件描述语言HDL(Hardware Description Language)是一种用于设计硬件电子系统的计算机语言,它用软件编程的方式来描述电子系统的逻辑功能、电路结构和连接形式,与传统的门级描述方式相比,它更适合大规模系统的没计。设计人员可以利用HDL语言来描述自己的设计思想,然后利用EDA工具进行仿真,综合到门级网表,最后由ASIC和FPGA实现其功能。

硬件描述语言是EDA技术的中的重要组成部分,发展至今已有几十年的历史,并且已经成功的应用到系统的仿真,验证和综合等方面。目前世界上已有上百种硬件描述语言,常用的硬件描述语言有AHDL,VHDL和Verilog HDL,其中VHDL和Verilog HDL是当前最流行并且已经成为IEEE标准的硬件描述语言。这两种硬件描述语言的同特点是可以形式化地抽象表示电路的结构与行为,支持逻辑设计中层次及领域的描述,可借用高级语言的精巧结构来简化电路的描述,具有电路仿真与验证机制以保证设计的正确性,支持电路描述由高层到底层的综合转换,硬件描述与实现工艺无关,便于文档管理,易于理解和设计重用。同时VHDL与Verilog HDL又各自具有独自的特点。Verilog HDL非常容易学习理解,一般可在2~3个月掌握这种设计技术,较适合系统级,算法级,寄存器传输级,门级及开关级电路设计。简言之,Verilog HDL对电路底层细节的描述支持较好,较易控制综合后的电路结果。而相对的,VHDL虽然较难掌握,但其系统级硬件描述能力强,而且用户可自定义数据类型,设计灵活。缺点则是对电路细节的描述支持稍差。

4. 系统框架结构。

EDA系统框架结构(Framework)是一套配置和使用EDA软件包的规范,目前主要的EDA系统都建立了框架结构,如Cadence公司的Design Framework,Mentor公司的Falcon Framework等,这些框架结构都遵守国际CFI组织(CAD Framework Initiative)制定的统一技术标准。Framework能将来自不同EDA厂商的工具软件进行优化组合,集成在一个易于管理的统一的环境之下。而且还支持任务之间,设计师之间在整个产品开发过程中实现信息的传输与共享,这是并行工程和Top—Down设计方法的实现基础。

三、基于EDA软件的FPGA/CPLD开发流程

(1)设计输入(原理图/HDL文本编辑):利用EDA工具的文本或图形编辑器将设计者的设计意图用文本(HDL)或图形方式(原理图或状态图)表达出来。这是在EDA软件上对FPGA/CPLD开发的最初步骤(2)编译:完成设计描述后便可通过编译器进行排错,编译,变成特定的文本格式。为下一步的综合做准备。(3)综合:一般来说,综合是仅对HDL而言的。这是将软件设计与硬件的可实现性挂钩,将软件转化为硬件电路的关键步骤。综合后HDL综合器可生成ENIF、XNF或VHDL等标准格式的网表文件。其从门级开始描述了最基本的门电路结构。(4)行为仿真和功能仿真:利用产生的网表文件进行功能仿真。以便了解设计描述与设计意图的一致性(可省略此步骤)。(5)适配:适配器也称结构综合器,其功能是将综合后的网表文件针对某一具体的目标器件进行逻辑映射操作。其中包括底层器件配置,逻辑分割,逻辑优化,布局布线。适配完成后,EDA软件将产生针对此项设计的适配报告和JED下载文件等多个结果。适配报告指明了芯片内资源的分配与利用,引脚锁定,设计的布尔方程描述情况。(6)功能仿真和时序仿真:在编程下载前必须利用EDA工具对适配生成的结果进行模拟测试。该仿真接近真实器件的运行状态,仿真过程中已考虑到器件的硬件特性,因此仿真精度要高得多。仿真是在EDA设计过程中的重要步骤。(7)编程下载:若以上的所有过程都没有发现问题,便可以将适配器产生的下载文件通过编程器或编程电缆载入目标芯片FPGA或CPLD中。(8)硬件仿真与测试:最后是将含有载入了设计的FPGA或CPLD的硬件系统进行统一测试,最终验证设计项目在目标系统上的实际工作情况,以排除错误,改进设计。

四、结束语

EDA技术是电子设计领域的一场革命。目前正处于高速发展阶段,每年都会有新的EDA工具问世。虽然EDA作为一套完整的电子技术设计系统较为复杂,但作为工具却十分方便于用户的使用。EDA工具大都采用系统级目标设计方法,具有良好的设计界面。可视化操作方法及系统框架结构使得设计者可以把精力主要放在概念设计等顶层设计上,而把大量的具体的层次化设计工作留给EDA系统去做。而我国EDA技术的应用水平长期落后于发达国家,因此广大电子工程人员应尽早掌握这一先进技术。这不仅是提高设计效率的需要。更是我国电子工业在世界市场上生存,竞争与发展的需要。

参考文献:

[1]江国强.EDA技术与应用(第三版)[M].电子工业出版社,2010.

篇9

关键词:计算机;现状;应用;发展趋势

一、我国计算机应用的现状1956年,中国科学院成立计算技术、半导体、电子学及自动化四个研究所,标志着我国计算机事业的起步。从电子管小型计算机103计算机的问世一直到20世纪70年代集成电路大型计算机150计算机的成功研制,我国计算机主要用于石油、地质、气象和军事等部门。20世纪80年代初,我国自行研制出第一台亿次运算计算机――银河-I号,填补了我国巨型机的空白。近些年,我国高性能计算机和微型计算机的发展则更为迅速,曙光4000A高性能计算机的运算峰值每秒达到10万亿次,进一步缩短了我国高性能计算机与世界顶级水平的差距,通用高性能微处理器龙芯1号和2号的问世也标志我国在现代通用微处理器设计方面实现了零的突破[1]。

20世纪70年代,我国计算机开始被应用到社会的一些领域。随着计算机应用技术的不断发展,计算机应用技术在中国已广泛应用到政府、服务、农业以及文化教育等不同的行业中,同时也走进了人们的家庭生活中。近些年来,计算机网络技术的发展更是极大地拓展了计算机的应用领域,加快了社会信息化的进程。

1数据管理

数据管理是基于数据库管理系统为管理者提供决策依据、提高决策水平、改善运营策略的一种计算机技术。数据处理的流程包括数据的采集、存储、加工、分类、排序、检索和等。数据加工是当今计算机的一个主要应用,是现代化科学管理的基础。据不完全非官方统计,八成以上的计算机应用主要是数据管理,成为计算机应用的主导方向。数据管理已广泛应用于办公自动化、企事业计算机辅助管理与决策、情报检索、图书馆、电影电视动画设计、会计电算化等各行各业。

2科学计算

科学计算是计算机较早的应用领域之一,它是指利用计算机技术来处理科学研究和工程技术中所遇到的数学计算问题。在现代科学和工程技术中,经常会遇到大量复杂的数学计算问题,这些问题如果用一般的计算工具来解决是非常困难的,而利用计算机高速的处理能力、数据存储量大和连续运算能力强等特性来进行处理,则可以解决人工无法完成的各种科学计算问题。例如:卫星导航、天气预测、工程设计、数学计算等都需要依靠计算机来承担其繁杂的计算工作。

3计算机过程控制

过程控制是通过计算机技术对数据进行采集、分析并按预定目标对控制对象进行自动控制。过程控制技术的应用可以提高自动化、智能化水平,提高控制的准确性和实效性,从而提高生产力水平。目前石油开发、机械制造、交通运输、电力行业等都是计算机过程控制技术的重要应用领域。

4计算机辅助技术

计算机辅助技术包括计算机辅助设计(CAD)、计算机辅助制造(CAM)和计算机辅助教学(CAI)。

计算机辅助设计是指利用计算机技术辅助人们进行最佳设计效果的一种技术。CAD技术已应用于集成电路设计、交通工具设计、工程建筑设计等领域。计算机辅助设计技术的应用不但缩短了设计时间,提高了工作效率,节省了人力、物力和财力,更重要的是提高了设计质量。

计算机辅助制造是利用计算机系统进行产品的加工控制过程,输入的信息是零件的工艺路线和工程内容,输出的信息是刀具的运动轨迹。将CAD和CAM技术集成,可以实现设计产品生产的自动化,这种技术被称为计算机集成制造系统。

计算机辅助教学则是指利用计算机技术进行教学的一种应用。如:制作教学课件可以用Authorware、PowerPoint、Flash等工具软件。CAI的应用能让教学内容更生动,激发学生的学习兴趣,提高教学质量,提升教学氛围,是现代教学中必不可少的一种手段。

5互联网

互联网(Internetwork),又称为因特网,它是指网络与网络之间进行互联形成的一个庞大的网络,这些网络遵守一定的通信协议,从而在逻辑上形成全球性的巨大网络。互联网能够不受空间的限制来进行个性化信息的实时相互交换,它替代了传统的以实物为载体的交换方式,并使得信息传递的形式多样化,成本也更低,有价值的信息资源通过整合使得人们获取的速度更快、更准。在现实生活中互联网的应用非常广泛,在互联网上可以进行信息检索、收发电子邮件、学习、娱乐、购物、网络会议、远程医疗服务等,让人们在学习、生活、事业上都受益匪浅[2]。

二、计算机未来的发展趋势1巨型化

未来计算机在功能方面要巨型化。计算机在军事、天文、科学计算、生物工程等领域应用面临着大量的数值计算,对计算机存储容量和处理速度的要求也越来越高,功能强大的巨型计算机必将成为其重要发展趋势。

2微型化

从计算机的发展历程来看,其经过了电子计算机、晶体管计算机、中小规模集成电路计算机、大规模和超大规模集成电路计算机四个大的阶段,从最开始的体积大、功耗大、速度慢、存储容量小、可靠性差、维护困难和价格昂贵到现在的每一个人都能拥有个人计算机,其成本和体积在成千上万倍地缩小,这就促使了计算机在社会中的各个领域快速地渗透和普及。随着电子技术的进一步发展,人们对计算机使用的方便性有着更高的要求,希望能随时随地随身携带、使用计算机,如目前已慢慢兴起的智能化穿戴设备已具备计算机的部分功能。所以未来计算机的发展也将会不断地趋向于微型化。

3专业化

嵌入式设备和工业计算机在专业领域和工业上有着广阔的应用前景,如工控计算机、车载电脑、智能终端设备等。随着社会信息化程度越来越高,很多特殊行业对计算机的应用要求变得更加有针对性、更加个性化,这也就要求计算机未来的发展更专业化。

4网络化

由于计算机技术的飞速发展,网络在通信、交通、医疗、金融、教育等各行各业中,甚至是我们的家庭生活中都得到了广泛的应用。目前计算机网、通信网、有线电视网在向着三网合一的方向进行建设,以便将来能更好地通过网络传递信息,使计算机的实际应用效用得到进一步的提升,所以,未来计算机的网络化会进一步加深。

5智能化

人们目前使用的第四代计算机已经能够代替人进行部分的脑力劳动和体力劳动,但是相对于人的逻辑能力则显得笨拙多了,所以人们希望计算机能具有更多人的智能,比如相互交流、自主学习和思考、语言理解、感观和视觉的判别等,这就促使了一批新型计算机的诞生,如量子计算机、DNA计算机、光子计算机、分子计算机和纳米计算机,等等。这些计算机技术的出现将会从根本上改变目前计算机存在的一些弊端,加快人类文明发展的步伐[3]。

参考文献:

〖=1〗王吉.计算机系统硬件发展探析〖=J〗.计算机光盘软件与应用,2013(21).

篇10

关键词: 三维集成电路; 三维晶圆级封装; 三维堆叠技术; 三维片上系统

中图分类号: TN431.2?34 文献标识码: A 文章编号: 1004?373X(2014)06?0104?04

依靠减小特征尺寸来不断提高集成度的方式因为特征尺寸越来越小而逐渐接近极限,而三维芯片则是继续延续摩尔定律的最佳选择[1]。理想的三维芯片是在硅片上交替的制造器件层和布线层,由于难度较大,现阶段基本无法实现。目前的三维芯片,本质上是封装技术的一种延伸,是将多个裸晶片(die)堆叠起来,这种技术允许基本电路元件在垂直方向堆叠,而不是仅仅在平面互连。三维芯片的主流技术有两种:SOI技术[2]和纯硅技术[3],TSV最小间距可达6 mm,最小直径可达2 mm,即将走向量产阶段,成为主流技术[4]。

三维芯片优势很多,除了明显的提高集成度之外,更小的垂直互连,还可提高互连速度和减小最长全局连线。同时,连线的缩短会减少长连线上中继器的数量,从而减少功耗[5]。因为堆叠的晶片可以是不同工艺的,三维芯片非常符合片上系统(System?on?Chip,SoC)的需求,生产异构的复杂系统。三维芯片符合未来的高性能计算和多核/众核处理器的需求。目前IBM和Intel都纷纷在众核处理器中试用三维堆叠技术,如IBM的Cyclops系统[6]和Intel的万亿次计算系统[7]。

1 三维互连技术定义

为了能够对三维技术的前景有个更清晰的了解,首先需要确定三维技术的定义,并给众多的技术一个明确的分类[8]。组成电子系统的基本模块为晶体管、二极管、被动电路元件、MEMS等。通常电子系统由两部分组成:基本模块和用于连接它们的复杂的互连系统。互连系统是分级别的,从基本模块之间窄而短的连线到电路块之间的长连线。设计良好的集成电路,线网会分为本地互连线、中层互连线和顶层互连线。电路也是分级别的,则从晶体管、逻辑门、子电路、电路块到最后的带引脚的整电路。如今被称为三维技术的,是一种特别的通孔技术,这种技术允许基本电路元件在垂直方向堆叠,而不是仅仅在平面互连。这是三维集成技术的最显著特征,它带来了单位面积上的高集成度。三维互连技术,指的是允许基本电子元件垂直堆叠的技术。这里的基本电子元件指的是基本电子器件,例如晶体管、二极管、电阻、电容和电感。三维互连技术相关的一些定义见表1。

表1 三维互连技术的定义及特征

3D?Packaging(3D?P):使用传统包装技术的三维集成,例如引线键合(wirebonding),层叠封装(package?on?package stacking)或嵌入PCB板。

3D?Wafer?Level?Packaging(3D?WLP):使用晶圆级封装技术的三维集成,在晶圆制造之后进行,例如倒装封装、fan?in和fan?out重构晶圆级封装。

3D?System?on?Chip(3D?SoC):做为片上系统(System?on?Chip,SoC)设计的电路,但是用堆叠的多层晶片实现的。三维互连直接连接不同晶片上的电路块。这种互连是全局级别的互连,可以允许大量的使用IP块。

3D?Stacked?Integrated?Circuit(3D?SIC):允许三维堆叠栈中的不同层的电路块之间有直接的互连,这种互连是顶层和中层级别的互连线。这种三维堆叠栈由一系列的前段工艺(器件)和后段工艺(互连线)的交替堆叠而成的。

3D?Integrated?Circuit(3D?IC):由各种有源器件直接堆叠而成。这里的互连是本地级的。这种三维堆栈是由器件和互连线混合堆叠而成的。

在上述介绍了很多实现三维互连的技术。其中备受关注的一个是硅通孔TSV技术,这个技术被广泛的用于3D?WLP, 3D?SoC和 3D?SIC的互连线中。

硅通孔(Through Silicon Via,TSV),也叫硅穿孔,是一种穿透硅晶圆的器件层的垂直电连接[3]。具体的说,TSV就是用来连通晶圆上下两边的通孔,在通孔中灌注导体形成连线。灌注的导体可以根据其具体工艺来确定,如导电材料铜、钨以及多晶硅,并用绝缘层(常为二氧化硅)将TSV导电材料与基底隔离开。这层绝缘层也确定了TSV主要的寄生电容及热性能。TSV导体与通孔壁之间镀有一层很薄的阻碍层(如钽),用来阻止导体中的金属原子向硅基底渗透。TSV通孔的形成有Bosch深反应性离子蚀刻(Bosch Deep Reactive Ion Etching,Bosch DRIE)、雷射钻孔(laser drilling)、低温型深反应性离子蚀刻(cryogenic DRIE)和各种湿式蚀刻(等向性和非等向性蚀刻)技术。在通孔形成的工艺上,特别强调其轮廓尺寸一致性,导孔不能有残渣,且通孔的形成必须满足相当高的速度要求。

有很多方法可用于实现基于TSV的3D?SIC和3D?WLP,不过大致都划分为如下工序:硅通孔阶段、晶圆减薄、薄晶圆处理和背部处理、三维键合。这些工序的顺序可能不同,会产生一系列的工艺流程。这些工艺流程可以按照四种特征来分类,具体如下:

(1) 按照TSV过程与器件扩散过程的先后顺序(见图1)。先通孔:通孔工艺在前段工艺(Front?End of Line,FEOL)之前;采用这种技术使用的导电材料需要承受后段工艺的高温热冲击(常大于1 000 oC),所以只能选择多晶硅为通孔材料;中通孔:通孔工艺在前段工艺FEOL器件制造之后,但是在后段工艺(back?end of line,BEOL)互连线之前;后通孔:通孔工艺在后段工艺之后,或与互连线工艺集成在一起进行;采用这种技术可以使用金属材料如铜和钨。

(2) 根据TSV工艺与三维键合工艺的顺序来划分:TSV工艺在三维键合工艺之前或者之后。

(3) 根据晶圆减薄与三维键合工艺的顺序来划分:晶圆减薄工艺在三维键合工艺之前或者之后。

(4) 根据三维键合工艺来划分:分为晶圆到晶圆(Wafer?to?Wafer,W2W)[9]键合、晶片到晶圆(Die?to?Wafer,D2W)[10?11]键合、晶片到晶片(Die?to?Die,D2D)[12?14]键合三种。采用的晶圆键合方法,包括:氧化物融熔键合(oxide fusion bonding)、聚合物黏着键合(polymer adhesive bonding) 、金属?金属键合(metal?metal bonding)。其中,金属?金属键合又可分为:金属融熔键合(metal fusion bonding)和金属共晶键合 (metal eutectic bonding),如:铜锡共晶(Cu?Sn eutectic)等。

以上是按照四种主要的特征来划分,除此以外,还可以按照另外的特征来划分,例如F2F(face?to?face)键合或者B2F(back?to?face)键合等。上面定义的通用流程特征可应用于3D?WLP和3D?SIC的顶层互连线和中层互连线。

对于3D?WLP TSV技术,后通孔的路径是最重要的,它在三维键合之前完成,可以是前面TSV(TSV与互连线在器件的同侧)或者是背面TSV(TSV在器件背面)。这些方法不仅仅可以用于平常的半导体技术,而且可以用于无源器件或者混合信号模块。另外,与TSV相关的问题还包括成品率、TSV可靠性、TSV寄生效应、TSV冗余、热通孔等问题,均是研究热点。

2 三维技术蓝图

依据上文的三维互连线级别和三维工艺的定义,给出了每个级别的TSV的发展蓝图如表2,表3所示[8]。对于3D?SIC,它分两个互连线级别,具体如下:顶层互连线级别的3D?SIC和3D?SoC。这种技术允许W2W, D2W和D2D堆叠。这种三维TSV工序一般与硅晶圆的制造生产线集成在一起,而三维键合工序一般在硅工序之外。中层互连线级别的3D?SIC,例如小电路块的三维堆叠。这种技术一般是W2W堆叠。三维TSV工序与三维键合工序都集成在硅制造生产线之中。

表2 顶层互连线级别的3D?SIC/3D?SoC发展蓝图

Intel认为三维芯片是未来芯片的发展趋势,它会带来架构的极大改变,未来即将迈入三维时代。Intel实验室与台湾工研院有合作开发采用三维芯片架构的低功耗内存技术,该技术将来可应用在百万级计算、超大规模云数据中心等大型系统以及智能手机、Ultrabook、平板计算机等移动系统中。Amkor公司和位于比利时的纳米电子和纳米技术研究中心IMEC,将合作开发成本效益高的基于晶圆级三维集成技术。许多公司如IBM;Amkor,Intel,IMEC,Samsung,Qimonda AG,德州仪器、Tessera,Tezzaron,Ziptronix,Xanoptix,ZyCube都在研究三维集成技术;TSMC(台湾)、Tezzaron、特许(新加坡)已有晶圆厂宣布有意将TSV技术量产,这些都是三维技术走向量产阶段、成为主流技术的前兆。

表3 中层互连线级别的3D?SIC发展蓝图

3 三维集成技术面临的挑战

成功的发展三维集成电路是一个综合复杂的问题,这个过程中面临多种挑战,需要克服很多问题。本文列出了几个最关键的问题,具体如下:

(1) 技术限制。三维集成技术的工艺还不完善。现在比较成熟的技术我们俗成2.5D,采用的bond?pad方式连线的晶圆级封装技术。基于TSV的三维堆叠技术目前已能实现,但是尚未大规模量产和一个完整的量产方案。例如是先通孔还是后通孔,三维集成是采用原有的设备改装还是全新的技术,是否会产生一种全新的三维集成厂,负责专门的三维集成工作,这些各个公司都有自己的研究方案,但尚未形成成熟的技术路线。

(2) 测试问题。测试技术也面临挑战,传统测试技术是针对单层系统设计的,未提供针对多层芯片集成的整体系统测试技术。

(3) 三维互连的设计问题。三维互连设计的问题主要表现在:第一,三维芯片中个各层可能是采用不用工艺完成的,要综合的对不同的层进行互连设计难度很大。现在常用的方法是,先进行一个三维划分,然后再进行各个层内的设计;第二,跨越几个层的全局互连线,例如时钟和电源电路,均需要重新考虑设计问题。

(4) 散热问题。在二维集成电路中,芯片发热已经对电路性能和可靠性产生了重要影响,采用三维工艺后,有源器件集成密度的大幅提升促使芯片功耗剧增,加之芯片内部使用的电介质填充材料导热性能不佳,种种不利因素使得三维集成电路芯片散热问题雪上加霜,散热问题成为集成电路物理设计中必须首先考虑的难点问题之一。目前也提出了很多解决热量问题的方案,但是并没有一个公认的完善的解决方案。

(5) CAD工具问题。集成电路的计算机辅助设计作为芯片设计的关键技术,对芯片性能、功耗、工作温度、设计?制造通过率等都有着巨大影响,是三维集成电路发展的基石。过去几年来三维集成工艺的发展成熟,使得人们已开始在三维集成电路方面开展积极的探索,但是目前的三维集成电路的CAD软件尚不完善,大部分均为现有的二维CAD软件的简单扩展,还没有一个通用的全面的软件。

4 结 语

CMOS集成电路发展至今,传统二维(2D)平面集成工艺已达集成密度极限,为了提升芯片性能,集成更多晶体管,就必须增加芯片尺寸,而芯片尺寸增加带来全局互连距离的延长,从而引发了更严峻的互连问题:延时增加、噪声、信号串扰问题不断加剧限制了数据总线带宽,互连问题成为二维集成电路的瓶颈。要克服互连线带宽限制,必须实质性地改变设计方法。

三维集成电路是传统二维集成电路从传统平面集成方式向垂直方向立体集成方式的延伸。三维集成电路的优势在于:多层器件重叠结构使芯片集成密度成倍提高;TSV结构使互连长度大幅度缩短,提高传输速度并降低了功耗;重叠结构使单元连线缩短,并使并行信号处理成为可能,提高了芯片的处理能力;多种工艺,如CMOS、MEMS、SiGe、GaAs混合集成,使集成电路功能多样化;减少封装尺寸,降低设计和制造成本。本文给出了三维技术的定义,并给众多的三维技术一个明确的分类,包括三维封装(3D?P)、三维晶圆级封装(3D?WLP)、三维片上系统(3D?SoC)、三维堆叠芯片(3D?SIC)、三维芯片(3D?IC)。给出了比较有应用前景的几种技术,三维片上系统和三维堆叠芯片的技术蓝图。最后,分析了三维集成电路存在的一些问题,包括技术问题、测试问题、散热问题、互连线问题和CAD工具问题,并指出了未来的研究方向。

参考文献

[1] BANSAL S. 3?d stacked die: Now or future?[C]// Proceedings of Design Automation Conference. [S.l.]: DAC, 2010: 298?299.

[2] KOESTER S J. Wafer?level 3d integration technology [J]. IBM Journal of Research and Development, 2008, 52(6): 583?597.

[3] PATTI R S. Three?dimensional integrated circuits and the future of system?on?chip designs [J]. Proceedings of the IEEE, 2006, 94(6): 1214?1224.

[4] PAVLIDIS V F, FRIEDMAN E G. Interconnect?based design methodologies for three?dimensional integrated circuits [J]. Proceedings of the IEEE, 2009, 97: 123?140.

[5] ZHANG R, ROY K, KOH C?K, JANES D B. Stochastic interconnect modeling, power trends, and performance characterization of 3?d circuits [J]. IEEE Transactions on Electron Devices, 2001, 48(4): 638?652.

[6] ZHANG Y. A study of the on?chip interconnection network for the ibm cyclops64 multi?core architecture [C]// Proceedings of Parallel and Distributed Processing Symposium. [S.l.]: PDPS, 2006: 10?14.

[7] Anon. Addressing the challenges of tera?scale computing [J]. Intel Technology Journal, 2009,13(4): 1?11.

[8] Anon. International technology roadmap for semiconductors [R/OL]. [2013?07?02]. http:// .

[9] TAOUIL M, HAMDIOUI S. Yield improvement for 3d wafer?to?wafer stacked memories [J]. Journal of Electronic Testing?Theory and Applications, 2012, 28(4): 523?534.

[10] CHOI W K. A novel die to wafer (d2w) collective bonding method for mems and electronics heterogeneous 3D integration [C]. Proceedings of 2010 60th Electronic Components and Technology Conference. [S.l.]: ECTC, 2010: 829?833.

[11] TAOUIL M. Test impact on the overall die?to?wafer 3d stacked IC cost [J]. Journal of Electronic Testing?Theory and Applications, 2012, 28(1): 15?25.

[12] BOWMAN K A. Impact of die?to?die and within?die parameter variations on the clock frequency and throughput of multi?core processors [J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2009, 17(12): 1679?1690.