集成电路产业研究范文

时间:2023-10-30 17:56:29

导语:如何才能写好一篇集成电路产业研究,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

集成电路产业研究

篇1

【关键词】集成电路 布图设计 知识产权

现代信息技术以微电子技术的发展为基础,而集成电路无疑是微电子技术中重要的一部分。但目前针对企业集成电路布图设计的侵权案件也日益增多,这给蒸蒸日上的半导体集成电路产业带来了不小的阴影。企业该如何有效地保护自己的集成电路知识产权是本文要探讨的核心问题。

一、集成电路知识产权保护的内容

(一)集成电路与集成电路布图设计。

集成电路,又称芯片,在电子学中是一种把电路小型化的方式,就是指将晶体管等元器件及其相互的连线固化在半导体晶圆表面上,从而使其可以具备某项电子功能的成品或半成品。

集成电路布图设计是指一种体现了集成电路各电子元件三维配置的方式的图形,布图设计是区别各种集成电路的基础,不同功能的集成电路其布图设计也不同,对集成电路的保护主要通过对布图设计的保护来实现。

(二)集成电路在知识产权保护上的特点

1.集成电路并未具有显著的创造性

集成电路集成规模的大小代表了集成电路产品的水平高低,集成电路产品的制造者着力提高的就是集成电路的集成度,即在同样大小的芯片上集成更多的电子元件。集成电路产业技术的发展主要体现在集成规模的提高上,规模的提高虽然在业内代表了技术的极大进步,但是在法律上并无法有力的说明其有显著的创造性,毕竟大多集成电路新产品都是在原有基础上发展而来的,所以集成电路产品集成度的提高并不当然等同于专利法上的创造性。

2.集成电路布图设计超出著作权保护范围

集成电路布图设计作为一种体现了作者独创性的图形作品,毫无疑问是受到著作权的保护的,但是笔者认为著作权对集成电路布图设计的保护并不到位。我国现行法律中规定了的著作权的内容中并没有集成电路的布图设计这一项。集成电路布图设计的价值主要体现在工业生产中的运用,但我们可以看到著作权对布图设计投入工业运用方面的保护是不足的,对于著作权人来说,传统的著作权的内容并不能很好地实现布图设计的价值。

3.集成电路知识产权保护需要协调与行业发展之间的关系

集成电路行业发展的主要方向就是不断提高集成电路芯片的集成规模,而这些发展和提高都是基于原有的集成电路设计,即大多通过“反向工程”的方法将获悉他人的集成电路布图设计方法,并在前人的基础上进行技术的提高和发展。毫无疑问的是,这种“反向工程”的方法是侵犯了原著作权人的禁止不经许可进行复制的权利的,但是我们不能简单地认为这种“窃取”别人知识产权的行为就是违法的,如果这样草率的下决定将会对整个集成电路行业的发展产生毁灭性的打击,极大地提高企业研发成本,同时也不利于社会信息化的实现。所以,我们的立法必须承认实行“反向工程”的合理之处,协调好知识产权保护与半导体行业发展的关系。

二、企业集成电路知识产品保护战略

(一)明晰权利归属。

企业应当和员工在研发新的集成电路设计之前,应当明确该集成电路的研发是在企业的组织和意志下进行,还是委托员工研发。根据我国《集成电路布图设计保护条例》第九条至第十一条规定,如果是委托员工研发的,在研发之前企业应与员工签订明确的委托开发协议,明确布图设计专有权的权利归属,以免日后发生争议无法出示相关证据。而与其他法人、组织、自然人合作开发的项目,在研发之前也应该签订类似协议,明确各方享有专有权的范围。

(二)重视知识产权的申报和登记。

依照法律规定,未经登记的布图设计是无法受到法律保护的。所以企业既要注重研发之前的明确各方权利义务的工作,也要在重视在研发之后的专有权申报工作。对集成电路布图设计进行登记的时候,要特别注意我国法律的时效规定,《集成电路布图设计保护条例》第十七条规定:布图设计自其在世界任何地方首次商业利用之日起2年内,未向国务院知识产权行政部门提出登记申请的,国务院知识产权行政部门不再予以登记[ 同上]。研发完毕之后立即进行登记工作,是企业避免遭遇知识产权侵权的重要方法。

(三)发现侵权行为要及时进行追究。

企业发现他人未经允许使用其布图设计,复制其布图设计中全部或者任何具有独创性的部分,为商业目的进口、销售或者以其他方式提供受保护的布图设计、含有该布图设计的集成电路或者含有该集成电路的物品的,企业可以要求对方及时停止侵权行为,并赔偿损失和制止侵权行为所产生的合理费用。如果双方协商不成,还可以要求国务院知识产权行政部门进行处理或向人民法院提讼。

三、总结

我国集成电路行业作为新兴行业,发展潜力巨大,但基于半导体集成电路产业的自身特点和国内市场严峻的竞争形势,集成电路企业应该在加大研发力度和增强市场竞争能力的同时,注重产品的知识产权保护工作,占据市场的技术优势,从而转化为经营的优势。在国家的政策扶植和相关法规不断完善的情况之下,我国的半导体集成电路生产企业必将迎来一个发展的春天。

参考文献:

篇2

【关键词】集成电路 现状 发展趋势

目前,随着信息技术水平的逐渐提高,集成电路产业得到了迅猛的发展,集成电路是信息产业发展的基本保证,在市场经济愈加激烈的环境中,集成电路对国家、社会、企业都有着巨大的影响。文中将分析集成电路的现状及其发展趋势,旨在促进集成电路的进一步发展。

1 集成电路的现状

集成电路发展起步较早,发展时间较长,通过不断的研发、引进与创新,其发展速度不仅逐步加快,其生产规模也在不断扩大。通过对集成电路的持续研究,实现了对其的全面了解与掌握,随着信息技术的提高,集成电路各种工艺技术在整机中得到了广泛的运用,而这主要得益于其具备批量大、成本低、可靠性强等特点。集成电路保证着信息产业的发展,其中对电子信息产业发展起到的积极影响最为突出。同时,集成电路受到市场与技术的影响,其产业结构在逐渐调整,但是其调整需要根据整机和系统应用的现状及发展需求来进行,只有这样,才能获得广阔的市场,进而实现其价值。

集成电路中单片系统集成芯片的特征尺寸在不断缩小、芯片的集成度在逐渐提升,工作电压在逐渐降低,集成电路的优势更加显著,主要表现在高集成度、低耗、高频等方面;同时,集成电路的工艺技术也在发展,其中超微细图形曝光技术得到了广泛的应用,促使IC制造设备及其加工系统实现了自动化与智能化。集成电路在设计过程中,最为重视的便是其系统设计、软硬件协同设计、先进的设计语言、设计流程,设计的低耗、可靠性等。为了促使集成电路形成完整的系统,实现了对各种技术的兼容,包括对数字电路与存储器的兼容、高低压的兼容以及高低频的兼容等。

集成电路的发展有着深远的影响,能够促进经济的持续发展。而电子产品的快速发展,使人们对电子产品的需求得到了满足;并且集成电路促进了通信的发展,进而给人们的生活带来了巨大的改变,人们的工作与学习都因此发生了较为明显的变化,具体表现在工作效率得以提高、学习方式得以丰富上;在信息技术的带动下,集成电路得以发展,满足了企业的需求,促进了企业综合竞争力的提高,使企业能够在激烈的市场竞争环境中有所发展,并在全球化、一体化的世界经济环境中,不断进步。集成电路的发展与应用影响着全球的经济,促进了区域经济的发展,推动了中国经济的快速增长。

2 集成电路的发展趋势

在信息技术高速发展的时代,集成电路也在不断发展,不仅其各种技术逐渐发展成熟,其各个领域的应用也在不断扩展,集成电路发展的目标是为了实现高频、高速、高集成和多功能、低消耗,其发展趋势呈现出愈加小型化、兼容化的特征。下文将阐述集成电路的发展趋势,主要表现在以下几方面:

2.1 器件的特征尺寸继续缩小

集成电路的特征尺寸一直按照摩尔定律在发展,集成电路的更新时间普遍为两年左右,随着集成电路的发展,依照此定律,集成电路的器件将逐渐进入纳米时代。相信,随着科学技术水平的逐渐提高,集成电路在新技术的带动下,其芯片的集成度将逐渐提升,其特征尺寸也将持续缩小。

在激烈的市场竞争环境中,要不断提高集成电路产品的性价比,才能获得综合的竞争优势,集成电路的高度集成与缩小的特征尺寸,提高了其性价比,促进了集成电路的持续发展。集成电路的特征尺寸已经接近其物理极限,但随着加工技术不断提升,市场竞争压力不断增加,集成电路的技术将有所发展,在其微细化方向有着巨大的发展潜力。同时,随着IC技术及其设计水平的提升,集成电路的发展规模也在不断扩大,并且集成技术愈加复杂,而这则使得集成电路的存储量不断增加,并且其反应与传输速率都在提升。

2.2 结合其他学科,促进新技术、新产业的形成

集成电路积极与其它学科进行结合,进而形成新的技术、产业、专业,改变着传统的格局,使其逐渐融合,促使集成电路的片上系统愈加复杂。片上系统在不断发展,并得到了广泛的关注,对其研究也在逐渐深入,从而促进了其快速的发展与运用。片上系统技术的应用,对移动通信、电视及网络有着深远的影响,其发展前景十分广阔。

2.3 集成电路的材料、结构与器件等快速更新

集成电路在发展过程中,其材料、结构与器件等在不断更新,其中新材料绝缘体上硅具有众多的优点,如:高度、低耗以及抗辐射等,在不同的领域均可以应用,发展空间十分广阔;其中Si异质结构器件也具有高速的优点,同时由于其具有较高的性价比,其应用较为广泛。集成电路的其他新材料、新结构与新器件等都普遍具有高速、低耗、抗辐射、耐温等特点,我们可以预见,集成电路的应用前景将越来越好。

2.4 集成电路的系统集成芯片

集成电路的技术在不断发展,其可以通过将电子系统集成在一个微小芯片上,进而实现对信息的加工和处理。片上系统属于系统集成电路,而将集成电路的数字电路、存储器等集成在一个芯片上,将形成更加完整的系统。

3 总结

综上所述,随着信息技术的持续发展,集成电路因其自身的优势得到了广泛的研究与运用,其发展速度是惊人的,目前,集成电路受到诸多因素的影响,其发展受到制约,但随着其整体尺寸的逐渐缩小及其材料、结构与器件等的快速更新,集成电路将得到进一步的发展,并进一步促进各个领域的自动化与智能化。

参考文献

[1]闵昊.中国集成电路的现状和发展趋势初析[J].电子技术,2011,12(01):5-6.

[2]王永刚.集成电路的发展趋势和关键技术[J].电子元器件应用,2009,1(01):70-72.

[3]张巍,徐武明.国内集成电路产业特点、问题、趋势及建议[N].江承德民族师专学报,2011,5(02):9-10.

作者简介

钟文瀚(1986-),男,湖南省冷水江市人。2012年毕业于广西大学控制理论与控制工程专业,硕士学位。现为国家知识产权局专利局专利审查协作广东中心实习研究员。研究方向为自动控制。

篇3

关键词:课程体系改革;教学内容优化;集成电路设计

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)34-0076-02

以集成电路为龙头的信息技术产业是国家战略性新兴产业中的重要基础性和先导性支柱产业。国家高度重视集成电路产业的发展,2000年,国务院颁发了《国务院关于印发鼓励软件产业和集成电路产业发展若干政策的通知》(18号文件),2011年1月28日,国务院了《国务院关于印发进一步鼓励软件产业和集成电路产业发展若干政策的通知》,2011年12月24日,工业和信息化部印发了《集成电路产业“十二五”发展规划》,我国集成电路产业有了突飞猛进的发展。然而,我国的集成电路设计水平还远远落后于产业发展水平。2013年,全国进口产品金额最大的类别是集成电路芯片,超过石油进口。2014年3月5日,国务院总理在两会上的政府工作报告中,首次提到集成电路(芯片)产业,明确指出,要设立新兴产业创业创新平台,在新一代移动通信、集成电路、大数据、先进制造、新能源、新材料等方面赶超先进,引领未来产业发展。2014年6月,国务院颁布《国家集成电路产业发展推进纲要》,加快推进我国集成电路产业发展,10月底1200亿元的国家集成电路投资基金成立。集成电路设计人才是集成电路产业发展的重要保障。2010年,我国芯片设计人员达不到需求的10%,集成电路设计人才的培养已成为当前国内高等院校的一个迫切任务[1]。为满足市场对集成电路设计人才的需求,2001年,教育部开始批准设置“集成电路设计与集成系统”本科专业[2]。

我校2002年开设电子科学与技术本科专业,期间,由于专业调整,暂停招生。2012年,电子科学与技术专业恢复本科招生,主要专业方向为集成电路设计。为提高人才培养质量,提出了集成电路设计专业创新型人才培养模式[3]。本文根据培养模式要求,从课程体系设置、课程内容优化两个方面对集成电路设计方向的专业课程体系进行改革和优化。

一、专业课程体系存在的主要问题

1.不太重视专业基础课的教学。“专业物理”、“固体物理”、“半导体物理”和“晶体管原理”是集成电路设计的专业基础课,为后续更好地学习专业方向课提供理论基础。如果基础不打扎实,将导致学生在学习专业课程时存在较大困难,更甚者将导致其学业荒废。例如,如果没有很好掌握MOS晶体管的结构、工作原理和工作特性,学生在后面学习CMOS模拟放大器和差分运放电路时将会是一头雾水,不可能学得懂。但国内某些高校将这些课程设置为选修课,开设较少课时量,学生不能全面、深入地学习;有些院校甚至不开设这些课程[4]。比如,我校电子科学与技术专业就没有开设“晶体管原理”这门课程,而是将其内容合并到“模拟集成电路原理与设计”这门课程中去。

2.课程开设顺序不合理。专业基础课、专业方向课和宽口径专业课之间存在环环相扣的关系,前者是后者的基础,后者是前者理论知识的具体应用。并且,在各类专业课的内部也存在这样的关系。如果在前面的知识没学好的基础上,开设后面的课程,将直接导致学生学不懂,严重影响其学习积极性。例如:在某些高校的培养计划中,没有开设“半导体物理”,直接开设“晶体管原理”,造成了学生在学习“晶体管原理”课程时没有“半导体物理”课程的基础,很难进入状态,学习兴趣受到严重影响[5]。具体比如在学习MOS晶体管的工作状态时,如果没有半导体物理中的能带理论,就根本没办法掌握阀值电压的概念,以及阀值电压与哪些因素有关。

3.课程内容理论性太强,严重打击学生积极性。“专业物理”、“固体物理”、“半导体物理”和“晶体管原理”这些专业基础课程本身理论性就很强,公式推导较多,并且要求学生具有较好的数学基础。而我们有些教师在授课时,过分强调公式推导以及电路各性能参数的推导,而不是侧重于对结构原理、工作机制和工作特性的掌握,使得学生(尤其是数学基础较差的学生)学习起来很吃力,学习的积极性受到极大打击[6]。

二、专业课程体系改革的主要措施

1.“4+3+2”专业课程体系。形成“4+3+2”专业课程体系模式:“4”是专业基础课“专业物理”、“半导体物理”、“固体物理”和“晶体管原理”;“3”是专业方向课“集成电路原理与设计”、“集成电路工艺”和“集成电路设计CAD”;“2”是宽口径专业课“集成电路应用”、“集成电路封装与测试”,实行主讲教师负责制。依照整体优化和循序渐进的原则,根据学习每门专业课所需掌握的基础知识,环环相扣,合理设置各专业课的开课先后顺序,形成先专业基础课,再专业方向课,然后宽口径专业课程的开设模式。

我校物理与电子科学学院本科生实行信息科学大类培养模式,也就是三个本科专业大学一年级、二年级统一开设课程,主要开设高等数学、线性代数、力学、热学、电磁学和光学等课程,重在增强学生的数学、物理等基础知识,为各专业后续专业基础课、专业方向课的学习打下很好的理论基础。从大学三年级开始,分专业开设专业课程。为了均衡电子科学与技术专业学生各学期的学习负担,大学三年级第一学期开设“理论物理导论”和“固体物理与半导体物理”两门专业基础课程。其中“固体物理与半导体物理”这门课程是将固体物理知识和半导体物理知识结合在一起,课时量为64学时,由2位教师承担教学任务,其目的是既能让学生掌握后续专业方向课学习所需要的基础知识,又不过分增加学生的负担。大学三年级第二学期开设“电子器件基础”、“集成电路原理与设计”、“集成电路设计CAD”和“微电子工艺学”等专业课程。由于“电子器件基础”是其他三门课程学习的基础,为了保证学习的延续性,拟将“电子器件基础”这门课程的开设时间定为学期的1~12周,而其他3门课程的开课时间从第6周开始,从而可以保证学生在学习专业方向课时具有高的学习效率和大的学习兴趣。另外,“集成电路原理与设计”课程设置96学时,由2位教师承担教学任务。并且,先讲授“CMOS模拟集成电路原理与设计”的内容,课时量为48学时,开设时间为6~17周;再讲授“CMOS数字集成电路原理与设计”的内容,课时量为48学时,开设时间为8~19周。大学四年级第一学期开设“集成电路应用”和“集成电路封装与测试技术”等宽口径专业课程,并设置其为选修课,这样设置的目的在于:对于有意向考研的同学,可以减少学习压力,专心考研;同时,对于要找工作的同学,可以更多了解专业方面知识,为找到好工作提供有力保障。

2.优化专业课程的教学内容。由于我校物理与电子科学学院本科生采用信息科学大类培养模式,专业课程要在大学三年级才能开始开设,时间紧凑。为实现我校集成电路设计人才培养目标,培养紧跟集成电路发展前沿、具有较强实用性和创新性的集成电路设计人才,需要对集成电路设计方向专业课程的教学内容进行优化。其学习重点应该是掌握基础的电路结构、电路工作特性和电路分析基本方法等,而不是纠结于电路各性能参数的推导。

在“固体物理与半导体物理”和“晶体管原理”等专业基础课程教学中,要尽量避免冗长的公式及烦琐的推导,侧重于对基本原理及特性的物理意义的学习,以免削弱学生的学习兴趣。MOS器件是目前集成电路设计的基础,因此,在“晶体管原理”中应当详细讲授MOS器件的结构、工作原理和特性,而双极型器件可以稍微弱化些。

对于专业方向课程,教师不但要讲授集成电路设计方面的知识,也要侧重于集成电路设计工具的使用,以及基本的集成电路版图知识、集成电路工艺流程,尤其是CMOS工艺等相关内容的教学。实验实践教学是培养学生的知识应用能力、实际动手能力、创新能力和社会适应能力的重要环节。因此,在专业方向课程中要增加实验教学的课时量。例如,在“CMOS模拟集成电路原理与设计”课程中,总课时量为48学时不变,理论课由原来的38学时减少至36学时,实验教学由原来的10学时增加至12个学时。36学时的理论课包含了单级运算放大器、差分运算放大器、无源/有源电流镜、基准电压源电路、开关电路等多种电路结构。12个学时的实验教学中2学时作为EDA工具学习,留给学生10个学时独自进行电路设计。从而保证学生更好地理解理论课所学知识,融会贯通,有效地促进教学效果,激发学生的学习兴趣。

三、结论

集成电路产业是我国国民经济发展与社会信息化的重要基础,而集成电路设计人才是集成电路产业发展的关键。本文根据调研结果,分析目前集成电路设计本科专业课程体系存在的主要问题,结合我校实际情况,对我校电子科学与技术专业集成电路设计方向的专业课程体系进行改革,提出“4+3+2”专业课程体系,并对专业课程讲授内容进行优化。从而满足我校集成电路设计专业创新型人才培养模式的要求,为培养实用创新型集成电路设计人才提供有力保障。

参考文献:

[1]段智勇,弓巧侠,罗荣辉,等.集成电路设计人才培养课程体系改革[J].电气电子教学学报,2010,(5).

[2]方卓红,曲英杰.关于集成电路设计与集成系统本科专业课程体系的研究[J].科技信息,2007,(27).

[3]谢海情,唐立军,文勇军.集成电路设计专业创新型人才培养模式探索[J].电力教育,2013,(28).

[4]刘胜辉,崔林海,黄海.集成电路设计与集成系统专业课程体系研究与实践[J].教育与教学研究,2008,(22).

篇4

关键词:集成电路EDA 教学方法 拓展 培养

所谓“集成电路EDA”是通过设计、建模、仿真等手段搭建集成电路框架,优化集成电路性能的一门技术,也是一名优秀的集成电路工程师除了掌握扎实的集成电路理论基础外,所必须掌握的集成电路设计方法。只有熟练掌握集成电路EDA技术,具备丰富的集成电路EDA设计实践经历,才能设计出性能优越、良品率高的集成电路芯片。可以说,集成电路EDA是纤维物理学、微电子学等专业的一门非常重要的专业课程。然而,目前集成电路EDA课程的教学效果并不理想,究其根本原因在于该课程存在内容陈旧、知识点离散、概念抽象、目标不明确等不足。因此,通过课程建设和教学改革,在理论教学的模式下,理论联系实践、提高教学质量,改善集成电路EDA课程的教学效果是必要的。

为了提高集成电路EDA课程的教学质量,改善教学环境,为国家培养具备高质量的超大规模集成电路EDA技术的人才,笔者从本校的实际情况出发,结合众多兄弟院校的改革经验,针对教学过程中存在的问题,进行了课程建设目标与内容的研究。

课程建设目标的改革

拓展学科领域,激发学生自主学习兴趣 本校集成电路EDA课程开设于纤维物理学专业,但是其内容包括物理、化学、电子等多个学科,教师可根据教学内容,讲述多个学科领域的专业知识,尤其是不同学科领域的创新和应用,引导学生走出本专业领域,拓展学生视野,提高科技创新意识。与学生经常进行互动,启发式和引导式地提出一些问题,让学生课后通过资料的查找和收集,在下一次课堂中参与讨论。激发学生思考问题和解决问题的兴趣。这样课内联系课外、师生全面互动、尊重自我评价的新型教学方法可以培养学生创新精神,激励自主学习,由被动式学习转为主动式学习,拓宽学生的知识面。

完善平台建设,培养学生创新实践能力 在已有的实验设备基础上,打造软件、硬件、网络等多位一体的集成电路EDA平台,完善集成电路EDA实验。通过集成电路EDA平台的实践环节,既培养了学生的仿真设计能力,加深了对集成电路EDA知识的掌握,又使学生掌握了科学的分析问题和解决问题的方法。引导学生参加项目研发,鼓励学生参与大学生创新创业和挑战杯活动,以本课程的考核方式激励学生写出创新性论文,通过软件仿真、实验建模等方式设计出自己的创新性产品,利用集成电路EDA平台验证自己的设计,然后以项目的形式联系企业,将产品转化为生产力,将“产学研”一体化的理念进行实践,培养学生创新实践能力。

课程教学内容的改革

精选原版教材 教材是教学的主要依据,教材选取的好坏直接影响着教学质量。传统集成电路EDA课程的教材都以中文教材为主,内容陈旧,即使是外文翻译版教材,也由于翻译质量及时间的原因,仍然无法跟得上集成电路的革新。因此,在教材选取时应当以一本英文原版教材为主,多本中文教材辅助。英文原版教材大多是国外资深集成电路EDA方面的专家以自己的实践经验和教学体会为基础,结合集成电路EDA的相关理论来进行编写,既有丰富的理论知识,又包含了大量的设计实例,使学生更容易地掌握集成电路EDA技术。但是只选择外文教材,由于语言的差异,学生对外文的理解和接受仍然存在一定的问题,为了帮助学生更好地学习,需要辅助中文教材,引导学生更好地理解外文教材的真谛。

更新教学内容 著名的摩尔定律早在几十年前就指出了当价格不变时,集成电路上可容纳的元器件的数目,约每隔18个月至24个月便会增加一倍,性能也将提升一倍。这条定律指引着集成电路产业飞速的发展,集成电路EDA课程是学生掌握集成电路设计的重点课程,因此必须紧跟时展,不断更新教学内容。现有的集成电路EDA教材涉及集成电路新技术的内容很少,大部分都以阐述基本原理为主,致使学生无法接触到最新的内容,影响学生在研究生面试、找工作等众多环节的发挥。在走入工作岗位后,学生感觉工作内容与学校所学的知识严重脱节,需要较长的时间补充新知识,来适应新工作。为了改善这种状况,需要以纸质教材为主,辅助电子PPT内容来进行教学。纸质教材主要提供理论知识,电子PPT紧跟集成电路的发展,随时更新和补充教学内容,及时将目前主流的EDA技术融入课程教学中。还可以进行校企结合,把企业的专家引进来,把学校的学生推荐到企业,将课程教学和企业实际相结合,才能激发学生的学习兴趣和积极性,提高教学效果。

参考文献

[1]马颖,李华.仿真软件在集成电路教学中的应用探讨[J].中国科教创新导刊,2009.

[2]杨媛,余宁梅,高勇.半导体集成电路课程改革的探索与思考[J].中国科教创新导刊,2008(3):78-79.

[3]李东生,尹学忠.改革传统课程教学强化EDA和集成电路设计[J].实验技术与管理,2005,4(22).

[4]徐太龙,孟坚.集成电路设计EDA实验课程的教学优化[J].电子技术教育,2012(7):87-89.

[5]卫铭斐,王民,杨放.集成电路设计类EDA技术教学改革的探讨[J].电脑知识与技术,2012,18(19):4671-4672.

篇5

一、集成电路设计、装备、材料、封装、测试企业和软件企业的企业所得税优惠政策

1.对于符合国家鼓励的集成电路设计、装备、材料、封装、测试企业和软件企业,实行两免三减半。自获利年度起,第一年至第二年免征企业所得税,第三年至第五年按照25%的法定税率减半征收企业所得税。2.对于符合国家鼓励的重点集成电路设计企业和软件企业,实行五年免税,以后年度享受10%的企业所得税率。自获利年度起,第一年至第五年免征企业所得税,接续年度减按10%的税率征收企业所得税。3.对于国家鼓励的集成电路设计、装备、材料、封装、测试企业和软件企业条件和国家鼓励的重点集成电路设计企业和软件企业,由工业和信息化部会同国家发展改革委、财政部、税务总局等相关部门制定。[例1]某企业是一家集成电路封装企业,企业所得税享受两免三减半优恵,企业获利年度是2018年。2020年度符合国家鼓励的集成电路封装企业条件,假设该企业2019年度盈利,2020年度应纳税所得额为10000万元。该企业2020年度应纳企业所得税=10000×25%×50%=1250(万元)。

二、集成电路生产企业的企业所得税优惠政策

对于集成电路生产企业按完全生产集成电路和按项目生产集成电路享受企业所得税优惠,同时对不同的生产线宽集成电路也有不同的企业所得税优惠。下面我们分不同情况进行分析。1.集成电路线宽小于28纳米(含)。对于国家鼓励的集成电路线宽小于28纳米(含),且经营期在15年以上的集成电路生产企业或项目,10年免税。按完成生产集成电路企业自获利年度起计算10年免税;按项目生产集成电路自项目取得第一笔生产经营收入所属纳税年度起计算10年免税,但企业需要集成电路生产项目需单独进行会计核算、计算所得,并合理分摊期间费用。2.集成电路线宽小于65纳米(含)。对于国家鼓励的集成电路线宽小于65纳米(含),且经营期在15年以上的集成电路生产企业或项目,五免五减半,第一年至第五年免征企业所得税,第六年至第十年按照25%的法定税率减半征收企业所得税。按完成生产集成电路企业自获利年度起计算五免五减半;按项目生产集成电路自项目取得第一笔生产经营收入所属纳税年度起计算五免五减半,但企业需要集成电路生产项目需单独进行会计核算、计算所得,并合理分摊期间费用。3.集成电路线宽小于130纳米(含)。对于国家鼓励的集成电路线宽小于130纳米(含),且经营期在10年以上的集成电路生产企业或项目,两免三减半。第一年至第二年免征企业所得税,第三年至第五年按照25%的法定税率减半征收企业所得税。按完成生产集成电路企业自获利年度起计算两免三减半;按项目生产集成电路自项目取得第一笔生产经营收入所属纳税年度起计算两免三减半,但企业需要集成电路生产项目需单独进行会计核算、计算所得,并合理分摊期间费用。对于国家鼓励的线宽小于130纳米(含)的集成电路生产企业,属于国家鼓励的集成电路生产企业清单年度之前5个纳税年度发生的尚未弥补完的亏损,准予向以后年度结转,总结转年限最长不得超过10年。[例2]某企业是一家集成电路生产企业,企业所得税享受两免三减半优惠,企业获利年度是2016年,属于国家2020年度鼓励的集成电路生产企业清单內企业。假设该企业2017年度盈利,2018年度发生亏损8000万元,2019年度应纳税所得额10万元,2020年度应纳税所得额为10万元。按照原有政策,亏损弥补结转年艰不超过5年,2018年度未弥补的庁损6000万元最长可延至2023年度弥补,根据45号公告的规定,亏损弥补结转年限不超过10年,2018年度未弥补的亏损6000万元,最长可延至2028年度弥补。4.国家鼓励的集成电路生产企业或项目清单由国家发展改革委、工业和信息化部会同财政部、国家税务总局等相关部门制订。

三、集成电路产业和软件产业企业所得税新旧优惠政策衔接

1.45号公告第五条明确:符合原有政策条件且在2019年(含)之前已经进入优惠期的企业或项目,2020年(含)起可按原有政策规定继续享受至期满为止,如也符合本公告第一条至第四条规定,可按本公告规定享受相关优惠,其中定期减免税优惠,可按本公告规定计算优惠期,并就剩余期限享受优惠至期满为止。符合原有政策条件,2019年(含)之前尚未进入优惠期的企业或项目,2020年(含)起不再执行原有政策。[例3]某企业2017年为获利年度,是一家集成电路(线宽为28纳米)生产企业,经营期限为15年,属于国家2020年度鼓励的集成电路生产企业清单内企业。按原政策,企业可享受五免五减半优惠,按45号公告,企业可以享受十年免税优惠。因此,该企业可在2020年度至2026年度亨受企业所得税免税优惠。2.45号公告所称原有政策,包括:《财政部、国家税务总局关于进一步鼓励软件产业和集成电路产业发展企业所得税政策的通知》(财税[2012]27号)、《财政部、国家税务总局发展改革委工业和信息化部关于进一步鼓励集成电路产业发展企业所得税政策的通知》(财税[2015]6号)、《财政部、国家税务总局发展改革委工业和信息化部关于软件和集成电路产业企业所得税优惠政策有关问题的通知》(财税[2016]49号,以下简称财税[2016]49号)、《财政、部税务总局国家发展改革委工业和信息化部关于集成电路生产企业有关企业所得税政策问题的通知》(财税[2018]27号)、《财政部、税务总局关于集成电路设计和软件产业企业所得税政策的公告》(财政部税务总局公告2019年第68号)、《财政部、税务总局关于集成电路设计企业和软件企业2019年度企业所得税汇算清缴适用政策的公告》(财政部、税务总局公告2020年第29号)。[例4]某企业2015年成立,是一家集成电路(线宽为0.25微米,等于250纳米)生产企业,至2019年仍未获利。到2020年,该线宽集成电路生产不再属于国家鼓励范围。按45号公告,该企业2020年起不再执行原五免五减半优惠政策。3.45号公告自2020年1月1日起执行。4.集成电路企业或项目、软件企业按照原有政策规定享受优惠的,税务机关按照财税[2016]49号第十条的规定转请发展改革、工业和信息化部门进行核查。

四、集成电路产业和软件产业享受多个企业所得税优惠政策

篇6

拥有强大的集成电路技术和产业,是我国迈向创新型国家的重要标志。工业和信息化部(以下简称“工信部”)成立5年来,出台了多项政策及举措,推动集成电路产业健康快速发展,促使中国自己的集成电路产业实现了质的飞跃。

政策全面促进

“‘18号文’对吸引海外人才回归和社会资本进入集成电路行业发挥了很大作用,为集成电路在‘十一五’期间的发展奠定了良好基础。”工信部电子信息司集成电路处处长任爱光说,2000年颁发的《国务院关于印发鼓励软件产业和集成电路产业发展若干政策的通知》(简称“18号文件”),令我国集成电路产业步入了快速成长的“黄金十年”。而工信部2008年成立后,在“十一五”期间继续发挥政策引导功能,完善政策环境。

“十一五”期间,受金融危机影响,2008年,中国集成电路产业出现了微负增长,然而2009年便迅速恢复,2010年的增速回升至30%,近两年则都是两位数的增长。从规模上看,我国集成电路产业的销售收入2001年为199亿元,2011年1月28日,国务院了《进一步鼓励软件产业和集成电路产业发展的若干政策》(简称“4号文件”),在财税、投融资、研究开发、知识产权和人才等方面,进一步加大了对集成电路产业的支持,政策促进的效果明显。到2011年,我国集成电路产业的销售收入已提高到1572亿元,十年翻了三番,占全球集成电路市场的比重提高到了9.8%。

任爱光说,4号文件还突出“扶优扶大扶强”,因为最终创新能力的体现还是“落在大企业身上”。而除了4号文件,国家以及工信部还推出了多条举措鼓励产业升级进步,如2008年的“国家科技重大专项”中就有两条半条目与集成电路相关,另外工信部还成立了电子发展基金、集成电路研发专项基金、技术改造基金等,支持集成电路企业的技术进步,帮助相关企业提升创新能力,收效显著。

首先在设计能力方面,中国企业目前的SOC芯片设计能力已逐步接轨国际水平,自主开发的CPU已经在高性能计算里得到应用,而存储器也实现了从无到有,自主生产。目前国产嵌入式芯片的出货量已经超过1亿颗。该领域,海思半导体的年销售额已超过10亿美元,另一家企业展讯的销售额也在逐渐接近10亿美元,它们的全球排名都进入了前20;其次,在制造规模上,中国本土企业的能力也在扩大。

“‘十五’期间有武汉的新芯,‘十一五’期间出现了华力微电子,都是集成电路行业里的领军企业。”任爱光说,国内已迅速成长出一批接近世界先进水平的集成电路企业,在芯片制造环节中,中芯国际的全球排名达到第五,华宏宏利也排到了全球第七,装备和材料领域也有企业的年销售收入超过两三亿元。此外,集成电路行业里,我国对于外资的利用也有显著提升,如英特尔就在中国,建立了多个芯片厂,三星公司也在西安投资建设了其海外最大的半导体生产线。从制造水平上看,目前国内芯片企业的量产能力已经达到40纳米,芯片封装的规模和技术能力都已接近国际先进水平,国内最大的封装企业江阴长电已经排名全球第八。同时,产业支撑环节之一的芯片制造装备在“十一五”期间和“十二五”初期的发展也特别快,“很多设备都实现了从无到有,包括刻蚀机和离子注入机原来都没有,现在已进入大生产链,可以批量销售或使用。”

引导持续创新

集成电路产业50多年的发展历史中,经历了PC、网络通信、消费电子三轮大发展阶段,现在,随着移动互联、云计算、物联网、大数据等热点技术的出现,第四轮发展的驱动力业已出现,它将引发技术和产业竞争格局的巨大变化,中国企业需要做好准备。

“原来信息产业基本以Wintel体系为核心,但是现在PC出货量已经下降,移动互联设备的增长达到了百分之六七十,高通的市值也超过了英特尔,这些标志性事件都预示着产业变革的到来。”任爱光说,变革是挑战也是机遇,“如何把更多社会资本及一流人才集中到这个行业应该是政府重点去做的事。”

可以看到,内需市场是我国集成电路产业发展的主要带动力,国内市场占全球市场的一半左右,所以本土企业大多立足国内市场。然而,相较知名国际公司,我国企业还存在差距。如与高通相比,我国500多家设计企业加在一起的收入不过是高通的一半,员工总数却是高通的两倍,这说明我国集成电路产业人均创造价值水平低,高素质人才稀缺。

篇7

“跨越式发展”,不是笔者的概括与描述,而是政府的公开宣示。政府首次公开表现要在集成电路产业实现“跨越式发展”的意图,还是在2013年9月,当时《人民日报》刊登了报道《马凯:努力实现集成电路产业跨越式发展》。进入2014年后,清华紫光横空杀出,开始在国外大手笔并购集成电路企业,让人感到这一“跨越”表态并非纸上谈兵。2014年6月,国务院通过了《国家集成电路产业发展推进纲要》,明确强调要“加快追赶和超越的步伐,努力实现集成电路产业跨越式发展”。

2014年8月18日下午,主持召开中央财经领导小组第七次会议、研究实施创新驱动发展战略时,强调“要跟踪全球科技发展方向,努力赶超,……明确我国科技创新主攻方向和突破口。对看准的方向,要超前规划布局,加大投入力度,着力攻克一批关键核心技术,加速赶超甚至引领步伐。”这些需要“赶超”的重点领域,就包括“高端通用芯片、集成电路装备”。

至此,中国正式迈出了集成电路产业跨越式发展的步伐。那么,跨越式发展能实现吗?

先来看看现有基础或出发点,即中国的产业现状。多年来,有舆论批评我国高增长粗放低效、有速度无质量、低端供给过剩高端供给匮乏,其中常被拿来做例证的,就是中国在集成电路产业方面跟西方的差距。事实上,在这一领域,我国已取得不小的进展。例如,在芯片生产的设计、制造、封装、测试等诸环节,我国都已经涌现出了一批具备初步甚至较高竞争实力的企业;在芯片生产各环节所需要的精密机械中,光刻机实现了初步国产化,刻蚀机、离子注入机等不仅实现了国产化,而且开始占据越来越多的国际市场。高端通用芯片领域,2015年美国商务部对超级计算机禁运英特尔“至强”服务器芯片,中国马上对外宣布已有了自己的替代品,“神威太湖之光”装备的中国“芯”就是明证。在高端服务器领域,浪潮集团已经挤掉了IBM,成为中国第一供应商,其产品也开始出口国外。伴随着以3G、4G自主标准确立与推广为标志的中国网络移动通讯技术的飞速发展,中国智能手机芯片业的实力也在同步提升。可见,中国的产业基础已不再弱小。此外,随着《纲要》推出以及国家产业基金的成立,资金和人才也逐渐有了保障。

有了产业基础、资金、人才,再加上与较快发展的整体经济的互动,在任何领域包括集成电路领域完成“跨越式发展”,我们都有足够的底气。这方面的先例比比皆是,比如,在高铁、电网、5G通讯、显示面板、核电、重型装备制造等重要产业领域,中国已经完成或正在实现跨越式发展。

篇8

随着国际各大半导体制造企业进入中国,中国的半导体测试业伴随半导体设计/制造业一样进入国际化。中国的半导体测试业必须选择恰当的切入点,在满足现有低端测试服务的基础上,大力开拓中端市场;在高端市场上积极开展合作,引进技术,争取跨越式发展。

测试对设备的新要求

随着IC设计、制造业的快速发展,高速、高密度、SOC、ASIC等新型芯片不断出现,对测试设备提出了高速、高密度、通用性、高性/价比的要求。但高速、高密度、高性能的要求,必然导致测试系统的工艺、结构、器件性能、复杂性的提高,从而使得测试系统体积增加、成本提高。虽然新技术、新器件的使用,提高了测试系统的速度和性能,降低了功耗和成本,但测试性能永远要高于被测芯片的性能,新型高性能IC的速度达到几百兆甚至几千兆,通道数达到几百个到几千个。所以高端、高性能的测试系统仍然是高价格、大体积的特点。

国际上先进的测试设备制造商都针对主流测试市场推出中、高档测试设备、但任何一款测试设备都不能满足不断更新的测试需求,性能、价格的矛盾,适应性和复杂性的矛盾仍需解决。各大测试设备制造商(如泰瑞达、爱德万)都先后提出测试系统的开放性和标准化,使系统具有灵活配置、不断升级、快速编程,以适应各种测试需求。但目前国际化的测试系统开放性标准仍未形成。主要是各大测试设备制造商都希望采用各自的标准。所以目前测试系统的开放标准都有局限性。

国内测试市场正以前所未有的速度增长,随着中国CAD设计水平的提高,将会有大量的各类SOC、ASIC等国产芯片出现,贴近测试市场,提供快速、灵活配置,优良的技术服务,符合国内市场需求价位的国产测试设备,将是最受欢迎的测试设备。为此,北京自动测试技术研究所早在1998年就开展了开放性测试系统的研发,我们采用国际仪器、测控行业推行的开放性、标准化总线VXI、PXI总线,使我们的设备从低端到中高端产品都建立在统一的开放性、标准化总线结构上,保证了产品的兼容性、延续性、开放性及标准化的特点,加快了产品的升级换代。利用其开放性、标准化特点,可方便插入各仪器制造商提供的通用VXI、PXI测量,测试模块灵活配置系统。这对今后大量涌现的数模混合、SOC芯片测试提供了大量测试资源。能够根据测试需求,以最优性/价比配置系统。

测试服务业的新机遇

到2010年,全国集成电路产量将要达到500亿块,将占当时世界市场份额的5%,满足国内市场50%的需求,基本形成具有一定规模的产业群和较为完整的产业链。集成电路产业是由设计业、制造业、封装业和测试业等四业组成。测试业的生存和发展与IC产业息息相关。

篇9

1、申请数量和趋势分析

图1:我国集成电路专利申请情况

图2:无锡市集成电路专利申请情况

分析: 近五年来,我国集成电路专利申请量大体上保持持续增长的态势(图1),但增幅不大,从2006年626件申请量增长到2010年747件申请量,以年均4.5%的增幅递增,其中2006年到2007年申请量增幅最大,达到12.9%。参考其它制造业领域,大部分行业2007年专利申请量均有较大增幅,原因可能在于2007年相关政策的刺激。需要特别指出的是,2008年至2009年的曲线下降可能是来源于中国专利的早期公开延迟审查,所以不能作为专利申请趋势的判定依据。无锡市集成电路专利申请量较少(图2),2006―2010五年的申请总量仅为全国申请总量的1%左右,但增幅较大,年均增幅达56.5%。

2、专利类型分析(总量)

分析:从集成电路专利类型来看,国内该技术领域发明专利总量5944件,占比85%,而实用新型和外观设计则占比很少,说明该技术领域的技术含量较高。而对照无锡市集成电路专利类型分布图,发现发明专利总量仅为31件,占比仅为54%,与全国平均水平相比有较大差距,技术含量较低,有待于继续提高技术开发能力,加强集成电路方面的科技创新研究。

3、国省分布状况分析

分析:根据我国集成电路专利申请量排名情况来看,排名前十位企业中无一家大陆企业,日资企业6家、台资企业1家、韩国企业1家、美国企业1家、荷兰企业1家,可见国内企业在技术实力和研发能力上与外资台资企业相比有较大差距。我国企业在集成电路领域的技术竞争上缺乏壁垒优势,阵地薄弱,还没有形成规模,技术含量也不高,需要进一步提高技术开发能力。

无锡市在集成电路领域的专利申请量大部分来自“创立达科技”、“五十八研究所”、“中微高科”和“友达电子”,技术分布比较零散,没有形成集中技术优势的企业。

分析总结

根据我国集成电路专利申请量排名情况来看,排名前十位企业中无一家大陆企业,关键技术全部掌握在外资企业手中。无锡市在该领域的专利技术分布比较零散,还没有形成较大规模,只能说还在起步探索阶段。

篇10

本文以微电子专业人才培养为例,针对我校微电子专业教学资源库的建设,从微电子的需要来说明其重要性,通过与企业联合分析职业岗位的工作内容、工作岗位、工作职业技能来合理开设学校的相关课程,来培养专业性技术人才的学生[1]。

现状与背景分析

国家的需求。微电子技术都是高科技、高风险、高投入、高利润的行业,而且是一个国家、地区科技、经济实力的反映,美国就是以集成电路设计、制造为核心的地区,让美国拥有了世界上一流的计算机和IT核心技术,为此,中国于1998年下发了《鼓励软件产业和集成电路产业发展的若干政策》的18号文件,大力支持、鼓励我国微电子产业发展。

企业的需求。从2005年8月的西永微电子园的建立,北大方正FPC等十大项目的建设,200亿资金的投入。到2015年4月8号,东方重庆8.5代新型半导体显示器件及系统项目,在重庆两江新区水土工业开发区举行产品投产暨客户交付活动。该项目总投资328亿,为重庆近年来最大投资项目。如此浩大的产业发展,必将大量需求各阶层微电子技术人才[2]。

高职学院自身的需求。近几年,高职教育在改革和发展中取得许多可喜的成果。但是专业不对口,学生兴趣缺乏,企业抱怨人才不足,应届毕业生的实践技能不够等相关问题也成为我们教学的薄弱环节。基于职业岗位来分析,才能真正让学生毕业更快的适应工作环境,解决专业不对口问题。

高职学生的需求。高职学生都期望通过学校专业课程学习,找到一份合适的工作。学生也在思考如何将专业知识转化成专业能力,如何消化书本内容。学生期望能学习在以后的工作岗位更实用的课程内容。因此基于职业岗位分析构建微电子专业课程,能更好的教学,让学生明确的学习提升自己的能力,同时帮助学生就业,解决专业不对口等问题。

研究内容、目标、要解决的教学问题

研究内容和目标。通过往届毕业学生的就业情况分析对应的岗位,找出专业不对口,或者就业工作不影响的主要问题。通过修改课程教学模式,提高学生兴趣,激发主观能动性。通过调研会邀请重庆44所,24所,西南集成设计有限公司等从事微电子行业的公司,分析高职学生通过学生什么课程能快速适应岗位,达到合理构建微电子课程来使高职学生具有对应的岗位能力,从而有效地培养微电子人才[3]。

要解决的教学问题。激发学生对课程的兴趣,提升主观能动性;学生不仅掌握对应岗位的理论知识,也要有熟练对应岗位的实际动手能力;调研企业岗位,分析微电子集成电路设计课程的建设;调研全国高职微电子课程开设,合理调整集成电路设计课程。

采取的分析方法

文献研究法:利用网络、报刊等媒介,搜集与课堂教学模式相关的专著、论文等文献资料,掌握课堂教学模式研究,掌握相关理论知识和国内外对课堂教学模式研究现状。

企业调研法:派成员组去江苏,上海,成都等微电子发达区域了解微电子产业发展对应的岗位需求。在我校组织的微电子行业专家职业分析研讨会,邀请重庆24所、44所、西南集成有限公司、鹰谷光电等行业专家从微电子高职学生岗位需要来分析,构建微电子专业课程建设[4]。

实验教学法:用微课进行微电子专业课程的建设,利用我校作为西南地区唯一的仿生产工艺线,以及封装测试线,配套生动形象来表达上课内容。“校企合作,工学结合”,让学生直接企业顶岗实习,验证微电子专业课程建设对应岗位的合理性,优化调整。通过微电子相关的职业技能大赛嵌入式比赛等等提升学生兴趣,对应的课程建设学习。

微电子专业课程建设

本校通过与微电子多个企业联合分析,将微电子专业课程分成集成电路制造、集成电路设计、集成电路封装、集成电路测试、半导体行业设备维护、半导体安全生产管理等相关方向,然后转为为A、B、C三类课程,由最基础的理论知识,如计算机使用,英语阅读,电路分析,工具使用到专业性技能的操作和综合职业技能的培养。

A类课程转换分析表提供的职业需求信息为基础,并依据课程的需要可补充相关理论知识信息,使课程具有理论知识的相对系统性和完整性。如分半导体器件物理,半导体集成电路,工程制图,电子材料,SMT工艺等基础课程。

B类课程的目的是培养基本技能。可以通过集成电路版图设计实训,集成电路生产工艺实训,集成电路封装工艺实训,集成电路测试实训,自动化生产线安装与调试实训等课程培养学生的基本技能。

C类课程的目的是培养综合职业能力,也称为综合职业能力课程。通过学习集成电路制造工艺,半导体工厂设计与管理,集成电路封装工艺,半导体工艺设备,集成电路的可靠性等相关课程来培养学生的综合职业能力,从工艺到测试,电路到自动化的职业系统化培养。