人工智能大数据时代范文

时间:2023-10-27 17:31:39

导语:如何才能写好一篇人工智能大数据时代,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

人工智能大数据时代

篇1

关键词:大数据 人工智能 云计算 数据挖掘 机器人 人工神经网络

中图分类号:TP18 文献标识码:A 文章编号:1672-3791(2015)11(c)-0030-02

1 什么是大数据

1.1 大数据的定义

大数据是一个数据体量和数据类别都十分庞大的数据集。这个庞大的数据集,我们今天还无法用传统的数据库工具对它的内容进行获取和处理。整体概括起来,大数据具有数据类型多、数据规模大、数据真实性高、数据处理快等四大特征。

大数据的特征:第一,是指数据类型非常多,它的数据来自多种数据源,而非单一的一种数据源,数据的种类和数据的格式日渐丰富;第二,是指数据规模非常大,通常在10TB左右,规模非常庞大;第三,是指数据的真实性非常高,一些新的数据源渐渐兴起,打破了之前传统的数据源,今天的企业愈发需要这些有效的信息,以确保其真实性及安全性;第四,是指数据处理的速度非常快,能够做到数据的及时快速处理。

1.2 大数据的发展历程

“大数据”一词最早提出的是麦肯锡研究院于2011年的研究报告《大数据》。之后,经美国高德纳公司和美国一些科学家的宣传推广,渐渐地大数据概念开始流行起来。

大数据发展的萌芽期,是20世纪90年代至21世纪初,此时处于数据挖掘技术阶段。这一时期,随着数据挖掘理论和技术的一步步成熟,已开始有一些与商业相关的智能工具开始被人们所应用,如专家系统、数据仓库和知识管理系统等。

大数据发展的突破期,是2003―2006年,此时处于自由探索非结构化数据阶段。这一时期,非结构化数据的迅猛发展带动了大数据技术的快速发展。此时,可以以2004年Facebook的创立为标志,此时是大数据发展的突破期。

大数据发展的成熟期,是2006―2009年,此时大数据技术形成并行运算与分布式系统。

到了2010年,智能手机开始大量涌现,其应用日益广泛。此时,数据的碎片化、流媒体、分布式等特征更加凸显,移动数据开始急剧增长。

近年来,大数据技术的发展十分迅猛,开始不断向社会各行各业步步渗透,从而导致大数据的技术领域和行业边界越来越不明显,也越来越模糊,大数据的应用创新已经超越了大数据技术的本身,越来越受到各行各业的热捧和青睐。

今天,可以毫不夸张地说,大数据技术能够改变一个领域,为每一个领域带来变革性和创新。

2 什么是人工智能

2.1 人工智能的定义

人工智能是一门新的技术科学,它主要研究和开发用于模拟人类的智能的理论、方法和技术的应用系统,它同样也是计算机学科的一个重要分支。人工智能的终极目的是掌握智能的根本实质,从而生产出一种全新的能以人类智能相似和相近的方式快速做出反应的智能机器。可以说人工智能的发展与计算机科学与技术的发展紧密相连,密不可分。

2.2 人工智能的发展历程

“人工智能”一词最初是在1956年美国达特茅斯学院提出的。

人工智能的发展经历了半个多世纪,它的发展历程十分曲折,大致可分为三个发展阶段:

20世纪40年代中期到50年代中期为第一阶段,被称为人工智能启蒙探索时期。1950年,英国数学家图灵发表了《计算的机器与智能》,提出了机器可以思维进而帮助人类的问题,直接推动了现代人工智能的发展。

20世纪50年代中期到80年代末期为第二阶段,被称为人工智能经典符号时期。人工智能与认知科学、认知心理学等三门学科开始了相依为命的发展历程。

20世纪80年代末期到现在为第三阶段,被称为人工智能联结主义时期。这一时期,主要采用分布处理的方法通过人工神经网络来模拟人脑的智力活动。

3 大数据与人工智能的关系

大数据和人工智能,近年来这两个领域的研究相互交叉促进,产生了很多新的方法、应用和价值。

今天,人类拥有了对数据规模大、数据类型多、数据流转快和数据真实性高的大数据进行存取、检索、分类和统计的能力,完全得益于大数据技术的发展。而且,人工智能领域的一些理论和方法,已经开始用于大数据分析方面,并取得了一定的效果。

研究发现,解决人工智能的扩展性和成长性问题,离不开大数据技术。

以前,人工智能技术还不能实现与人类相似的学习研究能力。原因在于,人工智能看似简单,实际上是一件非常繁琐和复杂的事情,产生人工智能的两个必要条件要有海量数据的支撑和对这些数据的极强处理能力,而以前的机器都不具备这两个条件。

人工智能其实就像人类一样,是需要拥有大量的知识和丰富的经验。在这些知识和经验的背后是需要大量的数据支撑。大数据技术的进一步发展,为储存、分析大量的数据提供了一定的技术支持,使机器得到的数据量和拥有的数据处理能力,与形成人工智能所需要的数据量和数据处理能力相匹配。只有这样,人工智能才能得到发展。人工智能的发展,反过来进一步推动大数据技术的向前发展,形成有效的相互推动作用。

与其说人工智能的发展依靠大数据,不如说大数据开启人工智能新篇章。人工智能领域的一些理论和方法,能够有效地提升大数据的使用价值。与此同时,大数据技术的发展也将在为人工智能提供一个用武之地。

4 未来人工智能的发展

随着大数据技术和计算机科学技术的不断发展,未来人工智能的发展主要会在以下几个方面:模式识别、专家系统、符号计算、人工神经网络和机器情感。

4.1 模式识别

模式识别,顾名思义,是指通过计算机采用数学计算的方法来研究模式的自动判读、处理等识别功能。

可以断定,随着计算机技术的不断向前发展,人类一定能对复杂的信息处理过程做深入的进一步的研究。与此同时,模式识别功能也为人类认识自身智能创造了可行的线索和提供了必要的帮助。

在现实生活中,对人类来说最重要的是对光学信息以及声学信息的判断和识别。大家知道,准确、高效是计算机识别的最大特点。例如,今天已经应用很广的指纹识别功能就是一个典型的案例。

人类每个人的指纹独一无二,具有唯一性。早在很多年前,我国有关专家就对数字图像的离散几何性质进行了深入的观察和研究,进而建立了从人类指纹的灰度图像精确计算纹线局部方向,从而提取了人类指纹特征信息的相关理论与算法。

这一研究发现,随后就被用于全自动指纹鉴定系统,从而开创了我国指纹自动识别系统应用的先河。

4.2 专家系统

专家系统,是未来人工智能发展的一个重要方向。专家系统在今天的生活中已被广泛应用。其实,专家系统是指一个具有大量的行业或领域专门的知识与经验的程序系统。它主要利用计算机科学技术和人工智能技术为基础,先根据某一行业或领域一些权威专家或多个专家所提供的一些相关知识和相关经验,再进行深入推理和判断,进而可以模拟人类专家的判断决策过程。通过这个过程,从而来帮助人们解决现实中一些需要人类专家来处理的一些复杂的问题。

实现专家系统必须要有两个条件:一是要拥有类似于该领域专家解决实际问题的推理机制,二是建立一个完善的存储有该领域中经过专家事先总结、分析并按某种模式表示的专家知识库。这两个条件缺一不可,否则无法进行专家识别。

研究发现,专家系统能对人类输入的信息进行快速处理,并运用相关的行业和领域知识进行推理判断,进而作出相应的判断和决策。

科学家们对专家系统的研究由来已久,一直以来被科学家们所重视。今天,各种各样的专家系统已遍布了各行各业的不同领域,并且取得巨大的成功。

目前,专家系统可以分为十种类型:教育型、预测型、解释型、维修型、规划型、诊断型、调试型、设计型、控制型等。

4.3 符号计算

科学计算是计算机发明以来最基本和主要的用途之一。科学计算可分为两类:一类是纯数值的计算,另一类是符号计算。符号计算与传统的纯数值计算不同,它是一种智能化的计算,主要通过处理相应的符号来进行的计算。

在符号计算中,符号可以代表的种类非常非常多,如实数、复数、整数、有理数等,还可以用符号来代表函数、多项式、集合等。

很久以前,人类就希望能有一个可以进行符号计算的计算机软件系统来帮助人们进行计算。可以追溯到20世纪50年代末,人们就开始对此进行研究。今天,随着计算机科学技术和人工智能技术的进一步发展,已相继出现了多种可以进行符号计算的计算机系统软件。

这些符号计算软件功能齐全,且具有共同的特点:一是人机界面友好,命令输入方便灵活,反应快捷,操作便捷;二是在操作界面上,一般都支持交互式处理,人通过键盘输入命令,计算机处理后即显示结果。

虽然计算机只是在执行人给它的指令,具有一定的局限性,但是在符号计算中已经有了相当大的突破,相信在未来的符号计算领域会有更大的进步和发展。

4.4 人工神经网络和机器情感

计算机技术发展到今天,人工智能的基本思想已经在许多领域中得到应用。未来人工智能应用最重要的一个新领域就是人工神经网络。

研究表明,情感属于智能的一部分,而并不是与智能相分离的。因此,可以断言人工智能未来发展的下一个突破就是要赋予计算机情感能力,让智能情感化。

人工智能进入21世纪的今天,正酝酿着新的突破,创造新的奇迹。

未来人工智能的应用将会为人类创造出更多更高级的智能“产品”来服务人类自身,而且人工智能将会在越来越多的领域会超越人类智能。

大数据时代背景下,相信人工智能将会得到长足的发展,更多的发现、发明和成果将会出现在大家面前。仿佛可以看到,与人类水平相同甚至超越人类自身智能就快要实现。

相信这一刻就在不远的将来,让大家拭目以待。

参考文献

[1] 蔡自兴,徐光v.人工智能及其应用[M].4版.清华大学出版社,2010.

[2] (加)海金.神经网络与机器学习[M].3版.北京:机械工业出版社,2011.

[3] (美)库兹韦尔.奇点临近[M].北京:机械工业出版社,2011.

篇2

关键词:人工智能;大数据;软件

1人工智能及大数据的概念

1.1人工智能

人工智能是一门利用计算机程序模拟人类智能的科学,其应用领域十分广泛,例如机器人、模式识别及专家系统等。人工智能的高科技产品,不仅实现了对人类思维的模拟,在某些方面还超过了人类。

1.2大数据

大数据是指海量信息的集合,一般用常规软件工具无法对其进行有效的采集、存储和处理,需要借助具有超强洞察力的大数据技术对其进行有效的采集、存储、处理、分析和共享。大数据技术能够有效地进行超大规模的并行处理,能够有效地处理结构化及半结构化的数据,具有较强的数据挖掘能力及分析决策能力。

2人工智能及大数据对软件技术专业人才的需求特点

2.1知识更新能力

人工智能及大数据技术日新月异,需要软件专业技术专业人才具有较强的知识更新能力,较强的自主学习能力,以及较高的技术应用能力。但目前相当一部分软件技术专业的大学生的自主学习能力不高,知识更新能力不强,亟需针对人工智能及大数据对软件技术专业人才的需求特点改进培养方案,增加相关课程,培养学生对新知识的理解和掌握尤为重要。

2.2创新思维能力

人工智能及大数据时代下,需要软件技术专业人才具备较强的适应创新能力,较强的开拓思维能力,以及较强的团队协作能力。但目前相当一部分软件技术专业的大学生的创新思维能力较差,新知识更新缺乏主动性,迫切行,学习意识不强。亟需针对人工智能及大数据对软件技术专业人才的需求特点创新改革培养方案,确定切实可行培养策略是学科发展的需要和任务。

2.3大数据分析能力

人工智能及大数据对人才的大数据分析能力要求较高,主要包括数据采集、数据整理、数据描述、数据统计分析和深度学习等诸多方面的能力。但目前相当一部分软件技术专业的大学生的大数据分析能力不够,不能很好地进行数据采集、存储、整理、描述、统计分析和归纳总结,亟需针对人工智能及大数据对软件技术专业人才的需求特点创新培养体系。

2.4软件开发及测试能力

人工智能及大数据对人才的软件开发及测试能力要求较高,主要包括软件分析、软件设计、软件实现和软件测试等方面的能力。但目前相当一部分软件技术专业的大学生的软件开发及测试能力较差,不能够有效地开展软件的规划、分析、设计、实现与测试等环节,亟需针对人工智能及大数据对软件技术专业人才的需求特点提升学生的软件开发与测试的实践能力。

3建设策略

3.1转变教学理念,顺应人工智能及大数据时展要求

传统的教学理念已经不能适应人工智能及大数据时代的要求,亟需转变教学理念,从而适应人工智能及大数据时代的要求,进而提升软件技术专业人才的培养质量。在人工智能及大数据背景下,学校应深入分析人工智能及大数据对软件技术专业人才的需求特点,从而有针对性的制定培养目标、培养任务和培养方案。在制定培养目标时,应着重考虑软件技术专业人才在人工智能及大数据时代应具备的能力素质。在制定培养任务时,应着重参考人工智能及大数据相关岗位的岗位要求。在制定培养方案时,应坚持以学生为主体,以学生为本,突出知识更新能力、自主学习能力、开拓创新能力、团队协作能力、大数据分析能力和软件开发及测试能力的培养。

3.2引导学生利用现代化、智能化的网络平台进行自主学习

为了更好地适应人工智能及大数据对软件技术专业人才的需求,应引导学生利用现代化、网络化和智能化的Web平台进行自主学习,从而提升学生的知识更新能力、开拓创新能力、解决问题的能力和团队协作能力。首先,在人工智能及大数据背景下,网络上涌现了大量的人工智能及大数据相关的学习资源,但这些网络资源存在良莠不齐的现象,因此教师应该引导学生如何搜索、鉴别和使用这些网络学习资源。然后,教师可以引导学生自由分组开展人工智能及大数据相关的学习,通过兴趣小组的方式激发学生对人工智能及大数据的学习热情,提升学生的自主学习能力,提升在线学习的效率。最后,教师可以自建教学网站,对网络资源进行筛选和优化,使学生能够更好地进行网络学习。

3.3构建大数据分析课程体系,提升学生的大数据分析能力

人工智能及大数据对软件技术专业人才的数据分析能力要求较高,众多人工智能及大数据相关企业亟需大量的具有较高大数据分析能力的软件技术专业人才。因此,大数据分析能力是目前软件技术专业人才培养的重要内容,应适时构建大数据分析课程体系,进一步提升软件技术专业学生的大数据分析能力。首先,教师是教学的组织者,因此应注重教师的培养,只有提升了教师的大数据分析能力,才能更好地提升学生的大数据分析能力。然后,重点突出数据挖掘能力的培养,包括数据预处理能力和聚类分析能力等。

篇3

关键词:人工智能;大数据;交叉领域

自二战时期阿兰•图灵破解恩尼格玛密码机带来胜利的曙光之后,人工智能初见苗头,1956年“人工智能”一词首次由约翰•麦卡锡等科学家在达特茅斯研讨会上提出,时至今日,人工智能经历了60多年的浪潮和洗礼,其中有曙光、有冰封,也有期望。纵观当下,人工智能不仅仅是机器智能,在深度学习和推陈出新的算法推动下,其携手云计算、大数据、卷积神经网络等,攻破了自然语言语音处理、图像识别的瓶颈,像潘多拉的盒子一样在认知科学、机器人学、机器学习等领域全面开花,人工智能涵盖了从基础层、技术层到应用层等多个方面,为人类文明带来了翻天覆地的变化[1-2]。人工智能包罗万象,在其基础上衍生的大数据“洪流”对人类社会的方方面面进行冲击,这些数字的价值已然超越了诸如金钱、财产、黄金、石油,甚至是土地。然而,大数据技术也如同普罗米修斯盗得的圣火,一方面给人间带来温暖和光明,另一方面也有可能使自身被奴役甚至使人葬身火海[3]。因此,当我们沉迷于大数据的海洋中时,我们是否有能力像蓝鲸遨游大海一样自由掌舵,是当今大数据和人工智能时代存在的一个重大问题。是“曲径通幽”还是“会当凌绝顶”,我们如何在大数据中“浮游”,而不是一味地扩充,需要理性看待与合理评价大数据对人类生存和发展的影响。

1.人工智能和大数据与“工业革命”

2020年刚刚结束的新一轮美国总统竞选上演了各种“国家闹剧”,为何特朗普在2016年赢得大选,而4年之后却无法连任?时间推移,2016年他胜利的部分原因在于他利用了面临技术威胁的工业行业中工人们的焦虑,同时指责非法移民对美国及美国人资源和就业机会的占用[4]。但在技术浪潮的挑战中,自动化和人工智能才是占用的“根源”。早在18世纪60年代工业革命时期,机器取代人力,规模化工厂生产取代个体手工生产,即引发了人工智能数据的工业大变革。从机械结构、电气控制等模块的设计和改良,车间机器人的智能化已可以代替人完成生产作业[5]。通过智能化机器人可以减轻劳动负担,还可以用于环境检测[6]和实施救援[7]等,保护我们的人身安全。这些“机器人”在为我们减负的同时确实也引发了“失业危机”,这种现象不仅于美国,日本、韩国和德国亦是如此。我们也许可以形象一下,未来20或30年后,工厂中工伤几乎为“零”,完全实施机器人24小时作业,速度惊人,质量统一,而仅有的几个人使用简单的触摸界面对机器下达“命令”。机器的发展已超乎我们对普通机械的认知,21世纪开发的三大机器人中大狗(BigDog)解决了运动和重载运输问题,特别用于军事领域,被誉为“当前世界上最先进适应崎岖地形的机器人”;亚美尼亚(Asimo)从人类如何移动上展现了机器人仿人运动;Cog具有了人类所特有的思考,由不同处理器组成的异种机互联网络形成了“大脑”。特斯拉——其除了是电动汽车和能源公司外,还是自动驾驶汽车行业的领跑者之一。其2016年已销售具有自动驾驶、自动自制和自动停车功能的电动汽车,但出于法律和伦理层面,驾驶员还是要坐在驾驶位上,但他可以做他想做的其他事,发短信、打电话或是休息,而不再是驾驶汽车。我们可以不用担心酒驾,不用因为时间紧张而疲劳驾驶,不必为新手司机而变得脾气暴躁……汽车自动驾驶将让我们行驶得更规则、更安全和更“无聊”。自动驾驶上的智能进化,使得自驾型派送车为商业化服务成为可能,还有自驾型飞行器也在被研发,通用、宝马、谷歌等公司一直在努力开发,通过无人机在您家门口投送包裹将对电子商务世界带来更多创造性方案。“如果你够走运的话,机器可以把你当成宠物。”虽为戏谑之言,却又饱含心酸。工厂变得越来越自动化,但其仍需要人类专家,他们才知道如何监控传感器,知道在发生故障时如何进行修复,机器的运行离不开人的监控,只有人的思考才能有新产品的诞生以及高效的生产流程,我们与机器共存,是从体力中解放,但要从事脑力工作。

2.人工智能和大数据与金融的未来

“数字蝶变”席卷金融行业各个领域[8],金融行业应用大数据、移动互联网、人工智能等先进信息技术,累积了非常多的客户信息。通过大数据的帮助,金融公司在分析数据下寻找更多的金融创新机会。在商业智能(BI)的辅助下,电信业可以对客服描述和定位及需求进行预测;保险业可以在进行风险分析的同时进行损益判断;银行业可以调整市场活动,建立信贷预警机制等等[9]。人工智能和大数据让金融业形成了“以客户为中心”的模式。与客户最密切的金融即是金钱,但是它们已经被“支付宝”和“微信”以及更多的电子支付方式取代,越来越少的人使用现金,数字金钱是否会完全取代物质金钱,我们很可能会发展为无现金社会。那么首先“下岗”的是谁呢?答案毫无疑问:银行。巴克莱银行前首席执行官安东尼•詹金斯曾预测,对于工业化国家,银行员工和其分支机构在未来10年内会消失;花旗全球视角与解决方案的一项研究预测,美国和欧洲的银行将在未来10年裁减约180万员工;甚至2016年2月的一份丹麦银行家协会新闻稿表示,银行抢劫案数量连续第5年下降。就支付领域而言,在这样的时代背景下,如何利用大数据技术对跨越式发展的支付行业进行监管,成为一个值得深入研究的课题[10]。在人工智能下,我们都有被银行自动回复或自会读取特定问题的“员工”惹恼过。沟通技巧和财务知识同样重要,因此,银行业员工的下岗只是在基础性操作上,对于“专业咨询”,需要更多受过高等教育、具有更好沟通能力的员工。目前,我国的多数银行还没建立“开放、共享、融合”的大数据体系,数据整合和部门协调等问题仍是阻碍我国金融机构将数据转化为价值的主要瓶颈。大数据的整合、跨企业的外部大数据合作不可避免地加大客户隐私信息泄露的风险。有效防范信息安全风险成为商业银行大数据应用中急需解决的问题。

3.人工智能和大数据与“专家系统”

电子病历数据、医学影像数据、用药记录等构成了医疗大数据。医疗数据不仅包括大数据的“4V”特点,即规模大(volume)、类型多样(variety)、增长快(velocity)、价值巨大(value),还包括:时序性、隐私性、不完整性和长期保存性。医疗大数据可以提供预警性,当数据发生异常时,通过一定的机制可以发出警告,从而迅速采取相应措施,及时解决问题[11]。成立于1989年的美国胸外科协会(STS)数据库,至今已经涵盖了美国95%的心脏手术,收集了500万条手术记录[12]。其中的先天性心脏手术(CHSD)数据库是STS数据库的重要组成部分,是北美最大的关注儿童先天性心脏畸形的数据库,被认为是医学专业临床结果数据库的金标准。近年来,基于CHSD数据库所进行的数据挖掘不断增加,大型数据库对提高医疗质量所起到的正向作用正在日益凸显。如Welke等基于CHSD数据库探讨小儿心脏外科病例数量和死亡率之间的复杂关系[13];Pasquali等基于CHSD数据库探讨新生儿Blalock—taussig分流术后的死亡率[14];Jacobs等基于CHSD数据库采用多变量分析方法来研究病人术前因素的重要性[15];Dibardino等基于CHSD数据库采用多变量分析的方法来探讨性别和种族对进行先天性心脏手术结果的影响[16]。这些都是在医疗领域采用人工智能提供的医疗诊断,形成了“专家系统”,专家系统可以说是一种最成功的人工智能技术,它能生成全面而有效的结果。借助医疗大数据的平台,“专家系统”可以智能辅助诊疗、影像数据分析与影像智能诊断、合理用药、远程监控、精准医疗、成本与疗效分析、绩效管理、医院控费、医疗质量分析等。不仅是数据平台,“达芬奇机器人”可以看成医疗的高精尖“人工智能”,它能缩短泌尿外科手术以及术后患者恢复时间,促进患者早期下床活动,减低并发症发生率[17]。达芬奇手术机器人在消化系统肿瘤、泌尿系统肿瘤、妇科肿瘤和心胸部肿瘤等手术中均有运用[18]。正是机器人,还有其他人工智能设备,如插入手表或衣服里的传感器、植入我们皮肤下的芯片,以及智能手机中装有各种“专家系统”的远程医疗、预防医学,甚至是器官的3D打印和虚拟现实治疗等的发展,让医学发生相应的转变,并使其逐步突破人类的传统健康概念,那么是否意味着医学将成为只有科学性,毫无直觉性的学科呢?我们携带的内部传感器和外部应用程序将成为我们的医生吗?“你好,医生”被“嘿,Siri”取代吗?这不尽然。医学必然将是向精准化发展,并更具个性化、参与性、预防性和可预测性。医生不再是疾病的修理工,而是改善我们健康状况的顾问。直观当下,我们还是被“看病难”所困扰,我们提出“分级诊疗”,是在拥有家庭医生、全科医生和专科医生的基础上再加上人工智能,以实现预期的健康监测、辅助诊疗和疾病筛查。

4.人工智能和大数据与教育变革

面对各行业和各学科,教育作为传承文明和创新知识的载体,似乎被排除在人工智能之外。就目前而言,人工智能与教育深度融合发展还存在技术基础不稳、教育数据缺陷、算法能力不足等现实问题[19]。我国目前更想要做到的是在教育上消除“信息鸿沟”,促进教育公平、均衡发展。因此,目前可以看到人工智能的教育多在于语言学习软件,通过虚拟技术和人工智能构建一个灵活的、可扩充的虚拟交互平台,设计多维虚拟场景和智能人工角色,实现不同场景下人机角色的交流和学习,提升学习者的口语能力和语感知识[20]。这使得教师不再是唯一的知识传播者,任何互联网搜索引擎都将提供比教师所有的更多信息,并且可以更快捷地获取。肺炎疫情暴发以来,远程网络教育成了主要教学形式,互联网教育形式其实早在小学、中学和大学中运用,虚拟现实技术在教学领域的研究和探索也在全面展开。谷歌已经开发一款VR纸板视图,并将研发的虚拟课程一起推向市场,使现实生活中在生物课上解剖一只青蛙成为一件容易且有趣的事,通过虚拟青蛙,学生们可以去除心脏和其他器官,而不再是象征性的抽象体验。虚拟现实可以像互动游戏一样,比单一的在教室听老师授课带来更多乐趣和体验,学习效果可能更好。我们的学习是知识的积累,那么教育就是我们的库,荀静等结合自身情况对西安工业大学知识库构建进行探究,认为机构知识库在保存知识资产的同时,更重要的是促进学校知识资产的传播利用和管理,提升学校影响力和学术声誉[21]。刘畅等通过对东北大学机构知识库服务的推广研究,了解到开放获取的概念和实践已经受到了广泛的认可,机构知识库不仅可以成为一个知识的存储库,也可以成为各个学科领域的学者进行在线交流的平台,提供个性化的增值服务,既有利于机构知识库的内容建设,也可以进一步促进学术交流和科研合作[22]。知识库,即大数据的有机整合和有序利用,是学术成果、视频文档、实验数据等进行收集、长期保存、传播和提供开放利用的知识资产管理与教育服务[23]。

5.人工智能和大数据应用的共性需求

人工智能和大数据时代,海量的信息来自“五湖四海”,但都通过互联网络汇聚智能终端。这些数据只会进一步增多,不仅仅是云存储,对于信息的进一步挖掘、处理、分析和利用,目标性结果才是我们最想要的信息。全球包括IBM、微软、谷歌和亚马逊等一大批知名企业纷纷掘金大数据挖掘这一市场,大家都在开拓自己大数据分析平台。数据挖掘是大数据时代孕育的产物[24],是我们的共性需求,与传统的统计分析技术相比,数据挖掘有着自身的本质特征,数据挖掘是在没有明确假设的前提下去挖掘信息并发现知识。数据挖掘所得到的信具有先前未知、有效以及可实用三个特征[25]。数据挖掘的出现不是为了替代传统的统计分析技术,相反,它是统计分析方法学的延伸和扩展[26]。随着信息时代的到来,数据挖掘被越来越多地应用于各个领域。

6.人工智能和大数据的展望

大数据与人工智能相辅相成,在人工智能的加持下,海量的大数据输出优化的结果,使人工智能向更为智能的方向进步,大数据与人工智能的结合将在更多领域中击败人类所能够做到的极限。漫长的人类历史发展和进化,信息和人类一直“缠缠绵绵”“你追我藏”,因此,我们应该明白信息就是信息,我们需要的是“维基百科”,而不是仅仅的“维基”。走出狭隘的信息资源,管理和洞察大数据,才是对数据的有用。因为,我们早已告别了数据库放在一间房间的时代。此刻不得不提蓝鲸法则——大数据之道:了解数据懂得利用数据的“浮力”才是关键;“以简约为目标”将数据最终形成洞察及行为;可以通过“数据”“信息”“知识”流程式、组合式、直通车式各种需要的方式来获取[27],在简约中“印象”处理繁杂的大数据,使之“为我所用”。=数据也是一门科学、一项技术,如果实验不能证明其具有可重复性和一般性,那它是没有科学依据,但是,任何一项科技,如果你坚信它必将改变社会和商业,选择从长期展望其发展并持续付出努力,那么就是一种战略选择[29]。人类社会的政治、经济、文化、思维等固有“态势”被重刷,数据思维将为我们带来一个智能全新的世界观。

篇4

ABC成为时代主题

百度大脑优势独显

百度总裁张亚勤在大会致辞环节分享了对于云计算、人工智能和大数据等领域未来发展的深刻思考。

张亚勤说,百度云拥有百度大脑的支持,是百度云最独特、最重要的优势。百度大脑是百度云的核心引擎,而百度云是百度大脑的云化,为前者提供了神经元和数据训练源。通过深度学习和机器学习技术,百度在语音、图像、自然语言处理等方面取得世界领先成果。

此次峰会以ABC SUMMIT为名, 即是AI,Big Data,Cloud Computing。百度通过开放共享自身领先的技术能力,让云智数成为所有企业的基础能力,推动各行各业开始进入ABC时代。

对于未来信息科技发展的趋势,张亚勤表示,由云计算和人工智能组成的ABC将成为一个时代的主题。以云计算为基础,以人工智能为中枢,以大数据为依托,ABC将深度结合并改造传统行业,真正地提升每一个企业的运营效率,释放商业潜能,创造全新机遇。

截至目前,百度云已经和超过三万家企业展开合作,也陆续渗透到物流、医疗、教育、营销、金融等关系到百姓生活的各个行业中,让服务开始真正智能化。云智数三位一体的云服务结构可以为客户提供业务可持续发展的动力引擎。

以“智”为谋天智平台

会上,百度云重磅了最新的人工智能平台――天智。天智底层为百度云计算,由感知平台、机器学习平台和深度学习平台三部分组成,为不同需求的客户提供全面的人工智能服务。这也是继“天算”、“天像”和“天工”三大平台后,百度云的第四大平台级解决方案。至此,百度云实现了人工智能、智能大数据、智能多媒体和智能物联网全方位的智能平台服务。

感知平台主要包括图像技术(文字识别和人脸识别)、语音技术(语音识别、语音合成和声纹识别)和自然语言处理(NLP Cloud),可以应用于智能客服、身份验证、内容审核等场景,应用开发者可针对特定场景的应用直接调用API。

在这些技术方面,百度均处于行业领先地位。其中百度语音识别入选2016年MIT十大突破性技术,中文识别准确率达到97%。机器学习平台是百度云端托管的机器学习服务,可以打通机器学习全流程,内置20多种高性能算法,并开放Spark MLlib;同时支持百度用户画像数据,并提供多种应用场景模版。

深度学习平台具有灵活、高效、可伸缩、开源等特点。它支持多种神经网络结构和优化算法以及自定义网络配置,对于计算、存储、架构、通信等多方面多了细致优化。它支持多核、多GPU、多机环境,其Paddle内部技术已经使用成熟,并实现对全球开发者的开放。深度学习平台适用于精通深度学习的数据科学家,针对企业或研究部门的特定项目,需要大量的客户标注数据。

交通领域变革在即

智能交通时代来临

作为一家以技术驱动为核心竞争力的公司,百度通过百度云分享自身在云计算、大数据和人工智能等领域的技术优势,通过构建可以计算、分析、处理庞大交通数据的“交通大脑”,打破海陆空以及行政区域的限制,实时抓取散落在各个路面交通、地下交通、空中航线的海量数据。

同时通过百度拥有的全球最大规模的深度神经网络、最大深度机器学习开源平台,对交通大数据的有效归类、提取、利用,实现多系统配合协调,建立起一个更安全、更高效、更准确的智能交通体系。

百度副总裁王路与太原铁路局局长赵春雷、南方航空电子商务部副总经理王景成、中国海事局曾辉共同智能交通生B联盟,这也是国内首个覆盖陆海空车的智能交通生态联盟。

借助百度云计算、人工智能和大数据技术优势,构建“交通大脑”,与合作伙伴一起促进交通运输领域的技术创新和应用,发展智能交通,推动交通运输更智能、更高效、更安全地运行和发展。目前,诸多合作已在进行中。相信随着合作的深入,必将改变交通现状,推动中国智能交通的 发展。

在与太原铁路局的合作中,双方共建国内首家集铁路、航空和公路三位一体多式联运的物流云平台。通过百度云的接入,该平台可打通货物在公路、铁路、航空的运送及仓储信息;并利用大数据进行资源调配,通过人工智能深度学习物流管理,优化调度效率可达59%。

另一方面,百度云还将与中国南方航空共同推进智能航空计划,将通过大数据实现对于航班、旅客、机票、航站楼、天气等信息的综合分析调度。同时共同推进大数据营销、新一代信息技术和百度云的推广应用、消费信贷等多方面的合作探索,为用户打造一站式的智能出行服务平台。

同样基于百度云技术,将通过与中国海事局的合作,海事港口、船舶及相关水上设施信息也将实现联通和数据的共享,加强程控,降低成本,合力提升海运管控能力。

从陆地到海洋再到空中,百度云并不满足于交通体系的立体扩张,还要创造全新的交通方式。百度目前正在推进可以感知车辆行驶、预测交通状况的智能汽车和无人汽车的发展。百度无人车已成为国内外瞩目的前沿科技代表,在去年完成了实地路测,并在今年的乌镇峰会上再次亮相。

在智能汽车的商业化方面,百度已与国内知名商用车企业福田汽车达成战略合作。未来,百度将与福田汽车在汽车大数据、智能驾驶领域深入合作,开发出更多具备智能驾驶的商用车产品。

云计算、人工智能和大数据已成为新一轮产业革命的核心驱动力,百度云将透过云生态下的“交通大脑”,依托智能交通生态联盟,加强行业合作,挖掘数据中的更多价值,推进智能交通的全面云端化,突破前所未及的高度,让智能、计算无限可能。

写在最后

2016是百度云计算的元年,基于基础云、天算、天像、天工已经有80+款产品。下一步,人工智能已经成为百度的核心战略。

百度大脑“天智”――人工智能平台也应运而生,内容包括:

首先,感知平台,包括图像技术、语音技术、自然语言处理等技术,代表着耳口心相结合的“聪”。

其次,机器学习平台,包括打通机器学习全流程、内置20多种高性能算法、支持Spark MLlib、用户画像数据、多种应用场景模板的机器学习平台。

篇5

1、软件工程。软件工程专业近些年来的就业情况一直比较不错,算是计算机相关专业中的佼佼者。软件工程有三个特点,其一是注重基础知识的同时也注重学生实践能力的培养;其二是软件工程专业与IT行业的结合比较紧密;其三是紧跟技术发展趋势,从近些年来的毕业设计就能够体现出来。

2、物联网工程。随着5G标准的落地,未来物联网领域将迎来广阔的发展空间,而且物联网作为产业互联网的重要基础,所以物联网领域将陆续释放出大量的就业岗位。未来智慧城市、车联网、工业物联网、农业物联网、移动互联网、可穿戴设备等领域将有广阔的发展空间,而这些领域都需要大量的物联网专业人才。

3、大数据。当前正处在大数据时代,大数据技术目前也正处在落地应用的初期,随着大数据逐渐落地到广大的传统行业,未来大数据领域将有大量的就业岗位。从大数据未来的发展趋势来看,大数据人才的就业面还是比较广泛的,不仅可以就业到科技行业,也可以就业到金融、交通、教育等传统行业。

4、人工智能。当前人工智能是市场的热点之一,所以不少大型互联网公司都陆续开始布局人工智能领域,目前人工智能领域的人才缺口还是比较大的。虽然目前本科阶段开设人工智能专业的学校比较少,但是相信未来会有更多的高校会陆续开设人工智能专业。

(来源:文章屋网 )

篇6

“互联网金融是场景革命,在场景里为用户提供独到的金融服务。而Fintech是技术革命,需要把技术逻辑和业务逻辑结合在一起。人工智能是Fintech里最核心的东西之一。”万向控股副董事长、通联数据董事长肖风表示。

通联数据是万向集团旗下子公司,成立后一直低调运作,万向集团斥资3亿元初期投入,前博时基金创始人肖风出任董事长,前博时基金股票投资部总经理王政担任CEO。

近年来资管行业蓬勃发展,有着深厚金融基因的通联数据的管理团队却没有跟风去做“掘金者”,而是选择“卖水”,为资产管理机构提供金融信息服务。致力于将云计算、大数据和人工智能技术与先进的投资理念相结合,为资产管理行业打造创新、高效的金融服务云平台。

迎接资产管理行业新时代

在陆家嘴的万向大厦,通联数据所在的楼层新增加的座位又坐满了,大家以互联网公司的高效率、快节奏忙碌着,这群具有金融、计算机、算法等各种背景的精英正全力投入Fintech时代,他们正在做一件对资管行业具有革命性意义的事件。

随着互联网的快速发展,海量的数据爆炸式增长,通联数据应运而生,从最底层做起,建立了强大的数据平台。

“只有做好数据端的质量,做到别人都做不到的数据,才是成功,这一过程就持续了3年。”肖风表示。

“通联数据现在的数据来源分为三部分,一是自己搜集整理,二是从第三方购买,三是数据商把数据整合过来放在云平台,未来会有更多数据商的数据接入进来。”通联数据CEO王政介绍说。

打好数据的地基后,就需要用最新的金融科技建造资产管理的大厦,因为Fintech的核心就在于科技与金融的深度融合。

在底层数据库之上,通联数据又构建了两个平台,萝卜投研和优矿,其中萝卜投研是针对基金经理和研究员提供智能投资研究服务的平台,而优矿则是一个众包的、分享式的量化平台。

王政表示,通联数据将使投资更趋智能化,更加依靠模型和数据去寻找规律,效率得到飞速提升,这将重构资产管理行业的生态。

据了解,目前已经有数十家机构在试用通联数据的产品,包括公募、私募、保险等资管机构,也包括非资管机构。

Fintech的前沿是人工智能

除了资深的基金业人士外,通联数据还吸引了来自阿里、百度、腾讯、微软等公司的技术骨干加盟,众多IT工程师在探索将智能搜索、自然语言处理、机器学习等人工智能技术应用于投资管理行业。

肖风表示:“人工智能是Fintech里最核心的东西之一,人工智能正对我们的社会发生深刻影响,人工智能将帮助研究员、交易员、基金经理提升工作效率,这是未来的一个方向。”

人工智能是一项战略性前沿技术。近年来,人工智能产业发展迅猛,进入高速创新期。将人工智能和金融投资深度融合,使金融智能化也成为大势所趋。

通联数据打造的萝卜投研就是一个智能平台,收集海量信息,然后通过自然语言处理和机器学习等技术,高效而专业地提炼出对研究有用的信息,帮助投资人从大量重复、繁杂的底层数据处理过程中解脱出来,有针对性地帮助投资者提高投研效率。

例如,在底层数据收集层面,先对数据进行清洗;在数据整理层,会对数据进行专业分类,对信息进行初步智能处理;然后是机器学习的层面,通联数据专门训练了一个垂直搜索引擎,用人工智能模拟人类的思维方式,使它理解交易员、基金经理有什么样的需求。让计算机对大量数据进行提取、整理、分析,把精炼后的信息,或初步发现的逻辑线索呈现给用户。

以大数据创建知识图谱

通联数据还首创了以大数据为依托的知识图谱,包含了A股所有上市公司的多重股权关系、高管、产业链、主题概念等重要信息,让投资者可以一目了然地把握影响上市公司股价的重要信息,发现隐藏的线索,抓住转瞬即逝的投资机会。

篇7

关键词:智能科学与技术;知识结构;应用型人才;人才培养;知识型能力本位教育

中图分类号:G64文献标识码:A

文章编号:1009-3044(2020)25-0153-03

1引言

智能科学与技术主要包含智能科学和智能技术两部分内容[1]:智能科学是以人如何认知和学习为研究对象,探索智能机器的实现机理和方法;智能技术则是将这种方法应用于人造系统,使之具有一定的智能或学习能力,让机器系统为人类工作。目前,在本科专业目录中,智能科学与技术专业是计算机类之下的特设专业,在现有的人工智能专业群中,除了新设的人工智能专业外(2019年全国共有35所高校获首批人工智能新专业建设资格),智能科学与技术专业与全球范围大力推进与快速发展的人工智能关系最密切,契合度最高。一方面,智能科学与技术的专业发展和人才培养将为人工智能技术提供理论支撑、技术推进和人才支持,另一方面,人工智能产业现状和未来发展趋势直接影响着智能科学与技术的专业发展和人才需求。

2人工智能时代对人才的需求

站在国家战略的高度来看,人工智能将成为新一轮产业变革的核心驱动力,可以实现社会生产力的整体跃升,因此人工智能将成为引领未来的战略性技术,世界主要发达国家都把发展人工智能作为提升国家竞争力、维护国家安全的重大战略。

随着人工智能时代的到来,许多企业对具有智能科学与技术专业背景的人才有着巨大的需求。首先,IT企业纷纷涉足智能科学领域,提高产品智能水平;其次,许多传统制造业也在转型,从劳动密集型到知识密集型,进一步提升到智能制造型,并逐渐具备高精尖装备制造能力;此外,医疗、通讯、交通等行业也对智能科技人才有着迫切的需要。人工智能对各行各业的影响,充分体现了智能科技的高速发展,对人才数量和素质要求也越来越高。

从人才的金字塔型分布来看,智能科学与技术领域不仅需要高端学术型人才,更需要接地气、重实践的应用型人才。随着“中国智造”的不断推进,智能科学与技术领域已由顶层设计和关键技术突破向生产、应用、装配、服务等环节延伸,迫切需求大批专业技术精、实践能力强、操作流程熟的应用型人才。2019年,人力资源和社会保障部、国家市场监管总局、国家统计局向社会了13个新职业信息,包括人工智能工程技术人员、物联网工程技术人员、大数据工程技术人员等,这也从另外一个侧面说明人工智能等技术推动了产业结构的升级,催生了相关专业技术类新职业,可形成相对稳定的从业人群。

3应用型人才培养模式分析

《中国制造2025》以推进智能制造为主攻方向,强调健全多层次人才培养体系,提到强化职业教育和技能培训,引导一批普通本科高等学校向应用技术类高等学校转型,建立一批实训基地,开展现代学徒制试点示范,形成一支门类齐全、技艺精湛的技术技能人才队伍。

通常而言,人才类型分为三类[2]:学术型人才、应用型人才、技能型人才。实际上从现代职业教育的发展和社会需求来看,应用型人才和技能型人才的界限相对模糊,可统称为应用型人才,即把成熟的技术和理论应用到实际的生产、生活中的技术技能型人才。从国家的层面来看,为了适应人工智能时展,人才需求数量基数最多、缺口最大的就是应用型人才,这也对众多高校培养人才的导向产生重大影响。这里我们重点讨论智能科学与技术应用型本科人才的培养,可从职能、知识结构、能力结构、行业(产业)导向四个方面来分析。

3.1职能

智能科学与技术应用型人才是培养面向各类智能科学与技术的工程设计、开发及应用,掌握各类现代智能系统设计、研发、集成应用、检测与维修、运行与管理等技术,具有扎实理论基础、较强工程实践和创新能力的高素质应用型工程技术人才。

3.2知识结构

智能科学与技术专业充分体现了跨学科的特点,其知识结构包含了三个并行的基础领域:电子信息、控制工程、计算机,也蕴含了电子信息工程、控制科学与工程、计算机科学与技术等学科的交叉和融合,体现了智能感知与模式识别、智能系统设计与制造、智能信息处理三个方面的专业内涵。

(1)智能感知与模式识别

属于电子信息与计算机交叉领域,主要定位在机器视觉与模式识别。包括三维建模与仿真、图像处理与分析、图像理解与识别、机器视觉、模式识别、神经网络、深度学习等。主要课程包括:电子技术基础、信号系统与数字信号处理、数字图像处理、模式识别等。

(2)智能系统设计与制造

属于控制工程领域,包括自动控制、无人系统与工程、精密传感器设计与应用等。主要课程包括:机械基础、工程力学、自动控制原理、传感器与测试技术、计算机控制技术、机电系统分析与设计等。

(3)智能信息处理

属于计算机领域,包括交通大数据、汽车与道路安全大数据等的分析与处理、信息处理与知识挖掘、信息可视化等。主要课程包括:智能科学技术导论、计算机程序设计、微机原理与接口技术、数据结构与算法、嵌入式系统设计等。

3.3能力结构

智能科学与技术应用型人才培养着眼于人工智能工程应用,要求学生具有运用计算机及相关软硬件工具进行大数据的采集、存储、处理、分析、应用的能力;具备智能系统的设计、开发、集成、运行与管理的能力;注重培养学生综合运用所学的智能科学与技术专业的基础理论和知识,分析并解决工程实际问题的能力,其能力结构可以借鉴能力本位教育(CompetencyBasedEducation,简称CBE)模式[3]。

CBE是国际上较流行的一种应用型人才培养模式,主要代表国家为加拿大和美国。该模式以能力为人才培养的目标和评价标准,一切教学活动均围绕综合职业能力的培养展开,CBE人才培养模式主要有以下三方面的特色:能力导向的教学目标;模块化的课程结构;能力为基准的目标评价体系。该模式所培养的本科应用型人才具有较强的专业综合能力和职业能力[4],在一定时期得到社会的广泛认可,但是单纯的CBE模式并不能完全适应人工智能时代对人才培养的需求,这是由于目前许多职业岗位在人工智能的冲击下,其形式和内容均会产生动态变化,要求现阶段的人才培养具有延伸性和前瞻性,既要兼顾眼前,也要考虑应对智能化浪潮,打好基础,提高自学习能力。因此,智能科学与技术应用型人才培养有一定岗位针对性,但并不是完全固化岗位内容及层次、固化知识属性,必须强化自我学习能力,才能实现能力可持续增长,岗位的向上流动性以及知识和经验的进化,才能真正适应人工智能时展的需求。

自我学习能力的形成与提高往往源于知识结构的构建[5]。为了塑造更合适的能力结构,需要CBE模式与知识结构的相辅相成,有鉴于此,将这种新型人才培养模式称之为知识型能力本位教育(Knowledge&CompetencyBasedEducation,简称KCBE)模式,这也意味着在人才培养过程中,将知识结构与能力结构放在并重的地位,既着眼于预期能力的培养,也必须让学生筑牢学科专业基础,在走向社会以后,在知识引擎的作用下,通过自我学习,具备并提升适应未来的、新的智能化岗位需求的能力。

3.4行业(产业)导向

从智能科学与技术专业的角度,培养的应用型人才以“智能化应用”为就业大方向,具体而言,包括:

(1)智能感知与模式识别领域

主要从事电子信息的获取、传输、处理、分析、应用等领域的研究、设计及应用,包括图像处理、机器视觉、工业视频检测与识别、视频监控、传感器设计及应用等。

(2)智能系统设计与制造领域

主要从事智能装备、智能制造、智能管理、智能服务等领域的设计、制造及应用,包括智能工厂、智能车间、智能生产线、智能物流、以及智能运营与服务等。

(3)智能信息处理领域

主要从事计算机数据处理、分析、理解、管理、以及服务等领域的研究、设计及应用,包括数据存储与管理、数据分析与预测、交通大数据分析应用、道路与汽车安全大数据分析、智能交通、智能电力、智能家居、智慧城市等。

涉及的产业领域主要包括智能制造,如工业互联网系统集成应用,研发智能产品及智能互联产品等。其他的领域还包括智能农业、智能物流、智能金融、智能商务等。

产业需求带动人才培养,人才培养在满足产业需求的同时推动技术进步,而技术进步又引燃了新的产业需求。产业需求与人才培养的相互作用,呈现出螺旋式上升的发展态势,这在人工智能相关产业与智能科学与技术应用型本科人才培养之间表现的得尤为突出。

4KCBE模式人才培养的主要措施和途径

智能科学与技术专业应用型本科人才的培养模式一定是和人才需求、学校定位相適应的。培养应用型人才,应注重学生实践能力,从教学体系建设体现“应用”二字,其核心环节是实践教学。结合上述的KCBE培养模式,知识结构在能力培养过程中也占有非常重要的地位,因此在能力培养方面,知识和实践作为两大要素,不能偏废任何一方,必须齐头并进,既要固基础,也要重实践。

(1)筑牢智能科学与技术专业知识基础,构建与智能化应用相关的知识体系

在本科的低年级阶段,应注重公共基础课,特别是数学和力学课程,还应充分了解智能科学与技术专业的内涵,让学生对所学专业有一个比较全面的认识。在本科中高年级阶段,重点强化专业基础,包括电子技术基础、自动控制原理、传感器与测试技术、微机原理与接口技术、数据结构与算法等。归纳地说,应该筑牢数理基础、计算机基础、机电基础和控制基础,因此对原理课程需要强化,这样对很多工作机理、来龙去脉的理解才能深刻。

(2)增强智能科学与技术专业的实践环节,构建以能力培养为重心的教学体系

按照KCBE模式,校企合作是强化实践的一种重要形式[6]。学校根据人工智能企业实际情况灵活设置实践课程内容,根据企业发展趋势及时调整课程体系以避免教学内容与企业需求相脱离。人工智能企业还可以参与学校教学目标和教学计划的制定,并为学校实践教学提供各方面支持,从而提高人才培养的针对性。

篇8

自古以恚数字就有着另外一种用途――占卜未来。无论中国的八卦图还是欧洲的塔罗牌,都和数字有着不解之缘,更不用提吉祥数字和忌讳数字了。这些占卜看起来都是随机的,但都是以归纳法为基础,在若干人、若干事的印证下认为有效,才被社会认可然后得以广泛流传。正是因为我们人类对未来不确定性的迷茫,所以使得占卜、预测之术大肆流行。

面对未来,难道真的只能依靠掷骰子才能预测吗?近现代,随着统计学的盛行,特别是香农通过热力学中“熵”的概念引入了“信息熵”的概念,用信息论将世界的不确定信息联系在了一起。对于未来的发展,人类已经找到了解决这种不确定性的良方,而以信息技术和网络技术为基础的大数据提供了解决不确定性问题的良药。

对于大数据和人工智能的发展历程以及对社会的影响,甚至对未来不确定性的思考,曾经负责谷歌计算机自动问答项目和腾讯搜索项目的吴军博士,在总结数字发展历程的基础之上,编著了《智能时代:大数据与智能革命重新定义未来》一书,对大数据和人工智能的前世今生进行了详细的回顾,对其发展方向进行了大胆想象,认为人工智能和大数据的广泛应用将彻底改变未来的商业模式,甚至改变人类生活习惯,给未来的我们带来全方位的冲击。

2016年,注定是不平凡的一年。这一年,AlphaGo火了,依托大数据与深度学习的技术优势的人工智能最终以4:1的成绩,取得了“人机大战”的胜利,向人类宣告人工智能已经成为现实。与1997年深蓝战胜卡斯帕罗夫的事件相比,AlphaGo的胜利更令人激动。这种差别不仅仅体现在国际象棋和围棋的难度上,更体现在AlphaGo获胜的技术上。AlphaGo不是依靠逻辑推理,而是依靠大数据和智能算法获胜的。这就给人工智能的发展提供了良好的发展思路和发展方向。

新书信息

《我的职业是小说家》

作者:【日】村上春树

定价:45.00元

这本书首次全面梳理村上春树对人生、创作、幸福等精彩话题的看法,这是村上春树身为职业小说家的故事,更是他追逐梦想与幸福的人生故事。

《罗曼蒂克消亡史》

作者:程耳

定价:36.00元

程耳的小说如同他的电影,循环推进,起落得当,总要人怀着好奇与疑惑,绝难一览无余。他通过冷静自律又舒缓细腻的叙述,连接往昔与现在,抖落隐秘。

《在线:数据改变商业本质,计算重塑经济未来》

作者:王坚

篇9

“互联网+”助推传统行业转型升级。“互联网+”正深刻改变着传统的生产方式、消费方式、商业模式和管理模式。石狮市科技局局长陈增坛表示:新形势下,植入“互联网+”思维,推进“O2O线上线下共建共融”的落地执行,是本地传统企业转型升级的大势所趋。积极推进实施“互联网+”行动计划,发展分享经济,实施大数据战略,让传统企业在新常态下具有更强的竞争力。

云计算,大数据助力在公共云上构建企业服务。本次会议上阿里云互联网事业部总经理金戈提出:大数据时代,云计算成为经济社会发展的基础设施。阿里云通过完善的产品体系、丰富的解决方案及生态体系顶级的数据中心和优良的带宽资源,赋能企业向云化、数据化和智能化企业转型。

化云为雨,助力传统零售行业拥抱互联网+。如何让云计算化云为雨,真正帮助企业有效的使用云计算和大数据,驱动和帮助中国企业向互联网+发展?驻云科技杭州分公司总经理陈峰在会上分享:零售业与混合云、零售业与大数据分析、零售业与CRM、零售业与移动支付、零售业与视频直播与点播、零售业与 ERP等方面的解决方案及相关的成功案例,对现场的零售企业家有很大的借鉴意义。

020助力实体零售门店再升级。互联网+概念兴起后,延伸出各种O2O模式,我答答华东东北区总经理卢晓江通过我答答服务几十家上市企业与上千家零售企业的O2O落地经验,并从货品流通、云店活动、人员激励、会员粉丝、资金流转、线上客服、门店营销等多个维度,让在座的各个企业家对“零售O2O”的未来有了更深层次的理解。

人工智能视觉技术助力打造智能零售商业场景。020的根本在于门店,在于更精准的消费数据分析,通过识别技术来实现的精准营销时代即将到来。旷世科技智能商业产品线商务总监宋晨带着现场零售行业的企业家们进入了人工智能场景,领略Face++人工智能视觉技术在智能零售商业场景,从相同产品、相同服务给到所有人,向相同产品、不同服务给到特定人群的转变。

篇10

提到人工智能,我们应该不陌生,目前已经有很多智能产品进入到我们的生活,如智能手表、手环等这类可穿戴的设备,更吸引眼球的无人驾驶和服务机器人也都慢慢进入我们的视野。

根据VentureScanner的统计,截至2016年初,全球共有957家人工智能公司,美国以499家位列第一。中国人工智能领域约有65家创业公司获得投资,合计29.1亿元。相对于全球人工智能市场,中国人工智能市场依旧是一个有待进一步开发的市场。

巨头纷纷布局人工智能,行业技术却有待提升

如今,全球有近千家人工智能公司,覆盖到62个国家的语音识别、手势控制、虚拟私人助手、语音翻译和智能机器人等十余个产业,基础技术、人工智能技术、人工智能应用构成了人工智能产业链的三个核心环节,而国内涉及人工智能领域的公司也早已破百。不论是国外还是国内的科技巨头和风投机构都在布局人工智能这条产业链,以寻求占得人工智能市场一席之地。

全球AI阵营:3月份的谷歌阿尔法狗机器人大胜围棋高手后,令谷歌名声大噪,也将人工智能再次推向全球热浪中。在无人驾驶汽车方面,谷歌无人驾驶汽车测试历程已超过200万公里,并对其不断地测试和改进;微软在人工智能方面的技术研究投入已超过20年的时间,其人工智能机器人小冰是人工智能伴侣虚拟机器人的生态模式;Facebook的聊天机器人“M”,是基于其用户和社交形态而成的智能助手,除了能够回答用户问题、查阅信息外,还能够帮助用户完成一些生活操作,如购买商品、餐厅定位、安排计划旅行等。

由谷歌、微软和Facebook为代表的全球AI市场,在语音识别、机器视觉等产品上有了丰富的研究、开发,而在人脑科学、深度学习感知等领域上的研究也在不久会有所突破。

国内BAT巨头阵营:百度的人工智能技术体系包括百度研究院、百度大数据、百度语音、百度图像等技术,而百度在人工智能上的投入力度很大,且其技术在国内处于领先地位;阿里的人工智能是在其DT和附能话术体系下展开的,阿里目前有小Ai、小蜜,是以阿里云为基础的业务蓝图的生态模式;相对于百度、阿里,腾讯在人工智能方面进展相对比较缓慢,目前推出了Dreamwriter和微宝等产品。

然而,纵观国内外人工智能领域的市场,巨头们在人工智能领域都已布下棋局,但是巨头们的人工智能都是在为企业自身以及企业相关业务进行服务。目前的人工智能市场,大多数的企业都还存在一定的技术难关,尤其是初创企业。这些企业急切需要一些人工智能技术服务来为自己提供技术支持、帮助。

此外,对于很多正处于转型的企业来说,他们处在需要人工智能技术服务来加快信息化建设的关键时刻,自身没有技术优势和人工智能技术基因,发展就会受到限制。

企业信息化建设需求紧迫,AI技术服务商纷纷现身

互联网时代下的经济发展,企业要转型就要加快信息化建设,而让信息化技术来转变企业业务需求的方法无疑是具有很大的操作性和实用性的。然而,很多传统企业自身没有IT新技术基因,自己再投入资金来研发、培养团队这不太现实。所以这些传统企业更多的是想要依靠拥有AI技术优势的企业来提供技术服务,这个急迫的需求则推动了国内AI技术服务市场的发展。

在人工智能风靡全球的浪潮下,随着国家对人工智能公共创新服务领域的不断重视,并提出多个政策鼓励、支持,人工智能这块市场出现了为各个行业提供人工智能解决方案的服务商。这类智能机器人的服务企业定位很明确,就是为行业人工智能开发多样化的产品功能,产品差异化也很明显,这能够为行业工作模式带来快速的改变和发展。

1、提供智能语音技术的服务:在智能语音技术方面,科大讯飞股份有限公司的讯飞“超脑”在语音识别、语义理解、口语翻译、机器评测方面上取得了一定的应用成果,其智能语音核心技术在国内智能语音上也是数一数二的企业。

在今年的安徽两会上,科大讯飞的智能会议系统正式亮相,会议代表手持话筒在现场发言时,屏幕上能够快速、准确的、实时的显示相对应的文字,满足了会议的图文直播需求。因此,人工智能在语音识别、口语翻译上的应用范围广,能够为企业的办公方式带来很大的便利。不过他们在语音技术上,尤其是机器人对地方方言和口音的识别依旧存在着不足,因此,技术服务商还是要加强对AI机器人的语音培训。

2、提供人工智能引擎平台的服务:在传统行业的智能化服务上,目前,厦门快商通科技股份有限公司和上海智臻智能网络科技股份有限公司都提供了较为完整的技术解决方案。厦门快商通科技股份有限公司主要研发的平台为小快人工智能引擎平台,重点在人机交互领域进行平台技术输出。此平台是在开放小快自身核心语义理解和交互能力的基础上,针对第三方开发者建立的基于“云端”智能的网络虚拟机器人服务平台。

快商通将小快人工智能引擎平台的智能服务引擎和管理平台放在“云端”,客户通过SDK、API、第三方应用等渠道接入小快人机交互引擎平台,客户可以随时调用云端智能机器人的语音识别、智能应答等功能,并可根据需要定制机器人知识范围,实现智能服务机器人交互技术的远程接入。

目前,小快人工智能引擎平台已在智能客服、智能教育、医疗领域成功落地,获得大规模技术调用。其简洁、高效、智能的技术输出方式,使得快商通在智能家居、电子政务、自媒体、游戏、教育等领域迅速积累了大量用户资源。

3、提供物联网人工智能的服务:在物联网人工智能方面,北京云知声信息技术有限公司的“云端芯”,围绕自身智能语音识别和语音理解等核心技术优势来打造的生态体系。利用大数据为各个产品方案实现落地,并收集的数据经过大数据处理转化成最终服务,目前在家居、汽车、医疗和教育等领域有所应用,在国内的后装车机市场70%的自主厂商的语音交换皆由云知声提供技术服务。

4、提供智能家居方案的服务:浙江风向标科技有限公司的“VANE”,主要是应用在智能家居上,可以进行个性化的生活场景定制,在一定程度上为用户的家居生活提供智能化服务,但相对来说,应用在家居场景服务中的产品种类还是比较少的,功能也比较简单。因此要真正实现智能家居还需要技术服务企业开发出更丰富的、智能化的产品功能。

5、提供多种AI技术融合的服务:北京捷通华声科技有限公司的灵云全智能能力平台,将智能语音交互、图像识别、语义理解、生物特征等技术进行整合,解决企业的具体需求。

可以说,国内不断涌现出来的人工智能技术服务商在语音识别、翻译等方面上都有技术优势,并在产品开发上耗费了多年的研究准备时间。在发展前期瞄准了可以发挥自身技术优质的行业领域,利用人工智能技术来帮助更多企业解决行业痛点,同时又能够使自己在国内人工智能市场上站稳脚跟。这符合当前我国人工智能市场不太成熟的行情,也能够使创业企业在摸索中成长。

AI技术服务商为企业在转型中的信息化建设提供了很大的动力和支持,而企业在转型过程中,首先改变的是业务办理方式和营销方式。传统企业在业务中常常要与消费者进行直接的沟通与交流,因此企业在售前售后的客服团队人数数量是庞大的,工作量一般也会很大;传统企业的营销方式要与时俱进,依旧离不开互联网思维,而人工智能服务商无疑可以为企业解决这些难题,提高其工作效率和营销决策的准确性。

企业客服市场需求大,或能借力人工智能起飞

根据艾媒咨询的统计,目前国内的客服市场规模已超过千亿,而随着移动电子商务和O2O市场的发展,国内客服市场将从传统PC端和电话客服的工作方式中逐渐转向移动客服,客服市场潜力巨大,也使更多人工智能技术服务商争相进军,争抢市场的一杯羹。

为企业级用户提供服务的智能机器人厂商,其定位很明确,就是专门针对智能客服机器人领域进行优化,以寻求在企业客服服务中占领市场,其开发的产品功能模式多样化,也能够为部分人群的工作模式带来积极的推动作用。

模式一:智能客服机器人或插件服务

云问是一个智能客服机器人SaaS服务平台,可以通过机器人问答来模拟人工客服为用户提供客服服务。晓多机器人,从2013年7月开始在淘宝卖家服务市场上线旺财客服机器人,能够模拟真人以自然语言与买家进行对话。

这一模式在一定程度上就已经初步解决了企业在客服上的问题,尤其是电商企业的客服人员面对大量的客户咨询,会出现来不及回复和重复回答问题等情况,将重复的、简单的问题交给智能机器人可以节约时间并节省人力成本,不过他们并没有深入到企业客服领域的其他方面。

模式二:机器人客服+人工客服+工单系统

该模式下的七鱼、智齿科技、爱客服等服务商,在机器人客服上,通过智能机器人智能解答客户问题,提供永不离线的客服服务,可以降低80%的客服人力成本;在工单系统上,则支持多种方式创建工单,为跨部门协作和问题及时跟进提供了便利服务;为企业提供统一客服工作台,为客服提供客户画像、问题分类、历史会话等繁杂问题的简化集成。

这一模式为企业搭建了智能的、多渠道客服系统,通过大数据实现企业对用户的细分,实现智能化管理,在一定程度上改善企业和用户的关系,促进企业更好、更快地发展。进一步拓宽了人工智能技术为企业客服提供的服务。不仅实现机器人的智能客服,还完善了工单系统,为部门之间团结协作提供便利。

模式三:呼叫中心+机器人客服+人工客服+工单系统+大数据挖掘

快商通、Udesk、小能科技等服务商将呼叫中心+机器人客服+人工客服+工单系统模式作为自己的产品模式,不过Udesk、小能科技的人工智能技术是与云问达成的合作。快商通的人工智能技术则是自主研发。这种模式下的人工智能技术在呼叫中心的应用是实现自助服务、人机融合、运营支撑,可以很大程度上地节约了人工成本,同时快商通在现有的客服体系中采用大数据挖掘模式,并且利用大数据分析了解用户需求、解决营销问题。

在客服工作处理上,大部分的简单、高频、重复性问题交给客服机器人处理,小部分无法解决的则转交给人工客服。通过精准地理解客户问题并匹配最佳答案从而提高回复准确效率,同时通过机器人在线解答重复率高达80%的问题,从而减轻人工座席负担,减少企业的客服人工成本。

在数据营销解决上,通过海量行业数据的收集、分析,为企业提供行业营销推广热点、价格定制等解决方案,实现企业的PC端、移动端一体化的数据营销。这对企业来说可以快速的实现营销决策,但是也要结合实际的市场行情来做出判断,不能过度依赖于人工智能。

这一模式很好地利用了人工智能在行业的客服方面提供高效率的工作服务,同时又运用大数据分析为企业提供营销,这在一定程度上能够实现企业的信息化建设与发展,更好地应对市场的变化,及时作出营销决策。

随着移动互联网的发展,企业的客服需求越来越大,人工智能能够解决传统呼叫中心因人工客服人力成本耗费大、用户等待时间长、客服渠道繁琐、接入方式繁杂等痛点,从而为企业提高运营效率、降低软件的使用成本,使企业能够更好地实现转型,朝着信息化建设方向快步前进。

人工智能普及速度加快,技术服务商成幕后英雄