生物燃料行业前景范文
时间:2023-10-26 17:33:07
导语:如何才能写好一篇生物燃料行业前景,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
能源是一个国家经济和社会发展的重要基础,也是各国战略安全的重要组成部分。面对传统化石能源日益枯竭、环境污染日益严重以及全球气候变暖的威胁,我国已经将关注目光转向了能源多元化发展和加快可再生能源开发上。燃料乙醇作为可再生能源的代表之一,已成为我国新型能源研发的重点,当前,伴随着低碳之风席卷祖国大地,燃料乙醇的生产和利用在我国得到了迅速的发展。
燃料乙醇是一种新型清洁燃料,是可再生能源开发利用的重要方向。它可以用玉米、小麦等粮食作物和甘蔗、木薯、高粱等非粮食作物通过生物发酵方式来生产,也可以利用植物纤维经过预处理、无机酸或纤维素酶水解再通过生物发酵方式生产。将一定比例的燃料乙醇掺混在普通汽油即可调和成乙醇汽油。乙醇汽油可以有效改善油品的性能和质量,降低一氧化碳、碳氢化合物等主要污染物的排放。
行业步伐加快
同时,燃料乙醇作为新兴行业,可以带动农业、制造业等行业协同发展,拉动经济增长,因而得到各国政府的大力支持。按照技术和工艺的发展进程,目前学术界将燃料乙醇分为三类:第1代的粮食乙醇、第1.5代的非粮乙醇、第2代的纤维素乙醇。粮食乙醇指以玉米、小麦等粮食为原料,使用传统的发酵法制造的燃料乙醇;非粮乙醇指使用木薯、甘蔗、甜高粱秆、红薯等经济作物为原料,使用传统的发酵法制造的燃料乙醇。第1代和第1.5代燃料乙醇均属于淀粉基乙醇,即将原料中的可发酵糖直接发酵制取乙醇。纤维素乙醇指使用玉米秸秆、玉米芯等纤维素物质为原料,经预处理后通过高转化率的纤维素酶,将原料中的纤维素转化为可发酵的糖类物质,然后经特殊的发酵法制造燃料乙醇,在技术上同粮食乙醇和非粮乙醇存在较大的差别,目前是国内外科研机构和企业的研发重点。
我国的燃料乙醇行业起步较晚,但在政府的大力支持下发展迅速。从2001年开始,我国先后在河南、黑龙江、吉林、安徽等9个省市开始试用车用乙醇汽油,采取地方立法的手段,在试点城市封闭运行。“十五”期间,国家批准了包括吉林燃料乙醇有限责任公司、河南天冠集团有限公司、安徽丰原生物化学股份有限公司和黑龙江华润乙醇有限公司等4家燃料乙醇试点企业,以消化陈化粮为主生产燃料乙醇。近几年,燃料乙醇在全国多个省市进行了推广,取得了很好的成效。目前我国推广乙醇含量10%的乙醇汽油的省份从原来试点的4个向更大的范围推广。随着试点规模的扩大,我国燃料乙醇销售量迅速增长,截止到2011年我国燃料乙醇产销量达193.76万吨,是世界第三大燃料乙醇生产国。
政策大力扶持
为了促进燃料乙醇行业的健康有序发展,从提出此项战略以来,国家对该行业的政策干预从未停止过。燃料乙醇从落地以来,政府对其进行了大力推广,从产品的生产、销售到定价都是由政府“一手操办”。获得政府批准和补贴是燃料乙醇生产开工的必要前提,政府政策变化对燃料乙醇生产效益波动影响很大。
我国人多地少,耕地资源紧缺,粮食供需处于紧平衡状态,以玉米、小麦为原料生产燃料乙醇将威胁到国家的粮食安全,影响粮食正常供给,并导致农产品价格上涨等连锁反应,所以我国严格控制以粮食为原料的燃料乙醇新建和扩建项目。2005年6月,财政部印发《可再生能源发展专项资金管理暂行办法》明确提出:“石油替代可再生能源开发利用,重点是扶持发展生物乙醇燃料、生物柴油等,其中生物乙醇燃料是指用木薯、甘蔗、甜高粱等制取的燃料乙醇。”针对部分地区发展生物乙醇燃料的过热倾向和盲目势头,2006年12月国家发展改革委和财政部联合下发了《关于加强生物燃料乙醇项目建设管理,促进产业健康发展的通知》,要求立即暂停核准和备案玉米燃料乙醇项目,明确提出“因地制宜,非粮为主”的发展原则。
可见燃料乙醇虽然在我国具有良好的使用及推广价值,但乙醇的发展趋势应立足于中国国情,做到不与人争粮,不与粮争地,走以非粮作物,如木薯和纤维素为原料的生产路线。记者认为,想要做到这些都离不开政府的科学指导和政策的合理干预。
企业发力支撑
燃料乙醇产业对于推动我国发展绿色低碳经济、提升生态文明水平有着至关重要的作用。为此国家对该产业大力扶持,众多优惠政策频频抛出,而企业的有力支撑成为了该产业健康有序发展的关键。
作为我国较早涉足燃料乙醇产业的天冠集团经过了多年的积极探索,现已成为绿色生物能源的领军者。在企业成长的同时积极推行循环、低碳发展,为国家能源安全和节能减排工作作出了重要贡献。
天冠集团副总经理路胜旗向《财经界》记者表示, 上世纪末,天冠集团率先研制出燃料乙醇,并于2000年向国家及省市有关部门提出了“关于在我国推行清洁燃料乙醇的建议,受到国家层面的高度重视。”2002年,天冠集团30万吨/年燃料乙醇项目得到国家批复,成为国家“十五”重点工程和河南省工业结构调整标志性项目。经过数年的发展,企业已形成年产80万吨燃料乙醇的生产能力,占全国燃料乙醇总量的30%以上,为河南、湖北、河北三省31个城市提供着高品质的绿色能源,累计替代石油资源460万吨以上,带动农民增收300多亿元,有效改善了推广区域的生态环境,产生了显著的经济、社会和生态效益。
天冠集团积极探索燃料乙醇的脚步从未停止,历经十几年的研发,企业成功开发出了具有完全自主产权的纤维乙醇关键技术。2011年12月,天冠集团国内首个万吨级纤维乙醇示范项目正式通过了国家能源局组织验收。2013年,天冠集团的纤维乙醇产业化体系全面成熟,形成了一系列具有知识产权的独创性成果。以此为依托,天冠集团率先获批开建了全球最大的年产15万吨纤维乙醇产业化示范区项目,成为我国纤维乙醇全面产业化的破题之笔,也进一步奠定了我国生物能源产业的国际领先地位。
发展前景广阔
随着国内环保意识的加强,发展低碳经济的呼声越来越高,在此大环境下,燃料乙醇自身所具有的特殊优势注定了它的发展前景将会很广阔。
篇2
关键词: 燃料乙醇 新能源 经济效益
目前,全球气候逐渐变暖,煤、石油、天然气等化石能源日渐消耗,从而引发了世界对可再生并对环境污染少的新型能源的深刻思考。诸如中国、巴西、美国、加拿大等国正在积极开发和利用生物质燃料乙醇。但如果一直采用大量粮食生产燃料乙醇,必然会造成人类缺粮、缺地等生活隐患,所以走“非粮”路线必然是正确道路。再者地球纤维素的贮量丰富,其能量来自太阳,取之不尽,用之不竭。
一、国内外燃料乙醇的发展现状
目前,随着石油价格的飞涨,环境污染与能源短缺问题日渐突出,化石能源日益枯竭,燃料乙醇便应运而生,并逐渐形成了一个产业,一些农产品丰富的国家正大力发展燃料乙醇的供应市场。巴西早在1981年就颁布法令规定全国销售的汽油必须添加燃料乙醇,成为世界上唯一不用纯汽油作为汽车燃料的国家。经过几十年的发展,巴西用占全国面积1.5%的国土面积,解决了全国超过一半的非柴油车用燃料的供应。美国自1992年起就开始推广燃料乙醇汽油,目前已经成为燃料乙醇年产量最大的国家,年产近4000万吨。加拿大从1981年起在汽油中添加乙醇,到2003年,加联邦政府宣布实施加拿大燃料乙醇的生产和利用,并拨巨款直接用于魁省等4个省的燃料乙醇商业化项目。欧盟每年约生产176万吨酒精。1997年只有5.6%用于燃料。1994年欧盟通过决议,给生物燃料生产工厂予以免税。并在2010年使燃料乙醇的比例达到12%。因此一些后续的国家如荷兰、瑞典和西班牙也出台了生物燃料计划。泰国是亚洲第一个由政府开展全国生物燃料项目的国家。在短短的几年时间内,泰国成功地开展了燃料乙醇项目。这些项目提供了利用过剩的食用农产品的途径,对提高泰国农村几百万农民的生活水平起到了积极作用。印度是仅次于中国的亚洲第二大乙醇生产国,设计的年生产能力约为200万吨,并准备效法巴西推出“乙醇汽油计划”。
我国是继巴西、美国之后全球第三大生物燃料乙醇生产国和消费国。受化石能源枯竭和环境保护双重压力的影响,中国生物质能源产业的发展再一次被提到战略性新兴产业的位置上来,尤其是在我国已经形成了初步规模的燃料乙醇产业,更是受到格外关注。我国燃料乙醇市场格局是2002年形成的,2006年以后的几年时间里,燃料乙醇已经在国内更多地区推广。到2010年底,燃料乙醇消费量占全国汽油消费量的比例,已经由过去不足20%上升到50%以上。同时我国也将采取各种措施来增加燃料乙醇的产量。可见,燃料乙醇行业发展前景光明,具有相当的投资潜力。
二、燃料乙醇的概述
1.燃料乙醇的含义
乙醇俗称酒精,它以玉米、小麦、薯类、甜高粱等为原料,经发酵、蒸馏而制成。将乙醇进一步脱水再加上适量汽油后形成变性燃料乙醇。燃料乙醇中的无水乙醇体积浓度一般都达到99.5%以上,它是燃烧清洁的高辛烷值燃料,是可再生能源。主要是以雅津甜高粱加工而成。
燃料乙醇再添加变性后,与无铅汽油按一定比例混配成的乙醇汽油,是一种新型绿色环保型燃料。当乙醇混配比例在25%以内时,燃料可保持其原有动力性。它可以有效改善油品的性能和质量,降低一氧化碳、碳氢化合物等主要污染物的排放。它不影响汽车的行驶性能,还可以减少有害气体的排放量。更重要的是,乙醇是太阳能的一种表现形式,在整个自然界大系统中,乙醇的生产和消费过程可形成无污染的闭路循环。
2.燃料乙醇的使用方法
乙醇既是一种化工基本原料,又是一种新能源。尽管目前已经有着广泛的用途,但仍是传统观念的市场范围。其现在的使用方法主要有两种:一种以乙醇为汽油的“含氧添加剂”,这也是美国使用燃料乙醇的基本方法;二是用乙醇代替汽油,这是巴西较普遍采用的方法。未来乙醇作为基础产业的市场方向将主要体现在三个方面:一是车用燃料,主要是乙醇汽油和乙醇柴油。这就是我们传统所说的燃料乙醇市场,也是近期的(10年内)容量相对于以后较小的市场(在我国约1000万吨/年)。二是作为燃料电池的燃料。在低温燃料电池诸如手机、笔记本电脑,以及新一代燃料电池汽车等可移动电源领域具有非常广阔的应用前景,这是乙醇的中期市场(10―20年内)。乙醇目前已被确定为安全、方便、较为实用理想的燃料电池燃料。乙醇将拥有新型电池燃料30―40%的市场。市场容量至少是近期市场的5倍以上(主要是纤维原料乙醇);三是乙醇将成为支撑现在以乙烯为原料的石化工业的基础原料。在未来二十年左右的时间内,由于石油资源的日趋紧张,再加上纤维质原料乙醇生产的大规模工业化,成本相对于石油原料已具可竞争性,乙醇将顺理成章地进入石化基础原料领域(如乙烯原料市场),很可能将最终取而代之。如果要做一个形象而夸张的比喻的话,二十世纪后半叶国际石油大亨的形象将在二十一世纪中叶为“酒精考验”的乙醇大亨所替代。
3.燃料乙醇的特点
(1)可作为新的燃料替代品。
乙醇作为新的燃料替代品,可直接作为液体燃料,也可用于生产生物质燃料乙醇的主要原料来源或者同汽油混合使用,减少对不可再生能源――石油的依赖,保障国家能源的安全。
(2)辛烷值高,抗爆性能好。
作为汽油添加剂,可提高汽油的辛烷值。通常车用汽油的辛烷值一般要求为90、93或97,乙醇的辛烷值可达到111,所以向汽油中加入燃料乙醇可大大提高汽油的辛烷值,且乙醇对烷烃类汽油组分(烷基化油、轻石脑油)辛烷值调合效应好于烯烃类汽油组分(催化裂化汽油)和芳烃类汽油组分(催化重整汽油),添加乙醇还可以较为有效地提高汽油的抗爆性。
(3)减少矿物燃料的应用,以及对大气的污染。
乙醇的氧含量高达34.7%,乙醇可以按较甲基叔丁基醚(MTBE)更少的添加量加入汽油中。汽油中添加7.7%乙醇,氧含量达到2.7%;如添加10%乙醇,氧含量可以达到3.5%。所以加入乙醇可帮助汽油完全燃烧,以减少对大气的污染。使用燃料乙醇取代四乙基铅作为汽油添加剂,可消除空气中铅的污染;取代MTBE,可避免对地下水和空气的污染。另外,除了提高汽油的辛烷值和含氧量,使用乙醇汽油可以有效降低汽车尾气对环境的污染,降低碳氢化合物和氮的氧化物的排放量。
(4)可再生能源。
若采用雅津甜高粱、小麦、玉米、稻谷壳、薯类、甘蔗、糖蜜等生物质发酵生产乙醇,其燃烧所排放的CO2和作为原料的生物源生长所消耗的CO2,在数量上基本持平。这对减少大气污染及抑制温室效应意义重大。
三、燃料乙醇的生产工艺
目前,燃料乙醇的生产方法有合成法和生物法两种。由于近年来原油资源短缺及乙烯价格上升,所以合成法逐渐被生物法所取代。
生物法生产燃料乙醇大部分是以甘蔗、玉米、薯类和植物秸秆等农产品或农林废弃物为原料经酶解糖化发酵制造的,其生产工艺有酶解法、酸水解法及一步酶法等。其生产工艺与食用乙醇的生产工艺基本相同,有所不同的是需要增加浓缩脱水后处理工艺,使乙醇的含量达到99.5%以上。脱水后制成的燃料乙醇再加入少量的变性剂就成为变性燃料乙醇,与汽油按一定比例调和就成为车用乙醇汽油。合成法是用纤维素、半纤维素、木素及其它生物体有机物,经过热解合成气(H2,CO),化学或酶催化或微生物发酵而合成乙醇。
在某些方面,化学法好比西药,强烈、见效快,生物法好比中药,温和、见效慢。两种方法“各有千秋”,其制约因素是成本和高效、廉价催化剂、酶和合适微生物的开发等关键技术。生物法具有选择性、活性好、反应条件温和等优点,但原料利用率低、反应时间长、产物浓度低及酶、微生物活性易受影响且纤维素降解和单糖转化所需酶、微生物适用于不同反应条件,不能很好耦合。而化学法具有原料利用率高、反应时间短、催化剂构成简单、没有严格反应条件限制等优点,但为高温、高压过程,对设备要求高。
本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文
四、燃料乙醇的经济效益
生物质直接燃烧热效率很低,只有10%左右,而将它们转化成气体或液体燃料(甲烷、氢气、乙醇、丁醇、柴油等)热效率可达30%以上,缓解了人类面临的资源、能源、环境等一系列问题。其次,乙醇燃烧值仅为汽油2/3,但分子中含氧,用作汽油添加剂抗暴性能好、低排放,可提高其辛烷值2―3倍,还能使汽车动力性能增加等。
据推算,平均每3.3吨玉米可生产1吨燃料乙醇,而且生产只是利用玉米种的淀粉,玉米种的其他部分仍可综合利用。如生产优质的药用添加剂、食品添加剂、专用饲料和农业复合肥等产品,由此可见燃料乙醇的生产成本比较低。巴西以甘蔗为原料生产燃料乙醇,成本价为每升0.2美元。美国以玉米为原料生产燃料乙醇,成本价为每升0.33美元。而且如谷物茎秆、稻草和木屑等废料也可用来生产燃料乙醇,这样就大大降低了燃料乙醇的生产成本。
除此之外,燃料乙醇还有一些明显的关联经济效应。一方面,燃料乙醇有巨大的环保效应,这可以大大降低城市处理空气污染的费用。另一方面,对于石化行业发展来说,燃料乙醇具有巨大的需求又是十分有利的。燃料乙醇的辛烷值是非常高的,可以提高油品质量和辛烷值。
五、燃料乙醇的发展前景和展望
燃料乙醇的生产正在由传统的粮食酿造向生物加工过渡,所以它的发展前景是十分广阔的。美国能源部资助用生物质废料生产燃料乙醇的技术开发,美国每年生产约2.8×108T的生物质废料。如谷物茎秆、稻草和木屑等,开发将生物质废料转化为乙醇是生物质制乙醇工业持续发展的关键,美国Novozymes公司和NREL合作研发了将生物质(如玉米秸秆)中的纤维素转化成葡萄糖,再发酵成燃料乙醇,这大大降低了燃料乙醇的生产成本。加拿大IOGEN公司与加拿大石油公司合作投产了世界上最大的,也是迄今唯一的用纤维素废料生产乙醇的装置,每年可将12000―15000T小麦等其他谷物茎秆转化为3×106―4×106T燃料乙醇。这也将燃料乙醇的生产成本价降到了1.1美元/加仑,预计未来可减少到90美分/加仑。
我国由天冠集团和山东大学联合攻关的纤维素酶科项目中试发酵试验表明,酶活力及生产成本达到国内领先水平。该项目利用酶解法生产纤维素乙醇,具有反应条件温和、环境污染小、装置简单等优点。采用当今流行的液体深层通风发酵培养,通过诱发育种和基因工程等方法,从提高酶活性降低生产成本着手,利用经济实用的秸秆类物质作原料,使酶的发酵水平显著提高,可望经过后续处理进行规模化生产。
燃料乙醇作为一种新型清洁燃料,是目前世界上可再生能源的发展重点,符合中国能源替代战略和可再生能源发展方向,技术上成熟安全可靠,在中国完全适用,具有较好的经济效益和社会效益,成为普通汽油与柴油的替代品。燃料乙醇作为推动农业产业化的战略产业,必须依靠科技进步。在吸收国外成果和经济的基础上,加强燃料乙醇生产新技术研究、开发和副产物深度加工研究工作。
近年来,石油等矿物质日渐枯竭,油价进一步上涨,使燃料乙醇发展更重要,而且使燃料乙醇的价格有一定的上升空间。随着石油等矿物质的枯竭与油价的大幅上升,以乙醇等能代替矿物质能源的新型能源供应多元化战略已成为国家能源政治的一个方向。
参考文献:
[1]刘全根.炼油设计.乙醇汽油的应用,2002.2.
[2]任波.乙醇汽油转折[J].财经,2007,178:100-102.
[3]雷国光.用纤维质原料生产燃料乙醇是我国再生能源发展的方向[J].四川食品与发酵,2007,43,(135):39-42.
[4]路宽行.乙醇燃料:打开新能源之门?[J].经济导报,2007,3013:30-31.
[5]贡长生,张龙.环境化学,2008,(1):222-228.
[6]郎晓娟,郑风田,崔海兴.中国燃料乙醇政策演变,2009.3.
[7]李志军.中国生物工程杂志.生物燃料乙醇发展现状、问题与政策建议,2008.7.
[8]张智先.粮食论坛.国内燃料乙醇加工业现状及发展趋势,2010,(11).
[9]秦凤华.燃料乙醇蒸蒸日上[J].中国投资,2007:38-41.
篇3
关键词:可再生能源;绿色就业;低碳
一、可再生能源与绿色就业
绿色就业指在绿色职业(从事风能、太阳能、地热发电和从事其他可替代石油和天然气等传统能源的职业,还包括废弃物回收循环使用和环保型汽车的设计与制造职业)工作范围内就业[2]。联合国环境计划署在《绿色职业工作前景》报告中定义:直接使用体力劳动的职业和可持续、释放低碳能的职业。举凡能源供应业、运输业、制造业、建筑业、物质管理、零售业、农业及林业,均有创造绿色就业的机会[3]。
全球各领域的绿色工作数量逐步上升,可再生能源领域表现得尤为明显。水电、风电、太阳能、生物质能等的发展,在大量降低二氧化碳排放的同时,能推动新能源技术开发、设备制造和安装、维护等上下游行业,从而产生一系列新的就业机会。据全球风能协会《2008年全球风能展望》报告,风能利用使全球二氧化碳排放每年可减少约15亿吨,带动的就业岗位35万个,到2020年,预计风电能为全球带来200万个就业岗位[3]。
2006年全世界可再生能源及其支持行业的雇佣人数约230万,其中,风电行业约30万人,太阳能光电领域约17万人,太阳热能行业超过60万人,对各种给料进行培育并加工成乙醇和生物柴油领域的雇佣人数超过100万[2]51(表1)。
美国学者认为,可再生能源同化石能源相比,可提供更多的就业机会,投资于太阳能等技术所创造的就业机会大约是石油、天然气的2倍,与欧盟可再生能源专业委员会的观点类似[5]104。可再生能源良好的投资与就业前景,极大地促进了各地区政府的政策支持。美国的爱荷华、密歇根、俄亥俄和宾夕法尼亚州的州长们努力通过吸引太阳能、风能、生物能和电动汽车行业投资来振兴经济。2006年,美国可再生能源业创造386000个岗位,而煤炭行业只创造82000个岗位[1]255。
欧洲可再生能源方面的就业人数突增。丹麦1999年风机制造、维护、安装和咨询服务提供1.2~1.5万个就业机会;风机零部件供应遍及全球,也创造了约6000个就业机会。德国2006年可再生能源的制造、运行和维护,增加17万个岗位[4]104。据德国联邦经济部公布的最新统计数据,采用新型可再生能源,每年减少1.15亿吨二氧化碳排放量;2008年德国可再生能源领域提供了近28万个岗位,比上年增加10%。
2010年,欧洲可再生能源市场可提供170万个就业机会。此外,每年相关贸易出口可达170亿欧元,还可提供约35万个潜在就业机会[4]104。
由国际环保组织绿色和平与欧洲可再生能源理事会(EREC)共同的《拯救气候:创造绿色就业机会》报告可知,若哥本哈根气候大会能达成切实有效的协议,并大力投资绿色能源产业,到2030年,可再生能源行业将提供690万个就业岗位,节能行业则提供110万个就业岗位。到2030年,若能实现大规模的从传统煤炭发电向可再生能源发电的转型,不仅会在全球范围内减少100亿吨二氧化碳排放,同时可新增数270万个就业岗位。相反,煤矿资源开发的合并重组,全球煤炭行业的就业机会将从470万个减少到2030年的140万个。
联合国的《绿色职业工作前景》报告:未来几十年全球发展可再生替代能源技术,将创造数以百万计的绿色职业岗位。风能、太阳能、生物能等可再生能源都持续的快速扩张,到2030年,全世界风能领域的雇佣人数会达到210万人。太阳光电行业的雇佣人数可能达630万人。从事生物燃料工作的人数,预计将达到1200万人。
未来30年,绿色职业工作充满机会和挑战。联合国环境计划署主任阿希姆-施泰纳说,如果全球各国不向“低碳经济”模式转化,将“错过一个重大的机会”,将会失去数以百万计的就业机会。这份报告出炉的背景是面临最严重的全球性经济危机,施泰纳认为若忽视绿色能源政策和绿色职业工作,将是这一危机中最严重的错误,长期存在的新就业机会使各国的经济实力更强,扩大和发展绿色职业工作是摆脱困境的出路之一[2]。从一些国家已制定的能源发展目标(见表2、表3)中可知,各国已把可再生能源作为能源发展战略的重点。
二、中国可再生能源发展及绿色就业的前景
篇4
在《规划》描绘的宏伟蓝图中,生物基产品和生物工艺在替代传统石化原料及工艺中将发挥哪些重要作用?我国生物制造产业怎样才能把蛋糕做大,成为国民经济的支柱产业?带着这些问题,笔者采访了相关业内人士。一份千亿蓝图
据中国化工信息中心产业经济研究院咨询师戎志梅介绍,生物制造是生物技术与工业制造技术相互融合发展的一个新兴产业。对石化行业而言,发展生物制造产业可以实现“两个替代、一个提升”,即对化学工业的工艺路线替代、对石油化工的原料路线替代以及提升大宗发酵产业,是石油和化学工业实现可持续发展的重要途径。
“发展生物制造业,把太阳能和二氧化碳转化成我们需要的能源产品和生物化学品,有两大突出优点:一是取之不尽,二是相对清洁。从保证国家能源安全和节能减排的角度出发,发展生物制造业已经迫在眉睫。”北京化工大学生命学院院长、长江学者袁其朋告诉笔者。
也正因为如此,我国已经将生物产业确定为战略性新兴产业重点发展,并先后出台了《促进生物产业加快发展的若干政策》、《可再生能源中长期发展规划》等多个文件推动产业发展,生物制造产业是其中的重要内容。此次出台的《规划》则将生物产业提到了前所未有的高度,也确立了2015年生物制造和生物能源年产值分别达到7500亿元和1500亿元的宏伟蓝图。
戎志梅认为,我国生物制造产业已经迎来发展的有利时机。第一,无论从市场需求还是从技术发展来看,我国都已具备良好的发展基础,适合新企业进入;第二,我国具有全球最大规模的发酵产业,相关消费品与工业原材料市场需求旺盛,具备产业发展的内在条件。
近年来我国在燃料乙醇和丁醇、生物柴油、生物质发电、沼气等方面发展迅速,自主创新能力不断增强,攻克了一批共性关键技术,培育了一批龙头企业。业内人士认为,随着《规划》确立了行业发展目标,生物制造产业将加速替代一些高污染、高能耗的生产方式,为传统石化行业转型升级带来新机遇。
“要实现《规划》目标,我国的生物基化学品产业需要在2015年开发出40~50种重要产品,培育大型集团企业20家,形成3000亿元的产业规模,环境污染物排放减少50%以上;到2020年形成7000亿元的产业规模,替代传统化学品的比重达到25%。”戎志梅说。两大待解问题
尽管任务十分迫切、基础已经具备、前景非常美好,但是近几年我国生物制造产业发展情况却难尽人意,突出表现在技术还不成熟,生产成本偏高,导致产业化水平不高。从“看上去很美”到真的很“美”,生物制造产业还需要跨越诸多障碍。
国家发改委副主任连维良直言,我国生物产业目前总体上仍处在中低端位置,创新成果越到产业化阶段与发达国家的差距越大。
中国工程院院士、中国生物工程学会名誉理事长杨胜利对此也表示赞同:“整体来讲,对比一些科技先进的国家,我国生物产业在创新能力上,还存在一定差距。高效转化先进技术、实现产业化等都还是相对薄弱的环节。”
中银国际的研究报告也指出,与欧美相比,中国的生物产业在技术和规模方面还存在明显差距。全球生物技术专利中,美欧日分别占59%、19%、17%,而包括中国在内的发展中国家仅占5%。
非粮生物燃料被业界公认为是生物能源的发展方向之一。在政策支持下,中粮、中信、中国海油等央企和一些民营企业先后进入这一领域,分别投资建设木薯燃料乙醇、甜高粱燃料乙醇和生物柴油项目。但是据笔者了解,我国不少非粮生物燃料项目进展并不顺利。最近两年,我国燃料乙醇产量出现了负增长。木薯、甜高粱等生物质原料收集困难、生产成本较高等问题制约了行业发展。
“现在采用木薯、甜高粱等淀粉和糖类以及废弃油脂作为原料生产生物能源,在技术上基本不存在什么大问题,但是原料制约了产业的发展。”中粮集团一位从事生物能源生产的管理人员告诉笔者,“由于原料难获得,导致生产成本偏高,使生产规模受到了很大的限制。”
在这样的背景下,寻找替代原料成为做大生物能源产业的一条出路。木质纤维素具有易获得、成本低等优势,以纤维素为原料生产生物基化学品和生物能源的研究也因此在世界各地广泛开展,但是现阶段纤维素乙醇产业化依然面临问题。
袁其朋告诉笔者,这主要是由于一些核心生产技术和系统研究还不成熟。在木质纤维素降解的前期需要一些预处理,消除原料的抗酶解屏障,提高酶的作用效率。目前在纤维素预处理的技术工艺和设备的连续化操作方面还有待提高。
此外,纤维素酶的成本居高不下也是一大掣肘。据袁其朋介绍,尽管国内一些企业和科研单位在开发一些廉价的纤维素酶,但是现在应用效果较好的还是国外产品。目前,诺维信等国际大公司的产品占据着包括纤维素酶在内的绝大部分工业酶制剂的市场份额。
显而易见,生物基化学品的产业化前景与石油产品的价格息息相关。在现阶段的油价下,单纯发展生物能源产品还缺乏市场竞争力。
袁其朋认为,在现阶段,如果产品体系设计合理的话,随着技术的逐渐成熟,生物质进行综合利用联产生物基化学品,将具有一定的产业化价值。以玉米芯为例,将玉米芯用于生产木糖醇,废渣进行水解后可以生产生物化学品,如2,3-丁二醇、1,4-丁二醇等化工产品。这些产品售价较高,技术路线打通后应该会具有很好的市场前景。
“另外,木质纤维素原料中木质素的含量很高,目前这些木质素基本都被燃烧或者废弃。如果以木质素为原料,通过生物技术生产化学品,实现生物质的吃干榨尽,可以降低生物制造成本,加快产业化进程。我国在这方面的研究也应该加强。”袁其朋说。
据悉,我国的第二代纤维素乙醇和联产生物化学品工艺已经开始走出实验室。作为国内首家获得国家正式批准的纤维素燃料乙醇生产企业,龙力生物目前已形成以玉米芯-低聚木糖/木糖醇-纤维素乙醇为主线的产品链,并将投资9000万元建设年产4000吨酶解木质素项目,谋划燃料乙醇和木质素联产工艺。此外,济南圣泉集团和松原吉安生化丁醇等企业的生物质多联产项目也已进入产业化发展阶段。
三剂对症良药
笔者在采访中了解到,我国发展生物制造产业一要以技术为先导,增加科研投入,加强自主创新,不断降低成本;二要以市场为导向,整合企业优势,扩大产业规模;三要以政策为依托,完善金融制度,构建产业体系。
连维良强调,要加速发展我国生物产业,必须着力解决制约行业发展的管理机制问题,加速形成完善的市场准入政策法规体系,促进新技术、新产品的推广应用;必须提高企业创新能力和质量管理水平,形成产业可持续发展的动力机制和国际竞争力。
从国外的经验看,政府支持是生物制造产业发展的最大动力,这一点也得到了国内专家的一致认同。“整体上看,随着创新能力的增强,我国和先进国家在生物产业发展上的差距在不断缩小,但想进一步缩小这个差距,需要将科技进步、政策推动、金融助力等相关环节整合在一起。”杨胜利表示。
戎志梅也认为,我国应出台政策,让石油公司、汽车制造商和提供农林餐厨残余物的企业都参与配合,才能确保生物能源原材料供应体系和下游市场的形成与稳定。
普拉克大中华区聚乳酸总经理甄光明则建议,我国应针对生物基材料出台配套扶植政策,助推产业步入良性发展轨道。
对此,连维良表示,下一步我国将重点通过完善创新激励、强化市场拉动、完善准入政策等举措,研究有利于引导生物企业进行长期研发投入的财税激励机制,建立生物技术新产品需求激励机制,推动生物产业的高品质发展。
然而,要实现千亿元规模的发展目标,仅仅依靠国家政策推动和投资拉动是远远不够的,只有完善市场化的管理机制,才能从根本上实现生物产业的可持续发展。
“实际上,我国生物产业发展面临的最大挑战在于体制机制创新,在于能否建立起适应现代生物产业发展的宏观管理框架。”国家发改委高技术司副司长任志武认为,“十二五”期间加强产业技术创新体系建设要确保企业的主体地位,引导创新要素向企业集聚,鼓励龙头企业加快发展。
篇5
【关键词】 燃料 研究现状 发展前景 生物质固体
我国是农业生产大国,农村发展随着新格局的改变,做出了政策性的调整,农村农作物废弃物回收利用,依靠生物质能得到一定经济效益,且缓解环境污染,减少浪费。国家重视新能源的开发和利用,在这样的情况之下,生物质能必然会成为重要的研发对象。
1 生物质固体成型燃料研究现状
1.1 国内外生物质固体成型燃料研究的现状
国内现状:生物质燃料具有它固有的特性,比如说它属于一种可再生资源,重复利用度高,完全符合国家可再生资源的条件,在掌握好其优势的情况下,运用到实际中,使得资源合理利用,这是发展的趋势所在。那么,在国内,随处可见农民利用生物质能实现农村收割后留下的秸秆,将其成型的批量生产,达到实现农村经济利益化的结果。我国在技术上存在着一些缺陷,这些缺陷导致在生产量上不能达到一定规模,还有运输不便的问题等,这些是需要解决的,而且高新的技术是国内需要学习和借鉴的。
国外现状:在国外,生物质能的研究和开发项目已经趋向成熟,比如说美国、英国、澳大利亚等发达国家,在技术上的钻研已经有了很大的突破,而且技术基本已经成型。在面对全世界的关注和重视,国家已经大范围的提高对生物质能的高度认识,对于生物质能的开发已经成为重中之重。对于能源的转化,这是资源再利用后的创新结果。国外很多生产者,已经大量的对这块领域投入精力,在资金和技术上都得到了相应的投资。目前,很多国内生产企业者,引用国外先进的技术,学以致用,将生物质固体成型燃料得到有效的利用和加工,在得到技术上的指引之下,正在积极提高自身能力和作为。
1.2 了解生物质能的应用情况,客观理解研发的意义
十二五规划建设中不断的提出要规划农村城镇建设,缩进农村与城市的距离。这一大的发展方向,是需要农村和城镇共同努力创造的。生物质能源为农村城市建设提供了良好的契机,也为生产者提供了回报社会的机会。
那么,对于可再生资源的合理配置优化问题上,不能理解,目前农村在农作物上的废弃物的利用,是推动农村发展的动力和指向。生物质能的利用在农村已经很普遍。结合工厂的加工利用,解决了农村不少供热供暖的问题。生物质固体成型燃料的研究,在新的领域中发挥其作用,比如城镇的修建中,我们可以看到解决了不少城市采暖问题。
不论在农村还是城市,生物质能的应用,遍布在工业园、社区等地方。在化工和农业发展上,得到良好的资源配置,将其转化为新能源新动力,这是国家在农业规划中取得的一大进步。在长远的发展目标下,我国会不断将生物质能的研发作为首要任务,不断突破技术和大规模生产的目标,变废为宝转为实在生产力。
1.3 分析生物质能的优势与劣势,进一步规避风险
第一,在优势上,优胜略汰,创新发展是根本。我国是农业大国,资源十分的丰富,在许多废弃利用的例子上显而易见,不仅能达到经济上的效益,而且有效的解决了一些就业难的问题。企业想要立足社会,需要不断的竞争中获得地位,那么在生物能源研究发展这块领域,有很大潜力和竞争力。很多企业学习国外先进的技术,将生物质固体燃烧能源技术应用纯熟。优胜略汰,适者生存的法则,使生物质能的研发与利用成为烫手山芋。
第二,国家的重视,企业的技术发展,带来可观收益。在规划农村建设问题,以及农业发展问题上,国家的政策支持,给予很大的鼓励。这使得大批的生产企业者,大胆创新,不断突破新的技术,研发出可行性技术,及时与农村农业废弃利用相互接应。这样推动了企业与农村建设。给农民和企业者以及国家带来了良好效益。
第三,在现代社会中,生产线上存在着不能大规模生产的缺点,如能将这缺点得以解决,在生产效益方面会得到很大的提高。这是在技术上应不断突破的重要一点,日本、美国等国家,应用生物质能研究的技术比较先进,这需要生产中不断学习和丰富经验,也是一个重要的发展目标和方向。
2 发展前景可观,生物质能源仍旧是未来趋势导向
2.1 媒体杂志报道,新观点推波助澜
在各种杂志和媒体报道上,已经足够引起社会关注度。重视程度的轻重也决定其走向,我国是农业生产大国,最近由《农经》杂志社主办的一期研讨会上,与会专家也发表了观点。在未来发展趋势上,作为秸秆生产大国,面对生物质固体成型燃料研究上,需要不断的学习新的技能和经验,补充自身不足,达到优质的标准。这些可以通过与国外进行学习和交流,一来可以促进中外合作,二来可以推进秸秆新技术,给整体行业链接做扎实的基础。促进行业产业的全面发展。
2.2 规模化应用是发展关键
顺应国家文明建设和城镇规划的要求,我国电力供应不足、农村生活改善方面,都需要实现生物质能源规模化应用的策略。目前,高温的天气,导致地方提起进入电力供应不足的高峰。我国目前应用较多的是农作物秸秆以及农产品余物上,加上废弃物以及家禽废物等,这些残余物每年达到十多亿吨。因此,为实现生物质能规模化应用势在必行。
2.3 政策利好助推产业发展
生物质能在政府推行的政策下,使产业得到迅猛发展。生物质能源是世界四大能源之一,在农业资源领域、城市中、林业资源、工厂废水还有畜禽粪便上应用广泛。在实现生物质能的合理利用中,面临着很多考验,面对系列的问题,在政策上得到应允,是项目开展的首要条件。企业给国家带来良好效益的同时,国家也为中小企业发展难提供良好的平台。
2.4 解决环保问题,缓解能源短缺
生物质能源转化为优质资源,在以往,农村经常可见的现象,如在收割完农作物后,将其剩下的部分燃烧,这使得空气污染加重,在其合理资源利用下,减少了废弃物对空气的污染。在工厂、学校、城市、医院方面,在采暖以及电力、燃料方面解决了能源短缺的问题。
3 生物质固体成型燃料研究的发展目标
对于生物质能的研究,我国树立了长远的目标。在国家的重视之下,生物质能发展越来越快,经过不断的创新和学习新的技术,给国家和社会做出了贡献。十二五规划一直都非常重视农村发展建设问题,也对生物质资源的发展给予大幅度支持。尤其针对生物质成型燃料,在其发现具可再生利用资源之初,就注定其发展会随着经济腾飞,实现其价值。国家政策支持,对生物基础质成型燃料在今后的应用广泛奠定了基础,并且树立了长远的发展目标。
4 结语
目前,国家能源局和农业部正在进行生物质固体成型燃料行业标准出台工作,包括固体成型燃料的分级标准、燃烧器技术和成型设备关键部件等规范。根据前文所述,在国内外新的发展格局下,拥有国家政策对生物质固体成型燃料研究的大力支持,通国不断努力学习,突破技术上和大规模生产的问题,我国有充足的资本和信心将生物质能推向更高更远的发展。
参考文献:
篇6
[关键词] 生物燃料化工产业发展前景生物柴油产业燃料乙醇石油资源
一、前言
随着全球油价的不断飙升和环境污染的加剧,人们开始重新考虑化石燃料的应用问题。化石燃料不可再生,而且在燃烧过程中会产生大量的CO、SO及可吸入颗粒物等污染物。采用优化燃烧的方式,尽管可以一定程度地缓解污染与资源消耗,但是人类终将面临资源枯竭的问题。因此,世界各国都在致力于新能源的开发。其中,以乙醇、生物柴油为代表的生物燃料已经成为世界运输工具的替代燃料。
二、我国生物燃料化工产业发展的现状
在国际生物燃料产业化风潮的促进下,我国生物燃料产业近年发展很快,受粮食产量制约,我国近期不再扩大以粮食为原料的燃料乙醇生产。为了扩大生物燃料来源,我国已自主开发了以甜高粱茎秆为原料生产燃料乙醇的技术(称为甜高梁乙醇),并已在黑龙江、内蒙古、山东、新疆和天津等地开展了甜高梁的种植及燃料乙醇生产试点。另外,我国也在开展纤维素制取燃料乙醇的技术研究开发,现已在安徽丰原等企业形成年产600吨的试验生产能力。在2005年,由石元春院士主持的国家专项农林生物质工程开始启动.规划生物柴油在2010年的产量为200万吨/年,2020年的产量为1200万吨/年。据专家估算,我国的甜高梁、木薯、甘蔗等可满足年产3000万吨生物燃料乙醇的原料需要,麻疯树、黄连木等油料植物可满足年产上干万吨生物柴油的原料需要,废弃动植物油回收可年产约500万吨生物柴油。如果农林废弃物纤维素制取燃料乙醇或合成柴油的技术实现突破,生物燃料年产量可达到上亿吨。因此,从理论上讲,我国生物燃料的发展潜力很大。但由于我国生物燃料发展还处于起步阶段,其发展面临许多困难和问题。
三、我国生物燃料化工产业发展中存在的问题
1.发展生物燃料的关键是原料的供应,但我国生物燃料的原料资源明显不足,成本较高。我国粮食资源严重不足。目前以粮食为原料的生物燃料生产不具备再扩大规模的资源条件。影响生物柴油成本的最根本因素是原料。原料对生物柴油的生产的影响还有其需要大面积种植才行,虽然我国有大量的盐碱地、荒地等劣质土地可种植甜高粱,有大量荒山、荒坡可以种植麻疯树和黄连木等油料植物,但目前缺乏对这些土地利用的合理评价和科学规划。因此,生物燃料资源不落实是制约生物燃料规模化发展的重要因素。
2.我国发展生物燃料的政策和市场环境还不完善。2000年以来,国家组织了燃料乙醇的试点生产和销售,建立了燃料乙醇的技术标准、生产基地、销售渠道、财政补贴和税收优惠等政策体系,积累了生产和推广燃料乙醇的初步经验。但由于以粮食为原料的燃料乙醇发展潜力有限,为避免对粮食安全造成负面影响,国家对燃料乙醇的生产和销售采取了严格的管制。对于生物柴油的生产,国家还没有制定相关的政策和标准,更没有正常的销售渠道。
3.我国生物燃料技术产业化基础较为薄弱。虽然我国已实现以粮食为原料的燃料乙醇的产业化生产,但以油料植物为原料生产生物柴油的技术尚处于研究试验阶段,还需要经过工业性试验后才能开始大规模生产。对后备资源潜力大的纤维素生物质燃料乙醇和生物合成柴油技术还处于研究阶段,离工业化生产还有较大差距。
四、我国生物燃料化工产业的发展对策
1.加强生物燃料相关的应用和导向性基础研究、生物燃料技术研发和产业体系建设。虽然近年来生物燃料发展很快。但总体来看,生物燃料仍是发展中的新能源技术。加强生物燃料技术的研究开发是促进生物燃料发展的重要基础。建议安排资金支持生物燃料技术的研究开发和产业化工作,包括生物资源品种选育、生产和加工工艺等,特别要加大对纤维素生物质制取液体燃料技术研究开发的支持力度。建议农业部和国家林业局建立能源作物和油料植物的育种和种植技术服务体系,做好能源作物和油料树种的筛选、改良和种植技术改进工作,建立相应的良种繁育基地和树苗抚育基地,为能源作物和油料植物的大面积种植提供种、苗支撑和技术指导。
2.开展可利用土地资源调查评估和能源作物种植规划、建设可靠的原料供应渠道生物能源资源是发展生物燃料的前提条件。就目前来说,具有丰富且稳定的油脂资源,是发展生物柴油产业的关键,仅靠零星的餐饮废油难以支撑行业发展。我国农林业生物质资源总量巨大。仅作物秸秆年产量就达7亿吨, 若利用微生物转化技术,具有1亿吨生物柴油的潜力。如果能源植物(如柳枝稷、芒草等)种植和微生物油脂发酵形成集成产业链。一些可粗放种植的高糖植物,如甘薯、木薯和菊芋等,也将成为微生物油脂的优良原料。
3.切实解决生物柴油价格和原料供应问题,建设规模化非粮食生物燃料试点示范项目。我国是世界上最大的棉花生产国,2004年,我国棉籽产量800万吨。推算应产棉籽油180万吨,而当年棉籽油的消费量只有88万吨,每年棉籽油的消费量仅为推算量的一半。这就为生物柴油提供了一条重要原料来源。由于棉籽油品质不如大豆油和菜籽油,作为食用油消费的比例不断下降,因此,将棉籽油作为生物柴油生产原料是合适的。
篇7
我国是世界能源生产大国和消费大国,2004年我国能源消费量超过19.7亿吨标准煤,全球能源消费总量是102亿吨标准油。中国占世界能源消费量的13.5%左右;但GDP按美元计算,2004年全球为4万亿,中国只有1.6万亿,仅占世界GDP的4.1%。
一、可再生能源资源及开发现状
可再生能源的范围很广,主要有水能、风能、太阳能、生物质能等。
(一)水能
水能现在是很成熟的可再生能源。到2004年底,全世界约有8.5亿吨水电装机,占世界全部装机容量的20%多;我国有1亿千瓦的水电装机,占全国总装机容量的1/4,水电发电量3280亿度,占全部发电量的15%。我国水电技术非常成熟,无论是建设、管理、还是设备制造,都是世界一流的。现在在建的有三峡工程,今年还计划开工金沙江1200万千瓦水电工程。
(二)风能
风能是继水电之后技术最成熟、最具商业化发展前景的新能源技术。世界上风能发展很快,去年底全世界已经有4000多万千瓦的风电装机。我国风能已发展了20多年,但发展相对较慢。从资源来讲,我国有10亿千瓦可开发的风电装机。其中,陆地资源量约2.5亿千瓦,主要分布在“三边”地区及东部沿海地区。这两年风电发展很快,目前在建的风电装机达到300万千瓦。
(三)太阳能
很多专家认为真正解决中国能源问题的将是太阳能。从太阳能的资源和地区分布来讲,我国太阳能资源丰富,全国2/3地区日照小时数大于2200小时。太阳能很稳定,技术也很成熟,就是成本太高。截至2004年底,太阳光伏发电装机为6.5万千瓦,主要用于解决偏远地区和特殊行业用电问题。现在用得比较好的是太阳能热水器,中国大概有6500万平方米的使用量,占全球的近50%;年生产能力1500万平方米,二者均为世界第一。太阳能热水器可以节约很多煤炭,1平方米太阳能热水器,一年大概相当于130多公斤的煤炭,如果能够利用太阳能提供热水,节能作用不可小视。
(四)生物质能源
生物质能源是人类最古老的能源。包括:农作物秸秆、木材加工废弃物、畜禽粪便和工业有机废水、城市生活垃圾等。全世界将近20%的能源由生物质能源供给。从利用情况看,到2004年底,全国共建成农村户用沼气池1500多万口,年产沼气约55亿立方米;建成了生物质能发电装机容量约为200万千瓦。此外,利用陈化粮生产乙醇燃料的项目,正在全面推进,年生产能力将达到100万吨。
二、可再生能源发展存在的问题
可再生能源虽然有很好的前景和很大的资源量,但是确实存在一些问题,主要表现在以下几个方面:
(一)对可再生能源的重要性认识不足
我国对可再生能源的重要性认识,还没有达到发达国家那么高的水平。开发利用可再生能源对于增加能源供应,保障能源安全,实现可持续发展的意义非常大。这需要全社会关注,尽快形成大家支持和使用可再生能源的良好氛围。
(二)缺乏完整的支持可再生能源发展的政策体系
中国现在还没有形成完整的支持可再生能源发展的政策体系。这些年来,政策倾斜主要表现是增值税减半征收,此外还有零散的,总计约30亿元的资金投入,对农村沼气每年也有一些支持。但是在其他政策方面,比较完整的政策体系,特别是使用、协调方面,政策还没有形成。
(三)政府对可再生能源开发利用的投入严重不足
由于国家投入严重不足,可再生能源开发利用人才短缺,没有形成产业体系。现在水电、火电和核电有很多研究机构,研发能力很强,但是风电没有。我国的风电设备大部分都是依靠进口。风电看起来比较简单,其实技术难度很大,比火电技术难度还大。所以,要设立国家实验室,建立可再生能源科研体系和专门的科研中心。这是保证可再生能源发展的重要因素。
三、可再生能源发展目标
(一)到2020年实现可再生能源利用总量翻两番
可再生能源在能源结构中的比例是7%左右,希望到2010年达到10%,到2020年达到16%左右,2010年和2020年可再生能源利用量分别达到2.7亿吨标煤和5.3亿吨标煤。实现这个目标难度很大,要加快技术成熟的水电、沼气、地热和太阳能热的发展;积极推进风电和生物质能发电;通过制订强制性的政策,推进特殊行业对太阳能用电的使用。比如街头广告牌等,推进太阳能发电的商业化和产业化。
(二)农村用能条件得到改善
目前,农村地区还有3000万人没有电用,50%的人还要用低效的直接燃烧的方式解决生活用能。所以,今后要把农村能源的利用,作为能源领域的一个重要方面。可以因地制宜,采用可再生能源技术,解决偏远地区无电人口的供电问题和农村生活燃料短缺问题,按循环经济模式推行有机废弃物的能源化利用。
(三)推进可再生能源新技术的产业化发展
要积极推进可再生能源新技术的产业化发展,建立可再生能源技术创新体系,形成较完善的可再生能源产业体系。通过这样一种方式吸引国外大企业在中国投资,对中国转让技术,带动其产业发展。到2010年,基本实现以国内制造设备为主的装备能力;到2020年,形成以自有知识产权为主的国内可再生能源装备能力。具体情况如下:
1.水电
今后20年要充分开发利用所有的大江、大河的水资源,重点开发金沙江、大渡河、乌江和怒江等流域,因地制宜加快中小水电的开发,争取到2010年水电装机达到1.8亿千瓦,到2020年达到3亿千瓦的目标。
2.风电
重点要在三北地区和东部沿海地区建设大型的风电厂,在其他地区因地制宜发展中小型风电场,争取到2010年总装机达到500万千瓦,2020年总装机达到3000万千瓦,促进技术进步和产业发展,实现设备制造国产化,尽快使风电具有市场竞争力。这个目标很有挑战性。德国风电装机都可以达到1700万千瓦,中国这么大的国土面积,实现装机3000万千瓦,应该是没有问题的。
3.太阳能
太阳能利用方面,主要是创造条件、完善政策、规范技术。在城市推广普及太阳能一体化建筑,太阳能集中供热水工程,太阳能采暖和制冷工程;在农村和小城镇推广户用太阳能热水器、太阳房和太阳灶。到2020年,在无电地区运用太阳能发电要解决400万户2000万居民的用电问题。实现屋顶和公共设施光伏发电100万千瓦;还要搞一些大型光伏发电试点,特别是在沙漠地区。
4.生物质能
生物质能发电包括农林生物质发电、垃圾焚烧发电、垃圾填埋场沼气发电、大中型沼气工程发电等。农村利用秸秆发电发展较快,目前国内已有5个电厂。到2010年生物质发电能够达到550万千瓦,2020年达到3000万千瓦。
生物质能利用的另一个用途是生物质固体成型燃料,欧洲目前应用得比较好,就是把生物质压碎成型,代替煤炭。清华大学已经研究出了这种设备,一端把秸秆打碎放进去,另一端出来的就是固体颗粒燃料,并且燃烧效率比煤炭还好,燃烧完之后几乎没有残留物,专用炉子实现了计算机控制,完全是自动化的,不用人工填料,市场前景非常好。北京市政府已经拨了300万元,准备在怀柔的一个村搞试点,在全村推行秸秆成型燃料来代替当地燃料。
篇8
关键词:生物柴油;新农村建设;农民蜡收
目前,每生产1吨小桐子生物柴油的加工成本不超过4000元,因此具有巨大的市场竞争优势。而巨大的柴油汽车市场为小桐子生物燃油提供了广阔的大市场。到2010年,我国石油消费总量将达到4亿吨,届时的柴油需求量可能突破1亿吨。国家有关部门计划,未来5年国内生物柴油生产达到年产200万吨以上。
一、小桐子具有很高的经济价值
小桐子具有很高的经济价值,是国际上研究最多的能生产生物柴油的能源植物之一,是世界公认的最有可能成为未来替代石化能源的具有巨大开发潜力的树种,被认为是极具炼柴油开发潜力的―种。最近用小桐子油作燃油的研究取得了较大进展,经改性的小桐子油可适用于各种柴油发动机,并在闪点、凝固点、硫含量、一氧化碳排放量、颗粒值等关键技术上均优于国内零号柴油,达到符合欧四标准的生物柴油,成分接近石化柴油,油流动性好,其中含有油酸、亚油酸、棕搁油酸等不饱和脂肪酸。部分种子含油量可达80%。一般含油量较低的品种经提油实验得出:3公斤小桐子种子可提炼1公斤生物柴油,含油率高的品种每2公斤多种子就可提炼1公斤生物柴油。丰产期的一亩可年产种子1200公斤以上,每亩可生产提取出0.3-0.5吨左右的生物柴油。大力开发小桐子资源,不但可以形成生物能源产业,而且可以给农民提供增加收入的渠道。例如:2007年,印度在种植环节创造1.244亿个人工,在脱粒环节创造3680万个人工,使55万个农村家庭脱贫。同石化柴油相比,小桐子油是一种绿色柴油,油硫含量低,低温启动性能好(无添加剂冷凝点达-20℃),功能强,安全性能高(闪点高,不属于危险品,运输、储存方便),燃料性能佳(十六烷值高,燃烧性能好于柴油,燃烧残留物呈微酸性,使催化剂和发动机机油的使用寿命加长)。小桐子油具有可再生、清洁和安全的优势。燃烧小桐子制成的生物柴油,比燃烧石化燃料更清洁,因为燃烧前者产生的二氧化碳更少。生物柴油其性能明显优于普通的柴油,以尾气排放为例,小桐子生物柴油燃料排放的尾气中,二氧化碳含量比一般柴油低5-8倍,而且由于生物柴油本身源自植物,排放的尾气更容易被植物吸收,有利于环保。从1993年起,我国就已经成为石油和石油产品净进口国,2005年我国进口原油又超过1亿吨,而我国一半以上的进口石油来自中东地区,这一地区长年处于动荡不安的局面,长期大量进口石油会对我国的能原洪应和能源安全造成很大威胁。因此,专家认为,提高生物柴油产量对我国农业结构调整、能源安全和生态环境综合治理有十分重大的战略意义和现实意义。据了解,“十一五”期间,我国规划生物柴油原料林基地建设规模83.91万公顷,原料林全部进入结果期后,将形成年产生物柴油125万多吨的原料供应能力。目前,已有一些颇具实力的企业和国外大型能源企业,进入小桐子生物柴油这一领域,在各地筹建起有相当规模的生物柴油生产企业,预计未来全国小桐子种植面积至少可达3000万亩以上,显示了良好的资源开发和用前景。
二、我国第一家生物柴油公司投产
2008年11月27日,内蒙古金骄特种新材料有限公司年产10万吨生物柴油生产线投入试生产。作为财政部批准的“生物能源、生物化工”非粮引导奖励示范项目、国内第一条正式投产的生物柴油试点生产线,它的投产标志着我国的生物柴油已进入工业化生产阶段。
篇9
中国正处于工业化、城市化加速发展的历史阶段,能源需求有着很大的增长空间。为抑制高耗能行业过快增长,中国政府正研究建立能源消费总量控制制度,未来将研究开征化石能源消费税,并实现原油、天然气和煤炭资源税从价计征。根据中国政府制定的“十二五”能源规划,到2015年中国能源消费总量将控制在41亿吨标煤左右,非化石能源占一次能源消费比重达到11.4%,到2020年非化石能源占一次能源消费比重达到15%。
2013年中国新能源行业发展将呈现以下几大发展趋势
一、大力发展风能
中国风能储量很大、分布面广,开发利用潜力巨大。“十一五”期间,中国的并网风电得到迅速发展。2011年中国全国累计风电装机容量再创新高,海上风电大规模开发也正式起步。“十二五”期间,中国风电产业仍将持续每年10,000兆瓦以上的新增装机速度,风电场建设、并网发电、风电设备制造等领域成为投资热点,市场前景看好。
二、大力发展太阳能
太阳能的利用主要是指太阳能光伏发电和太阳能电池。在光伏发电方面,中国仍处在起步阶段,发展水平远远落后于经济发达国家,但随着中国国内光伏产业规模逐步扩大、技术逐步提升,光伏发电成本会逐步下降,未来中国国内光伏容量将大幅增加。按照《可再生能源发展“十二五”规划》提出的目标,未来5年内中国太阳能屋顶电站装机规模将达现有规模的十倍。在太阳能电池方面,近年来,中国太阳能电池制造业通过引进、消化、吸收和再创新,获得了长足的发展,中国已在太阳能电池生产制造方面取得很大进展,也将成为使用太阳能的大市场。
三、大力发展水能
目前,中国不但是世界水电装机第一大国,也是世界上在建规模最大、发展速度最快的国家,已逐步成为世界水电创新的中心。随着中国经济进入新的发展时期,加快西部水力资源开发、实现西电东送,对于解决国民经济发展中的能源短缺问题、改善生态环境、促进区域经济的协调和可持续发展,无疑将会发挥极其重要的作用。
四、积极发展核能
发展核电是中国调整能源结构的重点之一,未来5~10年,我国新建核电机组将以每年5~8台的速度递增,成为世界核电发展的火车头。
五、大力发展氢能
在氢能领域,中国着重要解决的是燃料电池发动机的关键技术。虽然这方面的技术已有突破,但还需要更进一步对燃料电池产业化技术进行改进、提升,使产业化技术成熟。中国将加大对氢能研发的投入,以提高中国在燃料电池发动机关键技术方面的水平。
篇10
关键词:低碳生物技术;法律激励机制;运行;完善
[中图分类号]Q81 [文献标识码]A [文章编号]1671-7287(2011)03-0013-10
一、低碳生物技术的地位与法律支持
1、低碳生物技术与当代能源、环境问题
当前,全球能源与环境问题愈演愈烈,能源资源的短缺以及能源过度的开发利用对环境产生的影响成为世界共同关心的话题。以往,各国为解决本国的能源与环境问题,大多以利用现有的能源资源为出发点,试图最大限度地控制世界能源资源,特别是传统化石能源,以保证国家能源安全。如今,在低碳发展的束下,通过技术进步、发展新能源和可再生能源以满足不断增长的能源需求以及环境保护的需要,成为各国经济发展优先考虑的方向。其中,大力发展生物技术,不仅能有效地利用地球现有丰富的生物原料,还可以通过工业过程达到生产能源的目的。生物技术既可以充分利用资源、实现能源生产,又满足了低碳发展的需要,应该得到广泛的重视。
生物技术是应用自然科学和工程学的原理,依靠生物作用剂的作用将物料进行加工以提品或为社会服务的大幕。现代生物科学发展迅速,以分子生物学理论为先导、以基因工程等技术为核心的现代生物技术已经开启了大规模工业化应用的时代。人们开始运用生物学的方法以及现代工程科学所开拓的新技术和新工艺,对生物体进行不同层次的设计、控制、改造或模拟,对现代社会产生了巨大的影响。
在低碳经济的大背景下,生物技术应用于能源与环境等领域能缓解能源需求,改善环境,实现经济与社会的可持续发展。利用生物技术,以可再生资源生物质为原料,大规模生产人类所需要的能源、材料和化学品等,是解决目前人类面临的能源及环境危机的有效手段之一。目前在生物技术中,低碳生物技术主要包括生物能源技术、生物材料技术、污染治理生物技术等,其中生物能源技术作为重要的能源清洁技术,具有很大的潜力和良好的发展前景。
2、低碳生物技术的发展状况与法律支持
当前生物技术得到了越来越多的应用,也发挥着越来越大的作用,特别是在推动生物质能的转化及生产方面,生物技术发挥着关键作用,通过产业化运作,实现清洁可再生能源的规模生产,是生物能源技术的价值所在。现代生物质能的发展方向是高效清洁利用,将生物质转换为优质能源,包括电力、燃气、液体燃料(燃料酒精、丁醇、生物柴油等)和固体成型燃料等,其中生物质发电包括农林生物质发电、垃圾发电和沼气发电等。生物质能具有资源量大、相对集中、能量品位较高的特点,在各国的可再生能源规划中占据着十分重要的地位。据世界经济合作与发展组织(OECD)预测,到2030年生物经济将初具规模,届时将有35%的化学品和其他工业产品来自生物产业,二氧化碳的年排放量也将随之减少10-25亿吨。其中,工业生物技术的贡献率将达到39%。随着生物能源技术的进步,生物质能的优势和成本不断下降,生物质能必将在未来世界的能源结构中占有一席之地。
20世纪90年代以来,以燃料乙醇和生物柴油为代表的第一代生物质能得以发展。目前,美国为世界第一大燃料乙醇生产国,巴西位居第二,欧盟各国则是最主要的生物柴油生产地,其他国家也都在积极发展生物质能。生物质能的发展带来粮食种植结构偏重玉米、粮食供应总量下降、粮食(油料)价格振荡上升、粮食危机引发动荡等一系列问题。因此,开发第二代、第三代生物燃料(即非粮生物燃料)成为世界各国关注的重要议题。但由于麦秆、草和木材等农林废弃物为主要原料(第二代生物燃料)的技术成本较高,真正商业化的项目较少;而第三代生物燃料是以微藻为原料的生物燃料,其油脂很难提炼,从海藻中提炼生物燃料的研究正处于实验室阶段,距离商业化还较远。因此,第一代生物质能短期内不会被第二、三代生物燃料所替代,第二、三代生物质能将是人类的理性选择,也是生物燃料必然的发展方向。我国生物质资源丰富,主要有农作物秸秆、树木枝丫、畜禽粪便、能源作物(植物)、工业有机废水、城市生活污水和垃圾等。据估算,我国可用于发电的生物质能,近期可达5亿吨标煤,远期可达到10亿吨标煤以上,如果充分利用农林生物质,生物质能装机容量可达1.5亿千瓦以上。
目前,我国已经具备了低碳生物技术发展所需的基础条件。譬如,拥有全球最大规模的发酵产业基础、形成了现代生物工业产业群体与产业化条件、拥有一支技术创新研发队伍与相应的平台条件。此外,在酶工程、发酵工程与过程工程等领域我国具有一定的技术基础,大宗发酵产品具有国际竞争优势,生物塑料、生物能源、生物基化工材料等快速发展,多种产品的规模为全球最大。虽然如此,我国的生物能源技术与美国、巴西等国相比还有一定差距,在技术创新和产业化方面还有待加强。我国目前生物质能与生物能源技术发展面临的困难主要有:①生物质资源不足、品质不佳、收集困难、难于转化。生物质燃料需要大量的能源植物做支撑,但对于中国这种粮食需求很大的国家,不可能大规模利用粮食作物作为主要原料,加上第二、三代生物质能还难以商业推广,造成了生物质原料供给的不稳定。②生物质能分散的特点适合发展中小企业规模的项目,但中小企业在资金和技术上没有优势,在技术革新方面的能力和动力都不足。③生物转化工艺成本高,生物能源终端产品品质不佳、产品标准欠缺。④自主技术开发亟待突破。生物质能利用技术仍处于产业化发展初期,特别是缺乏具有自主知识产权的核心技术,使得生物质能产业在基础技术研究、新产品研发和应用技术创新等方面存在技术含量低、产品单一等问题。
低碳生物技术需要通过商业应用和市场推广才能实现其经济与社会效用,而低碳生物技术的进步也因其经济与社会效应得到进一步提升,这是一个相互促进的过程。然而,在低碳生物技术的发展前期,市场机制不完善以及前景不明朗使得技术研发及其推广动力不足。因此,低碳生物技术以及生物质能开发需要各种激励举措提供助力,尽快实现从技术到市场的过渡。国家通过各种激励机制促进生物技术革新,引入投资以及完善技术研发平台,再配合以市场机制的共同作用,带动生物技术在生物质能等领域实现规模化、产业化发展。与此同时,生物技术及生物质能产业作为新兴的产业,
不可避免会产生盲目发展的现象,因此,需要政策与法律引导。总之,政策与法律的扶持与引导是低碳生物技术得以快速发展的重要保障和推动力:通过合理的制度设计,对低碳生物技术发展进行规划,明确其战略地位,有助于消除市场对其发展前景的疑虑,为其发展指明方向;通过有效的激励机制,促进低碳生物技术的研发与推广,推动技术和产业同时驶入发展的快车道。法律激励机制对低碳生物技术发展的重要作用决定了我们必须重视激励制度的设计,保证其高效性,同时也要关注其现实运行的状况,保证其有效性,如此,各种激励机制才能真正形成积极效应。
二、低碳生物技术法律激励机制的确立
我国十分重视低碳生物技术的发展,特别在生物质能领域,国家出台了许多法律与政策以推动和保障生物质能技术的研发和产业化,在注重规划的同时也在各类鼓励技术研发的目录中将其收入,以使低碳生物技术具有良好的发展环境。随着我国将生物质能作为国家能源结构调整、节能减排的一项重要战略规划,低碳生物技术必将拥有广阔的发展前景。
1、现有的激励框架
在政策与规划方面,《可再生能源中长期规划》根据我国经济与社会发展需要和生物质能利用技术状况,提出了重点发展生物质发电、沼气、生物质固体成型燃料和生物液体燃料。到2020年,生物质发电总装机容量达到3000万千瓦,生物质固体成型燃料年利用量达到5000万吨,沼气年利用量达到440亿立方米,生物燃料乙醇年利用量达到1000万吨,生物柴油年利用量达到200万吨。国家“十二五”规划在第二十九章“造就宏大的高素质人才队伍”中提到了对生物技术以及能源资源领域人才队伍的协调发展。此外,“十二五”规划还在其他3处提出了生物质能:一是在第七章“改善农村生产生活条件”中提到了“实施新一轮农村电网升级改造工程,大力发展沼气、作物秸秆及林业废弃物利用等生物质能和风能、太阳能,加强省柴节煤炉灶炕改造”的内容。二是在第十章“培育发展战略性新兴产业”中提出“新能源产业重点发展新一代核能、太阳能热利用和光伏光热发电、风电技术装备、智能电网、生物质能”。三是在第十一章“推动能源生产和利用方式变革”中提出“积极发展太阳能、生物质能、地热能等其他新能源”的原则。《国务院关于加快培育和发展战略性新兴产业的决定》(国发[2010]32号)也将节能环保产业、生物技术和因地制宜开展生物质能作为重点的发展方向。
在鼓励技术研发方面,国家中长期科学与技术规划、“973”和“863”计划等都将工业生物技术列为攻关重点之一。《国家中长期科学和技术发展规划纲要(2006~2020)》中也有关于重点和优先提高生物质能等可再生能源技术的内容。《国家高技术产业发展“十一五”规划》认为:“生物产业将成为未来经济发展的主导产业。要充分发挥我国特有的资源优势和技术优势,着力发展生物医药、生物农业、生物能源和生物制造,保护和开发特有生物资源,保障生物安全”。国家发改委、科技部、工信部、商务部、知识产权局于2011年6月了《当前优先发展的高技术产业化重点领域指南(2011年度)》,确定了当前优先发展的包括生物、新材料、先进能源、节能环保、资源综合利用以及高技术服务等10大产业中的137项高技术产业化重点领域,生物技术、先进节能技术等包含在其中。《可再生能源产业发展指导目录》、《产业结构调整指导目录(2011年本)》也将生物质生产技术和设备纳入产业调整的范围。近几年的《国家先进污染防治示范技术名录》和《国家鼓励发展的环境保护技术目录》也将生物质资源综合利用、生物污染治理等技术列入其中。
在立法方面,20世纪90年代以来,中央和各地方政府出台了一系列的法律法规,在不同层面上支持可再生能源产业的发展。《中华人民共和国电力法》、《中华人民共和国节能源法》、《中华人民共和国大气污染防治法》、《中华人民共和国循环经济促进法》等法律,都作出了关于鼓励开发利用清洁能源的规定,《中华人民共和国科学技术进步法》、《中华人民共和国促进科技成果转化法》则为科学研究、技术开发与科学技术应用及成果转化提供了法律制度框架。特别是《中华人民共和国可再生能源法》(以下简称《可再生能源法》)的颁布和实施,正式确立了可再生能源在国家能源战略中的地位,包括生物质能在内的可再生能源发展进人了新的发展时期,为低碳生物技术的应用提供了更为坚实的法律制度保障。
2、具体激励机制的建立
有了国家政策与法律的制度保障,低碳生物技术就有了明确的发展方向和良好的发展环境。同时,低碳生物技术从研发、项目建设到推广都需要实实在在的激励措施,因此,还需要更为具体的制度设计和及时有效的执行。当然,生物能源与生物技术的发展最终要靠市场,要立足于提高产业自身竞争力,符合社会发展的需要,这样才能保持产业长远的发展。在发展初期,实施国家的各种激励机制将有助于突破制因素,加快产业发展进程。此外,激励不能只限于某些措施或某些方面,而应将其作为一个综合系统工程来看待,使各种激励措施形成一个有机联系的整体,这样激励机制才能发挥积极而有效的作用。具体而言,以下一些激励措施与行动应是当前低碳生物技术发展的关键着力点:
①统筹规划与束性目标。低碳生物技术的发展离不开社会对生物质能源的需求,生物质能的发展也需要低碳生物技术的支持和推动。制定长远发展战略或发展路线图是世界上大多数国家发展生物质能的成功经验之一。统筹规划是准确定位生物质能和低碳生物技术的重要途径,一个长远的能源及其技术发展规划就确定了一国未来各种能源及其技术发展的走向。许多发达国家先制定一定阶段内生物质能在国家能源结构中的束性目标和计划,在此框架之下,出台一系列的优惠政策,并通过市场经济的手段鼓励各界投资和利用。
为了确保可再生能源发展目标的实现,许多国家制定了支持可再生能源发展的法规和政策。德国、丹麦、法国、西班牙等国采取优惠的固定电价收购可再生能源发电量;英国、澳大利亚、日本等国实行可再生能源强制性市场配额政策;美国、巴西、印度等国对可再生能源实行投资补贴和税收优惠等政策。
美国、巴西、瑞典是世界上生物质开发利用最多的国家之一,这些国家都强制推行了生物质能在能源结构中的束性目标。1999年8月,美国颁布了《开发和推进生物基产品和生物能源》的第13134号总统令,提出到2010年生物基产品和生物能源增加3倍,到2020年增加10倍,每年为农民和乡村经济新增200亿美元的收入和减少1亿吨碳排放量;同年国会通过了“生物质研发法案”。2002年美国制订了《生物质技术路线图》并成立了“生物质项目办公室”及“生物质技术咨询委员会”。2005年8月布什签署的《国家能源政策法
案》中制订了可再生燃料标准(RFS),RFS明确指出必须在汽油中加入特定数目可再生燃料且每年将递增。2007年12月的《能源独立和安全法案》又制订了更为严格的可更新燃料标准:到2022年用于运输的可再生燃料至少要达到360亿加仑/年。巴西作为世界上唯一在全国范围内不供应纯汽油的国家,其乙醇的生产量仅次于美国,而出口量位居世界第一。燃料乙醇在巴西能源总量中的比重从1975年的5%增至2008年的16%,并且占到巴西可替代能源总量的35%。早在20世纪70年代,瑞典就颁布了一系列强制性的有关能源合理化使用和节能的法律、法规,并随着技术的发展不断进行修订完善,以此来指导、规范企业的行为。在1998-2002年间,瑞典就投入了25亿瑞典克朗用作长期的气候研究,在2003年又提供3亿瑞典克朗基金给交通和能源部门用作改善气候环境。在政府及巨额投资支持下,瑞典生物质能利用技术得到迅猛发展。
我国在《可再生能源中长期规划》中提出了可再生能源的发展目标:2010年可再生能源消费量达到能源消费总量的10%,到2020年达到15%。在生物质能领域,根据国家能源局最新的规划,我国2015年生物质发电装机要达到1300万千瓦(较2010年增长160%)、集中供气达到300万户、成型燃料年利用量达到2 000万吨、生物燃料乙醇年利用量达到300万吨,生物柴油年利用量达到150万吨。数据显示,2010年我国农村以秸秆为燃料的生物质发电装机突破500万千瓦。从这些数据来看,生物质能已经基本达成《可再生能源中长期规划》中2010年的目标。这些目标的达成基本上是通过地方基层加强本地域的生物质利用(特别是沼气)的成果,是自上而下的推动方式,其依据如国家能源局的《国家能源局关于推荐绿色能源县的通知》(国能新能[2009]343号)等,并没有给对企业设定相应的生物质能甚至可再生能源在能源生产中的束性目标,而是通过鼓励农民消费绿色能源来引导资源整合,是一种鼓励性而非强制性的方法。
随着各地对生物质的利用率逐渐升高,特别是农村地区资源综合利用水平的提高,进一步发展生物质能将会重新遭遇瓶颈,鼓励性的推广只能利用现有的成熟生物转化技术,对低碳生物技术的革新要求并不高,难以对低碳生物技术研发产生足够的推动力。因此,未来我国不仅应当继续推广农村生物质能的应用,还应在发电、生物燃料、运输等领域设定强制性的生物质使用比例目标,并根据其技术革新的程度设定弹性的财税优惠措施,如此,才能更快地推动生物能源技术的发展。
事实上,在实现可再生能源发展目标的大背景下,我国在发电领域已经有了一些束性目标的尝试,如“十一五”规划中明确提出:“实行优惠的财税、投资政策和强制性市场份额政策,鼓励生产与消费可再生能源,提高在一次能源消费中的比重”。《可再生能源中长期规划》提出了对非水电可再生能源发电规定强制性市场份额目标:到2010年和2020年,大电网覆盖地区非水电可再生能源发电在电网总发电量中的比例分别达到1%和3%以上;权益发电装机总容量超过500万千瓦的投资者,所拥有的非水电可再生能源发电权益装机总容量应分别达到其权益发电装机总容量的3%和8%以上。但这些规定在现实中缺乏配套的实施细则,导致很多发电企业,特别是小企业难以执行。而作为《可再生能源法》修改后被寄予厚望的“可再生能源并网配额管理办法”迟迟不能出台,其原因除了对配额的比例仍有争议之外,来自电网及大发电企业的阻力也是重要的阻碍因素。除了发电外,生物液体燃料方面也应借鉴美国和巴西等国家的经验,设定一定的混合燃料比例,以促进生物燃料技术的进步。
②研发投入支持。技术进步是提高产业竞争力的重要因素,也是解决能源与环境问题的有效方案。要实现生物能源技术的突破,研发与示范阶段的资金投入是必要的保障条件。在一般的情形下,技术研发与示范应采取国家投资和社会多元化投资相结合的方式以保证充足的资金和实现良性的技术竞争。
目前我国部分生物质利用转化技术达到了国际先进水平,但总体技术水平仍比较滞后,主要体现为:在气体燃料方面,虽然我国沼气产业起步较早,但沼气技术仍停留在小规模的户用沼气层面,大规模、产业化地利用沼气的技术与装备都有待开发。在液态生物质燃料方面,燃料乙醇的生产技术水平与国际先进水平存在较大的差距,目前国内生物柴油生产仅有几家民营企业采用原始的且会造成环境污染的液碱酯交换技术,而在国际上高压醇解法已经进入中间试验阶段。在生物质固体成型燃料方面,生产设备简陋,难以为生物质成型燃料的大规模生产提供保障。联产大宗化工产品和生物可降解精细化工产品在国外已经形成新兴行业,而我国大部分产品尚未研制,而生产这些化工产品是增加生产企业利润的重要途径。因此,我国生物质能源产业要进一步发展就要力争突破技术瓶颈,加大对生物能源技术研究与开发的资助,确保跟上世界生物能源技术发展的步伐。
据《可再生能源中长期规划》的投资估算,2006~2020年,我国将新增2800万千瓦生物质发电装机,按平均每千瓦7000元测算,需要总投资2000亿元;新增6200万户农村户用沼气,按户均投资3000元测算,需要总投资1900亿元;加上大中型沼气工程、太阳能热水器、地热、生物液体燃料生产和生物质固体成型燃料等,预计实现规划的2020年可再生能源目标任务的总投资将需2万亿元。如此大规模的投资不仅应应用到现有技术的推广方面,也应保证足够的资金投入技术研发与示范领域。
《国家高技术产业发展项目管理暂行办法》(国家发改委[2006]第43号)规定,对经批准列入国家高技术产业发展的项目计划,给予中央预算内投资补助或贷款贴息。生物能源技术作为国家高技术的内容之一,符合国家重点扶持和优先发展的方向,因此,应该享受一定的研发与示范资金支持。在财政部的《可再生能源发展专项资金管理暂行办法》(财建[2007]371号)中也明确规定了可再生能源开发利用的科学技术研究项目,需要申请国家资金扶持的,通过“863”、“973”等国家科技计划(基金)渠道申请,不适用可再生能源发展专项资金。因此,在目前阶段,技术研发一般不享受生物能源领域的资金支持,而只适用技术项目的支持。根据上述有关规定,国家高技术项目的资金来源包括项目单位的自有资金、国家补贴资金、国务院有关部门或地方政府配套资金、银行贷款以及项目单位筹集的其他资金。项目资金原则上以项目单位自筹为主,国家采用资金补贴的方式予以支持。
虽然国家对生物能源技术给予了高度重视,安排了相应的资金支持项目,地方也配套有相应的研发资金支持规定(如《重庆市高技术产业发展项目管理暂行办法》),但总体而言,国家在生物能源技
术研发方面的支持力度还不够,且这些项目要求的条件和成果较高,一般的中小企业项目很难申请到相匹配的资助。与此同时,企业研发投入的资金规模还较小,尚未真正成为技术创新的主体,目前,我国工业企业研发支出仅占销售收入的0.8%,远低于发达国家4%的水平。产学研紧密结合的机制没有形成,科技与经济脱节的问题仍然突出。目前,我国科技成果转化率仅为25%左右,而发达国家高达60%。为此,国家税务总局于2008年《企业研究开发费用税前扣除管理办法(试行)》(国税发[2008]116号),规定企业从事《国家重点支持的高新技术领域》和国家发改委等部门公布的《当前优先发展的高技术产业化重点领域指南》规定项目的研究开发活动,其在一个纳税年度中实际发生的直接研发活动产生的费用支出,允许在计算应纳税所得额时按照规定实行加计扣除。
技术研发是实现产业化的第一步。目前我国在这方面的资金支持还不够,范围不广,管理不规范,未来不仅需要加大对生物能源技术研发的投入,还要完善“产-研-政”之间有效的沟通和成果转化机制,形成完整的从研发到政策支持到产业化的体系,如此,才能在起跑线上赢得先机。
③财政与税收优惠。财政税收优惠是经济发展的重要杠杆、产业调整的风向标,也是最基础、应用最广泛的激励措施。我国目前对低碳生物技术的财税激励措施主要体现在生物能源方面,这是不够的,还应基于此而扩充到全部低碳生物技术领域。目前,相关财税激励和补助措施主要表现在:
一是建立风险基金,实施弹性亏损补贴。财政部、国家发改委、农业部、国家税务总局、国家林业局2006年颁布《关于发展生物能源和生物化工财税扶持政策的实施意见》(财建[2006]702号)提出了坚持产业发展与财政支持相结合,鼓励企业提高效率的原则。此外,为化解石油价格变动对发展生物能源与生物化工所造成的市场风险,为市场主体创造稳定的市场预期,将建立风险基金制度与弹性亏损补贴机制。当石油价格高于企业正常生产经营保底价时,国家不予亏损补贴,企业应当建立风险基金;当石油价格低于保底价时,先由企业用风险基金以盈补亏,如果油价长期低位运行,将启动弹性亏损补贴机制。
二是原料基地与秸秆能源化利用补助。为保障生物能源和生物化工原料供应,切实做到发展生物能源和生物化工不与粮争地,财政部《生物能源和生物化工原料基地补助资金管理暂行办法》(财建[2007]435号)对生物能源和生物化工定点和示范企业提供原料的基地发放补助(林业原料基地补助标准为200元/亩,农业原料基地补助标准原则上核定为180元/亩)。为加快推进秸秆能源化利用,培育秸秆能源产品应用市场,《秸秆能源化利用补助资金管理暂行办法》(财建[2008]735号)规定对符合支持条件的(从事秸秆成型燃料、秸秆气化、秸秆干馏等秸秆能源化生产的)企业,根据企业每年实际销售秸秆能源产品的种类、数量折算消耗的秸秆种类和数量,中央财政按一定标准给予综合性补助。
三是上网电价及费用分摊激励。目前我国采取财政补贴和电网分摊相结合的方式促进可再生能源发电。《可再生能源发电价格和费用分摊管理试行办法》(发改价格[2006]7号)中明确了可再生能源发电价格实行政府定价和政府指导价(通过招标确定的中标价格)两种形式。可再生能源发电价格高于当地脱硫燃煤机组标杆上网电价的差额部分,在全国省级及以上电网销售电量中分摊。生物质发电项目上网电价实行政府定价的,由国务院价格主管部门分地区制定标杆电价,电价标准由各省(自治区、直辖市)2005年脱硫燃煤机组标杆上网电价加补贴电价组成。补贴电价标准为每千瓦时0.25元。发电项目自投产之日起,15年内享受补贴电价;运行满15年后,取消补贴电价。自2010年起,每年新批准和核准建设的发电项目的补贴电价比上一年新批准和核准建设项目的补贴电价递减2%。发电消耗热量中常规能源超过20%的混燃发电项目,视同常规能源发电项目,执行当地燃煤电厂的标杆电价,不享受补贴电价。2010年7月,国家发改委《关于完善农林生物质发电价格政策的通知》(发改价格[2010]1579号),规定对农林生物质发电项目实行标杆上网电价政策,未采用招标确定投资人的新建农林生物质发电项目,统一执行标杆上网电价每千瓦时0.75元(含税)。通过招标确定投资人的,上网电价按中标确定的价格执行,但不得高于全国农林生物质发电标杆上网电价。已核准的农林生物质发电项目(招标项目除外),上网电价低于上述标准的,上调至每千瓦时0.75元;高于上述标准的国家核准的生物质发电项目仍执行原电价标准。由于我国各个地区的煤电标杆电价水平差异大,使得各地生物质发电项目的实际上网电价差别很大,如何协调和平衡各地的生物质发电上网电价也是价格政策研究的重点之一。国务院价格主管部门应根据各类生物质能技术的技术特点和不同地区的情况,按照有利于生物质能发展和经济合理的原则,研究和完善生物质发电项目的分类价格政策,促进生物质发电项目的进一步发展。
四是可再生能源专项基金资助。根据原《可再生能源法》规定要求,财政部设立了可再生能源发展专项资金,后来配套了《可再生能源发展专项资金暂行管理办法》,但对如何申报资金、优惠政策幅度多少等没有明确提出。修订后的《可再生能源法》将原来“国家财政设立的可再生能源专项资金”修改为“国家财政设立可再生能源专项基金”,主要资金来源是可再生能源电价附加收入和国家财政专项资金。根据相关人员的解释,将“资金”改为“基金”将使这笔补贴更具有“基金纵向管理”的优势。除了行政成本大大降低之外,也可以做到“收取,统一发放”,以保证可再生能源投资企业按时获得收益,以鼓励其积极性。不过,早就起草完成的“可再生能源专项基金管理办法”迄今为止仍未能颁布,这对生物质能发展产生了消极的影响。
五是税收优惠。根据《高新技术企业认定管理办法》(国科发火[2008]172号)以及《国家重点支持的高新技术领域》的规定,生物能源技术属于高新技术,符合规定的企业可以申请认定,经认定后的企业可依照《中华人民共和国企业所得税法》(以下简称《企业所得税法》)及其《实施条例》、《中华人民共和国税收征收管理法》及其《实施细则》等有关规定,申请享受税收优惠政策。根据《企业所得税法》,国家对重点扶持和鼓励发展的产业和项目,给予企业所得税优惠。国家需要重点扶持的高新技术企业,减按15%的税率征收企业所得税①。在生物质能产品方面,《财政部、国家税务总局关于对利用废弃的动植物油生产纯生物柴油免征消费税的通知》规定从2009年1月1日起,对符合条件的利用废弃的动物油和植物油为原料生产的纯生物柴油免征消费税。
由于我国生物质能开发利用还处于起步阶段,
高新生物能源技术也还未取得重大突破,相关的财税激励政策亦未能周全地考虑生物能源技术及生物质能产业的特点,因此,这些激励措施存在规定不科学、不完备、落实不到位等问题。例如,有些政策补贴起点过高,如财政部《秸秆能源化利用补助资金管理暂行办法》(财建[2008]735号)仅支持注册资本金1000万元以上、年消耗秸秆量1万吨以上的大中型企业,导致多数企业都无法得到补贴;有些政策设计不完整,补贴仅针对直接生产环节,对消费能源产品的终端用户则没有补贴。国家对生物质能产业的优惠、补贴、奖励很难落到中小企业身上。除国家全力支持的农村沼气项目外,生物质能产业发展的大部分政策倾向于规模化的大型项目,如燃料乙醇和液体燃料项目,国家每年向4家陈化粮燃料乙醇定点企业(黑龙江华润酒精、吉林燃料乙醇公司、安徽丰原生化以及河南天冠)发放补贴,走非粮路线的中小企业却很难拿到同等的补助。没有得到补贴的中小型生物质能源企业,生产成本相对较高,在竞争中明显处于劣势,想得到大的发展十分困难。而在液体燃料市场上,目前中石油、中石化只收购拿到正式批文的黑龙江华润酒精等4家定点供应企业的燃料乙醇,中小企业生产的乙醇销路不畅,导致部分生物燃料企业无法将产品变现,整个生产经营无法正常循环运转。
未来我国财税激励机制应当根据生物技术和生物质能产业的技术及行业发展水平,因势制宜、因时制宜地设计有效、弹性的激励措施,既要保证“对症下药”,又要注重规划引导,保证财政税收政策的合理性以及相互协调。
④收购激励与政府采购。低碳生物技术应用的前提是所生产的产品能够在市场上销售出去,保证资源不被浪费,同时也能抵消一定成本。在当前化石能源开采利用费用较低的情况下,无论是生物质发电,还是生物质液体燃料,其成本都相对高昂,如果没有特殊的优惠政策和刺激措施,很难在市场上有足够的竞争力。因此,对生物能源的收购激励,包括政府采购,能够给相关企业解决产品生产的后顾之忧,同时,政府通过实际行动支持生物能源发展,将起到很好的示范和宣传作用。
在生物质发电方面,《可再生能源中长期规划》提出了国家电网企业和石油销售企业要按照《可再生能源法》的要求,承担收购可再生能源电力和生物液体燃料的义务。2007年7月25日,国家电力监管委员会第25号令,即《电网企业全额收购可再生能源电量监管办法》,规定了电力监管机构对该制度的实施情况进行监管。2009年修改的《可再生能源法》第十四条重申了国家实行可再生能源发电全额保障性收购制度:电网企业应当与按照可再生能源开发利用规划建设,依法取得行政许可或者报送备案的可再生能源发电企业签订并网协议,全额收购其电网覆盖范围内符合并网技术标准的可再生能源并网发电项目的上网电量。同时,该法第十六条对生物质能源作了专门的规定:国家鼓励清洁、高效地开发利用生物质燃料,鼓励发展能源作物。利用生物质资源生产的燃气和热力,符合城市燃气管网、热力管网的入网技术标准的,经营燃气管网、热力管网的企业应当接收其入网。国家鼓励生产和利用生物液体燃料。石油销售企业应当按照国务院能源主管部门或者省级人民政府的规定,将符合国家标准的生物液体燃料纳入其燃料销售体系。
然而,修订后的《可再生能源法》除了规定全额保障性收购的原则性提法外,配套的实施细则未能及时跟进,收购电量中可再生能源电量所占的比重、可再生能源发电并网国家标准的制定等问题上均有不同程度的空白。在生物液体燃料方面,燃料乙醇和生物柴油市场还不完善,配套的规定也处于缺失状态,现实中的生物液体燃料收购基本还需要依靠石油企业的自觉。
一个稳定的生物质能源需求方是生产企业保持持续盈利能力的关键。在生物质能源发展的早期,由于成本以及价格较高,完全通过财政补贴的方式并不能发挥生物能源“物尽其用”的功能。而政府采购则能较好地实现两者的兼顾:既能满足政府自身的需求,又间接为生物能源创造了市场。事实上,政府采购已经成为一些生物能源发达国家普遍采用的激励措施之一,美国联邦政府有关法律要求政府必须购买国产高能效产品和“绿色产品”,要求联邦政府在2005年购买10万辆洁净汽车,其中包括生物质燃料汽车。巴西相关法律也明确规定,联邦一级的单位购、换轻型公用车时,必须使用包括燃料乙醇在内的可再生燃料汽车。政府采购不仅能够起到很好的示范和宣传作用,通过直接对话与交易,还能够节省通过其他方式可能产生的中间费用,因而是一种高效率的“合作”方式。我国政府也可借鉴国外的经验,通过购买生物质能来源的电力等其他有效方式来以实际行动支持生物能源的发展。
⑤培育和完善市场。任何产业的发展都需要以市场存在为基础,产业规模效益的实现与上下游市场的依托密不可分。市场不发展,产业就会失去活力,甚至会因不符合社会的需要遭到淘汰。当前世界能源发展的趋势之一就是市场化与自由化改革,我国经济、能源领域也在进行着大规模的市场体制改革。因此,发展生物能源和生物技术市场,将为低碳生物技术的发展注入崭新的活力。
由于低碳生物技术是新兴的技术,其产业化发展有可能会因技术的不成熟造成不可预料的损失,因此,对生物技术及其产品市场的监管就显得尤为重要。如不能正确加以引导,将可能破坏生物能源资源开发与利用;燃料乙醇、生物柴油产品质量如不合格,将可能影响到交通运输安全;在生物能源和生物化工生产环节,如不严格标准,会造成环境污染,增加能源消耗。因此,发展生物能源与生物化工必须充分考虑资源、技术、环保、能耗等多方面因素,严格市场准入,加强行业监管。《关于发展生物能源和生物化工财税扶持政策的实施意见》规定了生物能源与生物化工企业实行严格的行业准入制度。地方发改委、财政部门根据国家统一的推广规划,联合推荐申报定点企业,申请企业必须符合行业准入标准。国家发改委、财政部按有关规定选择并确定定点企业。
然而,上述规定在一定程度上造成了生物液体燃料的市场准入和产品流通体系不通畅。毫无疑问,严格的产业准入和产品流通政策措施是生物液体燃料产业有序发展的基本保障。但是,由于局限于数家生产企业和两大石油公司的封闭体系,在一批从事甜高粱乙醇和生物柴油生产企业的产品无法进入车用成品油经销体系和终端消费市场,特别是生物柴油还根本没有正常的车用燃料销售渠道,从而阻碍了非粮生物液体燃料产业的进一步发展,打击了相关企业进一步加强技术研发、扩大示范项目建设的积极性。在生物质发电方面,由于对“全额保障性收购”的细化规则还未出台,导致目前生物质发电市场处于比较混乱的状态,特别是中小型生物质发电项目,并网十分困难。此外,电网公司的智能电网系统还未能跟进建设,接受生物质能并网还没有具体的标准,且目前的接网政策更多的是对电网提出束性要求,没有对可再生能源发
电厂提出束要求,更多的标准亟须配套。因此,整个生物质能市场基本还处在“萌芽期”,市场规模还不大,相关制度建设还不健全,生物质能市场还需进一步培育和发展。
三、完善低碳生物技术的激励机制及其运行
我国目前对低碳生物技术的激励除了少部分符合条件的高新技术企业以及研发项目之外,产业端以及配套制度建设等领域还处于起步阶段,真正商业化的市场还未建立;以生物能源为核心的产品激励措施也不够规范;各种激励措施并不完全符合现实的状况,很多规定由于缺乏实施细则未能得到有效实施。低碳生物技术发展不仅需要一整套规范的、系统的激励机制设计,而且还应落实到现实运作中,实现其高效性和有效性的统一。由此,需要政府在战略规划与计划、法律法规及其配套规定、行政管理与监管、经济与财税优惠等方面完善体制,也需要企业和市场理性发展,形成从制度设计到产业运行的良好互动状况。
战略规划与计划是产业及技术发展的动力和落脚点,明确的战略与计划为产业及技术的发展指明了方向。因此,需要尽快开展科学、系统的生物质资源调查与评价工作,综合考虑低碳生物技术的发展与技术路线,在国家能源统筹的框架下客观、准确定位生物质能的地位和作用,不能盲目和无序发展。生物质能源化利用的技术选择必须遵循“因地制宜,资源优先”的原则,在资源确定的前提下,需要结合当地的社会经济发展、农民收入、气候、交通、环境等实际情况而定。当资源和当地条件可以适用于多种技术时,可以根据技术的综合效益进行选择。立法是实现国家战略与规划的重要途径,也是制度设计和运行的最终保障。目前我国除了《可再生能源法》之外,直接涉及生物质能和生物能源技术的法律寥寥可数,且基本都是在可再生能源的背景下进行原则性阐述。此外,相关的行政法规处于空白状态,专门的部门规章也还未颁布。现行关于生物质能的规定主要是国务院的通知、意见以及各部门的工作规划与方案,这些非规范性文件不仅数量不多,且极不规范,变动调整快,具有较短的时效性。可以说,相关立法的缺乏是生物能源产业发展面临的最大困难之一。生物质资源由于其特殊性,其发展需要协调能源部门、农业部门、科学技术部门、工业部门、财政部门、税收部门等多个部门的关系,这种复杂性也是目前难有一部专门性的部门规章的原因。因此,我国未来在该领域的立法的关键是提高立法位阶,至少也应该有专门的行政法规规定生物能源发展的各种宏观问题,再由各部门制定实施细则去执行,这样生物能源的发展才能有坚实的制度保障。
产业管理与市场监管是任何产业发展所必需的行政管制手段。在中国,产业管理更是一种常见的管理方法。如前文所述,我国目前大量的部门政策文件(非规范性文件)都涉及产业管理的内容。生物技术的发展也不例外,特别是在其发展的早期,政府的直接介入十分必要。产业管理与市场监管在行业行政规划、项目与市场准入、行业标准、检测监控、检查监督等方面发挥着重要的作用。特别是在目前我国生物能源领域相关立法和制度还不完善的状况下,产业管理与行业监管已经成为了生物能源产业发展的主要推动力量。随着生物能源技术的进步和生物质能市场的发展,未来我国应逐步减少政府直接管理的范围,更多的资源配置应让市场去解决;与此同时,还应加强对技术发展的监管,保证技术发展符合社会的需要,减少技术进步产生的负面影响,最终实现产业管理、市场监管与技术监管的和谐统一。