生物燃料的好处范文
时间:2023-10-26 17:32:08
导语:如何才能写好一篇生物燃料的好处,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词:生物柴油;优势;应用前景
随着现代工业的发展以及各种污染气体排放量的增加,使得地球上的环境被污染的越来越厉害。地球是我们唯一家园,我们应该想尽一切办法去保护地球的环境。现在政府已经开始采取措施治理工厂废气的排放,但是,在我们日常生活当中想要减少废气的排放,还是需要我们去共同努力的,比如减少汽车尾气的排放。汽车排放的尾气会对环境造成污染,主要是因为汽车燃料是石油制品。只要我们能找到适合的燃料去替代石油制品,那就能p少污染性的气体的排放,同时还不影响人们对于汽车的使用。于是,生物柴油应运而生。本文试图分析生物柴油,了解生物柴油具有的优点,浅谈生物柴油具有的应用前景:
一、生物柴油相较于普通的柴油的突出优点
(一)不会污染环境
生物柴油之所以被称为生物柴油,是因为它从生产到被分解,都不会涉及到任何的化学成分。我们现在的环境被污染,也主要是各种化学成分造成的。生物柴油本身在燃烧分解的时候不会产生任何的化学气体,这当然就不会对环境造成威胁。生物柴油在被分解之后,产品是水。水排放到大自然当中,是不会对我们赖以生存的环境造成任何威胁的。排放的水可以渗入地下,还有可能会使得地下水变得更加丰富。还有,排放的水蒸发到空气中,还可以增加空气的湿润程度,增加降雨量。
(二)生产的原材料比较普遍、易寻找
之前的柴油是石油裂解制成的,但是,石油是不可再生资源,而且,地球上的石油的含量是有限的。原材料的有限导致柴油的制作成本比较高,一旦石油出现问题,柴油也会出现问题的。但是,生物柴油是使用生物材料制成的,如植物的秸秆等。这些材料都是十分常见的,而且还都是可再生的。使用这样的材料制作生物柴油,会降低柴油的生产成本,原材料的可再生和易于寻找,也使得生物柴油的使用变得更加的广泛。
(三)有利于土壤优化
一般生产生物柴油的原材料是油菜籽。油菜的生长期是有限的,当可以种植油菜的时候,种植油菜,但是,油菜的生长期过了以后,还可以种植其他的农作物,这样的轮番种植,可以保持土壤的肥力,有利于优化土壤。
(四)副产品仍具有经济效益
对于生产生物柴油的原材料来说,只是将果实用来榨取油脂,其他的部位根本不用来生产生物柴油。但是,这并不代表其他部位就是没用的。其他的部分也可以被晒干,用来当做食草性动物的饲料。还有,如果不想晒干,就可以在收完果实之后,直接将其他部分翻到土壤下面。土壤里面的微生物会将植株本身进行降解,腐烂的植株对于土壤来说也是一种肥料,可以增加土壤的肥力。
(五)可以增加农民的经济收益
近年来,随着多元化经济的发展,使得农民也不只是再依靠种植粮食作物来获得收益了。因为制造生物柴油需要种植大量的油菜,这时候就可以号召一部分农民来种植油菜。生产生物柴油的公司自然会收购油菜,这也是在给农民增加经济收益。
从上世纪90年代开始,石油资源枯竭与环保问题开始得到人们的关注,在西方国家,纷纷开始转战新能源的研究,在这一背景下,生物柴油成为发展重点,截止到目前,人们已经可以从大豆、棕榈油、蓖麻、油菜、废油脂中提取生物柴油。
二、生物柴油会有怎样的发展前景
相较于之前的柴油来说,生物柴油有着不可比拟的优点。因此,生物柴油一定会在市场上占有一席之地。
(一)取代原有的燃料。为了响应保护环境的号召,各个国家对环境的治理力度会越来越大。这样的大背景之下,会使得原来的柴油被淘汰。但是,很多机器的运行还是需要燃料来提供动力,这时候生物柴油正好弥补这个空缺,成为新的提供动力的燃料。
(二)会被越来越多的企业认可。现在很多人可能还会对生物柴油产生怀疑,可能会觉得生物柴油无法产生那么大的动力。但是,相信随着时间的发展,生物柴油一定会被更多的人认识,会被更多的人接受并使用的。
三、结束语
不管对于什么样的东西,只要是对人类有好处的,人类都是愿意接受的。通过对生物柴油的特点进行分析,可以看出,无论是从环境方面,还是从经济利益方面,生物柴油对我们人类都是有很大好处的。要相信,生物柴油还是有很大的发展前景,尽管现在还只是在小范围的使用,还只是小范围的人群能够接受。但是,好东西是不怕经受考验的。相信经过时间的证明,会让所有的民众都接受生物柴油,并且都使用生物柴油。
参考文献:
[1] 刘扩金,王介妮,曹磊昌,韩生.碱性离子液体催化制备生物柴油研究进展[J].材料导报.2013(S1).
[2] 王介妮,曹磊昌,刘扩金,韩生.微藻制备生物柴油的研究进展[J].现代化工.2013(05).
篇2
中国石油资源不及世界人均水平的1/6,从1993年开始,中国成为石油净进口国,供需矛盾日益突出。2004年中国石油消费量达到了2.92亿吨,进口原油1.23亿吨。其中,车用燃油消耗已经达到了中国石油消费量的1/3左右。此后石油进口仍呈上升趋势,进口量约占使用量的20%左右,预计到2010年前后将达到40%,车用汽油年消耗量为6400万吨。面对人类即将消耗完需几百万年才形成的石油资源所引发的即将到来的能源危机,中国及全世界必须认识到要采取开源节流的战略,即一方面节约能源,另一方面开发新能源。
2006年中国车市销量达到720万辆,增长超过30%,中国已经超过日本成为世界第二大汽车市场。权威调查部门预计,除了中国、印度等发展中国家,2007年全球汽车销售都将进入疲软时代。但在中国汽车市场领跑全球汽车市场荣耀的背后,是中国过快消耗着祖先留下的资源。面对即将到来的能源危机,中国的汽车产业路在何方,路只有一条:使用新能源,也只有使用新的替代能源,汽车产业才能持续发展。实施替代能源战略,有助于我国汽车逐渐摆脱对原油的依赖,从能源安全的角度看,无疑是非常必要的。
那么,目前世界汽车产业使用替代能源主要有哪几种方式?其前景到底如何呢?
1乙醇燃料:价廉物美
使用乙醇燃料,是全世界最常见的一种燃料替代方案,也是目前国内颇为重视、已经得到推广的新燃料。这种燃料一般是与传统的汽油、柴油混合起来使用,其混合比例从加入10%~30%的乙醇到85%不等,甚至可以采用100%的乙醇作为燃料。其最大的好处在于不需要对现有的汽车结构做很大的修改就可以使用乙醇燃料, 而且这种燃料比起汽油、柴油来更加环保,能够起到减少污染的效果。同时,乙醇可以通过玉米、小麦、水稻、甜高粱、木薯、甘薯以及甘蔗、甜菜等农作物制造,甚至连农作物的秸秆都有可能被用来生产乙醇。只要合理解决“汽车与人争食”的问题,乙醇燃料的推广能解决燃料的再生问题,是最价廉物美的能源解决方案。
除了乙醇以外还有类似于丁醇、甲醇这样的生物燃料,都被纷纷用于替代汽油与柴油。乙醇燃料汽车由于与现有的汽车没有多大区别,所以在国内外都相对普及。例如巴西作为乙醇燃料汽车最流行的国家,在这方面最为典型。人们熟悉的本田思域、飞度,三菱帕捷罗等都拥有专门针对巴西市场的乙醇燃料型号。最新型的车款安装了油气浓度传感器,可以自动感知燃料箱内不同性质的燃料,做到与普通汽油柴油的自然替换。此外,著名的跑车制造厂莲花甚至推出了采用乙醇汽油混合燃料引擎的Exige265E跑车,它仅重930kg,265代表它的最大输出为265匹马力左右,E表示其使用的是莲花E85高性能环保动力。特别让人吃惊的是该车加速成绩足以向法拉利发起挑战,0~60mph加速时间仅为3.88秒,0~100mph加速时间为9.2秒,最高时速达到158mph。除了巴西以外,美国的乙醇燃料汽车也十分流行,中国则超过整个欧盟成为乙醇燃料消费的大国。如何摆脱简单改装并提高乙醇燃料汽车的技术含量以使其发挥更大的效能,是摆在中国汽车制造厂商面前的课题。
2混合动力:技术复杂
油电混合动力汽车,由于丰田普锐斯在国内的上市而广为人知, 这项技术最大的特点就是其先进性,在机械与电子方面都有许多新的突破性发明。发展混合动力车也是在现有汽车技术的基础上,让能源消耗更加节约与合理。目前,在美国、日本等地,该技术不仅有着许多实质的进展,而且也受到了消费者的欢迎。
其实,除了油电混合动力以外,还有气电混合动力、油电气混合动力等,这些方案虽然复杂,但未来应用的前景依然被专家看好。如马自达曾经推出过一款可以使用油、电、氢三种能源作为动力的混合动力概念车,这款车名叫PremacyHydrogenRE-Hy-brid,就是大家熟悉的普力马。除了前置汽油引擎外,该车第二排坐椅下方还安置了大型电池,另外第三排坐椅被撤去,取而代之的是一个储存了压缩氢气的气罐。其油电混合动力推进系统,由马自达与其关联公司福特汽车共同开发,马自达还尝试着将这种电动引擎和一种本身就是混合动力引擎的内燃发动机结合在一起,后者既能使用汽油,也能使用氢气作为燃料。虽然这还是一款概念车,未必很快会出现在量产车的行列里面,但它提醒人们混合动力方案的变化无穷。混合动力以往一直是日本汽车厂商主攻的方向,如今美国汽车制造厂家也开始大规模介入。国内的上海通用也在研究中国的混合动力车,使得这方面的竞争开始加剧,其实用性也有了长足的进步。未来混合动力会围绕着降低成本、减少制造与维修保养的复杂程度,同时更加推进其性能的强化而展开。
3氢燃料内燃机:另辟蹊径
长期以来,有关汽车能源的终极解决方案,一直被寄托在有广泛存在、利用能量效率高、洁净、无污染、噪音低等特点的氢身上,研制利用氧与氢的反应来输出电力的氢燃料电池至今依然是各国的科技精英主攻的课题。不过,相对于氢燃料电池的复杂,另一种更加简单的方式--氢燃料内燃机也开始流行,并且研究进展迅速。有专家认为氢燃料内燃机既可以采用清洁可再生资源,又可以充分利用现有的庞大工业体系,是实现氢能源经济的最佳途径。氢燃料的突出优点是几乎不产生污染物,而且与油类燃料不同的是,即使氢燃料在氧气含量稀少的情况下,也仍然能够正常燃烧,从而降低了氧气的消耗。
这一新方案的问题是,除了改进现有的车辆以外, 还必须改建加注氢燃料的设施,因此投资巨大。目前,介入氢内燃机研发和制造的有德国的宝马、 日本的马自达、美国的福特等几家汽车制造厂商,预计在未来几年中氢内燃机汽车将不断地被推向市场。其中,宝马已经率先推出了Hydrogen7,让自己的6.0升V12缸豪华车也能够使用氢气作为动力来源。该车输出高达260匹的最大马力,并且在9.5秒的时间之内,由静止加速到每小时100公里的时速,而最高时速则将被电子系统限制在每小时230公里。虽然它目前使用的仍是汽油和氢双燃料,但未来或许汽油动力将被完全停用。专家指出,现阶段我国在氢内燃机方面的研究薄弱,目前属产业化前期的研究,重点还是放在核心技术的研究以积累知识和经验。产业化的问题要经历较长的过程,必须由政府、相关企业以及能源机构的大量资金介入才能迅速跟上世界同行的步伐。
综上所述,使用生物能源是汽车产业可持续发展的必由之路。 “万物生长靠太阳”,生物能源是从太阳能转化而来的,只要太阳不灭,生物能源就将取之不尽。其转化的过程是通过绿色植物的光合作用将二氧化碳和水合成生物质,生物能的使用过程又生成二氧化碳和水,形成一个物质的循环,理论上二氧化碳的净排放为零。生物能源是一种可再生的清洁能源,开发和使用生物能源,符合可持续的科学发展观和循环经济的理念。因此,利用高新技术手段开发生物能源,已成为当今世界发达国家能源战略的重要内容。
篇3
【关键词】 生物燃料 全球变化 多边 治理框架
各国政府均认同生物燃料是一种有潜力的化石燃料替代选择,其产业发展与减缓气候变化、繁荣农村经济、缓解全球和国家能源安全的联系已促动了主要国家在领域纷纷展开行动。但是,产量和贸易的迅速膨胀引起了许多环境和社会经济问题的争论。因此,检讨生物燃料产业发展的本质,探寻治理途径时不待我。
1. 生物燃料产业扩张:一种新的全球性变化
全球生物燃料生产从2000年到2009年已经翻了20倍,生产国从巴西一枝独秀扩展至美国、欧盟、中国等主要农业国,俨然成为了新能源产业中最具潜力、最重要的化石能源替代产品。尽管这番蓬勃景象一方面归功于生产效率的提高,原料作物种植扩张也“功不可没”,有越来越多的作物用于该产业生产。产业扩张带来了以下巨大影响:
1.1由生物燃料产业扩张引起的生态变化
对环境的影响是复杂的:生物燃料替代化石燃料、减少温室气体排放是快速扩张的根本动力。但是,仍要对生物燃料整个生命周期排放做出全面评估。比如,原料作物的生产使用化肥、杀虫剂,最后就在减少温室气体排放的同时消耗化石燃料。机器化大生产带来更多甲烷气体,而甲烷对全球变暖的作用远远大于二氧化碳。另外,土地使用目的的转变可能导致大量的温室气体排放。因此,关于排放平衡必须考虑整个生命周期。
单一种植原料作物带来生物多样性丧失、土壤质量下降、给水资源质量带来冲击,即使大多数作物可依靠降雨生长,但是当提高生产率成为优先选择的话,灌溉则会成为首选。最后,生物燃料生产有外来物种侵害原有生态的风险。
1.2由生物燃料产业扩张引起的社会经济变化
对农村经济的影响体现在包括国家、区域和全球的各个层面:
国家对该产业利润的保证使大量投资涌入种植业,尤其是以农业为主要支撑的发展中国家。这就促使农民成为农业工人,丧失对土地的传统控制权。虽然产业扩张确实增加了农村人口就业机会,但是劳动条件却不尽人意,劳动安全难以保证。
除了对农村本地的影响,生物燃料生产也打乱了粮食生产和供应。因为主要粮食作物既可以供人食用也可成为生产原料,因此全球粮食价格随需求大增而屡创新高。生产者虽可从中获利,但那些农村和城市的低收入者无法负担充足食物费用,恶化了全球粮食安全状态。
1.3由生物燃料产业扩张引起的南北关系变化
发展中国家相对发达国家可获土地数量较高、原料价格较低、劳动力成本低廉,被认为是最有潜力生产生物燃料。主要消费者却是发达国家,即便全球产量不断提高也无法满足发达国家的消费目标,进口需求便产生了。于是发达国家和发展中国家签订了许多相关贸易协定。这种供求关系的发生本应带来全球双赢局面,但是发展中国家生产大规模扩张却给自身带来了巨大挑战,包括森林退化、土地冲突、传统耕种方式的遗失等等。
发展中国家是该产业发展负面影响的主要承受者,但却没有充分机会参与全球治理议程。即使参与,也只是该国的大企业,而不是那些受实际影响的大多数人,这无疑增加了北方对南方国家的控制力。
2. 生物燃料治理框架现状与评价
2.1生物燃料治理现状
国家、区域、国际已出现了应对生物燃料影响并促进其可持续发展的政策和治理结构。
2.1.1国家生物燃料治理议程:以主要生产国为例
随着气候变化成为全球议程中的重大问题,许多国家构建了可再生能源战略,其中就包括生物燃料。使用生物燃料不仅能替代化石燃料和提高能源安全,更重要的是还可以扩大农产品的出路和收益。在此促动下,各国普遍采用的政策是颁布燃料混合国家命令、税收豁免、对农民或生产者直接支付、对进口产品适用关税壁垒。除此之外,主要生产国美国和巴西面对负面影响,也采取了有限的政策调整。
美国玉米业已饱受诟病,尤其是玉米乙醇生产:减排水平低;超大型农业公司的控制使小生产经营者无利可图;由于美国是世界玉米的主要供应者,对生物燃料的加大投入引起全球大宗食品的价格动荡。即便是这样,美国仍然一再提高燃料使用比例,要求到2017年生物燃料替代汽油消费达到20%,对加工商提供每加仑0.51美元的补贴,对进口燃料乙醇适用每加仑0.54美元的进口关税。虽然,新能源计划提倡木质纤维素乙醇技术的发展,但是美国近期对生物燃料的需求增长仍不可避免从传统生产中获得。
巴西是世界第二大生物燃料生产国。甘蔗乙醇转化率比玉米乙醇高。但种植园的迅猛扩张对亚马逊森林造成了负面影响;甘蔗乙醇的生产对水需求量较大;单一种植扩张也带来了严重的土地冲突。但巴西政府仍决定每年新建25个甘蔗乙醇生产厂。尽管计划逐年有所微调,但传统大型甘蔗生产仍然占据主要地位。
由此可见,可持续关注在美巴两国并不是最优先考虑事项。但是生物燃料净进口国和地区却对生产的可持续性进行了更为积极的应对,主要体现在欧盟及成员国。
2.1.2区域生物燃料治理议程
欧盟生物燃料治理分为成员国个别要求和欧盟共同要求。就成员国而言,英国和荷兰生物燃料标准最为典型,因此将从英、荷、欧三个方面分析区域治理工具。
生物燃料可持续性争议包括减缓气候变化,生物多样性保护,水、土壤、空气保护,土地所有权保护,劳工标准,社会经济发展和粮食安全7个方面。
关于减缓气候变化,三者要求类似:首先都禁止将高碳封存土地用于原料作物的种植。英国要求温室气体减排至少为40%,每年增加5%,但性质是建议式的;荷兰规定了最低30%的强制减排,到2017年逐步增加到80%-90%;欧盟强制性要求将最低减排量提高到35%。
关于生物多样性,荷兰和欧盟都禁止将具有高生物多样性区域用于生物燃料生产;英国禁止生产毁损以上区域即允许合法生产。荷兰要求要远离高生物多样性区域5公里以上。
关于水、土壤和空气保护,三者具有区别。英国要求没有土壤退化、污染或水资源耗尽或空气污染。荷兰要求实行最佳保护实践;遵守《斯德哥尔摩农药使用公约》或国内法;禁止生产焚烧。欧盟除了就国家保护措施进行年度报告外,无具体要求。
关于土地所有权,英国要求对土地权和当地社会关系没有负面影响。荷兰要求在土地原始使用者同意下谨慎使用土地;尊重原主人传统制度。欧盟仅要求进行年度报告。
关于劳工标准,英国要求对劳工权利和工作关系没有负面影响。荷兰要求遵守《普遍人权宣言》和关于跨国公司及社会政策的国际劳工原则。欧盟除了就《国际劳工公约》的国家授权和执行进行年度报告外,没有具体的要求。
关于社会经济发展,英国和欧盟仅要求就此履行年度报告义务。荷兰要求生物燃料生产必须利于当地繁荣;要求就生产影响当地人口和利于当地经济发展进行报告。
关于粮食安全,英国仅要求检测对粮食价格的间接影响。荷兰和欧盟除了就土地使用改变形式、土地和粮食价格影响进行报告外没有具体要求。
只有满足上述标准的产品才能计入欧盟2020年运输领域可再生能源10%的强制性目标,进而才会获得市场准入好处和税收豁免、直接支付等利益。欧盟在证明产品是否符合标准的问题上采取灵活做法,即权力下放到欧委会认可的自愿性生物燃料认证制度,认可时效为五年。可见,就世界最大的生物燃料进口市场的准入而言,得到具有资格的认证制度的认证是关键。截止2011年7月,有2BSvs、Bonsucro、Greenergy、ISCC、RBSA、RSB、RTRS七个生物燃料认证制度得到了欧委会的认可,此外还有18个认证机会等待欧委会的批准。
2.1.3国际生物燃料治理议程
和生物燃料多少相关的国际协定在各个领域早已出现,例如气候、能源领域。目前虽没有针对全球生物燃料挑战专门国际协定,但国际社会已开始以以下形式展开努力:
首先,联合国开发计划署(UNDP)、联合国环境规划署(UNEP)、联合国粮农组织(FAO)、联合国能源机制(UN-Energy interagency),在其报告和研究中均已提出生物燃料问题。但是,他们的行动大多仅局限于分析和建议,并没有就其各自的领域达成国际协定。国际能源署(IEA)以及经合组织(OECD)发挥了更为积极的作用,通过IEA生物能源部的第40工作组为生物燃料贸易认证构建了可持续性标准。
其次,新近建立的论坛和伙伴关系开始在生物燃料全球可持续发展崭露头角。最为典型的就是2005年发起的全球可再生能源伙伴关系。该制度目的是促进可再生能源的继续发展和商业化,支持更广泛的、符合成本效益的生物质和生物能源发展尤其是发展中国家。生物燃料国际贸易大幅增加,2007年巴西、美国、中国、欧委会等建立了国际生物燃料论坛。
最后就是专门针对生物燃料可持续性问题成立的、新的国际倡议,采取的形式是多利益攸关方组成的圆桌会议,讨论和构建可持续性环境和社会经济标准。但覆盖产品范围各有不同,例如责任大豆圆桌会议以及意图进行普遍适用的可持续生物燃料圆桌会议(RSB)。
2.2对目前治理框架的评价
随着全球生物燃料贸易的提高,作为主要进口者的欧盟国家生物燃料治理议程对市场准入和不同可持续性产品的竞争力影响在逐步提高,甚至成为了全球治理生物燃料的风向标。但是,从欧盟和成员的可持续性标准来看,主要局限于对生态环境的要求;像是当地经济发展、公平正义以及粮食安全等与发展中国家紧密相关的社会经济问题关注不够。而间接土地使用转化问题也被忽略掉,甚至都不存在报告制度。值得注意的是这些标准既适用于外国生产者也适用于欧盟国家,但制定决策时却没有主要供应国——发展中国家的参与,也就是发展中国家的观点和他们的关注没有得到体现。
似乎国际治理议程给参与性带来了一些新的变化,但也有自身弱点:
首先,不同国际生物燃料治理议程仍局限在自己业务范围内处理环境和社会经济影响。国家合作多集中于研究和技术发展,而不是应对扩张带来的更为严重的粮食安全影响。
其次,通过给当地提供能源生产和供给的方式来促进当地发展,这种生物燃料发展的替代模式几乎被这些治理议程所忽略,即他们主要以生物燃料贸易为预设前提而展开谈判。
第三,有些国际议程如IEA、OECD具有明显的发达国家倾向,当然会以它们的能源需求为优先考虑,因而主要关注发展中国家的出口为导向的生产,而不是发展中国家的当地需求。而全球生物能源伙伴关系也代表主要国家团体利益。甚至像RSB由多利益有关方组成的圆桌会议也不对称地给来自工业部门和发达国家的参与者更多的关注和投票权。21位RSB发起委员中仅有5位来自发展中国家,而这5位代表中有3位代表了像巴西的甘蔗联盟这样的工业团体利益。很明显利益受到主要影响的大多数人并没有能充分表达意见。
最后,现有的国际行动没有形成多层次、协调统一、相互支持、相互影响的治理方式。许多国际倡议或国际行动虽然博兴,但十分分散,关注自己覆盖的争议领域,并在其框架下的国家行动仍被符合本国利益的议程所主导。这种情形实际导致生物燃料问题仍然是“无治理领域”,试想有各自利益的国家和企业一旦发生纷争,将如何公正、合理的解决争议?
3. 新多边生物燃料治理框架愿景
3.1建立新多边生物燃料治理框架的原因
目前生物燃料治理制度无论从国内还是从国际层面都无法满足治理需求,建立新多边治理框架的迫切需求和原因有以下几点:
第一,该产业发展的主要推动力均具有重要的全球要素和关联。可再生能源替代化石燃料就是由《联合国气候变化框架公约》促动的。化石燃料的可用竭性是一个全球难题,而动荡的国际关系又是国家追求能源安全的巨大障碍。生物燃料农业尤其在发展中国家又是由发达国家的消费目标促发的出口繁荣所驱动的。以上每个环节都具有“全球烙印”。
第二,生物燃料生产带来的环境影响是无法依靠个别国家得以解决的。该产业对气候变化、对水等自然资源的需求以及对土地使用改变的累积作用都具有明显的全球关联。
第三,个别国家解决生物燃料扩张带来的社会经济影响能力有限,比如对农产品市场和全球粮食安全的影响。
第四,生物燃料的争论从一开始出现就具有南北关系的特性,是以一方的主要社会、政治和环境利益为代价而使另一方获利的问题。
第五,关于生物燃料生产存在许多相互冲突的观点和看法,因此不仅需要有效的治理框架,更需要体现公平、合法性、责任性、代表性的统一治理制度。
以上各个方面均体现了建立全球生物燃料治理框架的必要性,但这里的全球性并不意味着所有国家都就此进行谈判,但至少是一个与现有治理框架不同且能够反映生物燃料产业核问题的不同视角,能通过多边平台包括国家和非国家参与者构建的负责而合法的方式进行治理和调控。那么,这种新多边治理框架究竟应该具备怎样的条件和内核呢?
3.2新多边生物燃料治理框架的建构
3.2.1多边生物燃料治理框架应具备的基本特征:多部门、多层次和多参与者治理
生物燃料产业发展并不仅是一种能源战略,它和粮食、农业、贸易、气候和生态保护等多方面都具有重大关联,而这些领域都有各自的政策制度。因此气候谈判、可再生能源议程、全球贸易和农业发展、保护生物多样性和生态系统战略均涉及到了生物燃料问题。以上不同领域的各自政策必须避免冲突、寻求协调,这就需要多部门协调来应对生物燃料治理。
其次,生物燃料治理需要多层次协调。如果没有国家、当地政府以及当地生产者的协助多边框架很难成功,这也是目前国际相关治理制度的欠缺。这种协调既要体现在国际政策的成功执行上,比如认证计划的实施,也要体现在不同层面的规制活动上。
第三,不同参与者和平行决策体系间的协调也是必要的。这会减少重复劳动、避免政策冲突,比如生物燃料治理政策和WTO规则之间的冲突,多参与者治理意味着允许各种主体使用有效参与资源。
3.2.2新多边生物燃料治理框架的制度设计:趋利避害
虽然需要进一步协调不同产业部门、参与者和治理层次,但是何种制度设计才能最好发挥功能却是一个大问题。从实现的可能性出发,有两种路径可以选择:
第一种,在某一类宽泛的领域建设治理制度,能源和农业领域可供选择。
在能源领域探讨生物燃料治理制度的优势是能够很容易地将该问题并入可再生能源政策;能够让业界对照其他生物能源对液态生物燃料做出评估。弱点是由于目前与能源相关的、行之有效的政策制度本身就十分分散,加之联合国相关机制治理权力也十分有限,新建立的国际可再生能源机构(IRENA)固然令人欣慰,但是像巴西、中国等这些主要生产国尚未加入,因此治理很难从全球能源制度中获得有益的制度支持;加之,如果国家将生物燃料单纯看作是国家能源安全问题,由于敏感性,将会使多边谈判变得异常艰难;最后由于生物燃料是由许多作物提炼而来,因此对农业部门的影响也举足轻重,将其作为能源问题处理自然会导致对粮食安全、农村地区和土地政策的影响关注不够。
在农业领域处理生物燃料问题最大的优势是可以借助FAO现有的各种制度;可使业界更加关注粮食和农村发展问题;也会从国际农业协定中最终获利。但是国际农业贸易谈判频频陷入僵局,这必将阻碍该产业的可持续发展;也会割裂生物燃料与可再生能源政策的联系。
第二种不同的制度设计路径就是将生物燃料作为独立的焦点问题进行制度设计,而此种方式根据所设计的制度框架以生物燃料问题的一个方面还是多个方面为治理对象分为单一框架和复合并行框架。不论是单一政策框架还是符合政策框架同样各具优、缺点:
在有效性方面,复合型平行框架更有利于不同政策工具的创新、彼此竞争和实践检验;在公平性和权力分配方面,复合平行框架更易于禁止权力集中,并且在一定程度上会增加发展中国家在决策中的影响力。缺点就是遵守和执行成本较高。
而单一框架由于设定的制度具有很强的针对性和局限性,因此遵守和执行成本较低;所设定的单一规则更容易和像WTO这样的现有国际规则协调一致;也更易于吸收多参与者的集中关注并利用他们可提供的资源。缺点是过分支持某类参与者的风险过高;灵活性和调节性较差;由于会吸引更多的参与者,因此达成一致意见就更为困难。
综上,新多边生物燃料治理框架是一个开放性议题,只有把握住合理合法内核,比较各种选择路径的优缺点,在实践中逐步探索。
参考文献:
[1] Patrick Lamers. International Bioenergy
Trade-A Review of Past Developments in the Liquid Biofuel Market[J].Renewable and Sustainable Energy Reviews, 2011(11):2655-2676.
[2] Thomas Vogelpohl. The Institutional sus-
tainability of Public-private Governance Arrangements-the Case of EU Biofuels Sustainability Regulation[C].The Lund Conference on Earth System Governance, Berlin 2012.
篇4
由于石油能源资源有限,随着世界工业的快速发展,能源消耗急剧增长,导致石油价格不断上涨、全世界都面临着能源安全的问题。石油能源按目前的使用和开采速度,50年内世界石油资源将有可能耗尽。同时,随着现代社会人们环境保护意识的不断增强,人们逐渐认识到汽车尾气排放所造成的空气污染是造成城市“光化学烟雾”污染频繁出现以及现代人类许多重大疾病的主要原因。因此,寻求资源丰富、环境友好和经济可行的大宗代用燃料已成为人类亟待解决的重大问题。
目前,已经开发的代用燃料可分为非含氧代用燃料和含氧代用燃料两大类,前者如天然气、液化石油气及氢能源等,后者包括二甲醚、醇类燃料及生物燃料等。这些燃料中,虽然天然气、液化石油气、氢均早已投入使用,但由于使用机械的内部构造以及燃料的补给及贮存等方面的问题,使得它们的应用范围受到很大的限制;二甲醚作为汽油的替代品,可以由一碳原料(如甲醇)直接合成,是一种很有发展前途的产品;醇类燃料如乙醇等也主要用作汽油的替代品种而使用,但成本较高;生物燃料主要用作柴油的替代品。
生物燃料主要是指由植物中获取的燃料,还包括从其他可再生资源如动物脂肪和已经使用过的油和脂肪中提炼获取的燃料。其中植物油分子一般由14—18个碳的链组成,与柴油分子的组成相似。植物油的性质与普通柴油相当接近,尤其是植物油的有些性质如冷滤点、闪点、十六烷值、硫含量、氧含量及生物可降解性等都优于普通柴油。植物油的含氧为10%—11%,尾气排放低,具有优异的环保特性。另外,植物的生长期远短于石油的生成期,植物可人工种植,且生长过程中吸收CO2,对减少大气中的CO2有深远意义。
但植物油单独用作柴油机燃料时,因粘度较大、有些植物油的凝点和冷滤点较高,如棕桐油的凝点达40℃以上,故冷启动较困难;植物油的热值较低,因此发动机动力性能有所下降。另外,植物油中不饱和脂肪酸非常多,容易形成结胶,堵塞油路;不完全燃烧的残余物沉积在燃烧室,并使活塞环粘结、喷油器结焦,影响柴油机的使用寿命。此外,从喷油器喷出的植物油油滴比喷出的柴油滴径大得多,导致气缸内混合气的形成质量较差,未燃烧的燃料喷到气缸壁后容易流入曲轴箱,引起油变质。植物油的排气烟度与柴油差别不大,在高负荷时比柴油低,排气中气态污染物随着植物油及机型不同会有所变化。因此植物油一般不能直接应用于内燃机,必须经过改性处理。
比较常见的改性方法有下列4种:①直接混合法:将天然油脂与石油柴油、溶剂或醇类按不同比例直接混合后作发动机燃料。②微乳液法:将动植物油与甲醇、乙醇和1—丁醇等混合制成微乳液直接应用。③高温裂解法:在惰性气流中将甘油三酯裂解成一系列混合物,包括烷烃、烯烃、二烯烃、芳烃和羧酸等。④酯交换法:利用甘油三酯与低级醇在催化剂作用下得到脂肪酸低级醇酯,即生物柴油,这是目前油脂改性的主要方法。
这4种方法中,混合法和微乳液法属于物理法,高温裂解法和酯交换法属于化学法。使用物理法可以降低动植物油脂的粘度,而且简单易行,但十六烷值不高,易变质,油的高粘度和不挥发性可导致喷嘴不同程度的结焦、活塞环卡死和结炭、油污染等问题,不能长时间应用。高温裂解法过程简单,没有任何污染物产生,缺点是在高温下进行,需要催化剂,裂解设备昂贵,反应很难控制,且当裂解混合物中硫、水、沉淀物及铜片腐蚀值在规定范围内时,其灰分、炭渣和浊点就超出规定值。另外,高温裂解法的产品中生物柴油的含量不高,大部分是生物汽油。酯交换法主要利用酰基转移作用将高粘度的动植物油脂转化成低粘度的脂肪酸酯,使得天然油脂的分子量降低至原来的1/3,粘度降低8倍,与柴油接近,同时提高了燃料的挥发度,十六烷值达50。可以作为矿物柴油的代用品直接使用。
2 生物柴油的概念
生物柴油这一概念最早由德国Rudolf Desel博士于1985年提出,并在1990年巴黎博览会上展示了使用花生油作燃料的发动机。生物柴油较系统的研究工作始于20世纪50年代末60年代初,在70年代的石油危机后得到了大力发展。
生物柴油的主要成分是高级脂肪酸的低级醇酯,即软脂酸、硬脂酸、油酸、亚油酸等长链饱和或不饱及脂肪酸同甲醇或乙醇等醇类物质所形成的酯类化合物。
生物柴油基本不含硫和芳烃。生物柴油的十六烷值高达52.9,氧含量达10%-11%。与普通柴油相比,富氧燃烧对燃油完全燃烧有利,特别是在高负荷下、高燃料浓度区,可减少CO、SO2、碳氢化合物、多环苯类致癌物质和“黑烟”等污染物排放;而高十六烷值,使得燃油着火性能好,滞燃期短,故未燃碳氢和裂解碳氢均少,CO排放量降低;生物柴油有较好的发动机低温启动性能,无添加剂时冷凝点达-20℃;有较好的性能,可降低喷油泵、发动机缸和连杆的磨损率,延长其使用寿命。同时,生物柴油的开口闪点高,储存、使用、运输都很安全,不在危险品之列。生物柴油和常规柴油的性能比较见表1所示。
目前,国外对生物柴油的燃烧特性和排放特性已进行了较为系统的研究。结果表明,生物柴油和柴油按一定比例混合后,未损坏柴油机性能,未增加燃料成本,使用安全性高,排放性能优于纯柴油,完全可以替代柴油。采用生物柴油的发动机废气排放指标不仅满足目前的欧Ⅱ标准,甚至满足在欧洲颁布实施的更加严格的欧Ⅲ排放标准。如使用菜籽油甲酯的柴油机,按FFP75规程试验时碳氢化合物排放减少20%,CO排放下降15%,烟度约减少40%,多环芳香烃的排放也减小,而NOx排放约增加了10%,醛和酮的排放增加了40%。国内对此较为系统的研究报道目前还较少。
实际使用时,生物柴油可以与柴油以任意混合比混合使用,也可以单独使用。使用普通柴油的发动机(对有些机型仅需换密封圈和滤芯),无需作任何改动,并对驾驶无任何影响。驾驶者根本无法区分两者的驾驶动力差别。实际上如果将生物柴油作为矿物柴油的调合组分,可以起到提高十六烷值,降低硫含量,特别是改善性能的作用。如在炼油厂深度加氢生产的低硫、低芳烃柴油中加入质量分数为2%—5%生物柴油,即可改进性能,比采用添加剂经济合理,排放性能也可大幅度提高。
生物柴油的主要缺点是甲酯易于氧化和聚合,当它渗入油时会形成堵塞机油泵的油泥;其次生物柴油中通常含有微量的醇与甘油,这会使与之接触的橡胶零件如橡胶膜、密封圈、燃油管(即燃油接触的橡胶配件)等逐渐降解;另外,甘油容易堵塞输油管道和喷油嘴。尽管如此,由于生物柴油本身无毒,生物降解率达98%,其降解速率是石油柴油的两倍,对土壤和水的污染较少,可以降低90%的空气毒性,降低94%的致癌率;没有硫散发,可减少酸雨发生,有益于保护生态环境。特别是生物柴油具有可再生性,作为一种可再生能源,资源不会枯竭。因此,作为优质的柴油代用晶,目前世界上许多国家正大力开发这种技术并推进其产业化进程。
3 生物柴油的生产
3.1 酯交换法合成生物柴油
目前,工业生产生物柴油主要是应用酯交换法。在油类酯交换反应中,甘油三酸酯与醇在催化剂作用下酯交换得到脂肪酸甲酯和甘油。
各种天然的植物油和动物脂肪以及食品工业的废油,都可以作为酯交换生产生物柴油的原料。可用于酯交换的醇包括甲醇、乙醇、丙醇、丁醇和戊醇。其中最为常用的是甲醇,这是由于甲醇的价格较低,同时其碳链短、极性强,能很快地与脂肪酸甘油酯发生反应,且碱性催化剂易溶于甲醇。该反应可用酸、碱或酶作为催化剂。其中碱性催化剂包括NaOH,KOH、各种碳酸盐以及钠和钾的醇盐,还包括有机碱,酸性催化剂常用的是硫酸、磷酸或盐酸。
酸催化酯交换过程产率高,但反应速率慢,分离难且易产生“三废”。碱性催化反应速度快,工业生产中主要采用碱性催化的生产工艺。尽管酸催化转酯反应比碱催化慢得多,但当甘油酯中游离脂肪酸和水含量较高时,酸催化更合适。而影响酯交换反应的主要因素有:催化剂、游离脂肪酸和水分、醇/油摩尔比、反应温度、反应时间。
3.2 原料的选择及其预处理
理论上分子量与柴油相近的动植物油脂均可以用作生物柴油的原料,但实际上由于动物油脂一般饱和脂肪酸含量高,熔点和粘度较高,与甲醇的互溶性较差,且成本相对较高,所以生产上更多以植物源油脂为原料。世界上能提炼油脂的植物约有80种以上,可以用作内燃机代用燃料的植物油有菜籽油、棉籽油、大豆油等40多种。不同来源的油脂中油类的成分又各不相同。植物油中不同的脂肪酸含量见表2。
油脂的选择主要决定于成本以及来源的广泛性。在欧洲,生产生物柴油主要以双低菜籽油(即芥酸、硫甙含量低)为原料,而在美国主要以转基因大豆油为原料。
转贴于
油脂的预处理主要是先去除油脂中大部分的游离脂肪酸。水分的去除可以通过简单加热的方法进行。即将油加热并控制在105℃左右,搅拌,持续一段时间,直到没有水蒸气泡冒出为止,测定水分含量至符合要求,然后停止加热,再进行后续处理。油脂中高含量脂肪酸的脱除可以使用液—液萃取的方法。即利用热甲(乙)醇能溶解油脂和脂肪酸,温度降低后,油脂在甲(乙)醇中的溶解度大大降低,而脂肪酸在其中的溶解度仍较大的原理进行脱酸处理。如果使用经过精炼过的植物油制备生物柴油时则不需要预处理过程。除此以外,作为生物柴油原料的油脂还有其他品质指标的要求。一般来说,如果使用植物油,经过除水和脱酸的预处理后即能基本满足生产要求。
3.3 生物柴油生产技术路线
以化学法生产生物柴油为例,常见的生产技术路线见图1。
据此可以设计连续化生产工艺和间歇式生产工艺。间歇式生产工艺较符合精细化工生产的特点,但生产效率和生产能力有限,成本也相对较高;连续式生产工艺则可以使生产效率和生产能力达到很高的水平,从而显著降低生产成本。
4 目前生物柴油的生产和应用现状
4.1 国外的生产应用情况
生物柴油使用最多的是欧洲,份额已占到成品油市场的5%。欧洲主要以菜籽油为原料。目前欧洲已建立了数家生物柴油工厂,2005—2006年德国于Piesteritz投资6400万欧元建成了20万吨/年生物柴油装置,而规模最大的生物柴油工厂在意大利,生产能力达25万吨/年。德国拥有8家生产生物柴油的工厂,拥有300多个生物柴油加油站,并有逐渐上升的趋势。德国对生物柴油实行免税政策,石油柴油为1.60马克/升,生物柴油的零售价格约为
1.45马克/升,在价格上颇具竞争优势。目前德国的奔驰、宝马、大众和奥迪等汽车生产厂家生产的汽车均允许使用净生物柴油,而无需改装发动机。
2003年欧洲生物柴油产量已达270万吨。欧盟各国生物柴油需求量在增长,计划到2010年生物燃料产量提高5.75%,到2020年达到20%。欧盟之所以大力发展生物柴油技术是由于欧盟为了履行“京都议定书”中减轻地球温室效应的承诺。事实上,植物生长过程吸收的C02大于生物柴油燃烧排放的CO2,大力发展生物柴油产业既可以拉动农业的生产,又可以缓解石油工业面临的压力,同时可以直接有效地降低温室气体的排放,可谓一举多得。
美国从20世纪90年代初开始小规模地使用大豆油生产生物柴油。1992年美国能源部及环保局提出以生物柴油作为燃料,以减少对石油资源的消耗。1999年克林顿总统签署了开发生物质能的法令,其中生物柴油被列为重点发展的清洁能源之一,并对生物柴油的生产实施了免税优惠政策。截至2005年4月,包括筹建的工厂在内,美国共有60家生物柴油生产厂,并计划到2011年生产生物柴油115万吨,2016年330万吨。迄今为止已有纯态形式的生物柴油燃料和混合生物柴油燃料,纯态形式的生物柴油又称为净生物柴油,已经被美国能源政策法正式列为一种汽车替代燃料。
日本于1995年开始研究生物柴油,并在1999年建立了用煎炸油为原料生产生物柴油的工业化实验装置。现在日本的生物柴油产能已达40万吨/年,其生物柴油产品售价仅为80日元/升,与石油柴油略同。2004年5月,日本三井公司宣布在南非建设10万吨/年生物柴油装置。同时日本政府正在组织科研机构与能源公司合作开发超临界酯交换技术。日本以废弃食用油脂为原料制得生物柴油,其理化性质可以达到德国标准,动力和排放性能与以优质植物油为原料生产的生物柴油相当,可以达到欧Ⅲ排放标准。
韩国则引进了德国技术,以进口菜籽油为原料,于2002年建成10万吨/年的生物柴油生产装置。
其他国家如捷克、巴西、马来西亚、印度、菲律宾等都根据本国国情相应建成了生物柴油的生产装置或制定了生物柴油的发展计划。
4.2 生物柴油在我国的生产应用情况
我国对生物柴油的开发和研究尚处于起步阶段。目前存在着生产规模小、技术落后、后续发展不好等缺点。主要利用菜籽油、大豆油、米糠油脚料等作为原料制备出生物柴油。由于我国在税收上对生物柴油还未实行免税政策,使得生产生物柴油的生产成本居高不下(其中75%的成本为原料成本),约为矿物柴油的3倍,因而很难实现大规模生产。目前,各科研院所及企业主要以开发廉价原料的生物柴油的生产技术为主攻方向。海南正和生物能源有限公司、四川古杉油脂公司和福建卓越新能源发展公司等都已开发出拥有自主知识产权的技术,都建成了1—2万吨/年生产装置。另外,海南正和生物能源公司还以黄连木树果油为原料,并建有约66.67平方千米原料种植基地。北京市科委可持续发展科技促进中心正与石油大学合作,利用北京市餐饮业废油为原料来制造生物柴油。江西巨邦化学公司进口美国转基因大豆油和国产菜籽油生产生物柴油,正在建设10万吨/年生产装置。四川大学生命科学院正筹备以麻疯树果油为原料,计划建2万吨/年的生产装置。
5 关于生物柴油的标准
生物柴油的生产应有标准作指导,保证其品质,同时标准化也是市场准人的一个重要条件,生物柴油的发展刺激着生物柴油标准的建立。1992年奥地利制定了世界上第一个以菜籽油甲酯为基准的生物柴油标准,很快德国、法国、捷克和美国也分别建立了各自的生物柴油标准。生物柴油可以由不同的植物油制成,这些植物油种类不同,产地气候各异,甘油三酯组成有较大差别,因而各国的标准存在着一些差异。除去经济、健康和环境方面的好处外,标准的建立增强了生物柴油使用者、发动机生产商和其他团体的信心,成为其商业化应用的一个里程碑。
就国内生物柴油而言,其规模化生产刚刚起步,生产量较小,目前以生物柴油作为纯态燃料使用的条件尚未成熟。我国已把发展生物柴油列入国家能源发展计划中,着眼于生物柴油的长期使用,为了加强生物柴油的生产和管理,及时制订生物柴油的国家标准无疑是十分必要的。
6 展望
随着石油资源的短缺,生物柴油生产技术的研究与应用已成为世界各国政府优先考虑发展的方向。对我国来说,目前采用柴油为燃料的动力设备很多,而柴油每年需要进口一部分,柴油的供需平衡是我国未来较长时间石油市场的一个焦点问题。随着国民经济重大基础项目的相继启动,柴汽比的矛盾比以往更为突出。以城市公交系统车用柴油为例,2002年我国车用柴油消费量约1800万吨,预计到2020年车用柴油消费量将达6100万吨。若按2%(重)比例加入到低硫、低芳清洁柴油中以改善其性,届时生物柴油需求量就达122万吨/年。因此,开发生物柴油对调整油品产业结构,提高柴汽比,促进农业产业结构的调整与农产品的加工转型,加强国防安全,保护环境等都具有重要意义。
为解决目前我国生物柴油生产成本高的问题,可从以下方面着手研究。
一是要解决原料数量、质量、渠道问题。制约生物柴油生产的最主要问题是廉价、来源稳定的原料问题。我国地域广泛,拥有丰富的生物柴油资源(大豆油、玉米油、葵花籽油、菜籽油、棕榈油、椰子油、棉籽油、动物油脂等),同时饭店产生大量的煎炸油,如果很好加以利用,有很大市场潜力。在技术资源储备上,可结合应用现代生物技术培育高油植物或工程藻类。
篇5
关键词:钻石理论;生物质发电;清洁能源
中图分类号:F2文献标识码:A文章编号:16723198(2013)23000102
说起生物质能,人们并不陌生。生物质能,就太阳能通过光合作用,以化学能的形式储存在生物质中的能力,具有环境污染小、可以再生利用的特点,并且分布特别广泛。几千前来,人类一直使用生物质能作为主要能源,只是在工业革命以后,人类的能源使用方式才发生了改变。
上个世纪能源危机以后,生物质能又重新得到人们的关注。经过四十多年的发展,生物质能源技术取得了长足进步,利用生物质能源技术生成的产品已经可以替代目前人们广泛使用的石油、天然气、电力等现代能源。
生物质发电是生物质高效利用的一种重要途径,也是一种可持续发展的新型能源。为了推动可持续发展,我国2006年颁布了《可再生能源法》,并且颁布了一系列相关配套法律法规,我国生物质发电产业得到了快速发展,年均装机容量增长率高达30%。根据发展规划,到2020年,生物质发电的装机容量将达到3000万千瓦,占电力总装机容量的比重将达到2%。
为了分析某一产业是否有竞争力,美国著名产业经济学家Micheal·Porter在1990年出版了《国家的竞争优势》一书,在这本书中,他提出了决定产业竞争优势的钻石模型,这一模型逐渐成为一个重要的理论工具,被用来分析某一国家的某一产业是否有国际竞争力。
笔者旨在以生物质发电产业为例,从Porter钻石模型的视角分析我国生物质发电产业的竞争优势,探讨提升我国生物质发电产业竞争力的对策和途径。
1生物质发电概述及重要意义
1.1生物质发电概述
人们在农业、林业、工业生产中会产生很多废弃物,城市居民在生活中也会产生生活垃圾,利用这些废弃物、动物粪便作为燃料,将这些物质直接燃烧,或者转化为可燃气体燃烧,利用产生的热量进行发电,这种技术就叫做生物质发电。生物质发电是一个完整的产业链条,如下图所示(图1)。生物质发电具有技术成熟、可靠性高、发电无间歇性、清洁环保、电能质量好等特点。在欧美等经济发达国家,这些国家很注重环保,生物质发电日趋成熟,已经成为一些国家重要的供热和发电方式。根据使用燃料的不同,生物质发电包括沼气发电、农林生物质发电和垃圾发电。
图1我国生物质发电产业链上世纪70年代,世界石油危机爆发,很多国家认识到单纯依靠石油、煤炭等化石燃料是有很大风险的。瑞典、芬兰、丹麦等北欧小国通过开发利用可再生能源来优化能源结构,注重开发秸秆等生物质发电技术。北欧小国在生物质发电技术方面的努力也引起了主要发达国家的重视,生物质发电因此获得了较快发展。2002年,在南非的约翰内斯堡召开了可持续发展世界论坛,这次会议以后,生物质发电技术在全球得到了快速发展。
1.2重要意义
(1)缓解能源消耗的结构性矛盾。
在能源储量、能源供给方面,我国存在着很明显的结构性矛盾。主要是过于依赖石油和煤炭等化石燃料,石油进口依存度也很高。我国正大力推动城市化和工业化进程,天然气和石油的供需矛盾越来越突出,我国已经成为石油和天然气进口大国,对国际市场的依赖程度日益提高。能源对外依存度过高,这就影响我国的能源经济安全。发展生物质能发电,符合我国国情,对促进我国经济可持续发展,对于促进增长方式的转变都有重要意义。
(2)有利于促进社会可持续发展,服务“三农”建设。
生物质发电,对于带动农村经济发展、增加农民收入和就业岗位,是有很大益处的。以秸秆发电为例,1台装机容量为12MW的机组年消耗生物质秸秆约20万吨,如果按180元/吨计算,则每年可给当地农民带来近4000万元收入。此外,还可给农民提供大量的收购、运输等就业岗位。
2Micheal·Porter的钻石理论
产业为什么会具有竞争力呢?Porter教授认为产业竞争力取决于四个方面的因素及其相互作用,这四个方面是指:一个国家的要素禀赋、需求状况、相关产业和辅助产业的情况及公司的策略、结构和竞争。Porter教授认为,这四个要素之间具有双向作用,并形成了钻石体系,这四个因素,也是评价这一产业是否能够良性发展的重要条件,他把这套体系归纳为钻石模型,企业最有可能在钻石条件最为有利的行业获得竞争优势并取得成功。
图2Porter的钻石模型2.1国内需求
国内需求状况在提高某一行业的竞争优势方面发挥着重要的作用,因为所生产的产品首先是用来满足国内需求。Porter教授认为,企业一般对距离最近的消费者的需求最为敏感。消费者需求可以为企业改进产品质量提供反馈信息,国内消费者的需求特点能直接影响国内产品的特征,促进公司产品的创新,并提高产品质量。如果国内消费者精明而挑剔,就会增加企业的压力,压力也是创新的动力,就会迫使公司不断满足更高的产品质量标准,在产品生产上持续创新,这从中观层面讲可以提高公司的竞争能力,从宏观层面讲就增强了国家的竞争优势。
2.2 相关产业和辅助产业
独木难成林,产业也是如此,一个国家国内成功的行业经常是由很多相关行业组成的一个行业群,因为相关产业和辅助产业对技术、教育这些高级生产要素的投入所产生的效益可以波及到另外的行业,具有国际竞争优势的上下游产业对于国内某一个行业获得核心竞争优势也是大有好处的。
2.3 要素禀赋
生产要素是有层次的,主要可以区分为两个层次:高级生产要素和一般生产要素。一般生产要素就是指自然资源、气候、地理位置和人口这些基础要素;高级生产要素就是指掌握高技术受过良好教育的高素质劳动力、科技设备和技术能力。Porter教授认为,对某一国家产业竞争优势最重要的是高级生产要素,如果说一般生产要素是天然产生的,高级生产要素则是个人、企业和政府共同投资的结果。政府对教育的投资,不仅可以提高国民的整体技术能力和知识水平,而且能够促进高等院校对先进技术的研究和开发。
2.4 公司的策略、结构和竞争
从微观上讲,产业竞争力是企业竞争力的综合体现,谁也无法否认索尼对于日本电子、三星对于韩国电子产业的影响。对于不同国家而言,管理理念也是不同的,这些理念促使企业采取不一样的策略、结构和竞争。如果国内竞争很激烈,经过国内竞争环境的洗礼,也有利于公司保持国际竞争优势。因为企业为了应对竞争,会不断提高生产效率、降低生产成本、加大创新力度,进而提高企业在世界市场的地位。
由以上分析可知,产业竞争实力的建立是有原因的。国家的要素禀赋、需求状况、相关产业和辅助产业的情况以及公司的策略、结构和竞争等四个因素共同决定了某一行业在国际市场是否有竞争力。Porter教授认为,产业国际竞争力的建立并非易事,只有当产业集群拥有足够的资源来弥补最初进入某个市场所带来的损失,新进入的企业才能克服已存在的其他产业集群的先发优势和市场中存在的不利因素。而且,政府的政策对于钻石模型中的四要素会产生影响,如果政府对某一产业进行支持,就可以帮助帮助产业集群弥补最初进入某个市场的损失。
3从钻石理论视角看我国生物质发电产业的竞争优势
作为电力行业的一个细分行业,生物质发电也是和其他生产要素息息相关的,这些生产要素决定了这一产业是否能健康发展。
3.1与生物质发电产业相关的要素禀赋
我国是一个农业大国,可以利用的生物质资源十分丰富,生物质废弃物的总量,相当于煤炭年开采量的一半,约合6.56亿吨标准煤。每年农业生产中产生的生物质总量有50多亿吨,相当于20多亿吨油的当量,这一数字是我国一次能源总消耗量的3倍。
根据农业部门的统计,我国全部农作物的播种面积大约为一亿公顷,每年农作物秸秆的生产总量大约有7亿吨,除部分地区作为造纸原料,部分偏远地区用作炊事燃料,家畜的饲料和部分的秸秆用于还田作为肥料之外,可作为生物质燃料的秸秆约为3.5亿吨,其燃烧值可折合成1.8亿吨标准煤,经过转化可以生产为1亿吨燃料酒精或5000万吨生物柴油。丰富的资源禀赋为我国生物质发电发展创造了条件。
3.2 电力需求状况
电力行业的下游用电客户主要分为两类:企业客户和城乡用电客户,居民用电量比较稳定,增速也很稳定,第二产业中的制造业,尤其是一些高耗能产业,如有色化工、建材和钢铁等,这些都是周期大、投资大、产能易增不易减的基础性原材料产业,如果经济有所波动,将处于不利地位。2008年下半年的金融危机对这些行业的影响很大,很多企业开始限产,直接影响了电力用量。随着我国经济增长方式的转变,随着“调结构”的深入,高耗能产业将会受到限制,其用电量也会减少。
但如果从用电结构来看,生物质发电量的需求将会上升。2009年11月,我国政府明确提出,到2020年,每单位国内生产总值的二氧化碳排放量要比2005年下降40%—50%,并且非化石燃料所占的比重要不断提高,占到一次能源消费比重要达到15%左右。在此背景下,生物质发电等符合环保要求的发电方式将成为重点。
3.3生物质发电相关产业和辅助产业的发展
与生物质发电密切相关的两个产业是燃料收购和设备生产。在燃料收购方面,存在一些问题。一是收购难。我国农业生产的一个重要特点是比较分散,一家一户的秸秆量比较少,农民出售秸秆的意识也并不强。秸秆的收购价格也并不会较高,往往达不到农民的期望价格,这就导致农民出售秸秆的积极性不高;再就是在农村,收购秸秆的力量不足,因为秸秆收购的最佳季节恰好是农忙季节,我国近几年青壮年农民大量外出打工,农村剩余劳动力不足,农民为了抢收抢种,较多地将秸秆就地焚烧。
在运输方面,生物质原料运输也不是特别方便。主要原因就是农作物的密度比较小,导致体积过大,这样运输量就特别大。一般来说,是采用公路运输。为了方便运输,也是为了工业化生产的需要,就必须对生物质燃料就行标准化打包,这样就要购买打包机,而且所打的包块必须符合电厂锅炉的生产要求。而就实际情况而言,我国农村运输多采用拖拉机,对大型包块难以运输。
与发达国家相比,我国电力装备制造业与发达国家还有较大差距。我国目前生物发电设备尚处于起步阶段,相对于整个电力设备市场而言,所占份额较小。在设备生产方面,中国多个大型生物质发电厂的技术和设备均来自丹麦BWE公司。国内主要生产商,如青岛捷能汽轮机集团、武汉汽轮机厂、龙基电力集团、济南生建电机厂、济南锅炉厂等,技术水平和研发实力相对较弱,多是以引进国外技术、国内制造为主。在这种情况下,生物质发电厂议价能力较弱,设备购置费通常占生物质电厂总投资额的30%—
基金项目:本研究系国家旅游局科研项目:基于旅游协同促进的文化软实力建设研究(No.12TABK003)中期成果。
作者简介:张春燕(1983-),女,中南财经政法大学旅游管理专业博士研究生,讲师,研究方向:文化旅游、区域旅游与经济发展。40%,构成了生物质发电企业主要投资成本之一。
3.4我国生物质发电企业的竞争情况
生物质发电规模最大的是国电集团和凯迪控股,2009年,这两大集团的总装机容量达到了114.7万千瓦,占全国的27%,五大电力集团的总装机容量为107.6万千瓦,占所有生物质发电装机容量的24%(详见表1),其中建成和成功并网发电的绝大多数还是五大电力集团。就我国的情况来说,电力行业的垄断程度比较高,生物质发电企业的竞争并不激烈,这对提升产业整体发展水平是不利的。
表12009年主要生物质发电企业总装机
容量与市场份额
企业名称总装机容量
(万千瓦)市场份额
(%)企业名称总装机容量
(万千瓦)市场份额
(%)国电73.317中电投6.31凯迪41.410华能31华电14.53江苏国信11.53大唐10.52中节能4.814结论及启示
根据波特的钻石模型,我们可以看出生物质发电行业的一些问题,主要是国产装备水平比较弱,原材料收储困难,等。本文对提升生物质发电产业的竞争力,提出了几点启示。
4.1加强研发,提升装备水平
电力装备是最能体现技术水平的环节,是整个产业技术水平的标志,而恰恰是在电力装备方面,我国与发达国家相比还有较大差距。我国自主研发的主要是气化发电技术,其他如直接燃烧技术还处于很初级的水平,尚不能达到工业应用的要求,很多关键核心设备要从技术发达国家购买。
装备水平的落后是制约我国生物质发电发展的瓶颈因素。加强自主研发,提升装备水平是提升行业技术水平的关键。
4.2竞争程度的提升,将能提升产业发展水平
凡是经营发电业务的企业必须要有电监会颁发的发电业务经营许可证,而获得这一许可证的要求,比通常工业行业要严格得多。另外,在电力行业,尤其在项目审批环节,没有深厚的对政府公关能力,很难拿到项目开工许可。电力行业还是有比较强的进入壁垒的,这样就导致竞争不充分,不利于提升产业技术经济水平。
虽然我国生物质发电产业存在很强的进入壁垒,但随着经济改革的不断深入,产业的开放也是大势所趋。面对生物质发电产业的良好前景和国家政策的激励,无论是来自境外的跨国能源集团,还是资金充裕的民营企业都有意投资这一产业。近年来,很多来自发达国家的能源集团已经开始在中国投资,它们具有很强的资金和技术优势,将对我国生物质发电产业产生重大影响。随着产业开放程度的进一步提高,民营企业也会逐渐进入这一产业,这一产业的竞争将会更加激烈,这对提升产业发展水平是有利的。
4.3建立和完善生物质燃料供应链,确保燃料的持续供应
对生物质发电而言,燃料成本在总成本中占了很大比重,燃料成本是电厂能否实现盈利的重要因素之一。再就是燃料供应要有稳定性,否则将影响电厂设备的运行。由于农业生产的季节性特征,燃料供应会有所波动,而工业生产具有连续性。在现阶段政府和生物质发电企业应共同建立完善的生物质燃料供应链,对燃料的收集、加工、储存、运输等各个环节进行规范,以保证生物质电厂拥有价格合理、持续供应的燃料。
参考文献
[1]谭力文,吴先明.国际企业管理[M].武汉:武汉大学出版社,2002:5759.
[2]叶慧.我国生物质能源产业可持续发展的SWOT分析与对策[J].西南林院学报,2008,(28):1720.
[3]贾小黎,丁航,李晓真,等.中国生物质发电产业现状、问题和建议[J].太阳能,2007,(5):1013.
[4]王振江,庄会永,肖兵,等.用于发电的中国生物质能源可用性分析[J].华东电力,2006,(6):1619.
篇6
根据ISAAA于2013年2月的年度报告,2012年,转基因作物继续在全球迅速推广,并且在实现粮食、饲料、纤维和燃料增产的过程中取得巨大成就。
报告指出,原本不愿冒险的农民对转基因作物的信心不断增长,为全球转基因作物未来增长打下广泛和稳定的基础。其主要原因是,转基因作物为其带来了可观的、可持续的、社会经济及环保效益。
应用最迅速的作物技术
自1996年开始商业化种植以来,全球转基因作物已经连续第16年保持显著增长势头。全球转基因作物种植面积1996年仅为170万公顷,2012年则达到前所未有的1.7亿公顷,从而使得转基因技术成为现代农业史上应用最为迅速的作物技术。
在1996年至2012年间,全球近30个国家的近亿农民选择种植转基因作物,累计种植面积超过15亿公顷,比美国或中国领土总面积还要大50%以上。
2012年,全球共有28个国家种植转基因作物,其中包括20个发展中国家和8个发达国家。种植转基因作物的发展中国家数量几乎为发达国家的3倍。排名前10位国家的转基因作物种植面积分别超过100万公顷。世界人口的60%,即近40亿人,生活在上述28个国家,为未来转基因作物多样化发展打下广泛的基础。
2012年,全球共有1730万农民种植转基因作物,比上年增加60万,其中90%是发展中国家资源匮乏的小农户。
2012年,巴西转基因作物种植面积约占全球总量的21%;阿根廷转基因大豆占全国大豆种植总面积的近100%;印度Bt棉花种植面积创历史新高,达到1080万公顷,占全国棉花种植总面积的93%。
美国继续保持全球头号转基因作物种植国。2012年,美国转基因作物种植面积为6950万公顷,占全球总量的41%;转基因玉米、大豆、棉花和甜菜分别占全国玉米、大豆、棉花和甜菜种植总面积的90%、93%、94%和95%。
加拿大转基因油菜籽种植面积达到840万公顷,占全国油菜籽种植总面积的近98%。
2012年,欧盟有5个国家(即西班牙、葡萄牙、捷克、斯洛伐克和罗马尼亚)种植Bt玉米,面积达到12.9万公顷,比上年11.45万公顷增长13%;其中,西班牙占欧盟Bt玉米种植总面积的90%,转基因玉米占国内玉米种植总面积的30%。转基因棉花占澳大利亚棉花种植总面积的99.5%。据cropnosis公司的研究报告,2012年,全球转基因种子的市场价值为148亿美元,相当于同年全球作物保护市场646亿美元的23%,或相当于商业种子市场340亿美元的35%。
全球农民收获的“终端产品”价值,则是转基因种子价值的10倍以上。
在批准进口和释放转基因作物的59个国家和地区中,美国位居第一,其次为日本、加拿大、墨西哥、澳大利亚、韩国、新西兰、欧盟、菲律宾、中国台湾和南非。
转基因作物贡献巨大
一是改善粮食安全。转基因作物可有效促进粮食、饲料和纤维安全及自给,包括通过持续增加农业生产力和提高农民经济利益,提供更多实惠的粮食。1996年至2011年间,全球转基因作物创造出的农民收益达到980亿美元,其中51%来自生产成本下降(即耕犁、杀虫剂喷洒以及劳动力的减少),49%来自3.28亿吨作物增产。
二是保护生物多样性。转基因作物是一种节约耕地的技术,可在全球现有15亿公顷耕地上获得更高的生产率,因此有助于防止砍伐森林和保护生物多样性。发展中国家每年流失大约1300万公顷富有生物多样性的热带雨林。1996年至2011年间转基因作物增产的3.28亿吨粮食、饲料和纤维,相当于节约了1.08亿公顷土地。
三是有利于减轻贫困。转基因作物可显著提高生产力及收入,可作为农村经济增长的引擎,帮助世界上的小型、资源贫乏农户摆脱贫困。到目前为止,转基因棉花和玉米已经帮助发展中国家1500万资源贫乏小农户增加收入。
四是减少农业对环境的影响。生物技术迄今为止带来的好处包括:显著减少杀虫剂喷洒,节约矿物燃料,通过免耕或少耕地减少二氧化碳排放,通过使用耐除草剂转基因作物实现免耕和水土保持。1996年至2011年间,杀虫剂活性成分累计减少使用4.73亿公斤,相当于节省8.9%的杀虫剂。
篇7
关键词:热电联产 发电厂 供热效应
中图分类号:TM62 文献标识码:A 文章编号:1674-098X(2016)11(b)-0075-02
对于热电联产来说,主要是以能量梯级利用原理为依据,当燃料基于锅炉当中燃烧放热之后,添加热水蒸汽在汽轮机内,使其做功发电,确保做过功的蒸汽对用户供热,并使发电、供热两类生产过程得到有效实现,从而很好地展现了节能、提升供热质量以及改善环境等功效[1]。然而,基于现状角度来看,我国热电联产发电厂面临一些发展困境。为了促进热电联产发电厂的发展,有必要对其供热效益的提升加以重视。鉴于此,此次对“热电联产发电厂发展及供热效益”进行分析意义重大。
1 热电联产发电厂发展分析
热电联产发电厂,即热电厂,其中热电联产是一大重点经营的业务。对于此类电厂来说,其产生电能的方法较为特别,需要通过燃烧,使部分能量带动汽轮机发电,而另一部分则将热量供应出来。显然,热电厂能够供应热源,且在电能生产期间能够展现环保作用。但从现状来看,我国大部分热电联产发电厂在发展经营过程中,存在较为严重的亏损情况,特别是大型的热电联产电厂,每年亏损巨大。究其原因,体现在成本管理不完善以及控制工作不合理等方面。比如:一些热电厂仍旧采取老一套的计划经济管理理念,难以准确定位市场,从而导致经营呈现滞后的情况。与此同时,部分管理人员在能源节约意识上较为缺乏,从而导致成本管理难以得到有效控制[2]。显然,热电联产发电厂要想得到有效发展,便有必要解决成本管理等问题。
此外,对于热电联产来说,会同时生产出电与热两类产品,所以从成本分析角度上来看,会出现电、热的成本分摊问题。从现状来看,有关热电联产的电、热成本分摊方法有两种:其一,热力学第一定律;其二,热力学第二定律。选择不同的分摊计算方法,便决定了电、热产品定价的合理性,进而会对发电以及供热效益形成很大程度的影响。现状下,在国内一般会采取热量法作为电、热成本分摊的方法,也可称之为“好处归电法”。此类方法把电能与热能视为等价,并将能质的差异忽略不计,进而把热电厂的总耗热量以生产电能与热能的数量比例进行分摊。和一般的发电比较,热电联产电厂的发电煤耗与发电成本显著下降。对于此类分摊方法来说,简单且直观,在考核上非常简单,所以能够获得较为广泛的采纳使用。
2 热电联产发电厂发电供热效益分析
2.1 电、热成本费用的分摊
现状下,国内热电联产电厂一般将热量法作为电、热成本费用分摊的方法。分摊过程中,需遵循的原则为:只计算电力或者热力一种产品产生的费用,所产生的费用由电力或热力产品完全承担。同时,对于电力与热力两类产品共同产生的费用,需以一定的标准进行分摊。对于电、热产品生产成本来说,可根据它们和产量之间的关系分为变动成本与固定成本两大类。基于一定的范围当中,变动成本会随着产量的增减变化而发生变化;而对于固定成本来说,不会随着产量的增减变化而发生变化[3]。以热电联产的工作流程为依据,热电联产产生的成本费用较多,大致上可分为两大类:其一,变动成本费用:燃料费、水费以及环境保护费;其二,固定成本费用:折旧费、修理费、材料费、财务费、燃料费以及员工薪酬费等。下面是各类成本费用的电、热分摊方法。
(1)燃料费。对于燃料费来说,即指的是在生产电力以及热力产品过程中产生的费用,对于此类费用需以发电、供热的实际耗用标煤量比例进行分摊。对供热厂用电耗用的燃料费来说,需由热力成本承担。涉及的计算公式为:①CBe=CBBe/B-Che;②CBh=CBBh/B+Che;③Che=WhbePb。
在上述式子当中,CBe是发电燃料费,单位为万元;CBh是供热燃料费,单位为万元;CB是全厂燃料费,单位为万元;Che是供热厂用电耗用燃料费,单位为万元;Be是发电耗煤量,单位为万t;Bh是供热耗煤量,单位为万吨。B为全厂耗煤量,单位为万t;WH是供热厂用电量,单位为kWh;be是发电标煤耗,单位为g/kWh;Pb是标煤价,单位为元/t。
(2)材料费。热力产品主要承担电气、汽机车间的热网部分用料,而别的用料则需由电力产品承担。对于水处理用药品来说,需以电、热耗用软化水量比例进行分摊。此外,剩下的根据电、热耗用标煤量比例进行分摊。
(3)折旧费以及修理费。对于电气以及汽机车间的热网部分的折旧与修理费来说,需由热力产品承担,剩下的则由电力产品承担,剩下部分以电、热耗用标煤量比例进行分摊。
(4)对于水费、环境保护费以及员工薪酬费用等,需以发电、供热实际耗用的标煤量比例进行分摊。
2.2 实例分析
以某热电联产发电厂为例,如表1所示,为其供热达产年发电、供热涉及的指标。
结合表1可知,在供热达产年,典型热电联产电厂的供热标煤耗量在全厂总标煤耗量中所占比重为23.77%。根据以上发电以及供热成本分摊模式,供热部门的整体成本M用在全厂整体成本费用中所占比重为21.91%,而供热部分的营业收入在全厂营业收入所占比重则为13.79%,供热收入、成本倒挂。从全厂盈利13 239万元的条件来看,供热亏损6 970万元,供热单位亏损9.96元/GJ。发电成本利润率为24.14%,供热成本利润率为-29.67%、全厂成本利润率为12.35%。
3 结语
通过文章实例分析,认识到将热量法作为电、热成本分摊方法,在受到“好处归电”的一项下,使得发电盈利,而供热亏损,这样便使热电联产电厂的发电和供热两方面的效益存在不均衡的情况。鉴于此,有关机构有必要提升热价,使供热经济性得到有效改善,并在发电利用小时数编排上给予热电联产电厂足够的倾斜,以此确保发电以及供热的均衡性,最终为热电联产发电厂整体效益的提升奠定坚实的基础。
参考文献
[1] 宋伟明,丁军威.热电联产电厂供热的直接和间接效益分析[J].华电技术,2015(1):1-4.
篇8
20世纪是工业经济时代,21世纪将进入知识经济时代,世界各国都将实施可持续发展战略来发展经济。因此,21世纪世界炼油工业的发展要适应知识经济发展的需要,要按照可持续发展战略来发展。可持续发展战略就是环境、资源、人口与社会、经济、文化协调发展、兼顾当代人和子孙后代利益的发展战略。其主要特征是:保护资源,减少资源消耗,节约使用资源,提高资源的利用效率,主要依靠技术进步和科学管理实现社会经济发展;保护环境,维护生态平衡,防止和治理污染;人口增长与经济增长互相协调,提高人口质量,使地区分布合理化,充分有效地开发和利用现有的人力资源。指导思想是经济效益与环境效益并重(兼顾),实现经济增长与保护环境的双重效益。
从21世纪世界经济发展的大环境和大趋势考虑,21世纪世界炼油工业将面临六大挑战和机遇。它们是:
1、经济全球化,市场国际化,竞争白热化
2、生态环境恶化,生产清洁油品已成为当务之急
3、原油质量越来越差,石油消费量逐年增长
4、丰富的油砂资源为炼油工业提供了巨大的发展空间
据联合国报告称,世界石油剩余储量尚够开采65年,石油探明储量尚够开采40年.但世界尚有丰富的沥青砂资源,仅委内瑞拉一国沥青砂就有137Gt(10000亿桶)。当石油价格上扬到每桶25美元时,开发利用这些沥青砂就有利可图。
5、计算机技术和生物技术等高新技术的快速发展为炼油工业提供了强有力的技术支持
6、天然气和煤层气资源丰富,合成石油为炼油工业的发展提供了喜人的前景。
目前天然气合成石油的技术已进入工业化阶段,按照目前掌握的探明的储量加潜在储量又可以得到上千亿吨的合成石油,而且合成石油的质量远高于天然石油,为生产清洁汽油、柴油提供了十分喜人的前景。
二、 世界炼油工业为进入21世纪采取的重大举措
90年代以来,世界各国特别是发达国家的炼油工业为迎接21世纪的到来,已经或正在采取的重大举措有以下6项:
1、 兼并、联合、重组,充分发挥优势,增强竞争实力
兼并联合重组是经济全球化发展的结果。由于经济全球化加剧了行业的竞争,迫使大跨国公司通过扩大经营规模,组成更强大的集团,增加竞争力,占据更多的国际市场份额。就石油(含炼油和石油化工)行业而言,90年代特别是近几年来,兼并、联合、重组事件有几十起之多。特别值得注意且影响重大的有以下两起:一起是英国石油公司与美国阿莫科公司1998年11月宣布合并,组成BP-Amoco公司。1999年4月1日,BP-Amoco公司又兼并美国Arco公司,竞争实力又进一步加强。另一起是埃克森公司和美孚石油公司1998年12月1日宣布合并,组成了目前世界上最大的能源公司-Exxon-Mobil公司。
2、 炼油化工一体化,优化资源配置,提高经济效益
据介绍,目前美国炼油业的利润率为2%,勘探开发业为10%-12%,石油化工业为18%-20%。实现炼油化工一体化的好处主要是,优化原料配置,炼厂的石脑油直供裂解装置,裂解汽油直接用作汽油调合组分,减少了中间商的营销费用;减少了库存和贮运费用;水、电、汽、风等共用,一个管理部门,减少了公用工程和管理费用,减少了公用工程系统的投资;确保化工厂原料供应和副 产品的出路,不受市场需求和价格波动的影响;石化产品市场需求增长势头远高于石油产品,石化产品价格攀升,炼油化工一体化,可以使炼油厂25%的油品变成价格较高的石化产品,资金回报率可以提高2%-5%。
美国七大石油公司在美国墨西哥湾地区有9座炼油化工一体化联合企业,年增效益都在5000万美元以上。目前 在建的炼油化工一体化大型联合企业是,德国巴斯夫公司与比利时石油公司在美国得克萨斯州阿瑟港合资的世界级企业。这个一体化企业的主要装置是:9000kt/a炼油,817.2kt/a乙烯,908kt/a苯乙烯,953.4kt/a聚丙烯,363.2kt/a聚乙烯,499.4kt/a聚苯乙烯,预计2001年投产。
3、 发展深度加工,优化资源利用,提高资源利用率
发展深度加工主要是发展渣油加工,提高轻油收率,多出轻油、少出渣油,其次是用好废油和石油焦,提高原油资源利用率,提高炼油厂的经济效益。1999年初,全球共有渣油加工装置近600套,加工能力达735Mt/a。90年代以来共增加加工能力225Mt,其中1997-1999年的三年间新增能力75Mt。其原因主要是炼厂加工的廉价重质原油越来越多,特别是西半球,与此同时,全球大部分市场燃料油需求量持续下降,运输燃料和石油化工原料的需求量各地区都在增加。这种趋势将持续到21世纪。
一个值得重视和注意的发展动向是,渣油/石油焦/废油气化、发电、制氢、联产蒸汽的技术下在推广应用。其价值在于把炼厂的低值产品变为炼厂急需的氢气、蒸汽和电力。目前在美国、日本、新加坡、意大利、法国、荷兰已建和在建的装置共11套。
4、 采用清洁技术,生产清洁油品,减少三废排放
面向21世纪,炼油厂面临的问题是,不能再用有毒、有害、有碍人体健康的酸碱等辅助原材料,更重要的是要减少汽油的硫、烯烃、芳烃含量和柴油的硫、芳烃含量,生产清洁汽油和清洁柴油。目前已经成熟和正在开发的技术有:生产清洁汽油的选择性加氢技术,生产清洁汽油的吸附脱硫技术,生产清洁柴油的深度加氢技术,生产清洁航煤的临氢脱硫醇技术,生产清洁汽油的固体酸烷基化技术,生产清洁汽油、航空煤油、清洁柴油的加氢裂化技术等等。
5、 采用生物技术,生产清洁油品,降低生产成本
开发和利用生物技术,生产清洁油品,始于本世纪80年代。到目前为止,已经和正在进行的技术开发工作包括生物脱硫、生物脱氮、生物脱重金属、生物减粘、生物制氢等。其中,柴油生物脱硫技术开发工作进展最快。柴油生物脱硫与加氢脱硫相比,最大的优点是在装置加工能力相同的情况下,投资节省50%,操作费用节省20%。在技术上,柴油生物脱硫用于催化轻循环油脱硫时的优势在于,催化轻柴油中的二苯并噻吩(DBT)化合物难以加氢脱除,而且消耗大量氢气,而生物脱硫 不仅容易脱除(特别是4,6-二甲基二苯并噻吩),且不消耗氢气。
世界上第一套柴油生物脱硫装置建在美国阿拉斯加州的Valdez炼油厂,加工能力250kt/a,生产清洁柴油,副 产4.540kt/a羟基联苯亚磺酸盐,2001年投产。
6、 采用合成技术,生产清洁油品,满足未来需求
合成油最重要的优点是不含硫、氮、镍、钡杂质和芳烃等非理想组分,属于清洁燃料,完全符合现动机的严格要求。天然气转化生产合成燃料的技术开发工作,1997年取得了突破性进展,第一次能在国际市场与天然石油相竞争。
埃克森公司开发的AGC-21合成油技术,是天然气通过流化床反应器,催化转为合成气(H2+CO),合成气通过悬浮床反应器催化转化为正构烷烃,最后通过固定床加氢异构化转化为合成油。重大突破是开发了三种新催化剂,能够得到最大收率的柴油的航空煤油,或石脑油和催化裂化原料油。这种合成油能与每桶20美元的美国西得克萨斯中质原油竞争。壳牌公司开发的SMDS合成油技术,是天然气氧化 生产合成气(H2+CO),采用费-托合成工艺把合成气转化为大分子重质烷烃,最后通过加氢裂化把含蜡的大分子烷轻转化为中馏分油。如果合成油生产厂达到最佳经济规模5000桶/d(2500kt/a),就可以与每桶15-20美元的原油进行竞争。
三、 我国炼油工业21世纪可持续发展的战略思考
到1997年底,我国原油一次加工能力已达227Mt/a,居世界第四位。世界各国用于工业生产的炼油技术我国都有,我国自己开发的主要炼油技术,如催化裂化、催化重整、加氢裂化、加氢精制等都已达到了当代世界先进水平。毫无疑问,我国是当代世界炼油大国。但是,就油品的品种和质量而言,与国际先进水平相比差距很大,既不能满足我国国民经济发展的需要,又不能在国内市场上与国际大跨国公司抗衡。因此,面向21世纪,我国要由炼油大国变为世界炼油强国,发展战略必须进行调整。
调整我国炼油工业的发展战略,必须认真考虑以下情况:
1、 我国石油资源相对不足,煤炭资源丰富。我国的石油资源主要用于生产国民经济各部门所需的汽油、煤油、柴油和油。我国天然气资源不能提供大量乙烷,因此,我国石化工业还需要炼油厂提供化工轻油(石脑油和直馏柴油)。我国火力发电主要用煤炭作燃料,不需要依靠燃料油这种情况与世界上好多国家不同。
2、 我国国产原油多为低硫含蜡重质原油,直馏汽、煤、柴油轻组分较少。可是,大部分直馏汽油和柴油还要用作化工轻油。因此,我国汽油和柴油的调合组分中二次加工油特别是催化汽油和催化柴油组分较大。
3、 目前我国炼油厂的装置构成是:催化裂化占33.4%,焦化占6.8%,重整占5.6%,加氢裂化占4.9%,加氢精制和加氢处理占8.2%。我国实际消耗的柴汽比为1.54。催化裂化是主要生产汽油的装置。以催化裂化为主要装置的炼油厂实际上是汽油型炼厂。目前我国炼油厂的装置构成,决定了目前我国实际生产的汽柴油质量不可能好,柴汽比不可能高。
4、 我国生产油基础油的原料较好,主要是大庆原油。但我国基础油生产工艺主要是传统的溶剂抽提+溶剂脱蜡+加氢补充精制和白土精制。这种工艺只能生产第Ⅰ类基础油,不能生产第Ⅱ和第Ⅲ类基础油。
5、 我国国产原油大多数属低硫石蜡基和含硫中间基原油,不适于生产道路沥青,特别是高等级道路沥青。我国陆上只有辽河欢喜岭原油和新疆九区原油、海上只有渤海绥中36-1原油属环烷基原油,比较适于生产道路沥青,但其资源有限。
鉴于上述情况,要使我国炼油工业满足国民经济发展对石油产品的需求,能与国际大跨国公司进行竞争,必须从实际出发,进行战略调整。今后我国炼油工业的发展战略应该是:控制加工总量,提高产品质量,调整产品结构。具体措施有以下6条:
1、 至少在“十五”期间不再扩大原油一次加工能力,不再扩大催化裂化装置能力。催化裂化在炼厂起有重要作用,不仅生产汽油和柴油组分而且还生产烷基化、醚化和石油化工所用的原料烯烃。但是,催化裂化(特别是用含硫原料油)所生产的汽油,硫和烯烃含量都比较高。催化柴油特别是重催化柴油不仅含硫量高,而且十六烷值低(重催柴油十六烷值只有20左右),不经过加氢精制就不能使用。
2、 适当扩大加氢裂化能力,用深拔的减压瓦斯油和催化循环油作原料,生产重整原料油、航空煤油、优质柴油和乙烯原料油。用加氢裂化石脑油生产重整汽油以提高汽油质量;用加氢裂化柴油调合生产车用柴油以提高柴油质量;用加氢裂化尾油替代直馏柴油生产乙烯,把直馏柴油省下来用作柴油调合组分。
3、 尽量扩大加氢处理和加氢精制装置能力,把焦化汽柴油特别是催化汽柴油都经过加氢,把汽油的硫含量降下来,把柴油的硫含量降下来,把十六烷值提上去。
4、 新建一批油加氢裂化、加氢异构化和加氢后处理装置,生产第Ⅱ类和第Ⅲ类基础油,把已经被国际大跨国公司占领的25%份额的我国油市场夺回来。
篇9
由于全球气候变暖,有些地区发生极端气候事件(干旱、洪涝、冰雹、高温天气等)的频率与强度加剧,根本原因是大量排放温室气体CO2所致。基于这种严峻形势,我国政府和农业部门十分重视气候变化问题,为逐步降低农业生产中CO2等温室气体的排放,提出低能耗、低排放、低污染、高效益“三低一高”的低碳农业发展模式[1]。
1发展低碳农业存在的问题
我国是世界上最大的发展中农业大国,发展低碳农业存在的主要问题:一是从2003年开始化肥农药使用量呈不断增加的趋势,而化肥中氮、磷、钾肥主要生产原料为天然气、煤炭、重油、磷矿石、氯化钾矿粉等,其生产过程中也要用到大量煤、气、油,化肥大量使用直接导致农业生产的高碳化和高污染化。据调查,2003—2008年水稻用药次数从3~4次/季上升到9~12次/季,最高达16次/季,稻田农药成本从150~225元/hm2增加至975~1 275元/hm2,其中化学农药占总使用量的93%。二是畜禽养殖业畜禽粪尿未经处理的污水,直接排放到溪河、鱼塘、农田占97.2%;使用污水处理设施处理的只占2.8%。三是秸秆随意丢弃现象普遍,大面积露天焚烧量占总量的10%,导致空气中烟尘、颗粒物和其他污染物浓度的急剧增加,影响大气和水体质量,对人民生活和自然环境造成不良影响。四是随着农业生产的规模化、科技化发展,农业机械使用面积越来越大,在降低劳动力成本的同时,也导致石油燃料使用量的提升。
2对策
2.1降低化肥农药使用量,提高其利用率
一是推广秸秆还田,扩大冬季绿肥种植。绿肥不仅是最清洁的有机肥源,其还能有效利用农田残余化肥,减轻污染,改善土质,增加生物覆盖,减少耕地裸露,改善农业生态环境。按产秸秆18 t/hm2计算,相当于尿素195 kg/hm2、钙镁磷肥90 kg/hm2、氯化钾135 kg/hm2。据调查,冬季种植绿肥田翌年水稻产量可增加300 kg/hm2以上,共节本增收1 389元/hm2。推广秸秆还田技术,能有效减少化肥用量,改良土壤结构,促进微生物活力和作物根系的发育。田间试验表明,采取秸秆还田的田块一般可增产3%~5%。二是引导积造农家肥。农家肥积造占用场地少、简单便捷,整个过程基本没有碳消耗,是低成本、低污染的绿色肥源,不但能有效利用废弃物,减少污染,美化农村环境,还能降低化肥用量。三是全面运用测土配方施肥技术。西方发达国家化肥利用率在60%以上,而我国的化肥利用率只有35%,盲目过量施肥和施肥方法不科学等,都会造成化肥利用率下降。通过对农田环境监测,以大量采样数据为基础,经专家系统探研出最优的配肥结构,减少单质肥料用量、提高肥料利用率和耕地质量。四是推进绿色植保。采取生态治理、农业防治、生物控制、物理诱杀等生态环保安全的综合措施,以及选用高效低毒农药,减少农药残留和污染,确保环境安全和生态安全。 2.2 建设标准粮田,提高耕地农业综合生产能力
整合农田水利建设、综合开发、土地整理等项目,以机耕路为骨架、以田间道路为网络,平整土地,达到排灌自如和农业机械操作便利的标准粮田,提高耕地农业综合生产能力。同时,积极推进耕作制度改革,采取秸秆覆盖、免耕播种、简单松翻等措施,减少耕地翻耕,保护土壤中的有益微生物和土壤墒情,同时降低劳动力成本、减少水土流失和节约能源,发展循环农业。一是推广立体种养模式。如种植-养畜-渔业、粮菜-林粮-果蔬等复合生态系统模式,充分发挥人力、物力、空间、资源和技术作用,有效地提高单位面积产量和产值,实现一地双收甚至一地多收。大力推广稻鸭共栖、稻鱼共育、葡兔鱼共养等立体种养模式,提高资源利用率,提高种养效益。二是有机废物多级综合利用模式。积极推广运用鸡粪喂猪、猪粪喂鱼、沼气发电、秸秆还田等模式。尤其要大力推广“猪-沼-灯-果”模式,以山地、大田、庭院等为依托,采用先进技术,建造沼气池、猪舍、厕所三结合工程,形成物质与能源的良性循环[2]。
2.3开发农业生产新能源,促进低碳农业全面发展
农村面积广阔,自然资源丰富,拥有大量新能源增长点,若能利用新型能源转换技术进行开发,对低碳农业发展意义重大[3]。一是与新农村建设相结合,推进生态工程。以新农村建设为载体,将太阳房、日光温室或太阳能畜禽舍、沼气池和秸秆气化等农村新能源技术与生态农业技术进行集成组装,与农村改房、改厨、改厕、改圈、改庭院统一规划配套建设,进一步完善农村新能源综合利用技术。二是与养殖小区建设相结合,推进沼气工程。要求各养殖小区及规模化养殖场,都要配套沼气工程,有效地解决畜禽粪便
[1] [2]
所造成的空气污染和水质污染等问题,实现资源化、减量化和无害化,达到节能减排的目的。三是与设施农业建设相结合,推进太阳能利用工程。利用玻璃、薄膜等材料,建设太阳能日光温室,通过人工光、温、湿等调节,使农业生产不受自然气候影响和限制,促进工厂化生产;利用太阳光热转换技术,使太阳能热水器、太阳能灶、太阳能取暖器等渗透农村生活;利用太阳能光伏发电转换技术,将太阳能转换为独立的电能,用于农业机械、植保病虫物理防治器材等,减少设施农业对石油的依赖。四是与农业生产相结合,推进生物能源工程。利用秸秆能源,将其生成的气、液、固态燃料直接作为生活用能,或深加工处理后可替代柴油、汽油等用于生产;开发生物柴油,生物柴油是一种优质清洁柴油,已被欧盟、美国等发达国家大量使用,其中主要的提炼原料是油菜,因此建立生物柴油基地必须巩固扩大油菜生产面积,保证原料供给。发展低碳农业是一项系统工程,涉及面广。因此,除应制定发展战略、出台扶持激励政策外,还要加大低碳农业宣传力度,让广大民众了解发展低碳农业的好处,形成政府推动、市场引导、全民参与的浓厚氛围。
谢立勇,林而达.适应二氧化碳肥效作用的农业技术潜力分析[J].中国农业气象,,():-.
曾国揆,谢建.沼气发电技术及沼气燃料电池在我国的应用状况与前景[J].现代农业,():-.
陈兴中,孙丽丽,李富忠.我国低碳经济发展之路探析[J].商场现代化,():-.
篇10
关键词:化学工业纳米技术应用
在高新技术中,纳米技术、生物技术和信息技术对化学工业发展有着深远的影响,对于材料科学而言,当首推纳米技术。它不仅能推动化学反应、催化和许多单元操作的突破性的改进,而且提供了纳米多孔材料、纳米粒子、纳米复合材料、纳米传感器等新型材料以及化学机械抛光、药物可控释放、独特的去污作用等功能应用,为化工新材料发展及其应用开辟了广阔的前景。
纳米技术正全力推动着化学工业未来的发展。随着一些纳米技术的工业产品问世以及所显示出的诱人前景,现在“纳米技术”已经成为家喻户晓的名词。纳米技术在化学工业中的应用,主要是新型催化剂、涂料、剂,过滤技术以及一些最终产品,诸如纳米多孔材料制品和树状聚合物制品已成为化学工业的创新点。
一、化学反应和催化方面应用
化学工业及其相关工业,特别是一些化学反应起着关键性作用的产业盛行用纳米技术来改进催化剂性能。纳米多孔材料中的沸石在原油炼制中的应用已有很长历史,纳米多孔结构新型催化剂的发展,为许多化学合成工艺的创新提供了机会,或者使化学反应能在较温和条件下进行,大幅度地降低工艺成本。例如用此类催化剂可以将甲烷有效地转化为液体燃料,作为柴油代用品,而现用的方法比较昂贵。
纳米粒子催化剂的优异性能取决于它的容积比表面率很高,同时,负载催化剂的基质对催化效率也有很大的影响,如果也由具有纳米结构材料组成,就可以进一步提高催化剂的效率。如将Si02纳米粒子作催化剂的基质,可以提高催化剂性能10倍。在某些情况下,用Si02纳米粒子作催化剂载体会因SiO2材料本身的脆性而受影响。为了解决此问题,可以将SiO2纳米粒子通过聚合而形成交联,将交联的纳米粒子用作催化剂载体。
二、过滤和分离方面应用
在过滤工业中,纳米过滤(简称纳滤,nanofiltration)广泛应用于水和空气纯化以及其它工业过程中,包括药物和酶的提纯,油水分离和废料清除等。还可以从氮分子中去掉氧(氧与氮分子大小差别仅0.02nm)。应用此方法生产纯氧可不需要采用深冷工艺,因而可以降低成本。法国于2000年在Generale des EaMx建成世界上第一座用纳滤技术生产饮用水的装置,所用聚合物膜其孔径略<lnm。与传统净化工艺相LL,虽然电能消耗较高,但带来一些其它的好处,如不需要用氯。
纳米多孔材料的吸收和吸附性能也提供了在环境治理方面应用的可能性,如去除重金属(如砷和汞等)。使用其他纳米材料的过滤技术也取得了长足进步。例如入rgomide纳米材料公司开发的用直径为2nm纤维制成的高产率系统,可以过滤病毒、砷和其它污染物。
一些聚合物―无机化合物复合材料也可用作气体过滤系统,而且效率也很高。如有一种用排列成行的碳纳米管(nanotLlLe)制成的膜,由于纳米管与气体分子间互不作用,可以高产率地分离出气体。此种材料可满足高流速低压气体的分离需要。此种膜可以从气流中去除CO2,或从CO中分离H2。这种技术可应用于新一电厂、煤液化工厂或气体液化厂。
由精密控制尺寸的纳米管组成的膜在分离生物化学品方面也具有很大潜力。
三、复合材料方面应用
在复合材料中使用纳米粒子可以提高材料强度,降低材料的重量,提高耐化学品、耐热和耐磨耗能力,而且还可赋于材料一些新的性能,诸如导电性,在光照和其他幅照下改变其反应性能等。
以粘土为基础的纳米复合材料在不久将来会有很大的市场。以碳纳米管为基础的新型结构复合材料的开发也为期不远,它的主要问题是成本较贵,要用好的填料(单壁纳米管)。大规模应用较大而不太完善的碳纳米纤维可望在2004年实现,此发展可能会给纳米粘土复合材料的应用形成冲击。
四、涂料方面应用
在涂料行业CTJ。纳米粒子已经起着很大的作用,但是,类似于能生成抗刮痕和不粘表面的涂层的溶胶―凝胶单层(solgcl monlolaycr)还在研究。用树状聚合物可以弥补不足,并且可与纳米粒子技术结合应用。
以纳米粒子为基础的涂料具有各种优异的性能,比如:强度、耐磨耗、透明和导电。2002年BASF公司推出一种用纳米粒子和聚合物制备的喷涂涂料,在干燥时自组装成一种纳米结构的表面,呈现出类似荷叶的效应,即当水落到表面上,由于与表面的互粘性甚小,可以形成水珠而流去,并把灰尘带走。
用纳米粒子强化的涂料还可能在生物医用方面应用。例如铜的纳米粒子可以降低细胞在表面上生长,从而解决移植上的一个主要问题。
五、树状聚台物及去污作用
树状聚合物特别适用于去污,它起着清道夫的作用,可以去掉金属离子,清洁环境。改变一种介质的酸度可以使树状聚合物释放出金属离子。而且树状聚合物可以通过超过滤进行回收和冉用。树状包覆催化剂可用此同样方法从反应产物中进行分离。回收再用。密西很大学的生物纳米技术中心计划开发树状聚合物加强超滤方法,作为新的水处理上艺.从水中去掉金属离子。树状聚合物可以在其分子小间或是在它们的经改性的终端基团上捕捉小分子。
使其能适用于吸收或吸附生物和化学污染物。美国军事部门对它的应用前景作了好的评价。