生物燃料的作用范文

时间:2023-10-26 17:30:05

导语:如何才能写好一篇生物燃料的作用,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

生物燃料的作用

篇1

电池在我们的生活中发挥着非常重要的作用,但在使用过程中却带来了严重的环境问题。一节一号电池腐烂在地里,能使一平方米土壤永久失去利用价值;一粒纽扣电池可使600吨水受到污染,相当于一个人一生的饮水量。严峻的现实迫使我们寻找电池发展的新出路,生物燃料电池的问世让我们看到了曙光。本文初步介绍了生物燃料电池的基本情况,以期能开阔视野,对中学化学教学有所裨益。

1穿越历史,生物燃料电池向我们走来

早在19世纪初,英国化学家戴维就提出了燃料电池的设想,1839年英国人格拉夫发明了最早的氢燃料电池[1]。可以说发展到今天,氢燃料电池已成为了最成熟的燃料电池,但在氢气的制备、输送、电池的能量转化率、使用安全性等方面存在许多问题,陷入了尴尬的发展处境[2]。生物燃料电池的出现又让我们充满了新的期待。

生物燃料电池的发展可追溯到20世纪初,1910年英国杜汉姆大学植物学教授Michael Cresse Potter用酵母和大肠杆菌进行试验时,发现了微生物也可以产生电流,从而拉开了生物燃料电池研究的序幕。六十年代,为了将长途太空飞行中的有机废物转化成电能,美国航空航天管理局投入了大量的人力和物力进行研究,真正掀起了生物燃料电池研究的。后来尽管由于技术原因,生物燃料电池曾一度陷入停滞状态,但七、八十年代出现的石油危机又让电池家族的新成员成为人们瞩目的中心,自此之后迎来了更加广阔的发展前景[3]。

简言之,生物燃料电池就是以微生物、酶为催化剂,将有机物(如糖类等)中的化学能直接转化成电能的一种电化学装置。根据电池中使用的催化剂种类,可将生物燃料电池分为微生物燃料电池和酶燃料电池两种类型。

2两种典型的生物燃料电池

2.1 微生物燃料电池

典型的微生物燃料电池如上图所示,它由阳极室和阴极室组成,质子交换膜将两室分隔开。它的基本工作原理可分为四步来描述:(1)在微生物的作用下,燃料发生氧化反应,同时释放出电子;(2)介体捕获电子并将其运送至阳极;(3)电子经外电路抵达阴极,质子通过质子交换膜由阳极室进入阴极室;(4)氧气在阴极接收电子,发生还原反应。我们以葡萄糖为例来具体地说明这个过程[1]:

阳极半反应:

C6H12O6+6H2O6CO2+24H++24e-E0=0.014V

氧化态介体 + e-还原态介体

阴极半反应:

6O2+24H++24e-12H2O E0=1.23V

2.2 酶燃料电池

如下图,葡萄糖在葡萄糖氧化酶(GOx)和辅酶的作用下失去电子被氧化成葡萄糖酸,电子由介体运送至阳极,再经外电路到阴极。双氧水得到电子,并在微过氧化酶的作用下还原成水。

阳极半反应:葡萄糖葡萄糖酸+2H++2e

阴极半反应:H2O2+2H++2e2H2O[3]

2.3生物燃料电池中的介体及其作用

2.3.1介体的作用

在生物电池的设计中一个最大的技术瓶颈就是如何有效地将电子从底物运送至电池的阳极。科学家设想在阳极室加入一种或几种化学物质,作为运输电子的介体。介体的作用如图3所示。

2.3.2 介体需满足的条件[1][3]

经过研究发现充当介体的分子必须具备严格的条件:①介体的氧化还原电极电势应与代谢物的电势相一致;②介体的氧化态和还原态都应易溶于电解质溶液;③在溶液中有足够的稳定性且不能吸附在细菌细胞或电极的表面;④介体的电极反应快;⑤微生物燃料电池中的介体应易于穿透细胞膜且对微生物无毒害作用;⑥微生物燃料电池中的介体在得到电子后应易于从细胞膜中出来;⑦介体的任一种氧化态都不会对微生物的代谢过程造成干扰。

生物燃料电池中常用的介体有硫堇、EDTA-Fe(Ⅲ)、亚甲基蓝、中性红等。

3 生物燃料电池的优点

与传统的化学电池技术相比,生物燃料电池具有操作上和功能上的优势(表1)。首先它将底物直接转化为电能,保证了具有高的能量转化效率。其次,不同于现有的生物能处理,生物燃料电池能在常温、常压甚至是低温的环境条件下都能够有效运作,电池维护成本低、安全性强。第三,生物燃料电池不需要进行废气处理,因为它所产生的废气的主要组分是二氧化碳,不会产生污染环境的副产物。第四,生物燃料电池具有生物相容性,利用人体内的葡萄糖和氧为原料的生物燃料电池可以直接植入人体。第五,在缺乏电力基础设施的局部地区,生物燃料电池具有广泛应用的潜力。

表1化学燃料电池与生物燃料电池比较[3]

4生物燃料电池的用途[1][5]

4.1改善汽车的燃料结构

使用生物燃料电池,1L糖类物质的浓溶液氧化产生的电能可供一辆中型汽车行驶25-30 Km,如果汽车的油箱为50L的话,装满糖后可连续行驶1000Km而不需要再补充能源。使用生物燃料电池,一方面可控制因化石燃料燃烧导致的空气污染问题,另一方面还可避免因发生交通事故而引发的汽油起火燃烧甚至是爆炸。

4.2污水处理

2005年,由美国宾夕法尼亚州立大学的科学家洛根率领的一个研发小组宣布,他们研制出一种新型的微生物燃料电池,可以把未经处理的污水转变成干净用水和电能。

4.3为可植入人体内的设备提供能量支持

2005年日本东北大学教授西泽松彦领导的研究小组新开发出了一种利用血液中的糖分发电的燃料电池。这样的生物电池可为植入糖尿病患者体内的测定血糖值的装置提供充足电量、为心脏起搏器提供能量。

4.4 在机器人设计中的作用

2001年英国西英格兰大学的科学家们研制出了一种名为“Slugbot”的机器人(如图5),专门用于搜捕危害种植业的鼻涕虫。“Slugbot”将抓获的鼻涕虫放在一容器里,在酶的作用下将其转化成电能。

2000年美国南佛罗里达大学科学家斯图亚特.威尔金森(Stuart Wilkinson)宣称,他们已经研制出了一种需要吃肉以给体内补充电能的机器人Chew Chew。 这种机器人体内装有一块微生物燃料电池,为机器人运动和工作提供动力。这种微生物燃料电池可以通过细菌产生酶,消化肉类食物,然后把获取的能量再转化为电能,供给机器人使用。

4.5在航空航天上的使用

为处理密闭的宇宙飞船里宇航员排出的尿液,美国宇航局设计了一种巧妙的方案:用微生物中的芽孢杆菌来处理尿液,产生氨气,以氨气作为微生物电池的电极活性物质,这样既处理了尿液,又得到了电能。一般在宇航条件下,每人每天排出22克尿,能得到47瓦电力。

5 生物燃料电池发展展望

在化石燃料日趋紧张、环境污染越来越严重的今天,生物燃料电池以其良好的性能向我们展示了一个美好的发展前景。但不可否认的是,由于技术条件的制约,目前生物燃料电池的研究和使用还处于不成熟阶段:电池的输出功率小、使用寿命短。例如美国得克萨斯大学亚当・海勒博士研制的葡萄生物电池能提供的功率仅为2.4微瓦,这说明要点燃一个小灯泡需要100万株葡萄,并且产电能每天都在衰减。由此导致生物燃料电池的使用范围非常狭小,远没有达到全面推广的时期。研究人员正在积极研究,努力克服这一瓶颈。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

5.1开发无介体生物燃料电池[5]

有一类铁还原性微生物,由于其细胞膜上有丰富的细胞色素,表现出较强的电化学活性,在生物电池中能直接将电子转移至阳极而不需要借助任何介体。研究表明Rhodoferax ferrireduler和Geobacteraceae种群的微生物都具有这种功能,它们在电池内发生的反应可表示为:

C6H12O6+6H2O+24Fe(Ⅲ) 6CO2+24Fe(Ⅱ)+24H+

+24e-。

无介体生物燃料电池的优点主要表现为有充足的空间,有利于提高电子转移的效率和速率。

5.2加强对电极的修饰[4]

学者Derek R. Lovley等用石墨毡和石墨泡沫代替碳棒作为电池的阳极,研究发现电池的电能输出大大增加,约为原来的三倍。说明增大电极的表面积可以增大吸附在电极表面的微生物和酶的密度,从而增加电量的输出。

Zhen He等在微生物燃料电池中用微生物来修饰阴极,加快了氧气的还原反应速率,极大地提高了电池输出的电流密度。

5.3 选择合适的质子交换膜[4][6]

质子交换膜能有效地维持电池两极室内酸碱度的平衡,保证电池反应的正常进行。Liu和Logan在电池的设计中取消了质子交换膜,结果发现电池的库仑输出效率由55%降到了12%;Min et al.研究发现如果氧气由阴极室进入阳极室,电池的库仑输出效率会从55%降至19%。这说明质子交换膜的质量好坏关系到生物燃料电池的性能,选择合适的质子交换膜,增强质子的穿透性而降低氧气的扩散成为了生物燃料电池开发中的一个重要环节。

5.4 开发光化学生物燃料电池[5]

利用光合细菌或藻类吸收太阳光,并将其转化成电能的装置称为光化学生物燃料电池。科学家曾设计出这样的一种电池:用石墨作阳极,阳极室内有项圈藻和可溶性奎宁介体;阴极也为石墨电极,电解质溶液为铁氰化钾。把这种电池先放在阳光下光照10小时,然后在黑暗的环境中放置10小时,发现可产生1mA的电流(外电路电阻为500欧),只不过光子转化成电子的效率只有0.2%。后来人们又用Synechococcus细菌来代替项圈藻,发现转化率可提高到3.3%。

参考文献:

[1] A.K.Shukla,P.Suresh,S.Berchmans ,A.Rajendran.Biological fuel cells and their applications[J]. Current Science,2004,(4):455-468.

[2] 沈萍.微生物学[M].北京: 高等教育出版社, 2000,446-450.

[3] 刘强,许鑫华,任光雷,王为.酶生物燃料电池[J].化学进展,2006,(11):1530-1536.

[4] 连静,祝学远,李浩然,冯雅丽.直接微生物燃料电池的研究现状及应用前景[J].科学技术与工程,2005,(22):1671-1815.

[5] Frank Davis and Séamus P.J.Higson.Biofuel cells-Recent advances and applications[J].Biosensors and Bioelectronics, 2007,(22):1224-1235.

[6] Alyssa L.Walker,Charles W.Walker Jr.Biological fuel cell and an application as a reserve power source[J].Journal of Power Sources,2006,(160):123-129.

[7]袁丽霞.多种多样的电池[J].化学教学,2006,(12):53-56.

[8]仇红亮.漫谈氢能源发展的尴尬[J].化学教学,2005,(6):37-38.

致谢:本文在写作过程中,得到化学系乐翠娣老师的指导和帮助,谨致以诚挚的谢意!

篇2

生物能源是指利用生物可再生原料及太阳能生产的能源,生物能源主要包括生物电能和生物燃料两大类。生物电能主要是利用各种植物秸杆进行发电,而生物燃料则是通过发酵产生甲醇和乙醇燃料等。生物能源既是可再生能源,又是无污染或低污染的绿色能源。

生物能源不含硫,其碳循环是动态的,能源植物通过光合作用固定二氧化碳和水,将太阳能以化学能形式储藏在植物中,是一种可再生的环保型新能源。因此,开发生物能源是解决能源危机和保护生态环境的有效途径。

各国已广泛开始关注用生物能源来代替化石燃料,并制定了相应的计划,如日本的“阳光计划”、印度的“绿色能源工程”、美国的“能源农场”和巴西的“酒精能源计划”等。

生物燃料乙醇

生物燃料乙醇也称燃料酒精、乙醇汽油和乙醇柴油。燃料乙醇可以单独作为一种燃料或作为改进型混合燃料。生物燃料乙醇是一种燃烧充分、可再生的燃料,近年来备受青睐。

在1979年,美国便开始制定酒精发展计划,同年,日本工业技术研究院开始对稻草、废木材等进行能源化研究,时至今日酒精发酵技术已基本完善。1980年,美国和加拿大两位华裔教授几乎同时宣布已经解决木糖酒精发酵的问题,这一研究成功使半纤维素利用进入一个崭新阶段。1998年9月由美国第一家商业化以纤维质(蔗渣和稻草壳)为原料生产酒精的工厂破土动工。

目前生物燃料乙醇的制备有2种,一种是直接由淀粉、蜜糖等物质通过各种转化,最后分离出乙醇:一般的方法是首先使用淀粉酶,经水解成为醛,然后把剩余化学键折断,经葡萄糖酶催化,生成葡萄糖,最后用酵母发酵法,把葡萄糖转化成乙醇。另一种是由木质纤维通过发酵作用生产乙醇:纤维素制备乙醇主要有酸水解和酶水解乙醇生产工艺两大类。目前对酸水解研究较少,因其较酶水解工艺来说,研究和发展潜力较弱;纤维素酶水解乙醇生产工艺可以分为分步水解发酵工艺、同步糖化发酵工艺以及复合水解发酵工艺。

从原材料来看,各国的乙醇主要以玉米、小麦、薯干等粮食为原料经过发酵生产而成。美国是世界上最大的以谷物为原料生产生物燃料乙醇的国家。2004年,美国生产乙醇消耗的玉米约占其产量的11%。

面临重重问题

目前,生物燃料乙醇主要存在如下问题:①使用粮食作为发酵原料生产乙醇;②从植物中提炼乙醇需要耗费大量能源;③酒精废液带来环境污染;④燃料乙醇价格没有优势。

而其中最严峻的问题是使用粮食作为发酵原料生产乙醇。这不仅大大提高了燃料乙醇的生产成本,还导致了能源与粮食的矛盾,必将引发粮食安全、争用农地等问题。越来越多地使用粮食生产生物燃料可能给世界范围内已经高度开发的土地和水资源造成更大的压力。如果在2015年前将生物燃料占全球燃料总需求的比例提高到5%,那么,世界耕地面积就必须比目前扩大15%。

我国已经于2007年5月份叫停了用玉米提炼生物乙醇的新项目,而改用甜高粱、红薯和木薯。现有的以玉米为原料的生物乙醇项目也计划在未来五年内全部转化为甜高粱,红薯和木薯。另外,在我国,来自农田及森林、的废弃物如玉米秆、稻麦秆等相当多,若利用这些纤维原料替代淀粉类原料,则能够有效地降低成本,解决能源与粮食的矛盾。目前由于缺乏有效的原料预处理和发酵方式,纤维类原料生产生物燃料乙醇未被广泛推广使用,因此对这两项关键技术的研究将成为今后的重点。而纤维素原料生产燃料乙醇的实用性关键在于木糖发酵,因此找出发酵的优良菌种成了必须首先解决的问题。日本生物能公司在日本神户和京都等大学研究人员的帮助下,使用生物工程设计的酵母,可直接把淀粉发酵成乙醇。公司用此法获得约92%的理论乙醇产率,由此大大降低了生产成本。中国科学院化工冶金研究所生化工程国家重点实验室筛选出发酵乙醇的优良菌种,并优化了利用纯木糖培养的条件。

同时,我们也需要进一步进行生物燃料乙醇生产过程的优化研究。综合利用生产原料,根据原料的不同特性,筛选经济可行的生物能源生产路线,加大副产品加工利用,从而降低生物能源生产成本。

篇3

中图分类号:TK229 文献标识码:A 文章编号:1009-914X(2017)22-0338-021、生物质颗粒的燃烧与结渣特性

生物质成型颗粒燃料是经过压制粘合而成的,其密度远大于原生物质。成型燃料的结构与组织特征决定了挥发分的析出速度与传热速度都很低。生物质成型燃料的燃烧过程可分为干燥脱水、挥发分析出、挥发分燃烧、焦炭燃烧和燃烬几个阶段。其燃烧过程是:1)燃料进入燃烧室内,在高温热量(由前期燃烧形成)作用下,燃料被加热和析出水分。当温度达到约250℃左右,热分解开始,析出挥发分,形成焦炭。气态的挥发分和周围高温空气掺混首先被引燃而燃烧,进行可燃气体和氧气的放热化学反应,形成火焰。2)成型燃料表层部分的碳处于过度燃烧区,形成较长火焰。3)焦炭扩散燃烧,燃烧产物CO2、CO及其气体向外扩散,CO与O2结合成CO2,在表面进行CO的燃烧,在层内主要进行碳燃烧,在表面形成灰壳,并随着燃烧,燃烬壳不断加厚。当可燃物基本燃尽,在没有强烈干扰的情况下,形成整体的灰球,灰球变暗红色成为灰渣,完成整个燃烧过程。在炉内强烈气流的干扰下,则有一部分细碎燃料,以飞灰形态随烟气逸出炉内。

生物质颗粒燃料本身的灰分中含有钙、钠、钾等离子,这些离子在燃烧过程中容易形成渣层,且灰的软化温度较低,因此燃料本身的特性决定了结渣的特性和程度。燃烧过程中燃料层的温度,炉膛温度,燃料与空气混合不充分以及锅炉超负荷运行是造成结渣的重要因素。生物质颗粒中还含有氯、硫等元素,对钢材有腐蚀作用。

2、固定炉排燃煤锅炉改燃木柴、生物质颗粒等

2.1 改燃木柴

在节能和环保要求日益严格的今天,部分地区已不准许安装蒸发量较小的固定炉排燃煤锅炉,而原燃煤的固定炉排锅炉也要进行改造。因此,新装的固定炉排燃煤锅炉有部分直接燃用木柴、木板等,出现的问题有:

1)木柴燃烧过快,添加燃料时间短。木柴一般呈块状,开始燃烧时需要大量空气,后一阶段需要空气量减少,过量空气变多。

2)多数炉门处于常开状态,增加了漏风和散热。

3)炉膛容积小,火焰较高,烟气流速快,烟气流程短,排烟温度较高。在进行测试时发现,燃烧时排烟温度常超过300℃。

4)燃烧过程扰动不足,烟气中CO含量高,未燃尽的碳颗粒较多。

5)燃烧中空气分布不均匀,对水冷壁的冲刷严重。

这些问题一方面给锅炉带来了安全隐患,严重时会使锅炉积灰结焦甚至出现受热面变形的情况,另一方面,锅炉的热效率低下,燃烧不稳定,锅炉出力达不到使用要求。由于木柴、木板均为人工送料,锅炉运行的自动化程度较低,现场粉尘较大,操作环境差。

2.2 改燃生物质颗粒

这种锅炉改燃生物质颗粒一般要增加送料器,改变人工送料的方式。下面通过一个案例说明这种改造存在的缺陷。

在对某企业的锅炉能效测试中发现:锅炉经过改造,由固定炉排手烧燃煤炉改为给料机输送燃料的燃生物质颗粒炉,在测试中发现尾部烟气氧含量超过17%,并且经过多次调节也无法降下来,锅炉的配风设计不合理,炉内燃烧状况极差。经过观察燃烧过程,发现锅炉燃烧不佳的原因:

如图1示,燃料由锅炉前端位于炉排上方约0.6m高的送料口给入,为实现燃料均匀分布在炉排上,送料风风管鼓入大量热风将燃料颗粒吹撒在炉排上,而这一部分热风未能有效地参与燃烧反应,反而增加了过量空气,缩短了飞灰和可燃气体成分的停留时间,使其不能充分参与燃烧,降低了锅炉的热效率。

由一次热风管送入的热风不足,因而在右侧添加了一台鼓风机从底部供风,降低了风温,不利于燃烧。燃料在炉排上堆积过厚(图2示),难以燃尽并产生较多CO。因此这种设计极大的影响了锅炉的热效率。同时,该锅炉的尾部还增加了空气预热器,由于引风机的功率不足,导致炉膛呈微正压燃烧,炉内烟气冒出,导致炉墙部分位置出现烧黑的现象。

同时,由于固定炉排不是专门针对生物质颗粒进行设计和制作的,往往会出现生物质颗粒从炉排漏下去的情况,这样也增加了燃料的固体未完全燃烧热损失。

3、链条炉排锅炉改燃生物质颗粒的问题

链条炉排锅炉作为一种常见的锅炉结构形式,由于其运行稳定可靠、操作方便,使用中较为常见,这种类型的锅炉较多设计为燃烧烟煤的锅炉,燃烧形式为层燃。在实际运行中,有部分设计燃料为煤的链条

(1)当直接改燃生物质颗粒后,由于生物质颗粒密度小于煤,且挥发份含量远高于煤,其燃烧主要在炉排上部的空间发生,因此燃料在炉内的停留时间变短,许多焦粒和炭黑无法燃尽,还会造成整个火界后移,甚至引起尾部受热面部位二次燃烧。(2)链条炉排燃煤锅炉一般只有在炉排下方鼓入一次风,不设置二次风,而生物质颗粒挥发份的燃烧需要大量空气,因此会造成燃烧区缺氧的情况,产生较多CO。(3)受热面布置与生物质颗粒的燃烧情况不相符,造成换热效果变差,炉膛出口烟气温度高。(4)生物质颗粒的热值较煤低,燃烧温度低,燃烧强度小,不适宜较大的炉排面积,因此直接改燃生物质颗粒的煤炉会出现出力不足的情况。(5)由于鼓风一般偏高,而且生物质颗粒的灰分较轻,飞灰量变大。

结合生物质颗粒的特点及以上情况,改造要考虑到燃烧、积灰、结焦等众多问题,而不宜直接将燃料更换为生物质颗粒。

4、固定炉排锅炉改燃粉状生物质

在某些企业中,粉状生物质如锯末较易获得,于是将固定炉排锅炉改为燃粉状生物质锅炉。这种改造一般是在前端的人孔接上给料管,生物质粉末通过风力输送到炉膛中进行燃烧。通过分析,这种改造会存在以下问题:

1)燃烧方式由层燃变为室燃,烟气流程变短,烟气中未燃尽碳颗粒和CO增多;

2)粉状生物质燃烧系统点火程序不完善,存在点火爆燃现象,且木粉加料仓没有防火防爆装置;

3)燃烧中的颗粒和生物质中的杂质冲刷水冷壁,易造成较大磨损;

4)容易结焦。

5、燃油锅炉改燃生物质

这种改造的燃油锅炉一般为卧式三回程结构(图3),然后在锅炉前端加装采用水冷的生物质颗粒燃烧机,燃烧机采用固定炉排,生物质颗粒通过螺旋给料机给入,燃烧后产生的高匮唐进入锅炉炉膛和烟管换热,接着进入省煤器换热。这种锅炉存在的问题包括:

1)部分生物质颗粒燃烧机不成熟,无相关的型式试验即投入使用。生物质颗粒在燃烧机内气化后产生的可燃气体携带大量的生物质粉尘进入炉胆,对炉胆造成不同程度的磨损,当引风机和鼓风机匹配不佳时,生物质灰分容易在烟管里沉积。

2)炉胆前部布置过多的卫燃带,燃烧机出来的气流温度高,容易烧塌卫燃带,加上气流温度达到灰分的熔点,灰分容易粘附在受热面上,燃料含硫量大时,长期作用对受热面造成腐蚀损坏,同时灰分中含有的碱金属离子也会对受热面造成腐蚀。

3)燃烧机与锅炉不匹配,锅炉不能全部吸收燃烧机产生的高温气流,使锅炉及其辅机长期处于超负荷状态,造成烟管越堵、风机越大、积灰越多的恶性循环。

4)生物质燃料与油不同,灰分含量大,燃烧后的烟气传热特性与油燃烧后的烟气传热特性存在不同。改造的锅炉未经科学的热力计算,多凭经验估算。

5、总结

由于燃料特性存在较大不同,无论什么型式的燃煤、油锅炉直接改为燃生物质锅炉而不进行设计或相应改造,一般都不能取得较好的效果。要克服以上存在的问题,要针对燃料的特点对燃烧系统、烟风系统、除尘系统等进行改造,才能实现锅炉安全、经济地运行。

篇4

关键词:生物质燃料;循环流化床锅炉;适应

煤、石油、天然气等化石燃料从20世纪70年代就开始大规模的开采,其存储量急剧减少。据预测,地球上蕴藏的可开发利用的煤和石油等化石能源将分别在200年和30~40年以内耗竭,而天然气按储采比也只能用60年。目前,尋找替代能源已经引起全社会的广泛关注。生物质能是一种可再生的清洁能源,来源十分丰富。它是仅次于煤炭、石油和天然气而居于世界能源消费总量第四位的能源。当前,生物质燃料的消耗已占世界总能源消耗的14%,在发展中国家这一比例达到38%。据世界粮农组织(FAO)预测,到2050年,以生物质能源为主的可再生能源将提供全世界60%的电力和40%的燃料,其价格低于化石燃料。生物质燃料的开发利用已经成为全世界的共识。在众多的生物质能源转换技术中,直接燃烧是高效利用生物质资源最为切实可行的方式之一。

循环流化床CFB(Circulating Fluidized Bed)燃烧技术由于在替代燃料、处理各种废弃物和保护环境三方面具有其它燃烧技术无可比拟的独特优势而逐渐受到各国的关注。在我国能源与环境的双重压力下,近几年,循环流化床锅炉在我国得到了快速发展。了解生物质燃料对CFB锅炉的影响,采取有针对性的设计方案和相应的运行调整,对延长锅炉的使用寿命、提高锅炉的效率具有良好的促进作用。

1 生物质燃料种类

生物质能是植物通过光合作用将太阳能以化学能的形式存储在生物质中。我国拥有丰富的生物质资源,但目前可供开发利用的生物质资源主要为农业废弃物、林业废弃物、经济作物废弃物、牲畜粪便、城市和工业有机废弃物等。生物质燃料是一种清洁燃料,含硫量低,含碳量不高,燃烧后NOx和SO2的含量很低;生物质中灰分一般也很小,所以充分燃烧后烟尘含量很低。生物质燃料在燃烧过程中具有二氧化碳零排放的特点,这对于缓解日益严重的“温室效应”有着特殊的意义。随着能源危机的加剧,生物质能越来越受到人们的重视。目前国内已开发了单一生物质燃料和多种生物质燃料混合燃烧的系列化生物质锅炉,目前已经运行过的生物质燃料多达30多种,农业废弃物主要包括稻草、麦草、玉米秸秆、棉花杆、油菜杆、稻壳、花生壳、红薯藤等;林业废弃物主要包括树皮、树枝、树根、木材加工废料等;经济作物废弃物主要包括甘蔗渣、菌类作物的培养基等;牲畜粪便主要来源于养殖场。

2 燃料对锅炉的影响与适应措施

2.1生物质成型技术

实践已经证明,由于各种生物质燃料自身特性的原因,即使经过简单破碎的秸秆、废木材、稻壳等生物质废弃物仍然具有热值较低、形状很不规则的特点。因此,它的炉前热值经常发生很大的变化,若将其直接送入CFB锅炉里进行燃烧,会出现燃烧不稳定的现象。另外,由于空隙率很高,这些体积庞大的生物质废弃物也不利于长距离的运输。为了解决上述矛盾,生物质压缩成型技术应运而生。生物质压缩成型技术是把生物质与经过除氯的添加剂混合后被铸造模型制成具有统一尺寸、所含热值均匀并易于输送的衍生燃料。将生物质加工成成型燃料是利用CFB锅炉燃烧生物质的重要方式。成型燃料代替原生物质燃料进行燃烧,可以减少大量的化学不完全燃烧热损失与排烟热损失。而且燃烧速度均匀适中,燃烧相对稳定。在生物质压缩成型的过程中,一般都会加入一些添加剂(石灰石等)和其他辅助燃料(煤、污泥等)。这种方式充分发挥了生物质燃料易着火和其他辅助燃料燃烧稳定的优点,是当前生物质燃料进行燃烧利用的重点,各国学者的研究也大都集中于此。

2.2生物质含水量

目前国内在运行的生物质流化床锅炉其入炉生物质燃料普遍含水量高,特别是秸秆类和树皮类目前入炉水分在30%~50%之间,高水分燃料入炉后,着火相应延迟,炉内流化速度大,燃料在炉内的有效停留时间短,造成燃烧效率下降,燃料热值偏低,燃料消耗量更大;着火滞后引起的炉膛上部温度偏高使过热蒸汽超温,过热器管壁温度偏高,带来安全上的隐患;锅炉密相区床温控制变得困难,锅炉低负荷稳燃水平下降;另由于燃烧产生的烟气量增加,排烟温度升高,增加锅炉的排烟损失,降低锅炉效率。因此,要达到良好的效益必须尽量控制入炉燃料的水分在合理范围内,首先应控制收购的燃料含水率,杜绝人为加水,其次生物质流化床锅炉应建足够的防雨料库,从源头上控制燃料入炉含水率。

2.3生物质含灰量

循环硫化床需要大量的床料颗粒在循环回路中循环,使炉膛的热量分布更均匀,传热更快,燃烧更充分,因此,生物质燃料的含灰量对循环流化床锅炉设计和运行非常重要。一般生物质燃料中本身含灰量在3%~10%之间,但由于生物质燃料的外带杂质较多,特别是农、林废弃物,在锅炉实际运行中尾部灰浓度实测值是理论值的3~5倍。应控制收购的燃料灰分,杜绝人为加沙加土。

炉膛的灰浓度对循环流化床锅炉的负荷和炉膛床温的均匀性影响较大。在燃烧木材加工废弃物等生物质燃料含灰量低时,靠自身的灰量无法满足床料的要求,则在运行中一般采取添加床料,所以床料成为循环物料的主体。在设计上采用可调试返料系统的循环灰量,保证物料循环系统的畅通,稳定炉膛温度。在运行上当燃料含灰量较高时,则需放灰,一般采取放底渣的方式。

生物质锅炉床层的高度受燃料的含灰量影响非常大,床层的过高、过低都会影响流化质量,引起结焦。燃料灰分和杂质影响尾部飞灰的浓度,尾部的吹灰装置应设置到位。

2.4炉内结渣、积灰、腐蚀

生物质因钾、氯含量较高,所以燃烧后灰中含有大量碱金属盐,作为肥料是很好的,但是在燃烧过程中因为这些碱金属盐熔点低,容易在炉排、水冷壁以及尾部受热面上结渣、积灰,应引起设计者和运行人员的高度重视。采用循环流化床燃烧方式时,这些钾盐会与砂床料或秸秆夹带的泥土(含砂子)反应生成硅酸钾一玻璃,容易造成床料结焦或颗粒长大,因此运行过程中应及时排除燃烧过程中形成的大颗粒物,补充合适的床料,维持炉内物料粒度的相对均匀。

由于灰中碱金属含量高,导致对流受热面的积灰严重,一方面需要采用合适的管子节距,同时需要选择合适的吹灰方式。从目前的运行效果来看,脉冲吹灰、蒸汽吹灰、机械振打方式是有效的清灰方式,效果较好,而超声波除灰效果不佳。

此外,生物质灰中富含钾和钠等碱金属,熔点低,在炉膛内为汽相,在500℃左右以灰污形式凝结于高温过热器受热面上,对过热器造成高温腐蚀。解决方法为可以将高温过热器放置在外置换热器中,也可像其他燃烧方式一样采用抗腐蚀材料如奥氏体不锈钢材料(0Cr17Ni12Mo2)或将过热器放置于650℃以内的烟气中,采用12CrlMoVG或表面喷涂耐腐蚀材料;解决省煤器腐蚀的方法是使省煤器人口水温高于HC1露点温度20~30℃。避免或减轻空气预热器腐蚀的方法是采用考登钢或热空气再循环,保证空预器人口温度在80~100℃;也可以采用暖风器将空气加热到80~100℃以上再送入空气预热器。

2.5辅机的选择

由于生物质燃料的灰量和水分的变化随季节性和地域的变化非常大以及生物质燃料实际外带灰量较多,在实际运行中许多生物质循环流化床锅炉因引风机和除尘器选小导致锅炉出力不足,炉膛冒正压等问题。因此,选择一次风机、引风机、布袋除尘器等设备时应充分考虑裕量。

3 结语

3.1生物质燃料对CFB锅炉的设计与运行有很大影响。生物质燃料不仅有效提高了CFB锅炉燃料供应的安全度,提高了CFB锅炉对燃料的定价权,也使当地的生物质资源得到充分利用。但由于不同生物质燃料有所差别,这对CFB锅炉设备和运行人员提出了更高要求。只有对生物质燃料的特殊性进行充分了解,在设计和运行中采取必要的措施,提高锅炉及其系统设备的适应性和可靠性,以使生物质流化床锅炉产生更高的社会和经济效益。

篇5

为了应对全球能源、气候危机,帮助汽车摆脱对石油的依赖,通用汽车部署了全球新能源战略,致力于提高现有能源的燃油经济性以及开发使用替代能源和新型动力推进系统。可持续生物燃料,特别是基于非粮食原料的下一代纤维素乙醇燃料的研发和商业化,在通用汽车既定并正在实施中的新能源战略中是一个重要而优先的组成部分。

10月20日,通用汽车举办了“聚焦中国、分享全球经验”――通用汽车可持续生物燃料研发媒体沟通会,旨在与中国分享通用汽车在可持续生物燃料领域全球领先的技术和理念,进一步落实基于全球能源安全及能源多样化的新能源战略,支持中国可持续发展车用能源及交通体系。

通用汽车全球能源系统总监Andreas Lippert在分析中国生物燃料行业现状时表示:通用汽车认为,在寻求降低对石油依赖的所有替代能源技术途径中,可持续生物燃料是近期最可行的解决方案。

通用汽车在可持续生物燃料研发及商业化领域均居于世界领导地位,已经生产超过500万辆混合使用生物燃料及石油的生物燃料驱动轿车及卡车。在美国,通用汽车预计其生物燃料汽车产量将在2012年前占其全球汽车产量的50%。

目前,中国是位于美国和巴西之后的世界第三大乙醇燃料生产国,年产约10亿加仑。根据通用汽车在北京清华大学成立的中国车用能源研究中心的研究进程,通用汽车已经开始成功地评定可持续生物燃料在中国车用能源领域的发展潜力。

通用汽车中国公司副总裁陈实表示,中国可以在非粮食耕作土地上,利用林作物的废弃物、包括柳枝稷的能源作物、甚至垃圾生产纤维素乙醇燃料。因此,可持续生物燃料的发展对中国车用能源来说,将起到极大的推进作用。“我们相信由Coskata、Mascoma这样的公司所致力研发的下一代纤维素乙醇燃料解决方案在中国市场将有令人振奋的潜力。”陈实说。

通用汽车认为,中国是率先应用可替代能源动力推进系统的最佳市场。通用汽车会落实对中国的承诺,利用先进的解决方案帮助加速中国汽车行业新能源汽车的发展,也将为中国的汽车消费者提供更节能、更清洁、更环保的产品。

陈实表示,通用汽车将持续推进其“立足中国、携手中国、用心中国”的在华战略,帮助中国车用能源多样化的解决方案的探索及其商业化。

今年1月和5月,通用汽车分别宣布与美国Coskata及Mascoma公司在新一代乙醇燃料技术领域内建立战略联盟,以加速其商业化进程。两个合作伙伴分别研究不同的生产工艺及其商业化途径。Coskata公司专注纤维素乙醇燃料,原料来自任何农业及城市生活含碳废弃物;Mascoma公司的研发方向在第二、三代可持续生物燃料,原料来自任何林作物的废弃物。

篇6

1 生物质固体成型燃料

农作物秸秆通常松散地分散在大面积范围内,且堆积密度较低,这给收集、运输、储藏和应用带来了一定的困难。在一定温度和压力作用下,将秸秆压缩成棒状、块状或颗粒状等成型燃料,提高其运输和贮存能力,改善秸秆燃烧性能,提高利用效率,不仅可以用于家庭炊事、取暖,也可以作为工业锅炉和电厂的燃料替代煤、天然气、燃料油等化石能源。

2 不同类型的生物质固体成型燃料

3 生物固体成型燃料的特点

生物质固体成型燃料是生物质能开发利用技术的发展方向之一,可为农村居民和城镇用户提供优质能源,近年来越来越受到人们的广泛关注。其体积缩小6~8倍,密度约为1.1~1.4吨/m3;能源密度相当于中质烟煤:使用时火力持久,炉膛温度高,燃烧特性明显得到了改善。

二 国外生物质固体成型燃料发展现状

1 国内外发展现状

目前,国外生物质能固体成型燃料技术及设备的研发已经趋于成熟,相关标准体系也比较完善,形成了从原料收集、预处理到生物质固体成型燃料生产、配送、应用整个产业链的成熟体系和模式。

2 生物质固体成型设备

3 热利用设备

4 发展现状

2005年,世界生物质固体成型燃料产量已经超过了420万吨,其中美洲地区110万吨,欧洲地区300万吨。预计2007年将总产量超过500万t。欧洲现有生物质固体燃料成型厂70余个。仅瑞典就有生物质颗粒加工厂10余

家,单个企业的年生产能力达到了20多万吨。国外生物质固体成型燃料技术及设备的研发已经趋于成熟,相关标准体系也比较完善,形成了从原料收集、预处理到生物质固体成型燃料生产、配送、应用的产业链成熟体系和模式。

5 欧盟标准-CEN/TC335固体生物质燃料

欧盟固体生物质燃料标准化工作始于2000年。按照欧盟的要求,由欧盟标准化委员会(cEN)组织生物质固体燃料研讨会,识别并挑选了一系列需要建立的固体生物质燃料技术规范。欧盟标准化委员会准备了30个技术规范,分为术语;规格、分类和质量保证;取样和样品准备,物理(或机械)试验;化学试验等5个方面。技术规范的初始有效期限制为3年,在2年以后CEN成员国需要提交对标准的意见,特别是可否转成欧盟标准。(表2)

三 我国发展生物质固体成型燃料的有力条件

1 国内发展现状

我国生物质固体成型技术的研究开发已有二十多年的历史,20世纪90年代主要集中在螺旋挤压成型机上,但存在着成型筒及螺旋轴磨损严重、寿命较短、电耗大、成型工艺过于简单等缺点,导致综合生产成本较高,发展停滞不前。进入2000年以来,生物质固体成型技术得到明显的进展,成型设备的生产和应用已初步形成了一定的规模。

2 形成了良好的政策法规环境

国务院办公厅《关于加快推进农作物秸秆综合利用意见的通知》中指出“结合乡村环境整治,积极利用

秸秆生物气化(沼气)、热解气化、固化成型及炭化等发展生物质能,逐步改善农村能源结构。”财政部出台了《秸秆能源化利用补助资金管理暂行办法》,采取综合性补助方式,支持从事秸秆成型燃料、秸秆气化、秸秆干馏等秸秆能源化生产的企业收集秸秆、生产秸秆能源产品并向市场推广。

3 核心技术趋于成熟

目前,我国秸秆固体成型的关键技术已取得突破,特别是模辊挤压式颗粒成型技术,已经达到国际同类产品先进水平,有效地解决了功率大、生产效率低、成型部件磨损严重、寿命短等问题,并已实行商业化。全国秸秆固体成型设备的生产和应用已初步形成了一定的规模,固体成型燃料的年产量约20万吨,主要以锯末和秸秆为原料,用于农村居民生活用能、锅炉燃料和发电等。生物质炉具的开发也取得一定的进展,开放了秸秆固体成型燃料炊事炉、炊事取暖两用炉、工业锅炉等专用炉具。

(1)不同的成型技术(图5、6、7)

(3)生物质固体成型燃料示范工程案例

示范地点:北京大兴区:建设规模:年产20000吨固体成型燃料,包括:颗粒燃料生产线1条,年产10000吨:压块燃料生产线1条,年产10000吨;原料类型:各种农作物秸秆、木屑、花生壳等。

工艺技术路线:(如8所示)

执行情况:已完成秸秆固体成型设备的研究设计,形成了具有自主知识产权的成型机,产品如图9、10、11、12所示。

2008年5月通过农业部科教司组织的鉴定,鉴定结论:技术为国内领先,主要技术经济指标居国际先进水平。

(4)生物质固体成型燃料炉

根据用途的不同,生物质固体成型燃料炉具可分为炊事炉、采暖炉和炊事采暖两用炉;根据使用燃料的规格不同,可分为颗粒炉(图13)和棒状炉;根据进料方式的不同,可分为自动进料炉和手动炉;根据燃烧方式的不同,可分为燃烧炉、半气化炉(图14)和气化炉。

(5)拟引进国外先进技术

引进了瑞典Gordic Environment AB公司的pellx生物质固体成型燃料高效燃烧器。(图15)

热输出:10~25kW;

燃烧效率:大约90%;

功率消耗:大约40W

(6)我国生物质固体成型燃料标准体系(图16)

(7)近期拟(已)制订计划(表4)

4 秸秆收储运模式初步建立

农作物秸秆通常松散地分散在大面积范围内。收购组织面广量大,涉及到千家万户,这给秸秆能源化利用带来了困难。经过探索和尝试,各地因地制宜,形成了“农户+秸秆经纪人+企业”、“农户+企业+政府”等各具特色的秸秆收储运模式。(图17)

需求分析:

生物质固体成型燃料适用于农村居民炊事和采暖用能,大中城市工业锅炉、发电和热电联产等。生物质固体成型燃料可为农村家庭提供室内取暖燃料,未来发展潜力巨大;随着国家节能减排政策的实施,大中城市取缔燃煤的工业锅炉将成为必然,将燃煤锅炉改造为燃生物质固体成型燃料锅炉则是一个可行的选择;木质颗粒燃料具有燃烧效率高、自动化程度高、清洁卫生等优点,适合于别墅壁炉等高端人群的冬季采暖,也是未来一个应用方向。

四 发展前景与展望

《可再生能源中长期发展规划》中明确提出“重点发展生物质固体成型燃料”到2010年,生物质固体成型燃料年利用量达到100万吨;到2020年,生物质固体成型燃料年利用量达到5000万吨。(图18)

效益分析:

拉动内需。建设1处年产3000吨秸秆固体成型燃料的示范点,需投资180万元,需要水泥100吨、砖30万块、沙子170吨、钢材70吨。

增加就业。建设秸秆固体成型燃料示范点可引导农村劳动力就地就近就业,每条生产线需要操作工30人,均来自当地农民,按照1000元/月计算,年人均收入可达1.2万元。同时,从秸秆的收集、储存和运输整个收购环节,可以间接带动当地的一部分劳动力参与到这个行业中来。按照每年收购12000吨原料计,可以吸收至少200人参与该行业。

篇7

1、Altshuller和Darrell Mann专利考察模式

前苏联著名发明家G.S. Altshuller(G.S.阿奇舒勒)及其同事提出了TRIZ理论,其目的是研究人类进行发明创造、解决技术难题过程中所遵循的科学原理和法则。其中包含很多适用于技术创新的工具和方法,如:矛盾解决原理、物质场分析等。产品技术成熟度预测是TRIZ理论的一项重要研究内容。科研工作者和生产者可以通过对产品技术成熟度的预测,了解产品技术的进化过程,为进一步的科研、生产策略和计划制定提供参考,对技术发展具有重要意义。

本文采用的产品技术成熟度预测方法有以下两种:

(1)应用Altshuller专利考察模式进行产品技术成熟度预测:通过对大量专利的分析,Altshuller将专利分为五个等级,并发现了专利等级、专利数量和获利能力随技术系统生命周期的变化规律,这些规律和S曲线(产品进化过程曲线)一起被后来的技术预测专家用来进行产品技术成熟度预测。

(2)应用Darrell Mann专利考察模式进行产品技术成熟度预测:受Altshullar专利考察模式的启发,Darrell Mann根据专利的基本功能,重点考察了两类特殊的专利:降低成本的专利和弥补缺陷的专利,得出了这两类专利的数量随技术系统生命周期的变化规律。据此进行产品技术成熟度预测,能够较快确定技术是否已经过了成熟期。

2、微生物燃料电池

微生物燃料电池(MFC)是利用电化学技术将微生物代谢能转化为电能的一种装置,其基本原理是作为燃料的有机物在厌氧阳极室中被产电微生物氧化,产生电子与质子,其中电子被微生物捕获并传递给电池阳极,通过外电路到达阴极,形成回路产生电流。而质子通过隔膜到达阴极,与氧气及电子反应生成水。微生物燃料电池具有无污染、适用范围广泛等优点,目前已经成为治理污染、开发新能源方面的研究新热点。

目前针对MFC专利领域的研究主要为专利趋势分析、分类号研究及检索和专利申请状况分析,但是针对MFC产品技术成熟度预测的研究未见报道。

二、样本构成

1、检索数据库

使用的检索系统为CNABS。

2、检索关键词及主要分类号

关键词:微生物、燃料电池、MFC

主要分类号:分类号: C02F、H01M

3、检索结果

检索截止日为2012年11月30日,经过去除噪音及去除同样的发明创造后,共获取2000-2011年相关专利申请182篇,作为主要统计分析样本;2000年之前未见相关专利申请;2012年专利申请公开不完全,仅作为背景分析,不纳入统计分析样本。

三、微生物燃料电池专利的分级和分类

专利分级使用Altshuller发明的专利五级分级标准,通过全面阅读分析专利信息(权利要求书、说明书及附图、摘要)、确立标志性专利、纵向比较等步骤而得出具体的分级;专利分类中关注Darrell Mann的专利考察模式中重点考察的两类特殊的专利:降低成本的专利和弥补缺陷的专利,确定每份专利或申请所属于的类别,最后统计数量,拟合曲线,与分级过程可同步进行。

1、专利信息分析与整理

在对微生物燃料电池进行分级和分类前,首先通过对专业背景资料和专利信息的阅读,对微生物燃料电池技术的发展有全面的了解,主要分析专利申请所要解决的技术问题,以及解决该问题所采取的技术手段。通过阅读分析,可以主观的了解技术的继承与发展脉络,为分级作准备。

在专利技术发展中,微生物燃料电池的技术改进主要为系统构型的改变、电极材料的改进、交换膜材料的变化及微生物的选用等。

微生物燃料电池在结构上可以分为单室MFC和双室MFC两种。典型的双室MFC由阳极室、质子交换膜和阴极室组成。单室MFC省去阴极室直接把质子膜固定在阴极上,阴极室暴露在空气中,空气中的氧气直接传递给阴极。二者各具有优缺点,在专利发展中发明人对MFC构型进行不断的调整,以克服在先技术的缺陷。例如申请号为20051001185.5(一种以有机废水为燃料的单池式微生物电池)的专利为首个单池式微生物燃料电池;申请号为20051008661.8(生物反应器——直接微生物燃料电池及其用途)的专利申请为双室结构的变形,即主要由筒状的阳极室、阴极室及将两室中间隔开的质子交换膜构成;申请号20071014496.5(一种管式升流式空气阴极微生物燃料电池)的专利,具备了微生物燃料电池构型的优点,并结合了上升流活性碳阳极和无膜空气阴极于一体的,可以使两电极间距离尽可能最小。

从MFC产电机理来看,阳极作为产电微生物附着的载体,不仅影响产电微生物的附着量,同时还影响电子从微生物向阳极的传递,因此早期很多研究都集中在阳极材料的选择和修饰上。阴极作为电子受体,主要是氧化态的物质,近年在专利申请中也较为常见。例如申请号为20071019540.5的专利提供了一种铁离子循环电极及其制备方法;申请号为20071019656.9的专利提供了一种含锰离子的微生物燃料电池阳极的制备方法;申请号为20091004092.0的专利公开了一种用于微生物燃料电池的布阴极组件及其制备方法,该布阴极组件包括防水透气层、布基材料层和导电催化层或者包括防水透气布和导电催化层;申请号为20101001927.1的专利中使用碳化镍钼作为微生物燃料电池阳极;申请号为20101022015.2(一种微型微生物燃料电池)的专利申请中的阳极为金丝微电极阵列,空气阴极为膜电极:质子交换膜、催化剂层和气体扩散层。

膜材料在MFC中的应用主要为分离两极室中的电解液,同时使阳极室中的质子通过,其中质子交换膜被广泛使用。但出于成本的考虑,去膜和采用其他膜对质子交换膜进行取代成为专利申请的一个发展趋势,例如:申请号为20051011421.3(燃料电池用菌紫质质子交换膜的制备方法)的专利采用微生物作为燃料电池中质子交换膜,对环境不造成污染有效地降低了质子交换膜的生产成本;申请号为20081002795.3(一种微生物燃料电池及应用)的专利采用的膜材料为离子交换膜,具有与传统使用质子交换膜MFC相当甚至略高的输出功率与产电性能,能很好的替代传统使用质子交换膜MFC,并可降低微生物燃料电池成本。

微生物的选择影响着代谢通路,从而影响对有机质的去除和/或能量输出功率。在微生物的选用上,根据不同的发明目的有产气肠杆菌(申请号为20081002922.2)、海洋酵母(20091009798.8)、希瓦氏菌(申请号为20091014094.3和20091030567.7)、弗氏柠檬酸杆菌(20091019363.9)、蜡样芽孢杆菌(20111034751.2)等等。

此外,在应用的领域上,除了传统的用于发电和废水处理的微生物燃料电池之外,该技术扩展到其它的广大领域中,例如:申请号为20061003825.2(一种生态厕所)的专利申请利用微生物燃料电池理论,设计了粪便-微生物-质子膜-电极构成的“粪便电池”;申请号为20091009346.8的专利申请公开了一种面向植入式医疗设备供电的微生物燃料电池系统,该系统设置在人体的横结肠中,利用肠道微生物和内容物产电,可为植入式医疗设备提供能源;申请号为20101014660.4(微生物燃料电池及安有该电池的发电装置)的专利申请公开了一种安有微生物燃料电池的发电装置在稻田进行微生物发电中的应用;申请号为20111008632.6的专利申请中的微生物燃料电池能降解挥发性有机物,在处理挥发性有机废气的同时实现电能的回收。

2、分级

Altshuller的专利五级分级标准,具体如表1所示:

经过对专利信息的阅读分析后,确立了标志性专利:申请号为00810805(一种用于废水处理的使用废水和活性污泥的生物燃料电池)的专利为首个进入中国的微生物燃料电池申请,至少用到微生物、电池、废水处理三个领域的知识,采用交叉学科解决了产电的同时能够进行污水处理的的技术问题,创造了一种新的系统(仅在专利领域考虑)。作为首个标志性的专利,在专利等级分析时,定级较高,为4级;申请号为20051001185.5(一种以有机废水为燃料的单池式微生物电池)的专利为首个单池式微生物燃料电池,无须外加动力来提高阴极表面的氧气含量,无须投加电子转移介体,并且阳极池无需氮气吹脱就能较好地维持厌氧状态,使系统发生了质变,经过综合考虑,在专利等级分析时,定为3级。

对于其余的专利或申请进行分级,也要经过纵向比较,分析其所要解决的技术问题及采用的技术手段,根据分类标准来定级,例如:申请号为20061014499.1(可堆叠式单室微生物燃料电池)的专利公开了一种可堆叠式单室微生物燃料电池,这种构型虽然是首次出现,但是为通过数量的叠加来提高产电能力,量的变化更为明显,在Altshuller的专利考察模式中通常将这类专利定为一级。当然,如果专利中出现其他的技术特征,协同使得该专利较之前的专利申请有质的改变,分级可以再考虑;申请号为20091004203.8(一种微生物燃料电池及其制备方法和应用)的专利将微生物燃料电池及电芬顿有效的结合起来,使系统发生了质的变化,用到了全行业的知识,因此定位2级;申请号为20091007803.6(一种用于同步产电脱盐的污水处理工艺及装置)的专利利用微生物燃料电池的内电流在处理污水、产电的同时脱盐。使系统发生了质的变化,用到了全行业的知识,因此定位2级;申请号为20101022182.0(一种植物——土壤微生物燃料电池系统)的专利申请中,使阳极电极置于植物根部周围的土壤内,阴极电极置于土壤表面。主要以植物光合作用生产并释放到根部的有机质为燃料,避免了产电微生物以污水中有机质为燃料时,有机质对产电微生物的抑制作用,从而导致产电效率低的问题。系统发生变化,用到了全行业的知识,定位2级。

经过对分析样本的全面阅读与分析后,最终将微生物燃料电池专利信息整理汇总如表2所示:

四、微生物燃料电池产品技术成熟度预测

1、Altshullar专利考察模式

根据表2内容,绘制专利数量统计曲线和专利等级统计曲线,并与标准曲线进行对比,如图1、图2所示。

统计曲线拐点位置与标准曲线对应的拐点位置如箭头所示。根据曲线拐点可以预测,微生物燃料电池产品技术目前已结束婴儿期,处于快速成长阶段。由专利数量统计曲线可知:技术系统较婴儿期阶段有较快的发展,研发数量稳步增长。而对于专利等级统计曲线的变化:当微生物燃料电池产品技术进入稳定的发展轨道,数量增长明显,某个特定技术空间内的专利密度增大,将会导致专利保护范围的缩小,且会出现大部分针对单一要素进行某一指标的提高的专利技术,从而拉低专利等级。

2、Darrell Mann专利考察模式

在进行专利数据整理时,发现2000-2011年间高校申请和科研院所申请量占总申请量的96%,从侧面说明微生物燃料电池产品技术还处于研发阶段,因为还没有大规模投入使用,反映在Darrell Mann专利考察模式中,以降低成本为目的的专利申请会小于弥补技术缺陷的专利申请。

Darrell Mann专利考察模式主要应用是快速判断技术是否进入成熟期。根据表2内容,绘制弥补技术缺陷专利数量统计曲线和降低成本专利数量统计曲线,并与标准曲线进行对比,如图4、图5所示。

从图4(a)和图5(a)中可以看到在2009年到2010年间弥补技术缺陷专利数量和降低成本专利数量出现了明显下滑,结合图1(a)——专利数量统计曲线,可以看到其原因为2010年专利申请数量明显低于2009年。这种情况的出现有以下的可能:(1)对专利申请的国家和地区进行统计,发现2009年进入中国大陆的专利申请共7份,占2009年专利申请数量总数的17.9%,而2010年其他国家和地区进入中国大陆的专利申请数量为0,2011年同样为0,说明其他国家和地区出于技术发展或专利战略等原因,于2010年起逐渐放弃我国的专利市场,使专利申请数量受到影响,而这个原因很可能是由于遇到了产电能力难以大幅度提高的技术瓶颈以及生产成本的控制难以达到实现广泛应用的目的;(2)微生物燃料电池领域的研究主力为高校和科研院所,2009年有24所高校及科研院所提交了专利申请,2010年仅有19所,研究室的科研方向转向也部分影响了2010年的专利申请数量。

但是该曲线的下滑段并不影响曲线上升的总趋势判断,从图4和图5中可以看出,微生物燃料电池产品技术还未进入成熟期,结合对专利信息的理解和两种分类专利数量对比,应该还处于成长期当中。

五、结论

进入我国最早两份关于微生物燃料电池的申请(申请号:00809995、00810805)均由韩国科学技术研究院于2000年递交,之后才出现由我国高校兴起的微生物燃料电池专利申请,在经历模仿、吸收后、开始创新,因此微生物燃料电池产品技术经历的婴儿期比较短暂,进入成长期比较迅速。

经过对专利信息的分析,同时结合期刊文献公开的关于微生物燃料电池的资料,认为应用Altshuller和Darrell Mann的专利考察模式对微生物燃料电池产品技术的成熟度预测结果是可信的。在未来的发展中,微生物燃料电池技术将会不断的成熟,成为污水处理领域的常用技术。

篇8

关键词:生物质;生物质能;产业;沼气;生物质发电;生物质燃料;能源作物

1  概 述

近年来,在能源危机、保护环境和可持续发展的呼声中,可再生的清洁能源以及能源的多元化倍受关注,生物质能成为其中的一个新亮点。

为了促进可再生能源的开发利用,增加能源供应,改善能源结构,保障能源安全,保护环境,实现经济社会的可持续发展,中国已经制定并实施了《可再生能源法》。可再生能源是清洁能源,是指在自然界中可以不断再生、永续利用、取之不尽、用之不竭的资源,它对环境无害或危害极小,而且资源分布广泛,适宜就地开发利用。根据《可再生能源法》的定义,目前主要包括太阳能、风能、水能、生物质能、地热能和海洋能等非化石能源[1]。中国可再生能源资源非常丰富,开发利用的潜力很大,其中生物质能的开发潜力更大。

生物质能一直是人类赖以生存的重要能源,它目前是仅次于煤炭、石油和天然气而居于世界能源消费总量第四位的能源,在整个能源系统中占有重要地位[2]。据有关专家估计,生物质能极有可能成为未来可持续能源系统的重要组成部分,到下世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能耗的40%以上。

生物质能是蕴藏在生物质中的能量,是绿色植物通过叶绿素将太阳能转化为化学能而贮存在生物质内部的能量。煤、石油和天然气等化石能源也是由生物质能转变而来的。生物质能是可再生能源,通常包括以下几个方面:一是木材及森林工业废弃物;二是农业废弃物;三是水生植物;四是油料植物;五是城市和工业有机废弃物;六是动物粪便。在世界能耗中,生物质能约占14%,在不发达地区占60%以上。全世界约25亿人的生活能源的90%以上是生物质能,直接燃烧生物质的热效率仅为10%~30%[3]。生物质能的优点是燃烧容易,污染少,灰分较低;缺点是热值及热效率低,体积大而不易运输。

目前世界各国正逐步采用如下方法利用生物质能:1)热化学转换法,获得木炭、焦油和可燃气体等高品位的能源产品,该方法又按其热加工的工艺不同,分为高温干馏、热解、生物质液化等方法;2)生物化学转换法,主要指生物质在微生物的发酵作用下,生成沼气、酒精等能源产品;3)利用油料植物所产生的生物油;4)把生物质压制成成型状燃料(如块型、棒型燃料),以便集中利用和提高热效率。

“为了缓解中国能源短缺问题,保证能源安全,治理有机废弃污染物,保护生态环境,建议国家应大力开发生物质能,实施能源农业的重大工程。”中国作物学会理事长路明研究员在接受记者采访时说[4],“生物能源开发工程应主要包括:沼气计划、酒精计划、秸秆能源利用计划和能源作物培育计划等。”

在2006年8月召开的全国生物质能源开发利用工作会议上,国家发展与改革委员会副主任陈德铭提出,今后15年,中国在生物质能源方面将重点发展农林生物质发电、生物液体燃料、沼气及沼气发电、生物固体成型燃料技术四大领域,开拓农村发展新型产业,为农村提供高效清洁的生活燃料,并为替代石油开辟新的渠道。

综上所述,目前,中国生物质能源的产业化利用途径主要包括以下方面:沼气利用工程、农林生物质发电、生物固体成型燃料、生物质液体燃料、能源作物培育利用等。

2 中国生物质能产业发展目标

中国农村生物质能是一座待开发的宝藏。根据《可再生能源中长期发展规划》确定的主要发展目标,到2010年,生物质发电达到550万千瓦(5.5GW),生物液体燃料达到200万吨,沼气年利用量达到190亿立方米,生物固体成型燃料达到100万吨,生物质能源年利用量占到一次能源消费量的1%;到2020年,生物质发电装机达到3000万千瓦,生物液体燃料达到1000万吨,沼气年利用量达到400亿立方米,生物固体成型燃料达到5000万吨,生物质年利用量占到一次能源消费量的4%[5]。

开发利用生物质能是当前国内外广泛关注的重大课题,既涉及农业和农村经济发展,又关系到国家的能源安全。今后5~10年,中国农村生物质能发展的重点是沼气、固体成型燃料和能源作物。《农业生物质能产业发展规划》确定的主要发展目标是[6,7]:到2010年,全国农村户用沼气总数达到4000万户,新建大中型养殖场沼气工程4000处,生物质能固体成型燃料年利用量达到

100万吨,能源作物的种植面积达到2400万亩左右。

据统计,全世界每年通过光合作用生成的生物质能约50亿吨,相当于世界主要燃料消耗的10倍,而作为能源的利用量还不到其总量的1%,中国的利用量更是远远低于世界平均水平[8]。2005年,中国可再生能源开发利用总量约1.5亿吨标准煤(tce),为当年全国一次能源消费总量的7%(其中非水电可再生能源利用占1%),根据政府的规划目标,到2010和2020年可再生能源利用总量将达到2.7亿tce和5亿tce,分别占届时能源消费总量的11%和16%(其中非水电可再生能源利用占2%和5%)[9]。因此,中国生物质能的发展利用空间很大。

3 中国生物质能产业化的发展前景

3.1沼气利用工程的发展空间

沼气的利用主要包括沼气燃气和沼气发电。目前,中国农村生物质能开发利用已经进入了加快发展的重要时期。统计显示,截至2005年底,中国农村中使用沼气的农户达到1807万多户,建成养殖场沼气工程3556处,产沼气约70亿立方米,折合524万吨标准煤,5000多万能源短缺的农村居民通过使用了清洁的气体燃料,生活条件得到根本改善[5]。中国已经建成大中型沼气池3万多个,总容积超过137万立方米,年产沼气5500万立方米,仅100立方米以上规模的沼气工程就达到630多处[10]。距离2010年预定目标的发展空间还很大。

中国经过二十多年的研发应用,在全国兴建了大中型沼气工程和户用农村沼气池的数量已位居世界第一。不论是厌氧消化工艺技术,还是建造、运行管理等都积累了丰富的实践经验,整体技术水平已进入国际先进行列。

沼气发电发展前景广阔,但目前还存在一些障碍,如技术障碍、市场障碍、政策障碍等,通过制定发展规划、加强技术保障体系建设、引入竞争机制,创新投资体系,研究制定促进沼气发展利用的国家级配套政策,等等。当技术、市场、政策等壁垒被克服后,沼气发展前景广阔,产业空间巨大。

3.2生物质能发电的发展前景

目前,生物质发电主要包括沼气发电、生物质直燃发电、生物质混燃发电、农林秸秆生物质气化发电、生物质炭化发电、林木生物质发电等。

生物质能源转化为电能,正面临着前所未有的发展良机:一方面,石油、煤炭等不可再生的化石能源价格飞涨;另一方面,各地政府顶着“节能降耗20%”的军令状,对落实和扶持生物质能源发电有了相当大的默契和热情。国家电网公司担任大股东的国能生物质发电公司目前已有19个秸秆发电项目得到了主管部门批准,大唐、华电、国电、中电等集团也纷纷加入,河北、山东、江苏、安徽、河南、黑龙江等省的100多个县、市开始投建或是签订秸秆发电项目[8]。

煤炭作为一次性能源,用一吨少一吨。而中国小麦、玉米、棉花等农作物种植面积很大,产量很高,而且农作物是可再生资源,相对于现在电厂频频“断煤”、不堪煤价攀升的尴尬局面,推广秸秆发电具有取之不尽的资源优势和低廉的成本优势。

生物质直接燃烧发电(简称生物质发电)是目前世界上仅次于风力发电的可再生能源发电技术。据初步估算,在中国,仅农作物秸秆技术可开发量就有6亿吨,其中除部分用于农村炊事取暖等生活用能、满足养殖业、秸秆还田和造纸需要之外,中国每年废弃的农作物秸秆约有1亿吨,折合标准煤5000万吨。照此计算,预计到2020年,全国每年秸秆废弃量将达2亿吨以上,折合标准煤1亿吨,相当于煤炭大省河南一年的产煤量。

为保障生物质发电原料供应,在强化传统农业生产的基础上,应大力开发森林、草地、山地、丘陵、荒地和沙漠等国土资源,充分挖掘生态系统的生物质生产潜力。重点加强高效光合转化作物、速生林木与特种能源植物的培育推广,大幅度扩大生物质资源的生产规模,逐步建立多样化的生物质资源生产基地。

大力发展生物质发电正当其时。中国“十一五”规划要求:建设资源节约型、环境友好型社会,大力发展可再生能源,加快开发生物质能源,支持发展秸秆发电,建设一批秸秆和林木质电站,生物质发电装机达550万千瓦。中国可再生能源发电价格实行政府定价和政府指导价两种形式。其中生物质发电项目上网电价实行政府定价,电价标准由各省(自治区、直辖市)2005年脱硫燃煤机组标杆上网电价加每千瓦时0.25元补贴电价组成[11]。 作为《中华人民共和国可再生能源法》配套法规之一的《可再生能源发电价格和费用分摊管理试行办法》规定,生物质发电项目补贴电价,在项目运行满15年后取消。自2010年起,每年新批准和核准建设的发电项目补贴电价比上年批准项目递减2%。发电消耗热量中常规能源超过20%的混燃发电项目,不享受补贴电价[11]。通过招标确定投资人的生物质发电项目,上网电价按中标确定的价格执行,但不得高于所在地区的标杆电价。

2010年,中国生物质能产量将达到22TWh,生物质发电装机容量5.5GW,占全国总发电量的0.78%;2020年,中国生物质能产量达到120TWh,生物质发电装机容量30GW,占全国总发电量的2.6%;2010年和2020年可再生能源发电占发电总量的比例仍然较小,分别为8.63%和11.86%[12]。国家发展与改革委员会计划到2020年底将可再生能源发电的比例提升到15%~16%。

据农业部提供的数据[13],中国拥有充足的可发展能源作物,如农作物秸秆年产6亿吨、畜禽粪便年产21.5亿吨、农产品加工业如稻壳、玉米芯、花生壳、甘蔗渣等副产品的年产量超过1亿吨、边际土地4.2亿公顷,同时还包括各种荒地、荒草地、盐碱地、沼泽地等。据中国科学院石元春院士估计,如果能利用现有农作物秸秆资源的一半,生物质产业的产值就可达近万亿元人民币。截止到2005年底,中国生物质发电量2GW,距离2010年的5.5GW和2020年的30GW还有很大的发展空间。作为唯一可运输并储存的可再生能源,凭其优越的先天条件,中国生物质能发电产业具备广阔的发展空间,拥有巨大的投资价值。

3.3 生物质固体燃料的发展模式

生物质固体成型燃料也是农业部今后的重点发展领域之一。农业部将重点示范推广农作物秸秆固体成型燃料,重点在东北、黄淮海和长江中下游粮食主产区进行试点示范建设和推广,发展颗粒、棒状和块状固体成型燃料,并同步开发推广配套炉具,为农户提供炊事燃料和取暖用能。

丰富、清洁、环保又可再生的生物质能源过去却没有得到重视,而被白白浪费掉。河南农业大学张百良教授分析指出,除去饲养牲畜、工业用和秸秆还田,中国每年还具有4亿吨制作成型燃料的资源可以生产1.5亿吨成型燃料,可替代1亿吨原煤,相当于4个平顶山煤矿的年产量[8]。以农作物秸秆为原料的生物质固体燃料产业规模虽然不是很大,但因目前开发程度低,发展空间仍巨大。

3.4生物质液体燃料的发展模式

3.4.1 生物液体燃料生产大国的典型模式

生物液体燃料具有替代石油产品的巨大潜力,得到了各国的重视,主要包括燃料乙醇和生物柴油。国际油价的持续攀升,提高了生物液体燃料的经济性,在一些国家和地区已经具有了商业竞争力。目前,巴西燃料乙醇折合成油价约25美元/桶,低于原油价格。2005年,巴西和美国仍然是燃料乙醇的生产大国,分别以甘蔗和玉米为原料,掺混汽油,占其国内车用交通燃料的50%和3%,比2004年分别提高6%和1%。美国在2001~2005年,燃料乙醇产量已经翻了一番,2005年最新的能源法案中又提出,到2010年燃料乙醇产量再增加一倍的目标。欧盟确定了到2010年生物液体燃料在总燃料消耗的比例达到6%的目标[14]。

目前,生产生物液体燃料比较成功的典型模式有巴西模式和美国模式。

1)巴西甘蔗-乙醇模式

巴西是推动世界生物燃料业发展的先锋。它利用从甘蔗中提炼出的蔗糖生产乙醇,代替汽油作为机动车行驶的燃料。如今巴西乙醇和其他竞争燃料相比,价格上已具有竞争性。这也是当前生物燃料业发展最为成功的典范。巴西热带地区的光照使得那里非常适合种植甘蔗。现在,巴西已经是世界上最大的甘蔗种植国,每年甘蔗产量的一半用来生产白糖,另一半用来生产乙醇。

最近几年,由于过高的汽油价格和混合燃料轿车的推广,巴西燃料乙醇工业更是得到了长足的发展。混合燃料轿车能够以汽油和乙醇的混合物为燃料,自从2003年在巴西大众市场销售后,销量节节攀升,目前已经占据了巴西轿车市场的半壁江山。在混合燃料轿车需求的拉动下,巴西燃料乙醇的日产量从2001年的3000万升增加到2005年的4500万升,已能满足国内约40%的汽车能源需求[14]。

用蔗糖生产乙醇是目前世界上制造乙醇最便宜的方法。在未来4年中,巴西计划将新建40~50家大型乙醇加工厂。为了保证原料供应,甘蔗的种植面积也将不断扩大。

当前巴西生物燃料发展战略的成功,并不意味着巴西的蔗糖乙醇会成为世界生物燃料业未来的选择。因为即使只替代目前全球汽油产量的10%,也需要将巴西现有的甘蔗种植面积扩大40倍。巴西不可能“腾”出这么多土地用于种植甘蔗。另外,由于甘蔗的品种有强烈的地域性,巴西的技术路线在别的国家很难走得通。就连非洲、印度、印度尼西亚都无法照搬,更别说主要地处温带的中国了。

因此,巴西模式尽管取得了迄今最大的成功,但却不是未来世界生物燃料业发展的方向,更不适合地处温带、缺少耕地的中国。探索适合中国国情的生物液体燃料发展模式成为当务之急。

2)美国玉米-乙醇模式

美国是主要的燃料乙醇生产国之一,但与巴西不同,它用的不是甘蔗而是玉米。尽管有不少反对的声音,但美国燃料乙醇的日产量仍从1980年的100万升增加到现在的4000万升。目前,美国已投入生产的乙醇生产厂有97家,另外还有35家正在建设当中。这些工厂几乎都集中在玉米种植带。

玉米中用于生产乙醇的主要成分是淀粉,通过发酵它可以很容易地分解为乙醇。这正是用玉米生产乙醇的优势,但这也是人们反对的原因,因为淀粉是一种重要的粮食。2007年美国计划投入4200万吨玉米用于乙醇生产,按照全球平均食品消费水平,同等数量的玉米可以满足1.35亿人口一年的食品消耗[14]。

中国现在80%的乙醇的原料是谷类,由于原本过剩的谷物在2000年后产量快速减少,使得燃料乙醇的发展再次面临挑战[15]。玉米加工燃料乙醇业过快发展,一些地区甚至玉米主产区已在考虑进口玉米了。国家已经制定相关政策,对玉米加工燃料乙醇项目加以限制,强调发展燃料乙醇要以非粮原料为主,因为谷类供给安全问题对于拥有巨大人口的中国来说,始终应该放在首位。粮食安全始终是国家重大战略问题。中国粮食不能承受“能源化”之重。中国国情和美国、巴西不一样,其成功经验虽有可资借鉴之处,但不能照搬他们的模式。

生物液体燃料方面新技术的研发,在很大程度上取决于解决生物燃料生产的原料供应问题。目前生产液体燃料大多使用的是粮食类作物,如玉米、大豆、油菜籽、甘蔗等。但是从能源的投入、产出分析,利用粮食类作物生产液体燃料是不经济的。因此,利用木质纤维素制取燃料乙醇将是解决生物液体燃料的原料来源和降低成本的主要途径之一。

3.4.2中国生物质液体燃料的产业化发展途径

中国生物液体燃料的发展已初具规模。当前,中国以陈化粮为原料生产燃料乙醇的示范工程,年生产能力已达102万吨,生产成本也达到了消费群体初步接受的水平。在非粮食能源作物种植方面,中国已培育出“醇甜系列”杂交甜高粱品种,并建成了产业化示范基地,培育并引进多个亩产超过3吨的优良木薯品种,育成了一批能源甘蔗新品系和能糖兼用甘蔗品种。具备了利用菜籽油、棉籽油、木油、茶油和地沟油等原料年产10万吨生物柴油的生产能力[16]。

1)油菜籽-生物柴油模式

中国农科院油料作物研究所所长王汉中研究员呼吁:国家应大力推广“油菜生物柴油”。生物柴油相对于矿物柴油而言,是通过植物油脂脱甘油后再经过甲脂化而获得。发展油菜生物柴油具备三大优点:一是可再生;二是优良的环保特性:生物柴油中不含硫和芳香族烷烃,使得二氧化硫、硫化物等废气的排放量显著降低,可降解性还明显高于矿物柴油;三是可被现有的柴油机和柴油配送系统直接利用。因此,生物柴油在石油能源的替代战略中具有核心地位。

目前,发展生物柴油的瓶颈是原料。木本油料的规模有限,大豆、花生等草本油料作物与水稻、玉米等主要粮食作物争地,扩大面积的潜力不大。而作为生物柴油的理想原料,油菜具有其独特的优势。首先适应范围广,发展潜力大:长江、黄淮流域、西北、东北等广大地区都适宜于油菜生长;其次油菜的化学组成与柴油很相近:低芥酸菜油的脂肪酸碳链组成与柴油很相近,是生物柴油的理想原料;第三,可较好地协调中国粮食安全与能源安全的矛盾:长江流域和黄淮地区的油菜为冬油菜,充分利用了耕地的冬闲季节,不与主要粮食作物争地。

根据欧洲油菜发展的经验和油料科技进步的情况,王汉中预计,只要政策、科技、投入均能到位,经过15年的努力,到2020年,中国油菜种植面积可达到4亿亩,平均亩产达到200千克,含油量达到50%左右。届时,中国每年可依靠“能源油菜”生产6000万吨的生物柴油(其中4000万吨来源于菜油,2000万吨来源于油菜秸秆的加工转化),相当于建造3个永不枯竭的“绿色大庆油田”[17]。

2)纤维素-乙醇模式

在整个生物燃料领域,当前最吸引投资者的并不是用蔗糖、玉米生产乙醇,或是从油菜籽中提炼生物柴油,而是用纤维素制造乙醇。所有植物的木质部分--通俗地说,就是“骨架”--都是由纤维素构成的,它们不像淀粉那样容易被分解,但大部分植物“捕获”的太阳能大多储存在纤维素中。如果能把自然界丰富且不能食用的“废物”纤维素转化为乙醇,那么将为世界生物燃料业的发展找到一条可行的道路。

虽然因技术上的限制,目前还没有一家纤维素乙醇制造厂的产量达到商业规模,但很多大的能源公司都在竞相改进将纤维素转化为乙醇的技术。最大的技术障碍是预处理环节(将纤维素转化为通过发酵能够分解的成分)的费用过于昂贵。但是,要想用纤维素生产乙醇,预处理环节无法回避。技术上的不确定性,迫使制造乙醇的大部分投资仍集中在传统的工艺--通过玉米、蔗糖生产乙醇,但这些办法无法从根本上解决当前的能源危机。为了保证能源安全,美国总统布什说,美国政府计划在6年内把纤维素乙醇发展成一种有竞争力的生物燃料。

因为发展能源不可能走牺牲粮食的道路。尽管现在技术上还存在障碍,但大部分人仍相信,利用纤维素生产燃料乙醇代表了未来生物燃料发展的方向。中国生物质液体燃料的未来也同样寄希望于用纤维素生产燃料乙醇。一旦技术取得突破,纤维素乙醇产业化发展空间巨大,产值难以估量。但是,各国的国情与能源结构不同,不能寄希望于某个方面来解决,因为任何国家都不可能单靠技术引进发展本国的生物燃料产业。因此,需要因地制宜,多能互补。

3)能源作物-生物液体燃料模式

石元春院士表示,在能源结构的历史转型中,中国发展生物质能源有很强的现实性和可行性。目前,中国对石油的进口依存度为近40%;SO2和CO2的排放量也分居世界第一和第二位。中国发展生物质能源不仅原料丰富,而且还有自行培养的甜高粱、麻疯树等优良能源植物;燃料乙醇、生物柴油等主产品工业转化技术基本成熟且有较大的改进空间,成本降幅一般在25%~45%,且目前在新疆、山东、四川等地已取得进展[4]。

发展能源作物不会威胁粮食安全与环保。曾有专家提出能源安全和粮食安全存在矛盾。解决这个问题需要充分认识到粮食安全和能源安全有统一性,发展能源农业将是促进农民增收、调动农民种粮积极性的有效措施。粮食作物和能源作物有很好的互补性。首先,能源作物大都是高产作物,既能满足粮食安全的需求,又是很好的能源作物。其次,能源农业开发的领域很广,可以做到不与或少与粮食争地。能源农业开发的领域,大多是利用农业生产中的废弃物,如利用畜禽场粪便、农产品加工企业的废水与废物开发能源,既能增加农民收入,又能为粮食生产提供优质肥料,是生产清洁能源、促进粮食生产、保证粮食安全和能源安全的双赢举措。

除粮食外,中国其他可用于生物质能生产的植物和原料还有很多,如甘蔗、甜菜、薯类等。广西科学院院长黄日波说,仅广西的甘蔗资源和木薯资源分别具备年产830万吨和1300万吨生物乙醇的生产潜力,加起来超过2000万吨[15]。

科技部中国生物技术发展中心有关专家指出,根据能源作物生产条件以及不同作物的用途和社会需求,估计中国未来可以种植甜高粱的宜农荒地资源约有1300万公顷,种植木薯的土地资源约有500万公顷,种植甘蔗的土地资源约有1500万公顷[15]。如果其中20%~30%的宜农荒地可以用来种植上述能源作物,充分利用中国现有土地与技术,生产的生物质可转化5000万吨乙醇,前景十分可观。

据农业部科教司透露,为稳步推动中国生物质能源的发展,并为决策和进一步开发利用土地资源提供可靠的数据,该司决定按照“不与人争粮,不与粮争地”的原则,开展对适宜种植生物质液体燃料专用能源作物的边际土地资源进行调查与评价工作,以摸清适宜种植能源作物边际土地资源总量及分布情况[18]。

以能源作物为原料的生物液体燃料模式发展潜力巨大,将是未来生物质能源发展的方向之一。

4) 林木生物质-生物柴油发展模式

利用中国丰富的林木生物质资源生产生物柴油,将薪炭林转变为能源林,实现以林木生物质能源对油汽的替代或部分替代,探索兼顾能源建设和生态环境建设的新模式,实现可再生能源与环境的可持续发展。开发林业生物质能产业是林业的一个很有潜力的新产业链,既是机会,也是创新,不仅具有巨大潜力和发展空间,更是林业发展新的战略增长点。

“森林具有可再生资源的属性。林业是天然的循环经济。生物质能技术是林业发展的新契机。”专家研究指出,中国生物质资源比较丰富,据初步估计,中国仅现有的农林废弃物实物量为15亿吨,约合7.4亿吨标准煤,可开发量约为4.6亿吨标准煤[19]。专家预测2020年实物量和可开发量将分别达到11.65亿吨和8.3亿吨标准煤。中国现有木本油料林总面积超过600多万公顷,主要油料树种果实年产量在200多万吨以上,其中,不少是转化生物柴油的原料,像麻疯树、黄连木等树种果实是开发生物柴油的上等原料。

中国现有300多万公顷薪炭林,每年约可获得近1亿吨高燃烧值的生物量;中国北方有大面积的灌木林亟待利用,估计每年可采集木质燃料资源1亿吨左右;全国用材林已形成大约5700多万公顷的中幼龄林,如正常抚育间伐,可提供1亿多吨的生物质能源原料;同时,林区木材采伐、加工剩余物、城市街道绿化修枝还能提供可观的生物质能源原料[19]。

中国发展林业生物质能源前景十分广阔。中国林业可用来发展生物质能源的树种多样,可作为能源利用的现有资源数量可观。在已查明的油料植物中,种子含油量40%以上的植物有150多种,能够规模化培育利用的乔灌木树种有10多种。目前,作为生物柴油开发利用较为成熟的有小桐子、黄连木、光皮树、文冠果、油桐和乌桕等树种。初步统计,这些油料树种现有相对成片分布面积超过135万公顷,年果实产量在100万吨以上,如能全部加工利用,可获得40余万吨生物柴油[19]。

目前全国尚有5400多万公顷宜林荒山荒地,如果利用其中的20%的土地来种植能源植物,每年产生的生物质量可达2亿吨,相当于1亿吨标准煤;中国还有近1亿公顷的盐碱地、沙地、矿山、油田复垦地,这些不适宜农业生产的土地,经过开发和改良,大都可以变成发展林木生物质能源的绿色“大油田”、“大煤矿”,补充中国未来经济发展对能源的需要[18]。国家林业局副局长祝列克介绍,“十一五”期间,中国主要开展林业生物质能源示范建设,到2010年,实现提供年产20万吨~30万吨生物柴油原料和装机容量为100万千瓦发电的年耗木质原料。到2020年,可发展专用能源林1300多万公顷,专用能源林可提供年产近600万吨生物柴油原料和装机容量为1200万千瓦发电年耗木质原料,两项产能量可占国家生物质能源发展目标30%以上,加上利用林业生产剩余物,林业生物质能源占到国家生物质能源发展目标的50%以上[19]。

可见,林木生物质能源的发展将逐步成为中国生物质能源的主导产业,发展空间巨大,前景广阔。

4 结 语

国家已出台的《生物燃料乙醇及车用乙醇汽油“十一五”发展专项规划》及相关产业政策,明确提出“因地制宜,非粮为主”的发展原则,发展替代能源坚持“不与人争粮,不与粮争地”,要更加依靠非粮食原料。从大方向来看,用非粮原料能源替代化石能源是长远方向,例如薯类和纤维质以及一些植物果实来替代。为避免粮食“能源化”问题[20],必须开发替代粮食的能源原料资源。开发替代粮食资源,如以农作物秸秆和林木为代表的各类木质纤维类生物质,及其相应的生物柴油和燃料乙醇生产技术,被专家们认为是未来解决生物质液体燃料原料成本高、原料有限的根本出路。

生物质能源将成为未来能源重要组成部分,到2015年,全球总能耗将有40%来自生物质能源,主要通过生物质能发电和生物质液体燃料的产业化发展实现。

有关专家也对生物质能源的发展寄予了厚望,认为中国完全有条件进行生物能源和生物材料规模工业化、产业化,可以在2020年形成产值规模达万亿元。

虽然生物质能源发展潜力巨大、前景广阔,并正在逐步打破中国传统的能源格局,但是生物质能的产业化发展过程也并非一帆风顺,因为生物质原料极其分散,采集成本、运输成本和生产成本很高,成为生物质燃料乙醇业的致命伤,若不能妥善解决将可能成为生物质能产业发展的瓶颈。

生物质能的资源量丰富并且是环境友好型能源,从资源潜力、生产成本以及可能发挥的作用分析,包括生物燃油产业化在内的生物质能产业化开发技术将成为中国能源可持续发展的新动力,成为维护中国能源安全的重要发展方向。在集约化养殖场和养殖小区建设大中型沼气工程也将成为中国利用生物能源发电的新趋势。从环保、能源安全和资源潜力综合考虑,在中国推进包括以沼气、秸秆、林产业剩余物、海洋生物、工业废弃物为原料的生物质能产业化的前景将十分广阔。

[参考文献]:

[1] 中华人民共和国可再生能源法.china.org.cn/chinese/law/798072.htm.

[2] 生物质能发展重点确定沼气固体成型燃料能源作物[EB/OL]. (2007-01-26)[2007-03-18].(来源:人民日报)。

[3] 生物质能的概况. (2006-11-22)[2007-04-02].

[4] 潘 希. 生物质能欲开辟中国农业“第三战场”。 科学时报,2005-04-30.

[5] 佚 名。我国确定农村生物质能发展战略目标[EB/OL]. (2006-10-13)[2007-03-18]. 来源: 新华网.

[6] 生物质能发展重点确定沼气固体成型燃料能源作物[EB/OL]. (2007-01-26)[2007-03-18].(来源:人民日报)。

[7] 师晓京. 农业部正制定《农业生物质能产业发展规划》,今后重点发展沼气、固体成型燃料和能源作物[N]. 农民日报,2007-01-26.

[8] 王琼杰. 日生物质能源能挑起我国未来能源的“大梁”吗?中国矿业报,2007-03-06.

[9] 世界可再生能源发展现状及未来发展趋势分析.[EB/OL]

[10] 谭利伟,简保权. 生物质能源的开发利用[J]. 农业工程技术.新能源产业,2007,总291期,第3期:18-27.

[11] 《可再生能源发电价格和费用分摊管理试行办法》[S]. [2007-04-03].

[12] Hu Xuehao. The Development Prospects of Renewable Energy and Distributed Generation in Power System and the Requirement for Energy Storage Technology[R/OL]. 2006 International Conferences on Power System Technology, Chongqing, China, October 22-24, 2006.

[13]中国科学技术信息研究所. 农业生物质资源-待开发的金矿。2006[2007-04-2].

[14] 蔡如鹏. 生物燃料走在路上[J]中国新闻周刊,2006,第48期,第66页.

[15] 王一娟 徐时芬. 专家为中国生物能源发展献策--开发替代粮食原料,破解燃料乙醇困局[J]. 经济参考报,2005-09-30.

[16]农村生物质能利用大有可为[EB/OL] . (2007-02-25)[2007-04-04].

[17] 胡其峰.专家呼吁大力推广“油菜生物柴油”[N/OL].光明日报, 2005-08-02.

[18] 师晓京. 农业部开展适宜种植能源作物边际土地资源调查[N/OL]. 农民日报,2007-03-21.

篇9

[关键词]生物质资源;燃料乙醇产业;理性思考

[作者简介]宁世梅,博白县第三高级中学一级教师,广西博白537600;龙裕伟,广西社会科学院副研究员,广西南宁530022

[中图分类号]F40 [文献标识码]A [文章编号]1672―2728(2007)04―0082―03

当前全球性能源危机凸显能源在人类可持续发展中的战略地位,燃料乙醇作为一种十分重要的可再生能源,备受全球关注。我国当前优先发展能源工业,大力发展可再生能源,扩大生物质固体成型燃料、燃料乙醇和生物柴油生产能力,把推广使用车用乙醇汽油作为一项重要的能源战略。对于拥有燃料乙醇生物质资源优势,又有一定产业基础的广西来说,做大做强燃料乙醇产业,既面临重要发展机遇,同时也面对挑战。

一、广西燃料乙醇产业发展状况与规划

广西地处亚热带,生物质资源丰富,具有良好的发展生物乙醇、燃料乙醇的自然条件。目前广西利用木薯资源生产乙醇的企业有20多家,其中规模较大的年产木薯酒精10万吨的企业1家,年产木薯酒精8万吨的企业1家。广西还有一批以甘蔗为原料的制糖企业设有酒精车间。2005年,全区乙醇生产能力50万吨,产量30万吨。

在石油危机的冲击和影响下,广西十分重视生物质能的开发与利用,将发展燃料乙醇产业纳入广西“十一五”发展规划,还专门制定了广西生物产业发展“十一五”规划。将主要发展以木薯燃料乙醇、生物柴油、沼气、成型复合燃料等重点项目,力争在“十一五”期间把生物质产业建设为广西的支柱产业。目前,广西成立了自治区生物质产业工程领导小组,发展木薯制取燃料乙醇生产的方案已报国家发改委。

二、广西发展燃料乙醇产业的有利条件与不利因素

(一)有利条件

广西发展燃料乙醇产业的有利条件主要有三个方面:

1.广西是全国最主要的热带作物种植区,拥有我国最多的适宜种植木薯、甘蔗等生物质资源的土地资源。广西拥有适宜种植木薯、甘蔗等生物质资源的热带作物种植面积11.4万平方公里,占全国热作区总面积的38.5%,列全国第一位,比列第二位的云南省高出12.1个百分点(3.6万平方公里)。

2.广西种植木薯、甘蔗作物有着悠久的历史,是全国最主要的木薯产区和甘蔗产区,具有较好的产业基础。2005年,广西种植木薯404.25万亩,产量173.61万吨,均占全国总量的60%以上;广西甘蔗种植面积1121.4万亩,产量5154.69万吨,2005/2006年榨季全区产混和糖537.7万吨,产糖量占全国总产量的61%,广西糖业的龙头地位进一步得到巩固。

3.发展燃料乙醇产业面临重大发展机遇,市场前景广阔。燃料乙醇的生产发展及其推广使用,随着国际石油市场和价格的波动几经起伏。但近年受到世界石油资源紧缺、原油价格不断攀升、环境压力日益加重的影响,作为绿色可再生能源的燃料乙醇,再次受到世界各国的关注,并形成了新一轮的快速发展趋势。可以预见,随着燃料乙醇技术的日益成熟及其成本的降低、效益的提高,其在人类社会可持续发展中的地位和作用将会越来越重要,市场前景十分广阔。

(二)制约因素

在看到有利条件的同时,也要看到制约因素,以趋利避害。

1.技术因素。首先是木薯种植技术水平较低,高产优质木薯新品种覆盖率低,粗放栽培、粗放管理,木薯产量低。其次,木薯加工技术水平落后,木薯产业大中型企业仅1家,企业规模小,众多“散乱”的小淀粉厂、小酒精厂的技术装备普遍陈旧、过时、落后。最后,“三高一难”等技术难题。用木薯生产燃料乙醇,要克服酒精生产的“三高一难”――“粮耗高、能耗高、成本高、酒精糟液处理难”,实现节粮、节能、降低成本和清洁生产。深度开发木薯酒精糟液饲料资源;扩大二氧化碳、杂醇油、酣酯酒精等副产品的综合利用和增值途径;以综合利用效益冲减酒精的成本,以技术进步创效益与石油燃料竞争。

2.原材料因素。按照规划,“十一五”时期,广西燃料乙醇产业以木薯燃料乙醇生产为主。理论上,广西也可以以甘蔗为原料发展甘蔗燃料乙醇产业。无论是以木薯为原料,还是以甘蔗为原料,广西燃料乙醇产业在广西区内都会直面其他产业的挑战,主要是糖业、淀粉工业、蚕丝绸产业乃至烟业。关键环节在于这几类产业均依赖广西的土地资源,都在争土地。

(1)糖业是广西“十一五”时期重点发展的6大优势产业之一,是广西重要的利税“大户”,广西木薯淀粉产业乃至木薯乙醇产业在中近期仍将无法取代其地位。今后一个时期,糖业乃至甘蔗种植面积仍将是优先保障与发展的。

(2)广西木薯淀粉产业仍有较大的发展空间,关键因素在于国内淀粉市场需求量大、缺口大、利润可观,广西木薯原料短缺问题突出。近年,由于木薯原料不足,广西的淀粉厂最早在10月下旬开榨,最迟在次年的3月上旬停榨,中间除去春节等假日停榨的时间,工厂的加工期最多只有4个月左右。各淀粉厂、酒精厂为争抢原料,2005~2006年榨季鲜薯收购价格一度超过450元/吨,有的淀粉厂在榨季中期由于原料价格过高而停榨。目前广西仍有一批在建或拟建的木薯加工项目(包括淀粉厂和酒精厂),建成投产后,木薯原料短缺的矛盾将更加突出。

(3)蚕丝绸产业和烟草产业也是广西大力发展的产业,尤其是蚕丝绸产业的市场发展势头迅猛,也将会与木薯乙醇产业争夺土地资源,从而使广西燃料乙醇产业发展面临更加突出的原料供应短缺问题。

广西燃料乙醇产业除了受到广西区内原材料供应所制约,还受到国内乃至国际市场原材料供应所制约。广西的木薯产量占到全国的60%~70%,此外木薯原料较多的是广东省和海南省,均为当地企业消耗,其余省份产量极少,因此从外省调入木薯原料是不可行的,只能从国外进口。但是根据FAO统计,世界木薯的年产量虽然已接近2亿吨,但大部分是供人类直接消费,真正进入国际贸易的只有600万吨左右的木薯制品(相当于1800万吨鲜薯),绝大部分来自泰国和越南。我国从2001年起,每年均进口超过200万吨的木薯制品。由于这两个国家的木薯产业结构和广西是雷同的,从原料到产品都存在竞争,所以这个来源可能存在不稳定的因素。

3.市场因素。燃料乙醇是石油的替代产品,

燃料乙醇产业与石油产业之间存在高度竞争关系,直接受到石油景气水平的左右。如果国际市场上石油供过于求,或供求平衡,石油价格比较合理或偏低,那么,燃料乙醇产业就会在产业成本偏高、政府扶持力度不够的情况下,难以有大的发展。从当前国际石油价格行情来说,相当于每桶石油热值的燃料乙醇的成本应低于50美元才有盈利空间。由于直接受到国际石油市场行情的牵制,燃料乙醇的市场稳定性较差,市场风险较大。

另外,广西燃料乙醇产业还直面国内、国际同业市场的竞争与挑战。国内除了黑龙江、吉林、河南、安徽4个试点省,广东省正在上马国内首家以木薯和甘蔗为原料生产车用燃料乙醇的大型环保能源项目――广东燃料乙醇项目,首期投资6.86亿元,设计年产燃料乙醇50万吨。除此之外,目前国内酝酿建设燃料乙醇项目的省份还有四川、云南、山东、内蒙古、福建、辽宁、河北、新疆、陕西、宁夏和江苏等。可以预见,在未来几年,全国性的燃料乙醇“大战”一触即发,广西将会直面激烈的国内市场竞争。同时,国际上燃料乙醇产品及其原材料的市场供求状况也会对广西燃料乙醇产业发展产生影响作用。

4.盈利因素。燃料乙醇产品成本与汽油相比,其成本高,盈利性差。凡是生产生物燃料乙醇的国家,都对其实行政策扶持。按照国家计划,定点生产燃料乙醇的企业,财政补贴将逐年递减,直至2008年完全取消。为了保持盈利,在补贴取消之前,燃料乙醇生产企业的首要任务是降低生产成本。

三、做大做强广西燃料乙醇产业的对策建议

(一)调控燃料乙醇产业发展规模,不能盲目发展、快速扩张

主要理由和依据是:(1)燃料乙醇产业受木薯原料“瓶颈”制约。(2)国内燃料乙醇产业将面临比较激烈的市场竞争,市场风险大。(3)今后一个时期广西扩大木薯原料种植规模的空间有限,以甘蔗为燃料乙醇主要原料来源的可能性也不大。

针对上述问题,广西在发展燃料乙醇产业过程中,首先要考虑原材料供应问题,不能盲目扩大发展规模。根据广西燃料乙醇原料来源的现实性(包括区内来源、国内来源和国际市场供应),“十一32"时期广西发展100万吨燃料乙醇的产能,其规模偏大,建议控制在50万~70万吨的幅度,待技术条件、市场条件等因素相对成熟后,再不断扩大燃料乙醇产业规模。

(二)上规模、高起点地发展燃料乙醇企业

在当前国际石油市场价格水平下,燃料乙醇产品成本高、市场价格高,与石油产品相比,缺乏市场竞争能力,必须十分重视新技术的开发和应用,以期不断降低生产成本,提高燃料乙醇的市场竞争力。发展燃料乙醇企业,应当坚持上规模、高起点、技术先进的原则。以期实现规模效益、降低能源消耗、提高原料利用水平,从而达到降低单位成本的目的。建议广西新建或改建燃料乙醇企业时,其产能规模应在10万吨以上。

(三)鼓励发展混合原料型燃料乙醇企业

由于广西区内、国内乃至国际市场上木薯、甘蔗原料的紧缺,发展燃料乙醇产业必须从广西的实际出发、从市场供求状况出发,来考虑燃料乙醇产业的原料供给问题,优化燃料乙醇的原料配置。广西应当以木薯为主导,积极发展薯、蔗、稻、蜜以及玉米等原料混合的燃料乙醇企业。其主要优点有四:一是可以缓解木薯原料之不足;二是可以在糖业市场价格下跌情况下,将原定供应糖业的原料蔗用于燃料乙醇生产,保障甘蔗价格的相对稳定性以及蔗农的利益;三是可以增加糖业副产品糖蜜的附加值以及糖厂的收益;四是可以保障燃料乙醇原料来源的稳定性及其产业发展的可持续性,这在技术上也是可行的。

(四)“抓大放小”,关停、淘汰一批技术落后、污染大、能耗高的木薯淀粉企业和木薯酒精企业。优化木薯产业组织结构

目前广西共有木薯淀粉企业和木薯酒精企业200多家,绝大多数为小企业。这些小企业普遍存在技术落后、污染大、能耗高、效益低等问题,不能适应新型工业化发展以及经济社会可持续发展的要求。应当根据国家产业政策、环保政策以及其他政策的规定,对这些小企业进行全面清理整顿,凡是不符合政策要求,又无力进行技术改造的,均应予以关停、淘汰。这样,在一方面使当地生态环境得到改善的同时,还可以杜绝它们与技术水平较高、环保条件好的大中型燃料乙醇企业争原料的问题,从而有利于优化广西燃料乙醇产业发展的市场环境,促进燃料产业的健康发展。

(五)延长燃料乙醇产业链,培育发展燃料乙醇产业集群

发展燃料乙醇产业,涉及农业种植和养殖、乙醇及其副产品生产、石油调配、汽车制造、环保、商业销售乃至乙烯生产、现代石油化工和燃料乙醇副产CO2的资源利用等,可以形成一条很长的产业链。应当根据燃料乙醇的产业链特性,做好燃料乙醇产业集群的发展规划与培育工作,为做大做强燃料乙醇产业创造良好的产业生态环境。

篇10

关键词:生物质;化工产品;开发;应用

中图分类号:F42 文献标识码:A

生物质是能源领域常用的术语,是由光合作用而产生的各种有机体。生物能是太阳能以化学能形式贮存在生物中的一种能量形式,一种以生物质为载体的能量,它直接或间接地来源于植物的光合作用。在各种可再生能源中,生物质能是独持的,它是贮存的太阳能,也是惟—一种可再生的碳源。它可以转化为常规的固态、液态和气态燃料。化学工业耗用烃类少于整个烃类消费量的 5%,但不远的未来仍需要这些原材料。预计石油和天然气生产在 2020 年后某一时期将达到峰值。假设化学加工仍优先需用烃类,能源公司为满足这一需求将面临新的挑战。在本世纪初叶,可再生的生物资源将为化学工业提供大多数原材料。这将包括林业、渔业、动物饲养业和农业副产物。从某种意义来说,增加对这类原材料的依赖将成为必然。从长期看, 生物炼油厂可生产宽范围的下游化学品、 燃料和其他产品。据催化剂集团资源公司(CGR)分析,从生物质制取的化学品现已占化学品总销售额约 5%,现约 200 种产品由发酵制取,其中前4种产品为乙醇、柠檬酸、葡糖酸和乳酸。

1开发生物质能对中国的重要意义

1.1促进社会经济的发展和生态环境

生物质是仅次于煤炭、石油、天然气的第四大能源,在整个能源系统占有重要地位。生物质能一直是人类赖以生存的重要能源之一,在世界能源消耗小,生物质能具有可再生性。据有关专家预测,生物质能在未来能源结构中具有举足轻重的地位.采用新技术生产的各种生物质替代燃料,主要用于生活、供热和发电等方面。我国生物质能资源相当丰富,人类正面临着经济增长和环境保护的双重压力,因而改变能源的生产方式和消费方式,用现代技术开发利用包括生物质能在内的可再生能源资源,对于建立可持续发展的能源系统,促进生态环境的改善具有重大意义。

1.2 改变我国以化石燃料为主的能源结构

我国的能源生产及消费结构的共同特点是:煤炭在能源结构中长期占绝对主导地位,一般占70%以上;石油、天然气、水电等优质能源在一次能源中的比重—直在25%左右,而且随着能源供应量的增长优质能源比重近年来还有所下降;从不同地区的能源消费结构来看,由于沿海与内地经济发展水平的差异,且受运输和环境保护的制约,其能源结构也在不断优化。生物质既是低碳燃料,在其生长过程中又大量吸收。而成为温室气体的汇(sink),随着国际社会对温室气体减排联合行动付诸实施。大力开发生物质能源资源,对于改善我国以化石燃料为主的能源结构,特别是为农村地区因地制宜地提供方便能源,具有十分重要的意义。

1.3发展生物基产品可减少排放

它拥有生产低排放燃料的潜力,而且可削减运输行业的 CO2排放。 除了发展生物乙醇和其他生物燃料以减少汽油消耗外,一些公司也采用生物质为原材料生产各种其他产品,包括纺织品、塑料和清洗液等,以减少碳足迹。从事生物技术开发的 Novozymes 公司在开发生物基产品用酶方面颇有作为, 该公司生产的酶类用作有机物化学反应的催化剂, 酶类在生物质转化中起到关键作用,并且使用酶可大大降低排放。据称,每生产一份酶,可相当于减少 100~200份的CO2排放。Novozymes公司 2007 年生产了20万吨酶,从而使CO2排放减少了 2000 万吨。

2作为能源利用的生物质能资源量时影响因素

首先,生物质能资源量是受多种因素影响的是随时间变化,生物质能资源是可再生的,通过种植、增加畜禽饲养等措施,资源量可以增加,而不合理的过量消费,又会造成资源量的减少,而且这种消费对资源量的影响又有滞后性,往往在消费时并不马上表现出来;作为重要生物质能资源的农作物秸秆及农业加工剩余物资源量又接受农作物产量的影响,而畜禽饲养量也受到农作物产量的影响,因而相应的资源量也就必然受到气候等多种自然因素及市场价格等多种社会因素的影响;各种生物质能资源剩余物及其可利用成分是受人民生活水平等多种变化因素影响的,因此说,每年的生物质能资源量都受到当年各种具体因素影响的,是变化的,而不是一成不变的。

其次,生物质能资源是—种自然资源,其本身可以有多种用途作为一种重要生物质能资源的农作物秸秆:它既可以当作燃料,也可以作为饲料、肥料和工业原料,所以在研究各种生物质可作为能源使用的资源量时,就必然会涉及其在各种不同用途之间的分配比例问题,也就必然会涉及将一种生物质能资源作为能源使用的成本问题。在考虑资源量时,应该对各种成本进行比较,选择合理的用途。

最后,如同其他可再生能源一样,生物质能可利用资源量取决于各种生物质能利用和转换技术水平,评价生物质能资源可利用量必须充分考虑各种生物质能利用和转换技术的经济、技术可行性等出素:以畜禽粪便为例,除了收集上的困难外,还应充分考虑利用的可能性问题。日前主要是通过厌氧发酵工艺对其进行处理应用的,因而其可作为能源利用的部分就受到沼气池容量、效率等的限制;如果应用致密成型技术对大量被废弃的农作物秸秆进行转换,可以产生大量的高品位能源,但这些转换技术尚存一些技术问题,那些被废弃的农作物秸秆资源也只是一种潜在的可利用能源。