生物质燃料能源范文
时间:2023-10-25 17:36:39
导语:如何才能写好一篇生物质燃料能源,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
20世纪70年代,国际上第一次石油危机使发达国家和贫油国家重视石油替代,开始大规模发展生物质能源。生物质能源是以农林等有机废弃物以及利用边际土地种植的能源植物为主要原料进行能源生产的一种新兴能源。生物质能源按照生物质的特点及转化方式可分为固体生物质燃料、液体生物质燃料、气体生物质燃料。中国生物质能源的发展一直是在“改善农村能源”的观念和框架下运作,较早地起步于农村户用沼气,以后在秸秆气化上部署了试点。近两年,生物质能源在中国受到越来越多的关注,生物质能源利用取得了很大的成绩。沼气工程建设初见成效。截至2005年底,全国共建成3764座大中型沼气池,形成了每年约3.4l亿立方米沼气的生产能力,年处理有机废弃物和污水1.2亿吨,沼气利用量达到80亿立方米。到2006年底,建设农村户用沼气池的农户达2260万户,占总农户的9.2%,占适宜农户的15.3%,年产沼气87.0亿立方米,使7500多万农民受益,直接为农民增收约180亿元。生物质能源发电迈出了重要步伐,发电装机容量达到200万千瓦。液体生物质燃料生产取得明显进展,全国燃料乙醇生产能力达到:102万吨,已在河南等9个省的车用燃料中推广使用乙醇汽油。
(一)固体生物质燃料
固体生物质燃料分生物质直接燃烧或压缩成型燃料及生物质与煤混合燃烧为原料的燃料。生物质燃烧技术是传统的能源转化形式,截止到2004年底,中国农村地区已累计推广省柴节煤炉灶1.89亿户,普及率达到70%以上。省柴节煤炉灶比普通炉灶的热效率提高一倍以上,极大缓解了农村能源短缺的局面。生物质成型燃料是把生物质固化成型后采用略加改进后的传统设备燃用,这种燃料可提高能源密度,但由于压缩技术环节的问题,成型燃料的压缩成本较高。目前,中国(清华大学、河南省能源研究所、北京美农达科技有限公司)和意大利(比萨大学)两国分别开发出生物质直接成型技术,降低了生物质成型燃料的成本,为生物质成型燃料的广泛应用奠定了基础。此外,中国生物质燃料发电也具有了一定的规模,主要集中在南方地区的许多糖厂利用甘蔗渣发电。广东和广西两省(区)共有小型发电机组300余台,总装机容量800兆瓦,云南也有一些甘蔗渣电厂。中国第一批农作物秸秆燃烧发电厂将在河北石家庄晋州市和山东菏泽市单县建设,装机容量分别为2×12兆瓦和25兆瓦,发电量分别为1.2亿千瓦时和1.56亿千瓦时,年消耗秸秆20万吨。
(二)气体生物质燃料
气体生物质燃料包括沼气、生物质气化制气等。中国沼气开发历史悠久,但大中型沼气工程发展较慢,还停留在几十年前的个体小厌氧消化池的水平,2004年,中国农户用沼气池年末累计1500万户,北方能源生态模式应用农户达43.42万户,南方能源生态模式应用农户达391.27万户,总产气量45.80亿立方米,相当于300多万吨标准煤。到2004年底,中国共建成2500座工业废水和畜禽粪便沼气池,总池容达到了88.29万立方米,形成了每年约1.84亿立方米沼气的生产能力,年处理有机废物污水5801万吨,年发电量63万千瓦时,可向13.09万户供气。
在生物质气化技术开发方面,中国对农林业废弃物等生物质资源的气化技术的深入研究始于20世纪70年代末、80年代初。截至2006年底,中国生物质气化集中供气系统的秸秆气化站保有量539处,年产生物质燃气1.5亿立方米;年发电量160千瓦时稻壳气化发电系统已进入产业化阶段。
(三)液体生物质燃料
液体生物质燃料是指通过生物质资源生产的燃料乙醇和生物柴油,可以替代由石油制取的汽油和柴油,是可再生能源开发利用的重要方向。近年来,中国的生物质燃料发展取得了很大的成绩,特别是以粮食为原料的燃料乙醇生产已初步形成规模。“十五”期间,在河南、安徽、吉林和黑龙江分别建设了以陈化粮为原料的燃料乙醇生产厂,总产能达到每年102万吨,现已在9个省(5个省全部,4个省的27个地(市))开展车用乙醇汽油销售。到2005年,这些地方除军队特需和国家特种储备外实现了车用乙醇汽油替代汽油。
但是,受粮食产量和生产成本制约,以粮食作物为原料生产生物质燃料大规模替代石油燃料时,也会产生如同当今面临的石油问题一样的原料短缺,因此,中国近期不再扩大以粮食为原料的燃料乙醇生产,转而开发非粮食原料乙醇生产技术。目前开发的以木薯为代表的非食用薯类、甜高粱、木质纤维素等为原料的生物质燃料,既不与粮油竞争,又能降低乙醇成本。广西是木薯的主要产地,种植面积和总产量均占全国总量的80%,2005年,木薯乙醇产量30万吨。从生产潜力看,目前,木薯是替代粮食生产乙醇最现实可行的原料,全国具有年产500万吨燃料乙醇的潜力。
此外,为了扩大生物质燃料来源,中国已自主开发了以甜高粱茎秆为原料生产燃料乙醇的技术(称为甜高粱乙醇),目前,已经达到年产5000吨燃料乙醇的生产规模。国内已经在黑龙江、内蒙古、新疆、辽宁和山东等地,建立了甜高粱种植、甜高梁茎秆制取燃料乙醇的基地。生产1吨燃料乙醇所需原料--甜高粱茎秆收购成本2000元,加上加工费,燃料乙醇生产成本低于3500元,吨。由于现阶段国家对燃料乙醇实行定点生产,这些甜高粱乙醇无法进入交通燃料市场,大多数掺入了低质白酒中。另外,中国也在开展纤维素制取燃料乙醇技术的研究开发,现已在安徽丰原生化股份有限公司等企业形成年产600吨的试验生产能力。目前,中国燃料乙醇使用量已居世界第三位。生物柴油是燃料乙醇以外的另一种液体生物质燃料。生物柴油的原料来源既可以是各种废弃或回收的动植物油,也可以是含油量高的油料植物,例如麻风树(学名小桐子)、黄连木等。中国生物柴油产业的发展率先在民营企业实现,海南正和生物能源公司、四川古杉油脂化工公司、福建卓越新能源发展公司等都建成了年生产能力l万~2万吨的生产装置,主要以餐饮业废油和皂化油下脚料为原料。此外,国外公司也进军中国,奥地利一家公司在山东威海市建设年生产能力25万吨的生物柴油厂,意大利一家公司在黑龙江佳木斯市建设年生产能力20万吨的生物柴油厂。预计中国生物柴油产量2010年前约可达每年100万吨。
二、中国生物质能源发展政策
为了确保生物质能源产业的稳步发展,中国政府出台了一系列法律法规和政策措施,积极推动了生物质能源的开发和利用。
(一)行业标准规范生产,法律法规提供保障
本世纪初,为解决大量库存粮积压带来的财政重负和发展石化替代能源,中国开始生产以陈化粮为主要原料的燃料乙醇。2001年,国家计划委员会了示范推行车用汽油中添加燃料乙醇的通告。随后,相关部委联合出台了试点方案与工作实施细则。2002年3月,国家经济贸易委员会等8部委联合制定颁布了《车用乙醇汽油使用试点方案》和《车用乙醇汽油使用试点工作实施细则》,明确试点范围和方式,并制定试点期间的财政、税收、价格等方面的相关方针政策和基本原则,对燃料乙醇的生产及使用实行优惠和补贴的财政及价格政策。在初步试点的基础上,2004年2月,国家发展和改革委员会等8部委联合《车用乙醇汽油扩大试点方案》和《车用乙醇汽油扩大试点工作实施细则》,在中国部分地区开展车用乙醇汽油扩大试点工作。同时,为了规范燃料乙醇的生产,国家质量技术监督局于2001年4月和2004.年4月,分别GBl8350-2001《变性燃料乙醇》和GBl8351-2001《车用乙醇汽油》两个国家标准及新车用乙醇汽油强制性国家标准(GBl835l一2004)。在国家出台相关政策措施的同时,试点区域的省份均制定和颁布了地方性法规,地方各级政府机构依照有关规定,加强组织领导和协调,严格市场准入,加大市场监管力度,对中国生物质燃料乙醇产业发展和车用生物乙醇汽油推广使用起到了重大作用。
此外,国家相关的法律法规也为生物质能源的发展提供保障。2005年,《中华人民共和国可再生能源法》提出,“国家鼓励清洁、高效地开发利用生物质燃料、鼓励发展能源作物,将符合国家标准的生物液体燃料纳入其燃料销售体系”。国家“十一五”规划纲要也提出,“加快开发生物质能源,支持发展秸秆、垃圾焚烧和垃圾填埋发电,建设一批秸秆发电站和林木质发电站,扩大生物质固体成型燃料、燃料乙醇和生物柴油生产能力”。
(二)运用经济手段和财政扶持政策推动产业发展
除制定相应法律法规和标准外,2002年以来,中央财政也积极支持燃料乙醇的试点及推广工作,主要措施包括投入国债资金、实施税收优惠政策、建立并优化财政补贴机制等。一是投入国债资金4.8亿元用于河南、安徽、吉林3省燃料乙醇企业建设;二是对国家批准的黑龙江华润酒精有限公司、吉林燃料乙醇有限公司、河南天冠燃料乙醇有限公司、安徽丰原生化股份有限公司4家试点单位,免征燃料乙醇5%的消费税,对生产燃料乙醇实现的增值税实行先征后返;三是在试点初期,对生产企业按保本微利的原则据实补贴,在扩大试点规模阶段,为促进企业降低生产成本,改为按照平均先进的原则定额补贴,补贴逐年递减。
为进一步推动生物质能源的稳步发展,2006年9月,财政部、国家发展和改革委员会、农业部、国家税务总局、国家林业局联合出台了《关于发展生物质能源和生物化工财税扶持政策的实施意见》,在风险规避与补偿、原料基地补助、示范补助、税收减免等方面对于发展生物质能源和生物化工制定了具体的财税扶持政策。此外,自2006年1月1日《可再生能源法》正式生效后,酝酿中与之配套的各项行政法规和规章也开始陆续出台。财政部2006年10月4日出台了《可再生能源发展专项资金管理暂行办法》,该办法对专项资金的扶持重点、申报及审批、财务管理、考核监督等方面做出全面规定。该《办法》规定:发展专项资金由国务院财政部门依法设立,发展专项资金的使用方式包括无偿资助和贷款贴息,通过中央财政预算安排。
三、中国生物质能源发展中存在的主要问题
尽管中国在生物质能源等可再生能源的开发利用方面取得了一些成效,但由于中国生物质能源发展还处于起步阶段,面临许多困难和问题,归纳起来主要有以下几个方面。
(一)原料资源短缺限制了生物质能源的大规模生产
由于粮食资源不足的制约,目前,以粮食为原料的生物质燃料生产已不具备再扩大规模的资源条件。今后,生物质燃料乙醇生产应转为以甜高粱、木薯、红薯等为原料,特别是以适宜在盐碱地、荒地等劣质地和气候干旱地区种植的甜高粱为主要原料。虽然中国有大量的盐碱地、荒地等劣质土地可种植甜高粱,有大量荒山、荒坡可以种植麻风树和黄连木等油料植物,但目前缺乏对这些土地利用的合理评价和科学规划。目前,虽然在西南地区已种植了一定数量的麻风树等油料植物,但不足以支撑生物柴油的规模化生产。因此,生物质燃料资源不落实是制约生物质燃料规模化发展的重要因素。
(二)还没有建立起完备的生物质能源工业体系,研究开发能力弱,技术产业化基础薄弱
虽然中国已实现以粮食为原料的燃料乙醇的产业化生产,但以其他能源作物为原料生产生物质燃料尚处于技术试验阶段,要实现大规模生产,还需要在生产工艺和产业组织等方面做大量工作。以废动植物油生产生物柴油的技术较为成熟,但发展潜力有限。后备资源潜力大的纤维素生物质燃料乙醇和生物合成柴油的生产技术还处于研究阶段,一些相对成熟的技术尚缺乏标准体系和服务体系的保障,产业化程度低,大规模生物质能源生产产业化的格局尚未形成。
(三)生物燃油产品市场竞争力较弱
巴西以甘蔗生产燃料乙醇1980年每吨价格为849美元,1998年降到300美元以下。中国受原料来源、生产技术和产业组织等多方面因素的影响,燃料乙醇的生产成本比较高,目前,以陈化粮为原料生产的燃料乙醇的成本约为每吨3500元左右,以甜高粱、木薯等为原料生产的燃料乙醇的成本约为每吨4000元。按等效热值与汽油比较,汽油价格达到每升6元以上时,燃料乙醇才可能赢利。目前,国家每年对102万吨燃料乙醇的财政补贴约为15亿元,在目前的技术和市场条件下,扩大燃料乙醇生产需要大量的资金补贴。以甜高粱和麻风树等非粮食作物为原料的燃料乙醇和生物柴油的生产技术才刚刚开始产业化试点,产业化程度还很低,近期在成本方面的竞争力还比较弱。因此,生物质燃料成本和石油价格是制约生物质燃料发展的重要因素。
(四)政策和市场环境不完善,缺乏足够的经济鼓励政策和激励机制
生物质能源产业是具有环境效益的弱势产业。从国外的经验看,政府支持是生物质能源市场发育初期的原始动力。不论是发达国家还是发展中国家,生物质能源的发展均离不开政府的支持,例如投融资、税收、补贴、市场开拓等一系列的优惠政策。2000年以来,国家组织了燃料乙醇的试点生产和销售,建立了包括燃料乙醇的技术标准、生产基地、销售渠道、财政补贴和税收优惠等在内的政策体系,积累了生产和推广燃料乙醇的初步经验。但是,由于以粮食为原料的燃料乙醇发展潜力有限,为避免对粮食安全造成负面影响,国家对燃料乙醇的生产和销售采取了严格的管制。近年来,虽有许多企业和个人试图生产或销售燃料乙醇,但由于受到现行政策的限制,不能普遍享受到财政补贴,也难以进入汽油现有的销售渠道。对于生物柴油的生产,国家还没有制定相关的政策,特别是还没有生物柴油的国家标准,更没有生物柴油正常的销售渠道。此外,生物质资源的其它利用项目,例如燃烧发电、气化发电、规模化畜禽养殖场大中型沼气工程项目等,初始投资高,需要稳定的投融资渠道给予支持,并通过优惠的投融资政策降低成本。中国缺乏行之有效的投融资机制,在一定程度上制约了生物质资源的开发利用。
四、中国生物质能源未来的发展特点和趋势
(一)逐步改善现有的能源消费结构,降低石油的进口依存度
中国经济的高速发展,必须构筑在能源安全和有效供给的基础之上。目前,中国能源的基本状况是:资源短缺,消费结构单一,石油的进口依存度高,形势十分严峻。2004年,中国一次能源消费结构中,煤炭占67.7%,石油占22.7%,天然气占2.6%,水电等占7.0%;一次能源生产总量中,煤炭占75.6%,石油占13.5%,天然气占3.O%,水电等占7.9%。这种能源结构导致对环境的严重污染和不可持续性。中国石油储量仅占世界总量的2%,消费量却是世界第二,且需求持续高速增长,1990年的消费量刚突破1亿吨,2000年达到2.3亿吨,2004年达到3.2亿吨。中国自1993年成为石油净进口国后,2005年进口原油及成品油约1.3亿吨,估计2010年将进口石油2.5亿吨,进口依存度将超过50%。进口依存度越高,能源安全度就越低。中国进口石油的80%来自中东,且需经马六甲海峡,受国际形势影响很大。
因此,今后在厉行能源节约和加强常规能源开发的同时,改变目前的能源消费结构,向能源多元化和可再生清洁能源时代过渡,已是大势所趋,而在众多的可再生能源和新能源中,生物质能源的规模化开发无疑是一项现实可行的选择。
(二)生物质产业的多功能性进一步推动农村经济发展
生物质产业是以农林产品及其加工生产的有机废弃物,以及利用边际土地种植的能源植物为原料进行生物能源和生物基产品生产的产业。中国是农业大国,生物质原料生产是农业生产的一部分,生物质能源的蕴藏量很大,每年可用总量折合约5亿吨标准煤,仅农业生产中每年产生的农作物秸秆,就折合1.5亿吨标准煤。中国有不宜种植粮食作物、但可以种植能源植物的土地约l亿公顷,可人工造林土地有311万公顷。按这些土地20%的利用率计算,每年约可生产10亿吨生物质,再加上木薯、甜高粱等能源作物,据专家测算,每年至少可生产燃料乙醇和生物柴油约5000万吨,农村可再生能源开发利用潜力巨大。生物基产品和生物能源产品不仅附加值高,而且市场容量几近无限,这为农民增收提供了一条重要的途径;生物质能源生产可以使有机废弃物和污染源无害化和资源化,从而有利于环保和资源的循环利用,可以显著改善农村能源的消费水平和质量,净化农村的生产和生活环境。生物质产业的这种多功能性使它在众多的可再生能源和新能源中脱颖而出和不可替代,这种多功能性对拥有8亿农村人口的中国和其他发展中国家具有特殊的重要性。
(三)净化环境,进一步为环境“减压”
随着中国经济的高速增长,以石化能源为主的能源消费量剧增,在过去的20多年里,中国能源消费总量增长了2.6倍,对环境的压力越来越大。2003年,中国二氧化碳排放量达到8.23亿吨,居世界第二位。2025年前后,中国二氧化碳排放量可能超过美国而居首位。2003年,中国二氧化硫的排放量也超过了2000万吨,居世界第一位,酸雨区已经占到国土面积的30%以上。中国二氧化碳排放量的70%、二氧化硫排放量的90%、氮氧化物排放量的2/3均来自燃煤。预计到2020年,氧化硫和氮氧化物的排放量将分别超过中国环境容量30%和46%。《京都议定书》已对发达国家分配了2012年前二氧化碳减排8%的指标,中国是《京都议定书》的签约国,承担此项任务只是时间早晚的问题。此外,农业生产和废弃物排放也对生态环境带来严重伤害。因此,发展生物质能源,以生物质燃料直接或成型燃烧发电替代煤炭以减少二氧化碳排放,以生物燃油替代石化燃油以减少碳氢化物、氮氧化物等对大气的污染,将对于改善能源结构、提高能源利用效率、减轻环境压力贡献巨大。
(四)技术逐步完善,产业化空间广阔
从生物质能源的发展前景看,第一,生物乙醇是可以大规模替代石化液体燃料的最现实选择;第二,对石油的替代,将由E85(在乙醇中添加15%的汽油)取代E10(汽油中添加10%的乙醇);第三,FFVs(灵活燃料汽车)促进了生物燃油生产和对石化燃料的替代,生物燃油的发展带动了传统汽车产业的更新改造;第四,沼气将规模化生产,用于供热发电、(经纯化压缩)车用燃料或罐装管输;第五,生物质成型燃料的原料充足,技术成熟,投资少、见效快,可广泛用于替代中小锅炉用煤,热电联产(CHP)能效在90%以上,是生物质能源家族中的重要成员;第六,以木质纤维素生产的液体生物质燃料(Bff。)被认为是第二代生物质燃料,包括纤维素乙醇、气化后经费托合成生物柴油(FT柴油),以及经热裂解(TDP)或催化裂解(CDP)得到的生物柴油。此外,通过技术研发还将开拓新的资源空间。工程藻类的生物量巨大,如果能将现代生物技术和传统育种技术相结合,优化育种条件,就有可能实现大规模养殖高产油藻。一旦高产油藻开发成功并实现产业化,由藻类制取生物柴油的规模可以达到数千万吨。
据专家预测估计,到2010年,中国年生产生物燃油约为600万吨,其中,生物乙醇500万吨、生物柴油100万吨:到2020年,年生产生物燃油将达到1900万吨,其中,生物乙醇1000万吨,生物柴油900万吨。
篇2
关键词:中国生物质能源;发展现状;问题;对策
伴随着国家相关生物质能源生产行业标准规范的逐步完善,目前我国生物质能源生产开发已初具规模,在一系列法律法规的保障和财税政策的推动下获得了良好的发展。然而,中国生物质能源产业在实际发展过程当中,仍然存在着工业体系不完善、原料资源不足、产业化基础不够牢固、市场竞争力较低和研究能力滞后等诸多问题。因此,如何准确把握生物质能源产业的影响因素,制定合理有效的应对策略,是当下的生物质能源发展中迫切关注的重要课题。
1 世界能源结构的现状与问题
1.1 节能减排举措影响世界能源结构
燃料的使用效率与能源结构直接决定了二氧化碳的排放量,因而能源开发利用同自然环境之间的联系紧密。近年来,煤、石油和天然气这三大化石燃料的使用使得全球二氧化碳排放量急剧增加,引起了气候的异常及失衡。有研究指出,生物质燃料所排放的二氧化碳量要比化石原料少95%左右,若每年生产一亿吨生物质燃料,则能达成5.5%二氧化碳的减排,故生物质能源产业的推进对世界能源结构的优化具有重要意义。
1.2 世界化石燃料危机严重
据统计,在全球能源的总用量中,化石能源所占比例高达85%,每年石油、煤炭和天然气的储量都在不断下降。作为不可再生资源,人们赖以生存的石化能源正在日趋枯竭,使得人类面临愈发严峻的能源危机。
1.3 可持续发展理念促进生物质能源产业发展
如今,可持续发展思想已深入人心。作为一种可再生能源,生物质能源在给人们提供生产原料与能量的同时实现了环境友好的目标,能够在很大程度上缓解人们对石化资源的依赖。
2 生物质能源技术开发的进展
2.1 生物液体燃料
包括生物柴油、燃料乙醇和其他液体燃料。当前采用液体催化剂的化学酯交换法是生产生物柴油的关键技术,利用对原料油当中水分、游离酸的严格脱除来防止催化剂失活。液体酸催化方法虽然能够避免水分、游离酸对产率的影响,但设备易被酸腐蚀、甲醇与丙三醇难以分离,且环境友好性较差。燃料乙醇的生产目前还在探索过程中,我国的燃料乙醇发展快,以吉林燃料乙醇公司、河南天冠集团等为代表的企业都在燃料乙醇的研究上取得了较大的进展。此外,生物质快速热裂解液化等技术也是国际上的研究热点。
2.2 生物燃气
瑞典、丹麦和德国的生物燃气技术发达,已经实现了规模化、自动化与专业化,多使用高浓度粪草原料进行中温发酵,其应用逐渐延伸到车用燃气与天然气管网领域。至2008年,我国的沼气工程初步实现全面发展,厌氧挡板反应器、上流式厌氧污泥床等发酵工艺都有了示范应用。但受未热电联产和环境、温度条件影响,大多沼气工程稳定性不足且高浓度发酵等工艺应用少。
2.3 固体成型燃料
欧美地区的生物质固体成型燃料已走向规模化和产业化,瑞典、泰国等地区对固体成型燃料也给予了很高的重视。20世纪80年代,我国开始研究固体成型燃料并逐步建立了以苏州恒辉生物能源开发有限公司等企业为代表的燃料工厂。
2.4 微藻能源
微藻生物柴油技术的研发主要集中在含油量高且环境适应性强的微藻的选育、规模化产油光生物系统的研发以及收集微藻、提取油脂这几个方面,所面临的最大难题是油脂含量、细胞密度高的微藻细胞的培养。使用微藻对石油形成进行模拟是我国研究微藻的开端,此后微藻异养发酵技术、微藻光合发酵模型等的创新都推动了我国微藻能源的研究开发。
3 影响生物质能源产业发展的因素
3.1产业模式局限
我国的生物质能源开发利用管理模式还有待健全,原料评价体系、技术规范等还不完善。项目模式也存在缺陷,例如,小型项目配套政策的缺失使得立项复杂且操作成本较高。
3.2 生产技术滞后
我国的沼气工程大多应用的是湿发酵工艺,装备与技术水平都比较滞后,不利于沼气的高值化利用。非粮乙醇技术还存在障碍,受工艺复杂、酸浓度需求高、副产物多、设备要求高和成本高等因素制约,乙醇浓度不高、原料综合利用率低和发酵效率低、时间长等问题还有待解决。此外,五碳糖菌种的缺乏、生物酶法制备技术的落后和生物柴油使用性能低、经济性低等也是目前需要解决的难点。
3.3 资源供应不足
原料供应不足是我国生物质能源产业发展的一大瓶颈,单一的原料来源制约了沼气工程规模化发展,非粮原料供应的间断不利于其全年均衡生产,陈化粮等原料的缺乏影响了乙醇燃料工业发展进程,生物柴油技术也面临着原料不足的状况。
4 对策与建议
4.1 创新生物能源技术
生物质能源是实现我国可持续发展是重要能源保障,必须借助自主知识产权核心技术的创新来保证生物质能源产业化的持久。各级政府需积极推广国产化计数,通过补助力度的加大来调动各单位研发应用自主技术的积极性,可通过专项资金的设立来支持生物质能技术创新,逐步形成分散式的产业体系。
4.2 合理利用边际土地
针对原料不足这一瓶颈,应当充分利用边际土地来发展非粮生物质能,逐步建设以能源草、甘薯、木薯等作为原料的生物质液体与气体燃料生产基地。
4.3 加强国家政策支持
生物质能源的开发利用对于我国资源、能源供应都具有重要意义,必须将其纳入安全战略的考虑范畴并给予相应的政策支持。国家可结合生物质能源发展需求完善相关激励体系,推行纳入能源生产社会成本、环境成本的全成本定价方案,科学制定产品价格补贴、液体燃料消费鼓励和液体燃料强制收购等方面的政策,给生物质能源发展提供强有力的体系支撑。
参考文献
篇3
关键词:黑龙江省;发展;生物质能源;策略
中图分类号:F062.1 文献标志码:A 文章编号:1673-291X(2008)03-0114-04
一、生物质能源的认识
(一)生物质能源的含义
提到能源,人们通常会想到煤炭、石油、天然气,抑或是风能、水能和核能。可是,在人类所面临的能源危机日益严峻之际,一种人们司空见惯却并未过多留意的能源――生物质能源,正悄然兴起。生物质能源是植物通过光合作用而固定于地球上的太阳能,通过生物质能转换技术可以高效地利用生物质能源,生产各种清洁燃料来替代矿物燃料,以减少人类对矿物能源的依赖,保护国家能源资源,减轻能源消费对环境造成的污染。例如:用玉米、甘蔗、甜高粱、木薯生产燃料乙醇,用甜高粱、麻风树生产生物柴油。
(二)生物质能源的特性
1、可再生性。生物质能源是以农林等有机废弃物和利用边际性土地种植能源植物为原料,以及以农作物淀粉油脂作为调剂,生产的可再生清洁能源及相关化工产品。是一种对环境友好,可再生的能源,如多种燃料乙醇、生物柴油和沼气等。
2、环保性。生物质能源是以农林产品及其加工生产的有机废气物、畜禽粪便、生活垃圾等为原料,通过有机酶转换技术生产的,可以使有机废气物和污染物无害化和资源化,从而有利于环保和资源的循环利用,可以显著改善农村能源的消费水平和质量,净化农村生产和生活环境。
3、高科技性。生物质能源在转化的过程中,都要使用新技术,不论在玉米变燃料乙醇,还是沼气的生产等生物质能源的生产过程中,都要经过现代的酶裂变工程或现代的发酵工程,具有较高的技术要求。
(三)生物质能源的作用
1、缓解能源短缺。随着中国经济社会的快速发展,能源供求矛盾将长期存在,特别是油气供求矛盾十分突出。据测算,2010年前我国拟开工建设的煤矿项目缺精查储量500多亿吨,2011~2020年缺1200多亿吨。在考虑大力节能降耗、调整经济结构和发展可替代品等因素下,2020年石油缺口仍将达2.5亿吨。虽然我国物产丰富,但由于人口众多,尽管能源资源总量比较大,但人均拥有量远远低于世界平均水平。煤炭、石油、天然气人均剩余可采储量分别只有世界平均水平的58.6%、7.69%和7.05%。能源需求的巨大缺口已成为中国乃至亚洲经济社会可持续发展的“瓶颈”。在众多的可再生能源和新能源中,生物质能源的可再生性和生产原料的丰富性使其易于规模化生产,那么,加快生物质能源发展,可最大地缓解资源与环境的压力。
2、促进区域经济发展。各国经验表明,发展清洁可再生的生物质能源在经济上,可以扩大就业,增加收入,缩小区域间的收入差距。在社会发展上,可以扶持社会弱势阶层,提高低收入者收入水平。在环境上,通过使用生物柴油,减少废气和空气污染,可以降低社会的医疗成本。在发展战略上,可以减少对进口能源的依赖,降低国家能源安全风险。纵观国际国内,已经进入生物质能源发展的时代,在强劲有力的政府支持下将给生物质能行业带来广阔的市场发展机遇。
3、发挥农业物质功能多样性。多功能是农业的客观属性,在现代社会中农业一直以来发挥着食品安全、原料供给、市场、就业增收、劳动力输出等多种功能。随着社会的进步,环境的变化,科学技术的提高,农业新的功能被不断的开发和认识,生物质能源就是赋予农业的一个新的功能。
二、生物质能源的发展状况
(一)国外生物质能源发展情况
现代工业的迅速发展,大规模开发利用作为清洁能源的可再生资源显得日益重要,可再生能源进入能源市场,已成为世界各国能源战略的重要组成部分。生物质能源的开发利用早已引起世界各国政府和科学家的关注。有许多国家都制定了相应的开发研究计划,在日本有阳光计划、印度有绿色能源工程、美国有能源农场和巴西的酒精能源计划等发展计划。其他诸如丹麦、荷兰、德国、法国、加拿大、芬兰等国,多年来一直在进行各自的研究与开发,并形成了各具特色的生物质能源研究与开发体系,拥有各自的技术优势。按照欧盟规定,其成员国的可再生能源在一次能源中的比例将于2010年达到12%,2020年达到20%。美国提出,到2020年生物燃料在交通燃料中的比例达到20%;瑞典提出,2020年之后利用纤维素生产的燃料乙醇全部替代石油燃料,彻底摆脱对石油的依赖。
(二)我国生物质能源发展规划
为降低能源供求矛盾,健康发展生物质能源,我国于2006年先后颁布了《中华人民共和国可再生能源法》、《可再生能源发展专项资金管理暂行办法》和《关于发展生物质能源和生物华工财税扶持政策的实施意见》,国务院于2007年6月7日通过了《可再生能源中长期发展规划》,确定了生物质能源发展目标。
1、生物质能源产业发展总体思路。今后15年,中国在生物质能方面将重点发展农林生物质发电、生物液体燃料、沼气及沼气发电、生物固体成型燃料技术四大领域,开拓农村发展新型产业,为农村提供高效清洁的生活燃料,并为替代石油开辟新的渠道。
2、生物质能源产业发展目标。到2010年,生物质发电将达到550万千瓦,生物液体燃料达到200万吨,沼气年利用达到190亿立方米,生物固体成型燃料达到100万吨,生物质能年利用量占到一次能源消费量的10%(现为7.5%);到2020年,达到16%,生物质能发电装机达到3000万千瓦,生物液体燃料达到1000万吨,沼气年利用达到400亿立方米,生物固体成型燃料达到5000万吨,生物质能年利用量占到一次能源消费量的4%。
我国国家发改委也就我国生物燃料产业发展作出三个阶段的统筹安排:“十一五”实现技术产业化,“十二五”实现产业规模化,2015年以后实现大发展。预计到2020年,我国生物燃料消费量将占到全部交通燃料的15%左右,建立起具有国际竞争力的生物燃料产业。
三、黑龙江省发展生物质能源的优势分析
纵观国际国内,已经进入生物质能源发展的时代,在强劲有力的政府支持下将给生物质能行业带来广阔的市场发展机遇。作为物产丰富的农业大省黑龙江来说有着极其丰富的生物质能源的生产资料和基础设施建设,具有良好的发展基础,在发展生物质能源上有着别人无法比拟的优势。一定要抓住这个契机另辟蹊径,以农业为基础,科学规划在不与
人争粮不与粮争地的条件下,大力发展生物质能源,振兴我省经济,为我国减少对进口能源的依赖,降低国家能源安全风险作出贡献。
(一)粮食产量和农业废弃物丰富
黑龙江省耕地面积、林地面积和石油储量居全国首位,粮食综合生产能力600亿公斤左右,商品率60%以上,是我国重要的商品粮生产基地。目前,可以作为能源利用的生物质主要包括秸秆、薪柴、禽畜粪便、生活垃圾和有机废渣废水等。据调查,我省年产农作物秸秆5600万吨,约2800万吨标准煤,除约933万吨作为饲料、生活用能源、造纸、纺织和建材等用途外其余4667万吨可作为能源用途;薪柴的来源主要为林业采伐、育林修剪和薪炭林,我省年均薪柴产量约为900万吨,折合标准煤525万吨;畜禽排泄物3亿吨,在加上大量的野生灌木、枝丫和枯草,在生物总量和人均占有量上其他省区是不可比的,可提供丰富的生物质能源生产资料(农林废气物转换能源量是根据占国家的比例计算得出)。若建设一处300户规模的秸秆气化集中供气工程,每年可节约秸秆燃料800吨,相当于保护林地400多亩。而目前我省农村直接用作燃料的秸秆消耗量每年在3000万吨以上,约占秸秆总量的60%,直接用于燃料的薪柴294万吨,如此多的生物质资源直接作为初级生活燃料消耗,其利用价值被大大降低,形成了“资源消耗-生态破坏-能源更加短缺”的恶性循环。
(二)多个先进基础设施即将建成
近几年,我省虽然出台了一些发展新能源的政策法规,但没有明确提出生物质能源的概念,而国家2007年6月7日通过的《可再生能源中长期发展规划》中明确提出生物质能源的概念。我省对生物质能源的概念还很模糊,但也取得了一些进展,投入了大量的资金建设了生物质能源的生产基地。“十五”期间建设了以陈化粮为原料的燃料乙醇生产厂和已建立了甜高粱种植、甜高粱秆制取乙醇的基地。并有在建的技术比较先进的以木制纤维素为生产原料的生物质能源项目。例如,有获国家发改委立项批复,预计2008年10月投产由黑龙江帅亿集团公司投资建设的年产15万吨秸秆燃料乙醇、20万吨生物油项目,2007年6月在肇源县大庆新肇粮食产业园区奠基,该项目采用国际先进的酶裂解和微波技术,以玉米、高粱等农作物秸秆为原料,加工生产乙醇燃料、生物油及其他副产品,是目前为止黑龙江省首个产业化生物能源项目。作为非粮食生物能源的开发,具有明显的先进性,它不但具有巨大的市场价值,而且提升了农产品的附加值,将增加周边农民收入。虎林清河泉米业有限责任公司生物质热电联厂,是利用稻壳发电,余热供暖的可再生能源利用的CDM项目[即清洁发展机制,是141个国家签字同意的于2005年2月16日生效,世界上第一个带有法律约束力的国际环保协议《联合国气候变化框架公约京都议定书》简称《京都议定书》第12条确定的一个基于市场的灵活机制,其核心内容是允许附件一缔约方(即发达国家)与非附件一国家(即发展中国家)合作,在发展中国家实施温室气体减排项目]。目前,该项目已经完成前期投资8 000万元,2007年10月份竣工后将年发电8000万度,可支持供热面积100万平方米。利用稻壳作为生产资料不仅可以解决环境卫生,更有利于环保。CDM项目的潜力大,是新型科技环保项目,具有很好的市场前景。
(三)具有生物质能源发展的政策基础
几年来,黑龙江省相继出台了一些政策法规鼓励生物质能源的发展。制定了《黑龙江省“十一五”资源综合利用专项规划》,规划年限为2006-2010年,展望到2020年。发展目标:到2010年,力争实现全省资源综合利用产值100亿元,其中:农林废弃资源26亿元,城市垃圾资源2亿元,农村畜禽粪便资源3.1亿元;工业废渣综合利用率达到90%,其中:林区三剩物综合利用率55%,秸秆和壳皮综合利用率54%,畜禽粪便资源利用率达到2.3%,主要城市生活垃圾综合利用率达到10%。到2020年,预计全省资源综合利用实现产值380亿元,其中,农林废弃资源100亿元,城市垃圾资源10亿元。林区三剩物综合利用率85%,秸秆和壳皮综合利用率达到50%。发展技术:重点发展农林废弃物综合利用技术、农村粪便处理及综合利用技术、城市生活垃圾综合利用技术等。要求重点发展机械化秸秆还田、秸秆生物快速腐熟、秸秆微贮和氨化、秸秆饲料、秸秆供热、秸秆气化、秸秆固化、秸秆和壳皮发电、秸秆包装装饰、秸秆造纸、草砖草板新型建材、林业“三剩”物系列应用等深加工综合利用技术。重点发展农村户用沼气技术和集约化养殖场粪便资源化利用技术,引导农民和养殖企业利用厌氧发酵技术处理畜禽粪便。重点发展推广垃圾综合利用(发电、堆肥等)系列技术。引导企业按照市场化运营的方式,开发具有自主知识产权、国产化的垃圾处理技术、装备,逐步实现垃圾处理的资源化、无害化和减量化。重大示范工程:鼓励以企业为主体,优选先进适用技术,建设一批在全省有较大带动作用,在全国居领先水平的资源综合利用示范项目,包括农村秸秆、壳皮综合利用示范工程、林业“三剩”物综合利用示范工程、农村粪便资源化利用示范工程。建设秸秆饲料加工、秸秆气(固)化、秸秆(壳皮)发电、秸秆包装装饰、秸秆造纸等深精加工综合利用项目,在秸秆综合利用重点地区建立比较健全的管理和服务体系,加快秸秆综合利用产业化建设步伐。在林区和木材加工集中区建立林业“三剩”物综合利用示范工程。加快推广农村户用沼气技术和建设集约化养殖场大中型沼气工程,积极开展沼气综合利用技术示范项目,推动农牧生产清洁化、能源利用优质化进程。
(四)科技力量较强
黑龙江省现有数十家包括农学院、农科院、农业生物技术职业学院等农业科技院所,有着较强的科研实力。在生物质转化与利用方面,已建设有高水平的生物质能源实验室、综合生化分析实验室。具有承担国家级大型项目、接纳国内外学者开展科学研究的能力。并取得了解决农业废弃物在转化过程中的某些关键问题的成果,可降低生物质能源转化过程中的生产成本,提供实用化生产技术和设备,这对推动我国生物质能利用技术的发展及其产业化进程具有十分重要的意义。在沼气生产工业化和沼气商品化,利用厌氧发酵的原理有效地处理畜牧场废弃物、生活垃圾以及农业废弃物研究方面也建有高水平的实验室并有先进的成果。例如:农学院完成的利用厌氧发酵技术研究开发高效全天候生物质燃料的工业化生产系统,适用于高寒地区对各种有机废弃物处理,解决了高寒地区冬季沼气周年生产的问题。“十一五”期间将在厌氧条件下的微生物筛选和优良菌种培育;农业秸秆、生活垃圾、牲畜粪便混合物的同时粉碎、筛选分离;高浓度酸化装置中的料液分离和酸化液的输送方法,微生物高密度保持反应器;太阳能和沼气联合加热保温系统调控技术;沼液沼渣快速好氧制肥技术等方面取得突破进展。
四、黑龙江省生物质能源发展的限制因素
(一)不能与食用粮争地限制生物质能源的发展
我省粮食产量虽然居全国首位,玉米产量也在全国居前,种植面积也在逐年增加,预计2007年比上年增加700万亩达5000多万亩。但我省是重要的商品粮基地,到2010年,我省除每年自用40亿公斤粳稻外,每年向国家提供粳稻商品粮156.3亿公斤,承担着国家粮食安全的重任。因此,不可能拿出太多的土地来种植玉米等可转化为生物质能源的作物,这样在原料的供给上不能最大地满足生物质能源的大规模生产。
(二)资金短缺,生产水平低
虽然我省建立了一批生物质能源建设基地,但多数是以粮食为原料的燃料乙醇的生产,以农林废弃物作为原料生产生物质能源的技术和产业相对落后,不能实现规模生产。就粮食转乙醇还存在技术水平落后,生产成本高,市场竞争力弱的问题。目前较成熟的燃料乙醇的生物转化方法是以玉米为原料,但其原料成本高达总成本的70%~80%,生产成本每吨3500元左右,而巴西以甘蔗生产燃料乙醇的成本1998年就降到300美元以下。在现有的技术和市场条件下,要扩大以农林废弃物为原料的生物质能源的生产规模需要大量的资金投入,对于经济相对落后的黑龙江省来说难度比较大。因此,生物质能源的生产成本和技术水平制约着我省生物质能源产业的发展。
(三)政策法规不完善,操做性差
在国家能源政策调控下,虽然出台了包括黑龙江省实施国务院《节约能源管理暂行条例》细则及农村能源管理办法等一些发展新能源的法规,但没有我省自己的可再生能源管理细则,也没有明确提出生物质能源的概念,而国家2007年6月7日通过的《可再生能源中长期发展规划》中明确提出生物质能源的概念,我省对生物质能源的概念还处于模糊状态,不能在政策上指导生物质能源的发展。另外,国家对燃料乙醇的生产和销售仍采取严格的管制,虽有许多企业和个人试图生产或销售燃料乙醇,但由于受到现行政策的限制,不能普遍享受到财政补贴,也难以进入汽油现有的销售渠道。对于生物柴油的生产,国家还没有制定相关的政策,特别是还没有生物柴油的国际标准,更没有生物柴油的正常的销售渠道。
五、黑龙江省发展生物质能源的对策建议
1、确立发展生物质能源的战略目标。要提高对发展生物质能源重要性的认识,制定生物质能源发展目标。我省在制定振兴东北工业基地方案时确定的是能源工业基地,但仍然是以提高原煤和原油开采量为目标,不利于保护资源和环境,不符合可持续发展的要求,也不能从根本上改变能源危机,也不能达到长期的经济发展。我省应抓住绿色能源时代的契机,发挥农林作物丰富地域辽阔的优势,建立以农业为基础,以发展生物质能源为目标的生物质能源工业基地的振兴计划,促进龙江经济的腾飞。
2、积极进行技术创新,实现规模化生产。用粮食生产乙醇燃料,不但成本高,而且存在与食用粮争地的风险,应鼓励以木质纤维素为原料的生物质能源生产工艺的研究并扩大其生产规模。丰富而廉价的木质纤维素是地球上最丰富的可再生资源,主要来源于农业废弃物,如麦草、玉米秸秆、玉米芯、大豆渣、甘蔗渣等;工业废弃物,如制浆和造纸厂的纤维渣、锯末等;林业废弃物和城市废弃物,如废纸、包装纸等。改变沼气一户一建的模式,实现规模化生产的方式,可用于供热发电、(经存化压缩)车用燃料或罐装管输。
3、结合区域特征,合理规划布局。在发展生物质能源的产业建设中,要搞好调研,结合省内区域间粮食及农林废气物产量的分布科学规划。对于正处于转型期的资源城市,可在荒地及塌陷地等不适宜粮食生产的地带,种植秸杆等可用于生产乙醇燃料等生物质能源的植物,对现有的能源加工企业进行改造,使其成为可生产生物质能源型企业,安置下岗人员,提高收入。
篇4
关键词:生物质;燃料;液化;进展;
中图分类号:TK6 文献标识码:A 文章编号:1674-3520(2015)-01-00-02
液体燃料的不足已严重威胁到我国的能源与经济安全。我国一次能源消费量仅次于美国成为世界第二大能源消费国, 2006年进口原油已达5000万t,占总量40%。因此,国家提出了大力开发新能源和可再生能源,优化能源结构的战略发展规划[1-2]。生物质燃料是惟一可以转化为液体燃料的可再生能源,将生物质转化为液体燃料不仅能够弥补化石燃料的不足,而且有助于保护生态环境。生物质燃料包括各种农业废弃物、林业废弃物以及各种有机垃圾等。我国生物质资源丰富,理论年产量为50亿t左右,发展生物质液化替代化石燃料有巨大的资源潜力。
目前生物质液化还处于研究、开发及示范阶段。从工艺上,生物质液化又可分为生化法和热化学法。生化法主要是指采用水解、发酵等手段将生物质转化为燃料乙醇。热化学法主要包括快速热解液化和加压催化液化等[3-8] 。本文主要介绍生物质燃料液化制取液体燃料的技术与研究进展。
一、生化法生产燃料乙醇
生物质生产燃料乙醇的原料主要有能源农作物、剩余粮食和农作物秸秆等。美国和巴西分别用本国生产的玉米和甘蔗大量生产乙醇作为车用燃料。从1975年以来,巴西为摆脱对石油的依赖,开展了世界最大规模的燃料乙醇开发计划,到1991年燃料乙醇产量已达130亿L。美国自1991年以来,为维持每年50亿L的玉米制乙醇产量,政府每年要付出7亿美元的巨额补贴[2,3,8]。利用粮食等淀粉质原料生产乙醇是工艺很成熟的传统技术。用粮食生产燃料乙醇虽然成本高,价格上对石油燃料没有竞争力。虽然我国政府于2002年制定了以陈化粮生产燃料乙醇的政策,将燃料乙醇按一定比例加到汽油中作为汽车燃料,已在河南和吉林两省示范。然而我国剩余粮食即使按大丰收时的3000万t全部转化为乙醇来算,可生产1000万t乙醇,也只有2000年原油缺口的1/10;而且随着中国人口的持续增长,粮食很难出现大量剩余。2007年以来,粮食价格高涨,给国家的安定带来威胁,因此,在我国非粮生物质燃料才是唯一可靠的生物质能源。
从原料供给及社会经济环境效益来看,用含纤维素较高的农林废弃物生产乙醇是比较理想的工艺路线。生物质制燃料乙醇即把木质纤维素水解制取葡萄糖,然后将葡萄糖发酵生成燃料乙醇的技术。我国在这方面开展了许多研究工作,比如武汉理工大学开展了农林废弃物真菌分解-碱溶热解-厌氧发酵工艺的研究,转化率在70%以上[9]。中国科学院过程工程研究所在国家攻关项目的支持下,开展了纤维素生物酶分解固态发酵糖化乙醇的研究,为纤维素乙醇技术的开发奠定了基础[10]。以美国国家可再生能源实验室(NREL)为代表的研究者,近年来也进行了大量的研究工作,如通过转基因技术得到了能发酵五碳糖的酵母菌种,开发了同时糖化发酵工艺,并建成了几个具有一定规模的中试工厂,但由于关键技术未有突破,生产成本一直居高不下[11-13]。纤维素制乙醇技术如果能够取得技术突破,在未来几十年将有很好的发展前景。
二、生物质燃料热化学法生产生物质油
生物质燃料热化学法生产生物质油技术根据其原理主要可分为加压液化和快速热解液化。
(一)生物质燃料快速热解液化
生物质燃料快速热解液化是在传统裂解基础上发展起来的一种技术,相对与传统裂解,它采用超高加热速率(102-104K/s),超短产物停留时间(0.2-3s)及适中的裂解温度,使生物质中的有机高聚物分子在隔绝空气的条件下迅速断裂为短链分子,使焦炭和产物气降到最低限度,从而最大限度获得液体产品。这种液体产品被称为生物质油(bio-oil),为棕黑色黏性液体,热值达20-22MJ/kg,可直接作为燃料使用,也可经精制成为化石燃料的替代物。因此,随着化石燃料资源的逐渐减少,生物质快速热解液化的研究在国际上引起了广泛的兴趣。自1980年以来,生物质快速热解技术取得了很大进展,成为最有开发潜力的生物质液化技术之一。国际能源署组织了美国、加拿大、芬兰、意大利、瑞典、英国等国的10多个研究小组进行了10余年的研究与开发工作,重点对该过程的发展潜力、技术经济可行性以及参与国之间的技术交流进行了调研,认为生物质快速热解技术比其他技术可获得更多的能源和更大的效益[14]。
世界各国通过反应器的设计、制造及工艺条件的控制,开发了各种类型的快速热解工艺。几种有代表性的工艺、各装置的规模、液体产率等参数见文献 [14]。
(1)旋转锥式反应工艺(Twente rotating cone process),荷兰Twente大学开发。生物质颗粒与惰性热载体一起加入旋转锥底部,沿着锥壁螺旋上升过程中发生快速热解反应,但其最大的缺点是生产规模小,能耗较高。以德国松木粉为原料,反应温度600℃,进料速率34.8kg/h的条件下,液体产率为58.6%。
(2)携带床反应器(Entrained flow reactor),美国Georgia 工学院(GIT)开发。以丙烷和空气按照化学计量比引入反应管下部的燃烧区,高温燃烧气将生物质快速加热分解,当进料量为15kg/h,反应温度745℃时,可得到58%的液体产物,但需要大量高温燃烧气并产生大量低热值的不凝气是该装置的缺点。
(3)循环流化床工艺(Circulating fluid bed reactor),加拿大Ensyn工程师协会开发研制。在意大利的Bastardo建成了650kg/h规模的示范装置,在反应温度550℃时,以杨木粉作为原料可产生65%的液体产品。该装置的优点是设备小巧,气相停留时间短,防止热解蒸汽的二次裂解,从而获得较高的液体产率。但其主要缺点是需要载气对设备内的热载体及生物质进行流化,最高液体产率可达75%。
(4)涡旋反应器(Vortex reactor),美国国家可再生能源实验室(NREL)开发。反应管长0.7m,管径0.13 m,生物质颗粒由氮气加速到1 200m/s,由切线进入反应管,在管壁产生一层生物油并被迅速蒸发。目前建成的最大规模的装置为20kg/h,在管壁温度625℃时,液体产率可达55%。
总之,生物质快速裂解技术具有很高的加热和传热速率,且处理量可以达到较高的规模,目前来看,该工艺取得的液体产率最高。热等离子体快速热解液化是最近出现的生物质液化新方法,它采用热等离子体加热生物质颗粒,使其快速升温,然后迅速分离、冷凝,得到液体产物,我国的开展了这方面的试验研究。
(二)加压液化
生物质加压液化是在较高压力下的热转化过程,温度一般低于快速热解。最著名是PERC法。该法始于20世纪60年代,当时美国的Appell等人将木片、木屑放入Na2CO3溶液中,用CO加压至28MPa,使原料在350℃下反应,结果得到40%-50%的液体产物。近年来,人们不断尝试采用H2加压,使用溶剂及催化剂(如Co-Mo、Ni-Mo系加氢催化剂)等手段,使液体产率大幅度提高,甚至可以达80%以上,液体产物的高位热值可达25-30MJ/kg,明显高于快速热解液化。超临界液化是利用超临界流体良好的渗透能力、溶解能力和传递特性而进行的生物质液化,最近欧美等国正积极开展这方面的研究工作[15-17]。和快速热解液化相比,目前加压液化还处在实验室阶段,但由于其反应条件相对温和,对设备要求不很苛刻,在规模化开发上有很大潜力。
生物质燃料转化为液体后,能量密度大大提高,可直接作为燃料用于内燃机,热效率是直接燃烧的4倍以上。但是,由于生物油含氧量高(约35wt%),精炼成本较高,因而降低了生物质裂解油与化石燃料的竞争力。这也是长期以来没有很好解决的技术难题。
三、结论与建议
随着化石燃料资源的逐渐减少,生物质燃料液化技术的研究在国际上引起了广泛的兴趣。经过近30年的研究与开发,车用燃料乙醇的生产已实现产业化,快速热解液化已达到工业示范阶段,加压液化还处于实验研究阶段。我国生物质资源丰富,每年可利用的资源量达50亿t,仅农作物秸秆就有7亿t,但目前大部分作为废弃物没有合理利用,造成资源浪费和环境污染。如果将其中的50%采用生物质液化技术转化为燃料乙醇和生物质油,可以得到5亿-10亿t油当量的液体燃料,基本能够满足我国的能源需求。因此,发展生物质液化在我国有着广阔的前景。
我国在生物质快速热解液化及加压液化方面的研究工作还很少,与国际先进水平有较大差距,需要加强此项研究。开发生物质油精制与品位提升新工艺,降低生产成本是生物质热化学法液化进一步发展,提高与化石燃料竞争力的关键。
参考文献:
[1]倪维斗,靳辉,李政. 中国液体燃料的短缺及其替代问题[J]. 科技导报,2001, (12):9-12.
[2]阎长乐. 中国能源发展报告2001[M]. 北京:中国计量出版社,2001.15-35.
[3]何方,王华,金会心. 生物质液化制取液体燃料和化学品[J]. 能源工程,1999, (5):14-17.
[4]袁振宏,李学凤,蔺国芬. 我国生物质能技术产业化基础的研究 [A].吴创之,袁振宏.2002中国生物质能技术研讨会论文集[C]. 南京:太阳能学会生物质能专业委员会, 2002. 1-18.
[5]李文. 生物质的热解与液体产物的精制[J]. 新能源,1997, 19(10): 22-28.
[6]Kloprise B, Hodek W, Bandermann F. Catalytic hydroliquefaction of biomass with mud and CoO-MoO3 catalyst[J]. Fuel, 1990,69(4): 448-455.
[7]Amen-Chen C, Parkdel H, Roy C. Production of monomeric phenols by thermochemical conversion of biomass: a review [J]. Bioresource Technology, 2001,79: 277-299.
[8]Chornet E, Overent R P. Biomass liquefaction: an overview [A]. In: Overrnd R P. Fundamentals of thermochemical biomass conversion [M]. Essex: Elsevier,1985.967-1002.
[9]杨颖.生物质载体生物膜碱溶热解厌氧发酵的试验研究[学位论文].武汉理工大学,2006
[10]陈洪章,李佐虎. 汽爆纤维素固态同步糖化发酵乙醇[J]. 无锡轻工业大学学报,1999,18(5):78-81.
[11]Cook J, Beyea J. Bioenergy in the United States:progress and possibilities [J]. Biomass and Bioenergy,2000,18:441-455.
[12]McKendry P. Energy production from biomass (part2): conversion technologies[J]. Bioresource Technology,2002,83:47-54.
[13]Mielenz J R. Feasibility studies for biomass to ethanol production facilities in Florida and Hawaii [J].Renewable Energy, 1997,10(2-3):279-284.
[14]郭艳,王,魏飞,等. 生物质快速裂解液化技术的研究进展[J]. 化工进展,2001,20(8):13-17.
[15]Demirbas A. Yields of oil products from thermochemical biomass conversion processes[J]. Energy Conversion & Management, 1998, 39(7):685-690.
篇5
千百年来,人类的需求不断膨胀,但刚性需求始终没有发生根本性的变化,温饱问题仍是世界上大多数人的生计追求。食物与能源一直困扰着穷国与富国,成为未来全球10大问题中的难解之题。
在新能源产业兴起的浪潮中,能源专家们想到了“生物质能”这一古老能源,赋予其“替代”的特殊使命,希冀依靠生物质能来解决未来的能源危机与环境危机。中国在这一领域闻风而动,风风火火地建了一些乙醇加工厂、生物质直燃发电厂等,但相关的燃料、技术、财务等诸多问题接踵而至,使生物质能产业投资受挫,陷入困境,令人忧虑。
田园风光的怀想
生物质能是通过植物的光合作用固定于地球上的太阳能。其特点一是具有自我生成性。不论是木本植物还是草本植物,只要有适度的雨水和充裕的阳光,每年都生生不息。据测算,植物每年贮存的能量约相当于世界主要燃料消耗的10倍。二是自我循环,不用即逝。人类未加以利用的生物质,要遵循自然规律完成其碳循环,绝大部分由自然腐解将能量和碳素释放回自然界中。三是生物质能是人类利用最早、最多、最直接的能源,它支撑着人类由远古走到现在,至今世界上还有15亿多的人口以生物质作为生活能源。
回望过去,田园牧歌式的生物质能时代难免引人发怀古之情:作为太阳系蓝色星球上的万物之灵,人类以其智慧与勤劳在地球上源源不断地获取食物和能源维系了世世代代的生存与发展——通过作物种植和畜禽养殖,延长、拓宽、丰富了食物链,并占据了地球食物链的高端,现在我们每年从地球上获取的食物多达55亿吨。
在煤炭、石油等化石能源发现和开发利用之前的漫长岁月里,祖先们持续有效地利用地表的“生物质能源”,如柴薪、木炭、植物油、动物脂等物质,以烧水煮饭、燃灯照明、御寒取暖,使光明温暖,薪火相传。
当时的远足、浇灌、负荷、载重,不外乎是肩挑人背、车载船运,借靠的是人力、畜力、风力、水力。叶绿植物、人畜粪便等都作为宝贵的肥料而重归田原,加入下一轮的生物质循环,从而为后人保留了绿水青山、碧海蓝天的自然环境。
化石能源的功与过
人类进入工业时代,能源消费模式发生了巨大的变革,由依靠木炭转为依靠煤炭、石油与天然气等化石能源,火车、汽车、飞机等现代交通工具得以盛兴,这使得地球变小,生活变快,让人们的视野变宽,欲望变强。通过煤炭、原油、天然气的直燃发电,电能应用于生产生活的方方面面,我们每个人都在分享着化石能源和电能带来的便捷、舒适与安逸。
与此同时,能耗巨大的环境代价产生的忧患意识也在全球弥散开来,现直接引用一段相关文献,以供我们思考,“人类正面临着发展与环境的双重压力。经济社会的发展以能源为重要动力,经济越发展,能源消耗越多,尤其是化石燃料消费的增加,就有两个突出问题摆在我们面前:一是造成环境污染日益严重,二是地球上现存的化石燃料总有一天要掘空。按消费量推算,世界石油资源在今后50年到80年间将最终消耗殆尽。到2059年,也就是世界上第一口油井开钻200周年之际,世界石油资源大概所剩无几。
另一方面,由于过度消费化石燃料,过快、过早地消耗了这些有限的资源,释放大量的多余能量和碳素,打破了自然界的能量和碳平衡,是造成臭氧层破坏,全球气候变暖,酸雨等灾难性后果的直接因素。这就是说,如果不发展出新的能源来取代化石常规能源在能源结构中的主导地位,在21世纪必将发生严重的、灾难性的能源和环境危机,是人类在下一世纪所面临的三大最可能发生的灾难之一。”
化石能源对环境的影响就是负面的吗?这取决于人类活动的频繁程度。有了煤炭,使森林得以保护,多少个卖炭翁不再“伐薪烧炭南山中”;有了石油与钢铁,就有了新型建材,桥梁与房屋修建大量消耗的木材被新型建材替代,使森林的损失得以减缓,“蜀山兀、阿房出”的毁林悲剧不再重演。目前地球上的荒漠化,正是人类过去对生物质能过度依赖与消耗造成的!由此看,解决能源与环境问题,人类必须对其生产、生活行为加以反思与节制,否则任何能源都无法解除未来危机。
正视生物质能源产业
专家认为,地球上的生物质是十分丰富的。通过生物质能转换技术可以高效地利用生物质能源,产生各种清洁能源,以替代煤炭、石油和天然气等化石燃料,保护国家有限的能源资源,减轻能源消费给环境带来的污染。生物质能源将成为未来可持续能源的重要部分,预计到2020年,全球总能源将有40%来自生物质能源。
在技术路线方面,通过一系列转换技术,可以生产出不同品种的替代能源,如固化和炭化,可以生产固体燃料,气化可以生产汽体燃料,液化和植物油提取技术可以获得液体燃料,还可以将桔杆和枝杈材等直接燃烧产生蒸汽进行发电。总之生物质种植、收集、储运、转化等各个环节,可以形成一个庞大的生物质能源产业群体。
中国生物质能源目前尚未形成产业规模,只有分散的沼气生产、乙醇加工厂和生物质直燃发电厂。沼气生产分布在农村的种养殖户中,推广的并不理想,离工业规模化使用距离遥远。以消化陈化粮为目的兴建的乙醇厂,也因原料短缺、与人争粮,缺乏经济性而歇业。
生物质直燃电厂,则因设备无专门化生产、燃料质次价高量不够而无法达到设计产能,全部陷入亏损状态,有的已经资不抵债。笔者调研了一家以棉杆为燃料的两台1.2万千瓦的生物质直燃发电厂,总投资2亿元,资本金0.5亿元。到去年底累积亏损已达0.42亿元。其主要原因既是燃料质次价高量不足,全年开机时间不到六个月。原设计燃料收集半径为30公里,10万吨,实际上收集半径已超过70公里,燃料采购量却达不到设计水平的65%。
燃料来自千家万户,运费高、水份多、杂质多,造成多次停机。在国外,生物质直燃发电是建立在现代化大农场基础上的燃料集约,而不是分散地加以收购,这才会保证原料的质、价、量稳定。中国要求每个县都上一个生物质直燃电厂,实际上造成了燃料收集半径的交叉,电厂之间的燃料收购竞争惨烈,在高成本的负面拉动下,生物质电厂无一获利。
以小农生产方式获取的分散燃料与集中的工业化发电之间,要解决的主要是燃料的集结成本问题。有人建议采用分散加工的方式,将桔杆毛料变为固体燃料,以达到规模化使用,但固体燃料高昂的加工、储运成本,在现有的电价约束之下,却使电厂难以达到财务平衡。
生物质能前景广阔,现况艰难。解决之道的着力点一是忌浮躁。不能轻易炒作与忽悠生物质能发展,理论上的生物质能转化为未来主要依靠的替代能源之一生物质能尚要突破制度、比价体系、技术进步、商业模式创新等诸多约束。二是着眼长远。现有的生物质能企业应着力构建自己的供应链系统,采购散料只是一种特别脆弱的渠道,应建立生物质速生燃料基地,拓宽燃料供应视野。三是慎投资。
篇6
关键词:生物质;化工产品;开发;应用
中图分类号:F42 文献标识码:A
生物质是能源领域常用的术语,是由光合作用而产生的各种有机体。生物能是太阳能以化学能形式贮存在生物中的一种能量形式,一种以生物质为载体的能量,它直接或间接地来源于植物的光合作用。在各种可再生能源中,生物质能是独持的,它是贮存的太阳能,也是惟—一种可再生的碳源。它可以转化为常规的固态、液态和气态燃料。化学工业耗用烃类少于整个烃类消费量的 5%,但不远的未来仍需要这些原材料。预计石油和天然气生产在 2020 年后某一时期将达到峰值。假设化学加工仍优先需用烃类,能源公司为满足这一需求将面临新的挑战。在本世纪初叶,可再生的生物资源将为化学工业提供大多数原材料。这将包括林业、渔业、动物饲养业和农业副产物。从某种意义来说,增加对这类原材料的依赖将成为必然。从长期看, 生物炼油厂可生产宽范围的下游化学品、 燃料和其他产品。据催化剂集团资源公司(CGR)分析,从生物质制取的化学品现已占化学品总销售额约 5%,现约 200 种产品由发酵制取,其中前4种产品为乙醇、柠檬酸、葡糖酸和乳酸。
1开发生物质能对中国的重要意义
1.1促进社会经济的发展和生态环境
生物质是仅次于煤炭、石油、天然气的第四大能源,在整个能源系统占有重要地位。生物质能一直是人类赖以生存的重要能源之一,在世界能源消耗小,生物质能具有可再生性。据有关专家预测,生物质能在未来能源结构中具有举足轻重的地位.采用新技术生产的各种生物质替代燃料,主要用于生活、供热和发电等方面。我国生物质能资源相当丰富,人类正面临着经济增长和环境保护的双重压力,因而改变能源的生产方式和消费方式,用现代技术开发利用包括生物质能在内的可再生能源资源,对于建立可持续发展的能源系统,促进生态环境的改善具有重大意义。
1.2 改变我国以化石燃料为主的能源结构
我国的能源生产及消费结构的共同特点是:煤炭在能源结构中长期占绝对主导地位,一般占70%以上;石油、天然气、水电等优质能源在一次能源中的比重—直在25%左右,而且随着能源供应量的增长优质能源比重近年来还有所下降;从不同地区的能源消费结构来看,由于沿海与内地经济发展水平的差异,且受运输和环境保护的制约,其能源结构也在不断优化。生物质既是低碳燃料,在其生长过程中又大量吸收。而成为温室气体的汇(sink),随着国际社会对温室气体减排联合行动付诸实施。大力开发生物质能源资源,对于改善我国以化石燃料为主的能源结构,特别是为农村地区因地制宜地提供方便能源,具有十分重要的意义。
1.3发展生物基产品可减少排放
它拥有生产低排放燃料的潜力,而且可削减运输行业的 CO2排放。 除了发展生物乙醇和其他生物燃料以减少汽油消耗外,一些公司也采用生物质为原材料生产各种其他产品,包括纺织品、塑料和清洗液等,以减少碳足迹。从事生物技术开发的 Novozymes 公司在开发生物基产品用酶方面颇有作为, 该公司生产的酶类用作有机物化学反应的催化剂, 酶类在生物质转化中起到关键作用,并且使用酶可大大降低排放。据称,每生产一份酶,可相当于减少 100~200份的CO2排放。Novozymes公司 2007 年生产了20万吨酶,从而使CO2排放减少了 2000 万吨。
2作为能源利用的生物质能资源量时影响因素
首先,生物质能资源量是受多种因素影响的是随时间变化,生物质能资源是可再生的,通过种植、增加畜禽饲养等措施,资源量可以增加,而不合理的过量消费,又会造成资源量的减少,而且这种消费对资源量的影响又有滞后性,往往在消费时并不马上表现出来;作为重要生物质能资源的农作物秸秆及农业加工剩余物资源量又接受农作物产量的影响,而畜禽饲养量也受到农作物产量的影响,因而相应的资源量也就必然受到气候等多种自然因素及市场价格等多种社会因素的影响;各种生物质能资源剩余物及其可利用成分是受人民生活水平等多种变化因素影响的,因此说,每年的生物质能资源量都受到当年各种具体因素影响的,是变化的,而不是一成不变的。
其次,生物质能资源是—种自然资源,其本身可以有多种用途作为一种重要生物质能资源的农作物秸秆:它既可以当作燃料,也可以作为饲料、肥料和工业原料,所以在研究各种生物质可作为能源使用的资源量时,就必然会涉及其在各种不同用途之间的分配比例问题,也就必然会涉及将一种生物质能资源作为能源使用的成本问题。在考虑资源量时,应该对各种成本进行比较,选择合理的用途。
最后,如同其他可再生能源一样,生物质能可利用资源量取决于各种生物质能利用和转换技术水平,评价生物质能资源可利用量必须充分考虑各种生物质能利用和转换技术的经济、技术可行性等出素:以畜禽粪便为例,除了收集上的困难外,还应充分考虑利用的可能性问题。日前主要是通过厌氧发酵工艺对其进行处理应用的,因而其可作为能源利用的部分就受到沼气池容量、效率等的限制;如果应用致密成型技术对大量被废弃的农作物秸秆进行转换,可以产生大量的高品位能源,但这些转换技术尚存一些技术问题,那些被废弃的农作物秸秆资源也只是一种潜在的可利用能源。
篇7
[关键词] 生物质燃料;分散发酵;集中精馏
[中图分类号] Q939 [文献标识码] A
1 燃料乙醇被重视的程度以及代替能源的价值
燃料乙醇指以生物质为原料通过生物发酵等途径获得的可作为燃料用的乙醇,经变性后与汽油按一定比例混合可制车用乙醇汽油。
为了支持燃料乙醇的推广和生物质能源的开发利用,我国逐步颁布了《可再生能源法》、《可再生能源产业发展指导目录》、《可再生能源发展专项资金管理暂行办法》以及《关于发展生物能源和生物化工财税扶持政策的实施意见》等法规和配套办法和规章。同时财政部印发了《生物燃料乙醇弹性补贴财政财务管理办法》和《生物能源和生物化工非粮引导奖励资金管理暂行办法》的通知。这些政策对我国生物质燃料乙醇的发展、增加能源供应、保障能源安全、保护生态环境、促进经济和社会的可持续发展具有极大的促进作用,
中国作为一个能源生产和消费的大国,研究、开发和生产生物质能源,积极寻找石油燃料的替代品,逐渐减轻乃至摆脱我国经济发展对矿物质能源的依赖,是我国经济和社会发展的一项重大战略任务。发展生物质燃料乙醇,一方面可缓解我国石油紧缺的压力,另一方面燃料乙醇作为一种清洁、可再生能源,对减少大气污染,降低汽车尾气中一氧化碳的排放量,提高中心城市的空气质量大有裨益。发展生物质燃料乙醇也是从根本上解决我国的能源问题,实现经济和社会的可持续发展、落实科学发展观、建设资源节约型社会的基本要求和战略选择。
2 燃料乙醇在中国的路程
我国在1998年决定较大规模的发展乙醇汽油,当时的初衷是为了消化一部分陈化粮,给农民增加一些收入,用部分严重挤压的粮食生产乙醇掺入汽油中以供汽车燃用。由中央财政投入国债资金418亿元人民币,在河南、安徽、吉林和黑龙江先后建设了4套总计年核准生产能力为102万吨燃料乙醇的生产装置,批准多家公司准入。至2006年9月,继国家9省区推广车用乙醇汽车后,国家发改委又计划在全国更大范围内推广燃料乙醇,但后来事态的发展却出乎意料。
第一代燃料乙醇的生产主要来自于玉米、水稻、甘蔗、大豆等粮食作物,随着连续几年乙醇汽油推广试点范围的扩大,陈化粮早已消化殆尽,乙醇原料的来源开始转向以新粮为主。中国生产乙醇的主要原料是玉米和高粱,其既是人们的食物,也是家畜的重要饲料,随着生产乙醇对这一类粮食的大量消耗,引起粮食价格的上涨,其中之一的后果,就是引起油价上涨,进而波及其他食品价格上升,引发了一系列的连锁反应。鉴于事态的严重性,国家发改委和财政部立即发文,暂停用粮食生产乙醇燃料项目,提出非粮生物乙醇是今后的生物乙醇发展的方向,并确立了“不与人争地,不与粮争田”的原则。
在粮食安全的前提下,我国开始停止粮食乙醇燃料项目,大力发展非粮燃料乙醇。2007年底,经国家发改委批准,由中粮集团在广西北海合浦投资成立的以木薯为原料的燃料乙醇生产企业一期项目(年产能20万吨燃料乙醇)正式投产,这是我国第一家经国家批准并投入生产的以非粮作物为原料的燃料乙醇企业,也标志着我国燃料乙醇的发展路线正在真正走向“非粮化”。
在生物质一代燃料走出与粮争地的困境之后,全世界范围内的第二代生物质燃料技术研发及产业化发展也渐入佳境。国内对于二代生物燃料利用的途径也向多元化方向发展。第二代生物燃料技术是指以麦秆、稻草和木屑等农林废弃物或藻类、纸浆废液为主要原料,使用纤维素酶或其他发酵手段将其转化为生物乙醇或生物柴油的模式。业内专家一致指出,利用非粮原料将是我国发展生物燃料的根本方向。
3 生物质燃料的优势――利用废弃物代替粮食
生物质能源是可再生的且产量巨大的新型能源。中国土地面积辽阔,生物质潜在的资源量非常巨大,发展生物质燃料具有极大优势。目前,发展生物质燃料乙醇主要采用农业生物质资源,以农业秸秆、稻草和木屑等农林废弃物或藻类、纸浆废液为主要原料,使用纤维素酶或其他发酵手段将其转化为生物乙醇或生物柴油。
用可再生能源农作物秸秆逐步替代不可再生能源是未来能源总的发展趋势。生产燃料乙醇,除了它本身的经济性及对农业、能源的好处之外,还有一些明显的关联经济效应。一方面,燃料乙醇有着巨大的环保效应,随着它的推广,可以大量节省大中城市治理空气污染的费用。燃料乙醇作为一种清洁、可再生能源人所共知,其按10%的比例与车用汽油掺混,一氧化碳排放量可减少30%以上,由3万吨燃料乙醇掺混成的数十万乙醇汽油可减少一氧化碳排放量近百万吨,对改善城市,特别是中心城市的空气质量大有益处。
加快生物质燃料的开发利用,不仅能有效解决农业目前废弃秸秆处理难,禁烧难的问题,并且对于有效增加能源供应,减少煤炭等化石能源资源的消耗,保护环境,促进农村经济的发展,建设资源节约型、环境友好型社会等都具有重要的作用。
4 生物质燃料生产的困境
发展生物质燃料乙醇相比传统煤炭、石油具有极大优势,但它的规模化发展也是面临着较多问题。一个企业的发展讲究的是利润,如何把握这个合适的利润点,就要考虑各个环节生产成本的降低。
以甜高粱为例,通过对比甜高粱生产乙醇发酵试验结果可知,固体发酵法生产95%乙醇的成本比液体发酵法低284元/t,比粮食乙醇低417元/t。因此,利用甜高粱生产乙醇宜采用固体发酵法。虽然甜高粱加工建设项目的经济和社会效益显著,但运输是个大问题,据了解,每3到4吨粮食可产1吨乙醇,而同样的乙醇却需要14到16吨甜高粱秆,运输量很大,造成运输成本过高。另外,甜高粱的收割期约半个月左右,大规模的集中收割和运输会导致劳动力紧张,同时甜高粱秸秆的贮藏也一直是甜高粱燃料乙醇加工过程中存在的技术难题。由于茎秆富含糖分,含水量高,收获后极易受微生物感染,容易发生霉烂和干化,影响酒精的后续发酵。粉碎的茎秆贮藏4―6天,糖分损失高达50%。压榨后的汁液也不能长时间贮存,汁液如果贮藏不好,极易酸败,也会影响到后续的酒精发酵。为了延长加工周期,采取了冷冻、茎秆去叶切成短段冷藏、用塑料薄膜覆盖并充以二氧化硫贮藏、窖藏、气调、干燥等贮藏方法,然而对于数量巨大的甜高粱茎秆来说,这些方法不仅难以实施,更主要的是大大增加了成本和能耗。欧盟对甜高粱收获后的茎秆采用劈开、切段和整株3种方式进行贮藏试验,发现整株露天贮藏27天或25―40 cm长的切段贮藏19天,都可保持原含糖量的90%。如果劈开则必需收获后马上加工。因为发酵循环周期短,即使效果较好的整秆贮藏虽然可以延长茎秆的贮藏期,但还是无法消化完庞大的原料,不能达到生产的要求。
同时,甜高粱秸秆燃料乙醇产业链长,涉及原料生产、原料初加工和精深加工等多个环节,如果一个地方建一个几万吨乃至几十万吨的现代化大规模工厂,当地的秸秆原料就无法满足企业生产的需要,可能需要外运,就会造成运输半径大、运输量大,运输成本、耗能增加,企业产品的成本就会大幅上升,同样前期也需要大量的现代化设备投资,那就成了“高射炮打蚊子”,一边生产能源,一边浪费能源。因此,要发展这个产业必须因地制宜的解决问题,必须考虑整个产业链的发展模式。
5 分散发酵解决原料、集中精馏解决燃料成本问题
生物质燃料的发展是一个产业链如何去实行的问题,必须方方面面都要考虑到,生产成本的降低是关键,它不可能像其他行业一样通过大规模生产来取得高效益,只能去寻找它的最佳利润点,经过实践和市场调研,生物质燃料要想发展,取得好的效益,必须走分散发酵、集中精馏,发展循环经济产业之路。
5.1 建立阶梯级开发模式,走分散发酵、集中精馏之路
根据发展非粮生物燃料乙醇产业的农林业属性、多样性和地域性等特点,把产业链重心向能源植物种植和原料生产倾斜,走“分散加工转换+集中精炼调配”之路,建立化工企业带动原料初加工企业,原料初加工企业带动原料生产基地的模式,这个模式的核心就是分散发酵,集中精馏。
每个初加工企业建设的规模应以本地区所能满足的原料供应为基础,一方面通过因地制宜,减小设计规模,分散种植,计算出合理的运输半径,为将来控制企业的生产成本打好基础。根据考察和核算,以乡、镇或县为单位,以方圆15公里为半径建立一个原料初加工企业。根据企业的需要可在方圆15公里半径内建立1个粗酒加工厂、多个糖液收购站,在当地直接对秸秆进行榨汁处理,其他物质按就近处理原则加工(烘干、晾晒、贮存等),从而达到降低运输成本的目的。根据实际核算,在方圆15公里范围内可种植5 000亩甜高粱,这样就可建立一座年生产规模为2 000吨粗乙醇(55%乙醇含量)和10 000吨秸秆酒糟饲料的加工厂。另一方面,合理的运输半径可解决运输成本问题和贮存问题,我们可以就地收割贮存,一部分直接进入生产环节,消耗原材料;另一部分可以进行榨汁贮存,然后进行进一邹动物饲料,解决地方牛羊饲料困难,最后集中在一个区域精馏成为高浓度的符合要求的燃料乙醇,解决能源原料问题。若配套建立30个这样的粗酒加工厂,就可在一个地区建立一个年产3万吨规模的燃料乙醇精馏厂(龙头厂),每个粗酒厂所生产的粗酒精可运输到精馏厂进行集中精馏,达到国家所要求的燃料乙醇的标准,又进一步解决原料运输成本高和原料贮存难的问题。
5.2 开发生物质能源作物副产品,提高产业的整体经济效益
企业要想持续发展,必须走循环产业道路,把原料“吃干榨净”,发展“资源―产品―废弃物―再生资源”为主要内容的物质循环型经济发展模式。
以生物质能甜高粱产业生产燃料乙醇为例,可以把种植业、粗酒生产、养殖业和双孢菇种植、沼气工程、有机肥加工工程相结合,形成循环加工体系。种植业生产的甜高粱秸秆发酵生产粗酒;粗酒用于集中精馏;粗酒生产过程中产生的酒糟可为养殖业提供饲料;养殖业产生的粪便、养殖废水作为双孢菇工厂化种植、沼气工程的原料;利用种植双孢菇产生的菌糠和沼渣生产有机肥;有机肥和沼气工程产生的沼液进行种植甜高粱,从而形成循环经济链,使资源得到高效利用,不仅能解决当地养殖户饲料困难,还能消除废弃物排放,实现清洁生产。
6 分散发酵集中精馏利国利民利社会,促进社会和谐
采用分散发酵,集中精馏模式,即每个粗加工点实际上就是一个乡镇企业,每年不仅为国家和地方增加了财政收入,还可以保障就业,不但对“三农”的发展有拉动效益和环保效益,对国家来说还有经济效益和社会效益。
分散发酵,集中精馏,利用甜高粱发展非粮燃料乙醇产业,一方面可以把大量的小麦秸秆、玉米秸秆配合甜高粱茎秆进行综合消化,不消耗粮食,解决禁烧难的问题,而且甜高粱产业需要由农民大量种植、并参与收获、运输、初加工等环节后,形成一个完整的产业链,解决农村大量剩余劳动力的问题。这比搞几十万吨的工厂更适合中国农村的国情;另一方面也可以作为县域、乡域或村域经济的支撑点,也可以促进当地经济结构的转变,拉动相关的产业发展,调整周边和当地多元化产业的发展,推动农业产业化结构,带动农民快速脱贫致富。在促进就业的同时,也降低了产品的生产成本,增强竞争力。
分散发酵,集中精馏,发展非粮燃料乙醇不仅可以替代燃料,减少石油进口,而且还填充了粮食燃料乙醇停止发展后留下的市场空白,具有区域特色农产品工业化、科技化、产业化发展的全国示范效应。一方面符合国家和地方产业政策,既解决了燃料乙醇非粮原料短缺的问题,又可调动农民在中低产田、农村边际土地上开荒种植的积极性,是兼顾粮食安全、能源安全和促进农民增收的理想非粮燃料乙醇发展模式。另一方面可以更充分利用本地资源,稳定农业产业,发展地方产业,推动地方经济发展,促进社会和谐,对建设起一个国家级的“生物质能源基地”,发展可持续循环经济产业链起到十分重要的作用。
参考文献:
[1]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社,2003(5).
篇8
【关键词】生物质能源;开发;应用
提到能源,人们通常会想到煤炭、石油、天然气,抑或是风能、水能和核能。人类所面临的能源危机日益严峻,同时由于石油价格的不断攀升和环境污染的日益严重,使得过分依赖石油作为主要能源的我国面临着越来越大的能源压力。此时,一种人们司空见惯却并未过多留意的能源――生物质能源,正悄然兴起。生物质能源是植物通过光合作用而固定于地球上的太阳能,通过生物质能转换技术可以高效地利用生物质能源,生产各种清洁燃料替代矿物燃料,以减少人类对矿物能源的依赖,保护国家能源资源,减轻能源消费对环境造成的污染。目前,世界各国,尤其是发达国家,都在致力于开发高效、无污染的生物质能利用技术。专家预测,生物质能源将成为未来能源的重要组成部分,到2015年,全球总能耗将有40%来自生物质能源。
1 我国生物能源发展的必要性
能源是工业化社会经济发展过程中的 “ 血液 ”,没有充足的能源供应,社会经济是难以整体持续发展的。按目前的水平开采世界已探明的能源,煤炭资源尚可开采100年,石油30~40年,天然气50~60年。生态危机是当今社会已经面临的巨大挑战。石化能源燃料燃烧时所产生的有害物质,严重污染了环境,导致温室效应、全球气候变暖、生物物种多样性降低、荒漠化等诸多生态问题,严重影响着全球的资源安全和经济持续发展,威胁着人类的生存。近些年来,我国能源工业的发展相对滞后于国民经济总体发展的步伐,我国在21世纪,能源工业面临着十分严峻的挑战。与有限的化石能源相比,生物能源具有可再生和取之不尽的优势。我国能源生物都种植在荒岭、丘地等地带,能够大量利用农村的荒地、盐碱地、沼泽地,就地大量解决农村劳动力就业,提高农民收入。在能源紧缺状况越来越严重的情况下,发展生物能源对缓解能源危机,促进经济健康迅速发展尤为重要。
生物能源较传统矿特能源具有许多优点:
①原料来源广泛,可利用各种动、植物油作原料。
②生物能原作为传统能源的代用品使用方便,不需要因为生物能源的使用去更换新的机器零件,减少了使用成本。
③可得到经济价值较高的副产品以供化工品、医药品等市场。
④相对于传统能源,生物能源贮存、运输和使用都很安全(不腐蚀溶器,非易燃易爆);可再生性(一年生的能源作物可连年种植收获;多年生的木本植物可一年种植,维持数十年的经济利用。同时,生物质可在自然状况下实现生物降解,减少对人类生存环境的污染。
2 我国发展生物能源的资源状况
诺贝尔奖获得者,美国加州大学的化学家卡尔文于1986年在加州福尼亚种植了大面积的石油植物,每公顷可收获120桶一140桶石油。他的成功,在全球迅速掀起了一股开发研究石油植物的浪潮。许多国家纷纷建立一种全新的石油生产基地--石油植物园。美国种植有几百万英亩的石油速生林;菲律宾有18万亩的银合欢树,6年后可收1000万桶石油。美国加州的“黄鼠草”每公顷可提炼1000公升石油。
自二十世纪八十年代以来,美国等国进行了能源植物种的选择,富油植物的引种栽培、遗传改良以及建立“柴油林林场”等方面的工作与研究。在能源植物特性和植物燃料油的研制上,在获得植物燃料油途径、燃料油使用技术上都取得了较大进展。石化能源价格的不断上涨,主要油料作物总产量迅速增加而导致油料农产品滞销,为各个国家把部分农业用地转为可生产能源的原料作物提供了有利条件。
我国人均耕地不到0.1公顷,要完全以农产品为原料生产生物质燃料油是不可能的。我国必须立足现实,大力发展自己生物能源产业。我国有广大的山区、沙区可供栽种乔灌木油料植物,作为生物质燃料油的原料。这不仅可以为我国的生物质燃料油工业提供丰富的可再生原料,改善生态环境,还有利于农村产业结构调整,增加农民收入,解决部分农村剩余劳动力的就业问题。近10年来,我国虽然有一些研究单位开展了这方面的研究和生产,但是与世界先进国家比较,仍然有一定的差距。我国政府有关部门根据我国国情,已采取相应措施,推动我国生物质能源的研究和产业化进程。
我国含油植物资源丰富,分布范围广,共有151个科、1553种含油植物,其中种子含油量在40%以上的植物有154种,但是可用作建立规模化生物质燃料油原料基地的乔灌木种却很少;分布集中成片可建原料基地,并能利用荒山、沙地等宜林地造林,建立起规模化良种基地的生物燃料油植物更少。因此,应对我国可以作为生物质燃料油的主要木本能源植物的资源分布、生长及利用状况进行了调查研究和良种选育,在现有资源的基础上建立原料供应基地和良种繁育基地,并在此基础上,对木本能源植物的生物学特性和经济性状进行研究,与有关企业合作,对能源植物的性能、生产工艺、技术设备进行系统配套研究。
我国能源现状是:2003年进口石油9000多万吨,进口依存度为36%,预计2020年进口达2亿吨,进口依存度55%。针对上述情况,采取的对策及战略目标是:节约传统能源、发展可再生能源、发展新型能源,2020年生物能源替代25%进口石油,其中燃料酒精1500万吨,生物柴油1500万吨,材料和化工原料用油1500万吨,二氧化碳排放减少2亿吨。因此,预计在今后15年将是生物炼制产业的快速成长期,生物炼制将在提高能源安全和生态环境质量方面发挥越来越大的作用,逐步成为支柱产业,促进农村经济发展和生物经济时代的早日到来。
我国生物质资源利用包括:农作物秸秆(2000年测算的总产量为5.26亿吨)、林业废弃物(约为3134万吨)、薪炭林(328.25万m3)、畜禽粪便(2002年总量近15亿吨)、高浓度工业有机废水(25亿吨)、油料植物(含油植物有400多种)、生产燃料乙醇所用淀粉(2001-2003全国薯类年均总产量3000~3500万吨;2001-2003年全国粮谷类年均总产量17.5亿吨)和糖类原料(2000-2003年甘蔗平均年产量为7500万吨)等。我国的生物质能发展规划,即到2020年可再生能源发电装机达到1亿千瓦,占全部发电装机构成的10%以上,成为化石燃料发电、大水电和核电之后的第四主力电源,其中小水电最大,为5000万千瓦、风力发电次之,为3000万千瓦、生物质发电2000万千瓦。以液体燃料为重点,开发以农作物茎杆为主体原料的生物酒精、生物油等技术,到2020年形成替代石油产品1100万吨的能力。以商品化为目标,开发和发展以村落和小城镇为依托的生物质气化、发电联合系统,使得商品化的可再生能源供应量达到1亿吨煤当量,为农村和小城镇居民提供成本经济、质量合格的气体燃料和电力供应。从资源状况分析规划实施的可行性出发,可重点发展沼气发电、生物燃油、生物质能发电、城市固体垃圾发电等项目。
中国已具备大规模发展生物能源的条件:(1)原料非常丰富,据估算,全国每年产生7亿多吨秸秆,可转化为1亿吨生物燃料酒精;(2)技术积累阶段已经完成,关键技术基本成熟或接近成熟可边研究边产业化。通过转基因技术可以选育出大量抗盐、抗旱等能源植物,适合在恶劣的生态环境下生长。
3 我国发展生物能源应注意问题
篇9
关键词:生物质 生物质电厂 秸秆 收集
一、生物质能源概述
生物质能是动植物和微生物通过光合作用形成的。它归根结底还是太阳能的一种表现形式。因此从理论上讲这种能量和太阳能一样是取之不尽用之不竭的,并且可以再生。生物质能目前在国内外已经得到了广泛的利用,并且将逐步发展壮大下去。生物质是全球的第四大能源,前三个能源分别为炭、石油和天然气。而生物质能的燃料主要包括有小麦、玉米、棉花和高粱等农作物的秸秆,也有的用木材加工的废料。生物质是可再生能源,这种能源既环保又很清洁。虽然生物质在地球上的总量是很多的,分布也非常广泛,但得到利用的却很少很少,具有着非常大的潜力。
生物质能源中的碳和硫含量是很少的,因此燃烧产生的有害气体也是很少的,并且由于生物质在生长中也会吸收很多二氧化碳,因此不会影响温室效应的加剧。生物质能源的另一个重大好处便是方便运输和储存,由于一般的可再生能源例如风能和太阳能等都是不可运输不便存储的。生物质能中所占比例最大的要数农作物的秸秆了,我国农作物秸秆资源是非常丰富的。不过虽然丰富,但农作物秸秆却也有着储运不方便、资源分散、和能源密度低等缺点。由于这些缺点导致到目前为止利用率依旧不高。
二、目前国内外生物质电厂发展状况
目前世界上都在竭力将生物质能源运用到各个领域中,其中非常成功的领域要数生物质发电技术了,以高效直燃形式发电,以这种方式用于电厂的技术在国外已经非常成熟了。由丹麦率先提出了农林生物质进行高效直燃发电技术,并且提出后立刻被联合国列为了重点项目。虽然我国的生物质发电才起步不久,不过也已经有一些以生物质发电为主的电厂相继建成并且投入使用了。
1.国外生物质秸秆发电现状
发达国家一直竭力于开发可再生能源,其中丹麦国家的BWE公司率先研发了生物质发电技术,并且取得了非常大的成功..到目前为止,丹麦全国已经有将近140家的秸秆发电厂了。这种发电技术为丹麦国家带来了非常高的收益,也使得丹麦的石油年消费量下降了好多。随着丹麦国家的成功案例,使得接下来荷兰等欧洲国家相继开始投入到生物质发电研究中。
2.国内生物质秸秆发电现状
我国是农业发展大国,秸秆的资源可以说是非常丰富的,如果不能很好的利用的话就实在太可惜了。目前农民都把大部分的秸秆直接在田里燃烧掉,这样是非常浪费资源的,同时对于环境的污染也是不容忽视的。如果这些秸秆资源都能够投入使用的话,结果一定很不一样,农民既可以得到另一份的收入,也可以为生物质发电厂提供更多的能源,同时对于环境的保护也是有一定的影响的。
我国是从2003年开始有生物质发电厂项目的。截止到2007年底,一项不完全统计显示我国已经批准有87个生物质发电项目,总的装机容量也是达到了220万千瓦,示范项目地点总体分布于我国的北部,例如山东、黑龙江、辽宁、吉林、新疆等等。但我国的生物质秸秆发电却也存在着一些问题,这些问题导致我国的生物质发电技术难以以更快的速度发展壮大。首先是秸秆收购上存在着相应的困难。由于秸秆收集的劳动量是很大的,因此很多农民选择进城打工获取更高的收益,有的在厂地周边的人又本身生活很富裕,也不在乎收秸秆的一点收入。现如今农民选择的收割方式也是非常不利于秸秆收集的,农民基本上都是直接取走玉米,将秸秆留在原地。还有一个问题就是运输方面很困难,秸秆本身是很轻的,体积又非常大,因此非常不利于长距离的运输。同时生物质发电电厂的投资量都是非常大的,设备基本上都需要进口,基本上生物质发电厂都处于亏本状态。
我国发展生物质电厂是非常必要的,因为首先我国的生物质能源的资源是非常丰富的,我国的农作物秸秆大约有3亿顿可以作为燃料,加上其他生物质资源如林木废弃物等大约有6亿吨的生物质可以作为燃料使用,这个总量可以说是非常大的。发展生物质能同时也起到了保护环境的作用,我国由于燃烧秸秆等造成的环境污染还是非常严重的,将秸秆进行统一收集统一处理是一个非常好的环保手段。另一方面农民也可以因此而获得更高的收益。
三、生物质电厂燃料秸秆收集情况
由于燃料的难以供应,导致我国的很多生物质电厂都面临着亏损状态,甚至面临着破产的困境。生物质发电厂一直以来是那么的受众人恩宠,但现如今却全部亏损,最主要的原因就是秸秆的收集状况非常困难。
生物质电厂找不到秸秆资源的最主要的原因就是秸秆的收集非常难,很多发电厂都不得不使用树皮、木屑等作为替代原料。一家生物质发电厂的负责人指出,按原先的计划,他们需要用30多万吨的秸秆作为燃料用于发电,现如今却只有五分之一。他们只好通过其他燃料代替,例如一些树皮、稻壳等等,可谓是“生活非常艰难”。
据相关部门的了解,生物质发电厂的收购费用已经占据了生产成本的百分之八十左右,可谓基本上都放在了燃料的收集上。许多专家认为,政府应该考虑到秸秆的利用情况,使规划布局变得更加合理,并且提出相应方案对生物质发电厂给予相应的扶持和帮助。这样我们的生物质电厂才能发展的更加好。
总的来说,随着地球上能源的逐渐短缺,生物质能源这种可再生能源的利用是势在必行的,一个国家要想持续发展,一定到想办法利用起生物质能源来。生物质发电厂现如今处在了非常艰难的时刻,希望能够通过政府和社会解决秸秆收集难的问题,帮助生物质电厂不断发展壮大下去。
参考文献
[1]王志刚.基于12MW秸秆发电工程控制方案的研究[J].科技创新导报.2010年07期.
[2]张卫杰.关海滨.姜建国.李晓霞.闫桂焕.孙荣峰.许敏.孙立.我国秸秆发电技术的应用及前景[J];农机化研究;2009年05期
篇10
能源是人类赖以生存和社会进步的重要物质基础,能源的每次重大突破,都会引起生产和社会的重大变革,钻木取火,使吃熟食和取暖成为人类生活的必须。后来,人类直接把埋藏在地下的煤、石油作为能源,导致了产业革命。随着科学技术的进步,在初级能源的基础上,电力作为“二次能源”的出现,又进一步变革了人类文明,文明一般是指人类能创造的物质财富和精神财富之和,它是人类活动的积极成果,是社会及其文化发展到一定阶段的产物。人类文明的历史是人对自然与社会关系的历史。人类文明的每一步,都和能源的利用息息相关。
新能源开发的必要性、重要性
目前,世界上广泛应用的还是矿物能源,矿物质能源的再生周期长,对大气污染严重,为了寻求再生周期短,适应生态平衡,对环境污染影响小的能源,人类从上个世纪就开始致力于新能源开发和研究,如今已经取得了很显著的进展。
所谓新能源,实际上是相对于常规能源而言的,常规能源如煤炭、石油天然气等,在人们开始利用的时候,也曾经叫做新能源;由于后来获得了广泛的应用,而逐渐成为常规能源。在常规能源造成的环境污染和资源日益紧缺的情况下,新能源的开发就显得更加的迫切,更为重要了。
常规能源使用所带来的污染和灾害
常规能源主要是指那些矿物能源,矿物能源目前仍是世界上主要的能源,它占世界应用的95%,使用范围仍以每10年20%的速度增长,矿物能源的大量使用,使大气受到了严重污染,气候产生了不利的变化,自然灾害就会频频发生。
常规能源面临枯竭的危机
能源是人类社会存在与发展的物质基础,过去200多年建立在常规能源即煤炭、石油、天然气等化石燃料基础上的能源体系,较大的推动了社会的发展。然而,常规能源一方面使环境不断的恶化,另一方面又要面临着资源日益枯竭,由于世界工业的迅速发展需求量越来越大,又因政治危机开采矛盾,不时地出现能源危机,所有这些问题已经受到人们的关注和冷静的思考。
生物质能源的分类
生物质能源作为新能源种类繁多,如何进行分类,有着不同的标准,例如:依据是否可以大规模代替常规化石能源,而将其分为传统生物质能和现代生物质能。广义地讲,传统生物质能指在发展中国家小规模应用的生物质能,主要包括农村生活用能,如薪柴、稻草、稻壳及其它农业生产的废弃物和畜禽粪便等;现代生物质能是指可以大规模应用的生物质能,包括现代林业生产的废弃物、甘蔗渣和城市固体废物等。
以下是依据来源的不同,将适合于能源利用的生物质分为林业资源、农业资源、生活污水和工业有机废水、城市固体废物及畜禽粪便等五大类。
⑴林业资源。林业生物质资源是指森林生长和林业生产过程中提供的生物质能源,包括薪炭林、在森林抚育和砍伐作业中的零散木材、残留的树枝、树叶和木屑等;木材采运和加工过程中的枝杈、锯末、木屑、梢头、板皮和截头等;林业副产品的废弃物,如果壳和果核等。
⑵农业资源。农业生物质资源是指农业作物(包括能源植物)以及农业生产过程中的废弃物。如农作物收获时残留在农田内的农作物秸秆(玉米秸、高粱秸、麦秸、稻草、豆桔和棉杆等)。其中还包括了农业加工业的废弃物,如农业生产过程中剩余的稻壳等。能源植物质泛指各种用以提供能源的植物,通常包括了草木能源作物、油料作物、制取碳氢化合物植物和水生植物等几类。
⑶生活污水和工业有机废水。生活污水主要由居民生活、商业和服务业的各种排水组成,如冷却水、洗涤排水、盥洗排水、洗衣排水、厨房排水、粪便污水等。工业有机废水主要是酒精、酿酒、制糖、食品、制药、造纸及屠宰等行业生产过程中排出的废水等,其中都富含有机物。
⑷城市固体废物。城市固体废物主要是由城镇居民生活垃圾、商业、服务业垃圾及少量建筑业垃圾等固体废物构成。其组成成分都比较复杂,受当地居民的平均生活水平、能源消费结构、城镇建设、自然条件、传统习惯以及季节变化等因素影响。
⑸畜禽粪便。畜禽粪便是畜禽排泄物的总称,它是其他形态生物质(主要是粮食、农作物秸秆和牧草等)的转化形式,包括畜禽排出的粪便、尿及其与垫草的混合物。我国主要的畜禽包括鸡、猪和牛等,其资源量与禽牧业生产规模有关。例如根据这些畜禽的品种、体重、粪便排泄量等因素,估算我国每年畜禽粪便排放总量达25亿吨。
生物质能源在农村建设中的利用技术
生物质能的载体—生物质是以实物的形式存在的,相对风能、水能、太阳能和潮汐能等,生物质能是唯一可存储和运输的可再生能源。生物质的组织结构与常规的化石燃料相似,它的利用方式与化石燃料类似。常规能源的利用技术无需做大的改动,就可以应用于生物质。但生物质的种类繁多,分别具有不同的特点和属性,利用技术远比化石燃料复杂与多样,除了常规能源的利用技术以外,还有其独特的利用技术。
生物质能转化利用途径主要是包括燃烧、热化学法、生化法、化学法和物理化学法等。可转化为二次能源,转变为热量或电力。固体燃烧(木炭或成型燃料)、液体燃料(生物柴油、生物原油、甲醇、乙醇和植物油等)和气体燃料(氢气、生物质气和沼气等)。
⑴生物质燃烧技术是传统的能源转化的形式,是人类最早利用的能源,生物质燃烧所产生的能源可应用于炊事、室内取暖、工业过程、区域烘热、发电及热电联产等领域。炊事方式是最原始的利用方式,主要应用于农村地区,效率最低,一般在15%~20%左右。人们通过改进现有炉灶,以提高燃烧效率及热利用率。室内取暖主要运用于室内加温,此外还有装饰及调节室内气氛等作用。工业过程和区域供暖主要采用机械燃烧方式,适用于大规模生物质利用,效率较高;配以汽轮机、蒸汽机、燃气轮机或斯特林发动机等设备,可用于发电及热电联产。
⑵压缩成型是利用木质来充当黏合剂将农业和林业生产的废弃物压缩为成型燃料,提高其能源的密度。是生物质预处理的一种方式。生物质压缩成型的设备一般分为螺旋挤压式、活塞冲压式和环模压成型。将松散的秸秆、树枝和木屑等农林废弃物挤压成固体燃料,能源密度相当于中等烟煤,可明显地改善燃烧特性。生物质成型燃料应用在林业资源丰富的地区、木材加工业、农作物秸秆资源量大的区域和生产活性炭行业等。
⑶热化学法包括热解气化和直接液化。热解是指在隔绝空气或通入少量空气的条件下,利用热能切断生物质大分子中的化学链,使之转化为低分子物质的热化学反应,热解的产物包括醋酸、甲醇、木焦油抗聚剂、木馏油和木炭等产品。其中,快速热解是一种尽可能获得液体燃料热解的方法,其产物在常温下具有一定的稳定性,在存储、运输和热利用方面具有一定的优势。
⑷气化是以氧气(空气、富氧或纯氧)、水蒸气或氢气等作为气化剂,在高温的条件下,通过热化学反应将生物质中的可燃部分转化为可燃气(主要为一氧化碳、氢气和甲烷等)的热化学反应。。
⑸液化是把固体状态的生物质经过一系列化学加工过程,使其转化成液体燃料(主要是指汽油、柴油、液化石油气等液体烃类产品,有时也包括甲醇。乙醇等醇类燃料)的清洁利用技术。