数控编程方式范文

时间:2023-10-23 17:34:55

导语:如何才能写好一篇数控编程方式,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

数控编程方式

篇1

关键词:数控机床;数控编程;后置处理

目前的数控机床自带有编程程序,可是有时自带的编程程序不能满足复杂的编程需求,这就要求编程人员对数控编程作后置处理并传输。

1 基于网络的数控编程需要处理的参数

要用网络的数控方式编程,先需了解数控机床编程需要处理的对象。

数控编程要应用多轴加工的方式处理对象。过去,机床会应用两轴加工的方法,即Z轴固定,X与Y轴为可变座标轴,这种加工的方式过于粗放。目前人们应用了五轴机床三轴联动加工的方式。数控编程的编程对象即为五轴。数控编程的加工原理为右手笛卡尔坐标系为标准加工;标准座标轴原点为基础,该参数不可变,其余参数可变,数控编程需用程序控制可控参数;数控编程要用程序描述的方式控制刀具行动。数控编程具体的处理对象为刀位轨迹、切削工具、加工方式这三项内容。

数控编程人员要针对作业的需要了解编程后置处理的范围,给出编程的方案、调整编程的参数、在计算机上做好编程模拟实验,待编程模拟实验的结果满足数控机床加工的需求后,方可将上传数控机床加工的程序,让数控机床以此程序为依据开展生产作业。

2 基于网络的数控编程需要应用的平台

构建网络平台――要做好数控机床的后置处理与传输,需要网络的支持。比如数控机床需要下载配套的后置配程软件或者与之相关的插件等。现代的数控机床都自带有连接网络的串行通信插口,在开展数控后置处理时,需让数控机床连上网络。

构建硬件平台――数控机床本身即为一个硬件系统,只要数控机床编程人员仔细阅读数控机床的说明书,就能掌握数控机床的硬件操作要点。比如RS-232串行口的数控机床可应用摭展卡与数联网连接。此时扩展卡可将数控机床的通信协议转换为以太网的通信协议,让数控机床可以接受互联网中的信息。如果数控机床自带有DNC智能插口,那么数控机床可以直接接受互联网的信息。

构建软件平台――要完成数控机床的后置处理工作,就需要给数控机床一个后续编程的环境。为数控机床提供网络环境与硬件环境的目的,实际上就是为了让数控机床能够下载DNC集成系统,数控编程人员需在该集成系统中完成数控编程后置处理工作。如果数控机床没有DNC集成系统,就需下载该系统;如果数控系统自带DNC集成卡,则可仅需完成DNC集成系统的升级。

3 基于网络的数控编程后置处理的方法

数控机床一般自带有简易编程的功能,只是人们应用数控机床生产复杂的机械时,可能现有的数控编程命令不能满足人们特殊的生产需求,此时人们就要应用编程后置处理的方法完善这类程序,这个过程,就要依靠数控机床的后处理器完成。数控机床的后处理器就是要把人们下达的特殊指令转达为数控机床能够理解的命令。数控机床的后处理器具有接口功能、NC程序生成功能、专家系统功能、反向仿真功能,应用后置处理器,人们可以了解下达的指令是否可以满足数控生产的需要。

当人们设置好数控编程平台以后,人们要用编程的方式完成数控机床的后置处理。过去,人们要应用G语言为数控机床编程,这种编程方式不够直观,若未受过专业编程训练的工作人员可能不能完成编程操作。现在人们设计了一套宏命令指令串,这些指令串中自带有数控操作命令,人们如果要完成数控编程的后置处理工作,只需要给将这些宏命令串组合成程序指令,就可完成编程操作。以CAXA-ME软件为例,该软件自带的宏命令串共计有35个:01――当前后置文件名POST-NAME;02――当前日期POST-DATE;03――当前时间POST-TIME;(下略)……

数控机床编程人员只需要向宏字符串下达程序操作指令,编写程序头,下达换刀指令,即可应用编程的方式完成特殊的数控操作。在这个过程中,编程人员需要通过编程的方式控制文件的长度、控置行号、控制编程的方法、数值的格式、圆弧的控制、做好文件扩展名的设置。

以编程人员要编写一个程序名为test1的文件,它的文件序号为1234为例,该程序的开始编号为100,而增量为2,刀具号为01号,主轴的转速设置为每秒1500r,该程序的后置步骤可描述为表2:

数控编程人员处理完程序以后,可传输编写的程序,该程序通过后置处理器的验证以后,若证实该程序能满足数控生产的需求,该程序即可被应用。

4 总结

数控编程人员以此方法可对数控机床的程序作后置处理与传输,应用此方法,数控编程人员可编写出较为复杂的数控生产程序。

参考文献:

[1]范兴柱,王金伟,栋,楼佩煌,叶文华,戴勇.集成制造车间生产控制的小型DNC系统技术研究[J].机械制造与自动化,2001(05).

篇2

关键词:数控编程;工艺分析

数控机床是一种使用数字信息控制机床按给定的运动规律进行自动加工零件的机电一体化加工设备。数控加工的实质就是通过用特定方式下的数字信息去自动控制机械装置进行工作。数控机床是数字控制技术与机床相结合的产物,机床数控技术是通过数控机床加工技术而实现的,应用数控技术的关键在于用好数控机床。

数控编程概述

在普通机床上加工零件时,一般是由工艺人员按照设计图样事先制订好零件的加工工艺规程。在工艺规程中制订出零件的加工工序切削用量机床的规格及刀具夹具等内容。操作人员按工艺规程的各个步骤操作机床,加工图样给定的零件。也就是说零件的加工过程是由人工完成.例如开车、停车、改变主轴转速、改变进给速度和方向、切削液开、关等都是由工人手工操纵的。

数控机床与以上机床是不一样的。它是按照事先编制好的加工程序,自动地对被加工零件进行加工。我们把零件的加工工艺路线、工艺参数、刀具的运动轨迹、位移量、切削参数(主轴转数、进给量、背吃刀量等)以及辅助功能(换刀、主轴正转、反转、切削液开、关等)按照数控机床规定的指令代码及程序格式编写成加工程序单,再把这一程序单中的内容记录在控制介质上,然后输入到数控机床的数控装置中,从而指挥机床加工零件.这种零件图的分析到制成控制介质的全部过程叫数控程序的编制。

数控编程的内容与步骤

1.数控编程的内容

数控编程的主要内容有:分析零件图样、确定加工工艺过程、数值计算、编写零件加工程序、制作控制介质、校对程序及首件试切。

2.数控编程的步骤

(1)分析图样、确定加工工艺过程 在确定加工过程时,编程人员要根据图样对工件的形状、尺寸、技术要求进行分析,然后选择加工方案、确定加工顺序、加工路线、装卡方式、刀具及切削参数,同时还要考虑所用数控机床的指令功能,充分发挥机床的效能,加工路线要短,要正确选择对刀点、换刀点、减少换刀次数。

(2)数值计算。根据零件图的几何尺寸、确定的工艺路线及设定的坐标系,计算零件粗、精加工、各运动轨迹,得到刀位数据。对于点位控制的数控机床,一般不需要计算。只是当零件图样坐标系与编程坐标系不一定时,才需要对坐标进行换算。

(3)编写零件加工程序单。加工路线、工艺参数及刀位数据确定以后,编程人员可以根据数控系统规定的功能指令代码及程序段格式,逐段编写加工程序单。

(4)制备控制介质。制备控制介质,即把编制好的程序单上内容记录在控制介质上作为数控装置的输入信息。

(5)程序效验与首件试切。程序单和制备好的控制介质必须经过校验和试切才能正式使用。校验的方法是直接将控制介质上的内容输入到数控装置中,让机床空运转,即以笔代刀,以坐标代替工件,画出加工路线,以检查机床的运动轨迹是否正确。

数控编程的种类

1.零件实例分析

数控机床中的一种主要功能是加工平面类零件,而加工的过程是先编程后加工,编程前先要进行工艺分析,确定加工工艺路线,针对所选用的数控系统指令的特点,确定编程的方法。目前数控编程一般分为手动编程,自动编程和计算机高级语言编程。下面通过加工图1所示工件,选取其中薄壁部分来阐述薄壁零件数控编程的特点和薄壁零件的加工方法。

2.手工编程方法分析

以FANUC数控系统为例,采用G代码的编程方法。

采用单一指令GO1代码编程,G01指令是一种单一动作的G代码,一个指令只表达了一个动作,因而编程时不但要算出精加工时的轮廓路线的各节点坐标,而且也要根据粗加工时设计的路线,计算出每条粗加工路线的各节点坐标,因而编程前要做的准备工作多,而且进刀和退刀路线都要通过G0代码编制,因而程序编制起来较复杂。但该指令编程时由于编程路线完全由编程者控制,因而可以很灵活地控制进退刀路线。所以程序运行时空刀路线最短,加工效率高,适用于各种毛坯件的加工编程。

在编程中加入宏程序变量以进行小量多次加工防止因切削量过大导致薄壁变形从而使产品报废。

粗加工完后去除轮廓内多于材料,然后采用钨钢刀具更改粗加工程序的转速及进给倍率进行精加工。精加工时须少量更改补偿半径同时使用凸件进行配合以达到最好的配合效果。但在配合时不宜用力过大防止使薄壁弯曲变形。

3.Master CAM软件自动编程

除了用传统的手工编程的方法可以完成程序的编制外,也可以用相应的软件进行自动编程,自动编程的方法是在相应的软件里画出所要加工的轮廓线,根据给定的轮廓线,选择合适的刀具路线,自动生成刀具运动轨迹并后处理生成加工程序。整个过程由软件内相应的功能完成。其特点是编程快捷简单,不需要计算节点坐标,加工路线优化,加工效率高,后处理的程序全部采用单一指令代码,程序较长。但需要编程人员掌握相应的软件应用知识,即对编程人员的知识基础要求相对较高,下面是利用Master CAM软件编程所得的程序。

G01指令编程特点:是一种直线逼近法编程方法,全部采用直线插补方法粗加工工件,编程复杂,程序较长,需计算的工艺坐标点多,因而编程时间长,但加工效率高,空运行路径最少,特别适用于批量较大的工件的加工情况,适合各种毛坯件的编程加工。

利用自动编程的方法编制程序,适合编制一些较复杂的加工零件,对于一些规模较大的企业,设有专门的编程人员,且是批量生产工件时,这种编程方法会起到提高加工效率的作用,其优点尤为突出。因此,如何编制薄壁零件铣削加工程序,要根据生产的实际条件,选用合适的G代码和编程方式。使机床和数控系统充分发挥其应有的作用。

篇3

关键词:数控系统,BEIJING-FANUC0iMate,SINUMERIK840D,HNC-21M

 

数控加工作为现代制造业先进生产力的代表 在航空航天机械电子船舶化工汽车等行业得到广泛应用并逐渐被其它行业广泛使用FANUC数控系统和SINUMERIK数控系统是目前国内最流行的机床控制系统, 华中数控系统作为国产数控系统中的代表,正逐步扩大自己在行业内的市场份额。本文作者主要针对国内行业中最常用的BEIJING-FANUC 0i Mate系统和SINUMERIK 840D 系统和 HNC-21M数控系统在铣削加工中的常用编程指令编程方法的异同作对比分析研究目的是供机床操作编程人员参考与借鉴。

1、程序结构的异同

数控加工程序段的格式有两种:字地址格式和分隔符格式。数控加工程序结构的异同数控加工程序有程序开始、若干个程序段、程序结束三部分组成。每个程序对应一个程序名称(即程序号)。

对于 BEIJING-FANUC0i Mate系统,主程序和子程序的程序名规定相同,由地址“O”和后面的 4位数字组成如O1234。 子程序与主程序是以“独立”的程序被保存在 CNC存储器中。子程序由“M99”结束,主程序需用指令“M98”调用子程序。子程序可以嵌套4 级子程序。

而对于SINUMERIK 840D数控系统, 主程序和子程序的程序名规定相同,由任意字母或双字母与数字组合,主程序以.MPF 为后缀子程序建立时用 .SPF后缀来定义子程序,其结束语句为“RET”。免费论文参考网。免费论文参考网。将子程序名作为主程序的一个程序段,即可实现子程序的调用。子程序可以嵌套11级子程序。

对于华中HNC-21M 数控系统主程序文件名由地址“O”和后面的4位数字组成,如O1234,程序名由%和后面的4位数字组成。如%2345;子程序的程序名由“%”和后面的4位数字组成。子程序须紧跟在主程序的M02或M30 后面,与主程序共同组成一个程序 。子程序可以嵌套9级子程序。

2、刀具半径补偿功能指令的异同

在铣削零件轮廓时由于刀具半径尺寸的影响刀具的中心轨迹与零件轮廓往往不一致。为了避免计算刀具中心轨迹,数控系统提供了刀具半径补偿功能,编程人员可以直接按零件图样上的轮廓尺寸编程。

(1)相同之处

G41是刀具半径左补偿指令,即顺着刀具前进方向看 ,假定工件不动,刀具位于工件轮廓的左边:G42是刀具半径右补偿指令,即顺着刀具前进方向看, 假定工件不动,刀具位于工件轮廓的右边,G40是取消刀具半径补偿指令使用该指令。使用该指令后,G41、G42指令无效。

(2)不同之处

对于BEIJING-FANUC0i Mate数控系统和HNC-21M数控系统,G41或G42必须与G40 成对使用,即编程中刀补方向改变时,必须先取消刀补,才能建立新的刀补。而对于SINUMERIK 840D 数控系统,无需经过G40、G41、G42 就可以相互转换。

刀具补偿值的输入BEIJING-FANUC0i Mate系统可以用功能指令G10 由程序输入,SINUMERIK840D系统也具有类似的功能。这些功能能方便解决刀具补偿值随加工轨迹变化而变化的问题。

3、圆弧插补功能指令的异同

基本移动指令有G00、G01、G02、G03 中,G00 和G01 的编程格式均相同。但圆弧插补有区别。对于BEIJING-FANUC0i Mate 数控系统和HNC-21M数控系统,圆弧插补有终点 /圆弧半径和终点/ 圆心坐标两种编程方式(圆弧半径地址为R)而SINUMERIK 840D 数控系统有更多编程方式,除上面两种方式外,还有中间点/终点、张角/圆心、张角/终点等极坐标编程方式(圆弧半径地址为CR=),使圆弧的编程更为方便。免费论文参考网。

4、刀具长度补偿功能指令的异同

使用刀具长度补偿指令,可以方便解决使用多把刀具加工零件时刀具长度不等长所带来的问题。 还可以方便解决加工时由于刀具磨损、更换刀具等原因引起刀具长度尺寸变化带来的问题。一般的数控系统都具备这样的功能,但在功能指令上有以下的不同。

(1)对于BEIJING-FANUC 0i Mate数控系统和HNC-21M 数控系统须用功能指令来实现长度补偿功能 。其中G43是建立刀具长度正补偿,G44是建立刀具长度负补偿;G49是取消刀具长度补偿。其编程格式为

G43(G44) ZH (建立长度补偿)

G49/ G00/G01Z (取消长度补偿)

(2)对于SINUMERIK 840D系统,刀具调用后,对应刀具地址中的长度补偿值随即生效,长度补偿不需G指令建立,相反该系统将视 G43/G44或G49 指令为非法指令。

5、固定循环功能指令的异同

为了进一步提高编程工作效率,数控系统中一般设计了固定循环功能,它把一些典型加工中的固定、连续的动作用,一个程序段表达,即用固定循环指令来进行孔或槽的加工。

(1)对于BEIJING-FANUC 0i Mate 数控系统和HNC-21M 数控系统,常用的孔加工固定循环有钻孔、攻螺纹和镗孔等指令。这些循环通常包括在XY平面定位、快速移动到 R平面、孔的切削加工、孔底动作、返回到R平面返回到起始平面 6个基本动作。

其编程格式如下:

G90(G91) G98(G99) G73~G89 X Y Z R QP F K/L

式中G90/G91表示绝对坐标编程或增量坐标编程;G98调用固定循环,并使刀具返回到起始平面;G99调用固定循环,并使刀具返回到 R平面;G73~G89表示孔加工方式,如钻孔加工、高速深孔钻加工、 镗孔加工等;X、Y表示孔的位置坐标;Z表示孔底坐标;R表示安全面 (R平面)的坐标;Q表示每次切削深度;P表示孔底的暂停时间;F表示切削进给速度;K表示规定的重复加工次数;(FANUC 0i 数控系统)L 表示规定的重复加工次数;(HNC-21M 数控系统)固定循环由G80或01组的G代码撤消。

(2)SINUMRIK 840D系统中固定循环的编程

SINUMERIK 840D数控系统的固定循环包括钻孔循环(如中心钻孔、深度钻孔、刚性攻丝、铰孔、镗孔等)钻孔样式循环(加工一排孔、加工一圈孔)和铣削循环(矩形槽、键槽和圆形凹槽)固定循环的功能更为强大。

掌握了不同数控系统的功能指令的差异在熟悉一种数控系统的NC编程的基础上可以轻松地完成其它数控系统的NC编程

参考书目:

1、SINUMERIK 840D/810D操作说明书

2、BEIJING-FANUC 0i Mate操作说明书

3、世纪星 铣床数控系统HNC-21M 编程说明书

篇4

【关键词】飞机维修 非标测控方案 分布式系统 系统集成

随着空军新机型的发展,设备寿命检测时间不断延长,增加了维修作业量。为了在大规模工作中,顺利进展维修工作,必须及时寻找一种新技术,主要解决专用测试仪器和非标测控设备存在的问题。

1 构建分布式测控系统模型

分布式测控系统主要由计算机系测控系统和分布式测控系统结构模型、分布式测控系统实现模式等四部分组成。可以由很多台计算机或处理机器连接起来,每个处理单元具有自己独立的处理和储存器,通过信息交换实现共同目标。计算机硬件、分布式控制任务处理和编程语言是组成分布式测控系统的主要部分。实现分布式测控系统的时候,可以按照总体系统要求实现数据处理和系统协调,共同控制任务进展。分布式测控系统结构模型有四种形式,

1.1 主从模式

主从处理机不会直接进行对象的测试和控制,主要进行系统指挥、进程控制和协调等任务,处理机完成对象的测试和控制等任务。

1.2 并行模式

这种模式和主从模式没有关系,主要由很多台处理机担当并处理任务。处理任务的时候,通常将大任务划分不若干个小任务,每台处理机分别担当并完成任务,任务性质决定处理器性质。

1.3 混合模式

此种模式是以上两种模式的综合,可以处理处理器不能完成的任务,具有高性能特大分布系统。

1.4 实现模式

保证模块具有并行性、自治性、可用性和透明性等基本属性。在实际应用中必须对测控对象要求、任务构成和系统构成成本以及开放研制周期等因进行考虑。

2 飞机火控雷达天线部件的特点和要求

飞机火控雷达天线部件是一种技术参数高的系统,可以在脱机状态下进行,对修理工厂要求特别严格,必须满足结构性能协调好、数据库容量大和控制度高等功能。

2.1 控制参数

第一速度控制参数。进行性能测试的时候,必须对直流电机施加速度控制参数进行控制,然后使用扫描移动等方式,实现扫描速度高、中、低等三个档位的控制[2:46-49]。第二,方向控制参数。对天线移动速度控制的同时,还需要对天线方向位置、方位角俯仰角、倾斜角等进行控制。

2.2 反馈参数

反馈参数由位置反馈参数、速度反馈参数和极限反馈参数组成。为了保证天线方向位置精确,可以对编程器方位角、俯仰角和倾斜角等位置信号参数进行控制;为了精准控制俯仰、倾斜等、方位三个角度转动速度,必须使用速度传感器对转动速度信号进行控制。除此之外,天线在极限位置的信号也应该得到反馈。

2.3 性能测试参数

(1)运动性能测试。分别进行高、中、低三挡的单自由度和全方位符合运动,检测天线运动机的机械性能。

(2)静态性能测试。对天线零件位置、机械磨损和间隙性能进行测试。

(3)极限位置性能测试。检测极限位置能否达到出厂需求。

(4)信号性能测试。对天线转动进行性控制的同时,还应该对接收位置参数进行测量,找出功率位置后,利用测试数据检测天线能付符合出厂要求。

3 飞机防火控雷达天线部件性能测控系统解决方法

3.1 系统结构模式

主从结构模式是火控雷达部件性能测控系统中比较常用的模式。

3.2 系统实现方式

将研华工业控制机作为工业主处理机,利用串口传递数据和信息,作为下位机功率测试仪工作,试下天线位置和功率测试值的协调。选用化光电子有限公司生产的可编程控制器作为编程能控制器,根据主处理机的指令和任务,分被对天线位置和运动进行控制,然后进行反馈参数配置,同时实时传输位置数据。可编程功率仪采用该公司配置的E4419B双通道高性能编程功率仪,可以达到很高的频率读取参数,满足雷达天线接受测试,并利用串口向处理器传输实时数据。

4 飞机火控雷达天线部件性能测控的解决

进行硬件配置的时候,必须按照系统功能及时解决软件方案,保证软件结构模块化。控制机是主处理机,进行下位机协调控制的同时,可以进行数据处理、查询、打印和网络传输,而且进行无人操作,必须对数据库和软件开发平台进行选择。

进行控制的时候,系统可以根据用户要求和习惯使用Windows98操作系统;还可以柑橘软件功能,选择变成语言;悬着数据库的时候,可以根据数据容量选择。可编程控制器是一种相对成熟的产品,编程语言非常的丰富而且人性化,包含梯形图、指令助记符、布尔代数等多种类型。系统可以根据开发人员的习惯和PLC,选择DirectSoft语言,并使用梯形图进行编程。

可编程仪器标准命令和HP437B是可编程功率仪给用户提供的语言,SCPI是功率出厂设置语言。由于系统采用了RA232通讯口,所以可以使用SCPI进行编程。频率发生装置和通用的INTEL51具有指令系统、功能单一和编程简单等特点。

系统采用分布式结构之后,尽量使用编程可编程且较成熟的结构,同时给每个处理单元一定的额编程语言,并配备自动检测程序,完成系统集成之后,对系统测试程序进行考虑,快速判断系统功能障碍。

5 结束语

分布式测控系统是目前使用最广泛的实现方式,主要利用先进和成熟的编程仪器、设备和技术,实现系统模块化,具有灵活集成、开发成本低、开发周期短暂、可靠性高、方便维护和简单操作等特点,优化了方案,降低了维修成本,给专用测试设备鉴定了基础。

参考文献

[1]刘积仁,王兴伟,张应辉.分布式多媒体技术导论[M].北京:电子工业出版社,2014,(07):102-104.

[2]赵宏支.支持分布环境中应用客体间合作通信的协会模型及其结构[D].东北大学,2010,(04):123-125.

[3]廖常初.PLC编程及应用[D].北京:电子工业出版社,2014,(02)14-16.

作者简介

钱雅(1987-),浙江省嘉兴市人。现为国防科学技术大学机电工程与自动化学院在读硕士研究生。研究方向为测控技术与仪器。

篇5

关键字:数控技术 智能化 知识工程 UG

Intelligent CNC programming system of

Liu Hao xu

(Tianjin Polytechnic university, Tianjin, Jixian 300160)

Abstract: In this paper, the advanced digital manufacturing technology in practical application problems, through analysis of the NC Technology and Industry Current, comprehensive development of numerical control technology in today world trends, discusses the development of NC technology. Study of knowledge acquisition, knowledge representation and knowledge reasoning in the CNC programming applications; in the intelligent NC programming system architecture language basis, to UG for the plateform use SQL Server database and UG Open API and Visual C + + develoption tools, development intelligent NC programming system; through the application programming examples demonstrate the feasibility and practicality of the research.

Keywords: Intelligent knowledge engineering CNC technology UG

一、数控编程系统智能化的概念和基础

数控编程是数控加工准备阶段的主要内容之一,通常包括分析零件图样,确定加工工艺过程;计算走刀轨迹,得出刀位数据;编写数控加工程序;制作控制介质;校对程序及首件试切。有手工编程和自动编程两种方法。总之,它是从零件图纸到获得数控加工程序的全过程。

数控编程分为手工编程和自动编程.手工编程是指编程的各个阶段均由人工完成。对于几何形状复杂的零件需借助计算机使用规定的数控语言编写零件源程序,经过处理后生成加工程序,称为自动编程。随着数控技术的发展,先进的数控系统不仅向用户编程提供了一般的准备功能和辅助功能,而且为编程提供了扩展数控功能的手段。

而在数控编程系统的工作中,数字模型是工作的关键,同时也是数控编程系统的基础,它在编程系统中所包含的信息量直接决定了数控编程系统的智能化发展程度。同时,这些在数字模型中所包括的信息在数控技术家中传递的方式也会对数控编程系统的智能化发展程度带来一定的影响。同时,由于数学模型的发展包括:线框、曲面和实体,这些模型在结构上的不同,对描述同一物体所表述出来的信息量也是不一样的。

二、数控编程系统智能化的研究现状

就我国企业的发展上来看,国际上先进的数字化制造技术并没有在我国的企业中得到广泛的应用。

而就目前数控编程系统的智能化的进程上来看,主要表现在实体模型。在实体模型结构基础上,数控编程系统已经实现了部分智能化。由于实体模型是通过特征造型的手段获得的,因此在编程过程中,如何获得这些特征,然后直接针对这些特征直接进行编程操作,并在操作过程中根据专家系统的支持提供更多的自动操作选项,成为当前智能数控编程系统的一个主要的发展方向。

三、基于UG的模具智能化数控系统的开发

(一)、知识库获取

数控编程是一个经验性很强的领域,CNC工程师的经验知识对加工效率、加工质量都有着较大的影响。数控编程经验知识的主要特点有:首先,数控编程技术是无形的,只存在于CNC工程师的大脑中,并没有实体上的形态。其次,由于数控编程技术的无形性,因此完全来源于CNC工程师自身的主观意识,但是由于不同的CNC工程师自身工作经历、知识结构等因素的不同,他们对相同问题形成的经验知识可能产生一定的差异,这就说明数控编程技术是具有一定的差异性的。第三、CNC工程师随着经验知识的积累或生产技术条件的改变和完善,他们对原来数控编程所存在的问题可能会出现有新的见解,从而就会原有的数控编程加以相应的改善。为了最大限度地获取和利用CNC工程师的经验知识,针对上述这些特点,本文制定了经验知识的获取步骤,如图一:

(二)知识的表示

根据数控编程知识的特点,采用了将面向对象的表示法和BNF范式(Backus-Naur Form,巴科斯-诺尔范式)相结合的表示方法.基于对象的BNF范式表示数控编程领域知识的句法如下:

::=类

类::=

::=

::=

::=

::=[规则推理(RBR)] | [实例推理(CBR)]

::=

::=[粗铣] | [半精铣] | [精铣] | [粗镗] | [半精镗] | [精镗] | [钻] | [扩] |[铰] | [粗车] | [半精车] | [精车]

::=

::=

::=

::=

结束类

通过BNF范式可以有效地将数控编程领域的知识进行融合,同时也便于实现对数控编程知识库中知识的管理和维护,支持知识库中知识的检索、查询、更新,保持知识的有效性和一致性。

(三)知识的推理。CBR的推理过程主要由实例问题的描述、实例检索、实例修正、实例存储等组成。

1.实例问题的描述主要是在计算机中将待求解的问题通过合理的知识表示形式表达出来,以便于计算机识别和处理;

2.实例的修正通过人机交互界面的方式实现.在数控编程实例推理的过程中,当检索结果不能满足实际需要时,可以对加工方法、工件材料、刀具几何参数、进退刀设置等信息进行修正,并作为新的实例添加到实例库中,进一步地充实实例库。

(四)体系的搭建

在研究了知识工程技术应用于数控编程领域的基础上,设计了智能数控编程系统的体系结构。分为数据层、应用层和用户层。

1.用户层提供了智能数控编程系统用户接口,负责与用户的交互,处于系统架构的顶部.用户通过人机交互界面,可以方便的操作、管理和维护系统。

2.应用层为用户提供各种服务,是整个系统结构的核心.主要包括三部分:①前处理.运用知识工程技术获取数控编程方案,提供数控编程所需要的各项参数信息.②智能数控编程.依据数控编程方案,根据编程向导的指引对零件进行加工,生成的编程操作由知识顾问诊断后反馈到知识库中.③后处理.对创建的数控操作进行后置处理,生成符合机床数控系统要求的NC代码,以文档形式输送到生产车间。

3.数据层包括了加工特征库、编程资源库(零件信息库、机床信息库、刀具信息库及工艺信息库)和知识库,是智能数控编程系统运行的基础,采用了ODBC作为数据的底层访问方法。

(五)系统的实现

由美国UGS公司推出的UG软件,是面向制造业的集CAD/CAM/CAE功能于一体的三维参数化软件,具有数字化产品设计、制造和分析功能.UG CAD与CAM高度集成,具有统一的数据管理,并包含了KF(Knowledge Fusion)知识熔接模块,可以进行知识处理.UG CAM为用户提供了模板设置功能,可将常用的操作参数设置为默认值,自定义为加工模板,避免每次编辑新操作时重复定义参数的繁杂工作,提高零件编程效率.UG提供的二次开发功能.其开发语言简单易学,功能强大,可以方便用户定制个性化的功能,便于为用户开发有针对性的专用系统,可以实现单凭交互方式操作UG难以实现的功能,为企业在市场上的竞争力提供有力的平台.基于UG的诸多优点,本系统采用UG作为开发应用平台,系统数据库系统选用SQL Server2000,开发工具为UG/open、VC++6.0及UG后处理构造器。UG提供的二次开发功能可以方便用户定制个性化的功能,便于为用户开发有针对性的专用系统,在系统的开发实现过程中,遵循软件工程理论,为用户提供了良好的人机交互界面,采用模块化思想,按照设计过程和模块实现的功能将系统划分为几大功能独立的模块,模块之间以及模块的各组成部分之间也具有一定的独立性。

综上所述,数控技术是先进制造技术的核心,是制造业实现自动化、网络化、智能化、复合化等的基础。知识工程作为一种新型的智能设计方法,利用知识工程技术可以在数控编程过程中提供相关的知识,有利于实现数控编程的参数化、自动化和智能化,进而提高企业数字化制造技术水平。在对知识工程技术的在数控编程中的应用就出上开发出来的智能化数控编程系统,就是为了更好的提高企业在数控技术上的发展水平,促进数字化制造技术的发展,从而带来刚好的发展前景。

参考文献:

[1]汪俊俊.论数控技术发展趋势――智能化数控系统.装备制造.2009(06);

篇6

关键词:数控加工;数控编程;复杂型面零件;工艺技术

DOI:10.16640/ki.37-1222/t.2017.06.029

我国国民经济发展的基础产业之一就是机械制造业,随着科学技术的发展与社会经济的发展,人们对于产品的多样化要求越来越高,传统的机械制造方式也越来越不能满足人们的需求,传统的机械制造技术也就随着时代的发展和人们的需求发生了巨大的变革,世界各范围尤其是发达国家投入了巨资来创新发展新的制造技术,最终数控技术应运而生。数控技术融入了计算机技术、微电子技术、控制技术等多种高新的技术与一体,提高了产品的生产速率和质量,降低了劳动率,同时也能够加工一些复杂型面的零件,例如飞机、轮船、汽车上面的一些零件,这些零件的质量好坏影响着整个产品的性能,所以加工的难度更大,加工的要求也更严格,然而这些零件都可以由数控技术轻松完成。

1 数控加工与数控编程的概念及特点

数控加工工艺是根据零件的图样和基本要求,编写好一个数控加工程序,再将程序输入到数控机床的数控系统当中,数控机床根据程序产生刀具和工件的相对运动,最终实现零件加工的一个过程,数控加工技术与传统的机械加工技术相比之下有很多相似之处,例如加工的方法和加工的内容等,但是数控加工技术采用了数控机床和数控系统,利用数字化的形式对零件加工的过程进行控制,利用计算机和数字自动控制系统替代了传统机械加工的人为操作,更加节省劳动力也提升了零件加工的质量和效率,由于采用数字化的形式进行控制,所生产出的零件也比人工加工生产出的零件更加规范,在很大程度上减小了误差。

数控编程,是数控技术准备阶段的一个重要过程,它指的是从分析零件图样到加工出合格的产品的全过程,数控编程包括手工编程和自动编程两种编程方法,手工编程就是在编程过程中大部分由手工完成的工件程序编程,手工编程一般是适用于轮廓外形比较简单的零件的加工,比较方便和经济;自动编程就是编程过程的大部分都由计算机完成的工件程序的编程,自动编程又可以成为计算机辅助编程,通常用于轮廓外形比较复杂的零件的加工,特别是应用于三维曲面零件的加工和有小凸缘的零件的加工,和刀具运行轨迹比较繁琐的情况,自动编程的效率比较高,并且不容易出现错误。

数控技术具有劳动化程度低的特点,数控技术有较高的自动化程度,除了在数控机床上装卸加工零件时需要人工操作,其他的全部加工过程都会由数控机床自动完成,大大减少了劳动力,减少了劳动者的负担;能够加工形状比较复杂的零件,飞机、轮船、汽车和其他动力设备当中的复杂零件的质量会影响到其整体的性能,所以对这些比较复杂的零件进行加工时一定要保证质量合格,数控技术就能够完成传统机械机械加工技术所无法完成的高难度的零件加工;准备周期短,数控技术在对零件进行加工时,主要的工序就是零件图样的设计以及控制程序的编写,在很大程度上缩短了生产准备的时间;加工精度高,质量好,在零件加过程中不需要人工参与进行调整,不受人的技术水平的影响;生产效率高,数控技术的自动化程度高,更换刀具和进行其他辅助操作时都是自动进行,在一次装夹中可以进行多表面的加工,省去了很多其他的工序,并且采用较大的切削用量,减少了切削的工时,缩短了生产周期,增加了生产效率。

2 目前数控技术的发展现状

随着信息技术化社会的到来,传统工业领域发生了巨大的变化,世界各范围都开始对现代化的制造技术进行大力地研究和开发,尤其是对数控技术的研究。随着计算机技术发展的越来越成熟,数控技术已经成为机械制造的核心技术,它集合自动控制,自动检测,计算机,微电子等多种高新功能于一体,具有非常卓越的自动化的性能,灵巧敏捷具有多样化的功能同时还有超高的稳定精度,实现了机械制造业的智能化、集成化、自动化,目前在世界范围内很多重大的数控领域的研究已经启动,并且得到了广泛地支。然而现今数控技术也在不断地发展进步当中,它正向着通用型开放式的方向发展,实现动态全闭环模式,在集成化的基础上更加小型化,在智能化的基础上更加集合了计算机、多媒体等高科技技术,实现了数控技术更加高效的控制,同时数控技术的体系结构也更加模块化和层次化,具有较强的可操作性,可移植性,可扩展性和可缩放性在未来的发展中数控技术会得到大量地使用,更好地引领工业的发展。

3 复杂型面数控加工工艺流程

数控加工技术是近展起来的一种自动控制技术,利用数字化的信息实现对机械设备的控制,虽然说数控加工技术与传统的机械加工技术在零件的加工方法和加工内容上有很多的相似之处,但是数控加工技g采用的是数字化的控制方法,相比于传统的手工操作更加精准也更加有效率,尤其是在现今科学技术发展迅速的现代社会,人们对于产品多样化的要求越来越高,所以数控加工技术得到了越来越广泛地应用。数控加工最重要的一个环节就是数控编程,数控编程是根据所需要加工的零件的图纸和技术、工艺要求将零件加工的工艺顺序,技术安排,刀具运动的轨迹和方向,工艺参数以及其他的辅助动作等利用数控系统所制定的规则、代码与格式等编写成文件,并将其输入到控制介质当中,数控编程可以按照所加工的零件轮廓以及外形的复杂程度划分为手工编程和自动编程,数控编程一般的步骤有:分析图样、确定工艺、相关数值计算、编写程序、制作控制介质以及程序校验和试切首件。

(1)分析图样就是分析零件的形状、尺寸和投影等基本要素,同时确定技术要求,根据所需加工的零件的尺寸和精度以及零件的形状等的要求等选择机床,再根据加工工艺的要求等选择合适的夹具,确定所加工的零件的位置与道具的位置,在选择夹具时要注意遵守以下几个原则:零件需要加工的部位要敞开,夹具不能影响进给;可以同时装夹几个加工时间短的小型零件一起加工;辅助时间要短,夹具装卸方便;保障零件最小加紧和最小变形;所选择的夹具应该便于与工件定位表面和工作台之间进行原件连接;以及尽量选择结构简单的夹具等。

(2)确定工艺就是确定在加工零件时工艺的基准和夹紧的方式,制定科学合理的工艺流程,工艺顺序,选取合适规格与类型的刀具和刀柄以及切削用量,最后拟订好工艺路线。在制定工艺流程时要注意遵守先面后孔,先基准后其他以及先粗后精的原则,以刀具为中心进行一次装夹,粗加工与精加工一次全部完成,同时要注意零件的加工精度、零件表面粗糙度以及热处理等情况。在选择切削的用量时,要注意粗加工、精加工和余量的问题,切削用量的三要素有切削深度、切削速度以及进给量,不同的加工方法要选择不同的切削用量,合理的切削用量可以在很大程度上提高生产的速率,在进行粗加工时要保证效率优先原则,保证刀具要有较高的耐用度以及保证较高的金属切除率,在进行精加工时要保证精度优先原则,要有较高的表面粗糙度与加工精度,其次才是效率问题,要选择参数较高的刀具与合理的几何参数,以确保切削的速度。在进行刀具的选择时要根据数控机床的特点与所需加工的零件的轮廓和加工的要求等进行选择,刀具的刚度、精度、耐用度和强度等都会在很大程度上影响到切削的工作速率,所以要根据不同的工序来选择不同的刀具,一般常用的刀具有高速钢、工具钢、质地较硬的合金等材料制成的刀具。

(3)在进行数值计算时,主要包括基点坐标值与节点坐标值的计算和辅助计算,坐标系的建立是生成源文件的基础,坐标原点和坐标轴的确定是非常重要的,另外在数值计算的过程中要注意零件误差以及编程误差的计算,以及中间结果和最后结果的精确度问题。

(4)在编写程序使要注意方法的选择,如果是简单零件的加工,最好是选择手工编程的方法,如果是比较复杂的零件的加工就需要选择自动编程的方法。手工编程的优点是,在进行点位加工或者是加工形状较为简单的零件时,计算量相对较少,程序段数也有限,能够更加直观地显现出现实的情况,并且更加经济和方便,但是对于具有空间自由的曲面和形状较为复杂额定零件,对于刀具轨迹的计算就相当繁琐,工作量也较大,并且在编程的过程中容易出错,难度较大。自动编程是利用计算机以及专用的编程软件对加工的对象和加工的条件自动计算生成指令,经常使用的编程软件有UG,一般用机零件的加工,它的优点是刀具路径可靠精确,能够直接在曲面上进行加工,客户可以自定义使用额界面更加人性化,有多种加工的方式可以选择,具有完整的刀具库并且具有加工参数管理功能等;Catia,它具有强大的曲面造型功能,并且具有^强的编程能力,可以满足一些比较复杂的零件加工要求;Pro/E,广泛用于电子,机械,模具与玩具等民用企业,它具有多种功能,例如模具开发,零件设计,造型设计等,另外还有具有界面比较灵活的cimatron,具有强大造型功能的mastercam,具有超强的识别能力的delcam,caxa制造工程师以及edgcam。

4 结束语

数控技术和数控编程在制造业有着非常重要的地位,数控技术的众多优势也为企业带来了巨大的经济效益,尤其是在复杂型面数控加工方面发挥了很大的作用。但是在进行复杂型面数控加工时还要注意工艺设计的优化,选择合适的机床、刀具、工序、走刀路径,切削用量等优化工艺路线和工艺内容,实现低消耗,高生产的最终目的。

参考文献:

[1]王娟平.转体类零件的数控加工工艺路线及工序进给路线的设计.新技术新工艺,2010.

[2]吕宜忠,宋英超.《数控加工与编程》课程教学改革探索[J].科技创新导报,2011(22).

[3]夏卫锋.数控加工与编程实践教学模式的研究[J].装备制造技术,2009(03):180-182.

[4]张党飞,阮晓光,王寅晨等.浅谈数控加工中刀具的特点及选择[J].制造业自动化,2011(10).

篇7

视频监控系统的发展经历了模拟监控和数字监控两个阶段。与模拟监控系统相比,数字监控系统不仅可以利用计算机对数据进行存储、分析和检索等处理,而且还具有抗干扰能力强、传输距离远、图像质量高等优点。数字监控系统也可以和计算机网络相结合来实现系

统的远程控制,易于维护和管理。因此,数字监控系统正逐步取代模拟监控系统,具有良好的应用前景。

目前国内的数字视频监控系统中单机的监控能力一般不超过16路,每路的图像压缩码率的调节范围较小,而且图像格式主要以CIF为主[5~6]。本文介绍的系统在单机上最多可以达到32路的监控能力,而且可以保证音、视频的严格同步。同时,本系统支持CIF和QCIF等多种图像格式,压缩码率调节范围较大,可以满足多种场合的监控需求。

图1

1 多路MPEG-4监控系统结构

本系统采用基于PCI总线板卡的架构,一块板卡可以监控4路音、视频数据。系统视频输入支持NTSC和PAL制式,采用MPEG-4标准对输入的多路音、视频信息进行压缩编码、解码,并提供运动检测等附加功能。在工控机上,利用软件可以很方便地对采集到的音、视频信息进行存储、检索和回放。系统利用高速PCI总线与微机进行通信,实现高速数据和控制码流的传输。整个硬件系统由摄像和云台模块、电源模块、视频采集模块、视频预处理模块、EPLD控制模块、音频编码模块、MPEG-4多媒体压缩编码模块和PCI总线控制模块组成,其连接框图如图1所示。

多路视频采集模块对输入的视频信号进行模/数转换。该模块支持复合视频输入,经过转换后的输出信号是符合ITU-656标准的4:2:2的数字视频信号。同时,该模块能够自动识别输入信号的制式。其支持的复合视频制式有NTSC、PAL和SECAM三种。

视频预处理模块通过对模块中芯片的内部寄存器进行设置来实现对视频输出的亮度、对比度和色度的调整,以及对视频图像尺寸、子图的大小、位置等的控制。

EPLD控制模块主要根据控制流信息将视频预处理模块输出的ITU-656数字视频进行格式转换,并输出到MPEG-4压缩编码模块中。同时,它也提供行、场等同步信号。EPLD控制模块还根据后向控制流为音频编码模块提供多路帧同步信号。

音频编码模块对输入的音频进行μ律PCM编码。MPEG-4多媒体压缩编码模块完成音、视频信号的MPEG-4压缩编码,并输出到PCI总线控制模块,同时提供运动检测等附加信息。PCI总线控制模块主要负责板卡与主机间的MPEG-4码流和控制流信息的高速传输。

2 MPEG-4压缩编码模块

MPEG-4压缩编码模块采用的是INTIME公司的IME6400芯片。IME6400是一块多通道实时数字音视频MPEG-4/2/1压缩芯片。它不仅可以支持原始的音、视频信息,而且还支持PCM编码的音频信号等。IME6400具有多种输出数据格式,这使得它在图像数据存储、传输等方面具有广泛的应用。

IME6400是按照内部的fireware工作的。在实现上,fireware软件既可以存放在一个外挂的ROM中,也可以从外部主机通过IME6400的Host Interface(主机接口)下载到芯片中去[1]。本系统中采用外挂ROM的方法,这样用户可以选择fireware的版本并定期进行软件更新。IME6400的原理框图[1]如图2所示。

在本系统中,音频编码模块和EPLD控制模块的输出与IME6400的音、视频输入模块相连接,然后由IME6400完成音、视频信号的MPEG-4压缩编码。IME6400利用主机接口和PCI总线控制模块之间的相连,构成数据和控制通道。同时,外挂SDRAM用来存储已编码的码流,而内部1KByte的FIFO用来实现编码码流的快速传输。外部主机可以按照规定的流程对一些恰当的主机接口控制寄存器进行读或写操作,还可以完成直接寄存器读写、IME6400系统内存的访问、FIFO缓冲区的访问和firmware软件的下载等操作。

除了上述功能外,IME6400还可以根据主机自定义的运动检测要求实现运动检测,并将检测到的信息以包的形式传送给主机。

3 PCl 总线控制模块

PCI总线控制模块采用的是PHILIPS公司的SAA7146A PCI桥芯片。它具有三个视频DMA通道和四个音频DMA通道,同时集成了一些单元模块,如MMU、BPS和HPS等。它还包含了众多接口,可以和众多的音、视频处理芯片实现无缝连接,为多媒体数据的传输和处理提供比较广泛的应用。SAA7146A的原理框图[2]如图3所示。

数据扩展总线接口(DEBl)为设备提供了8/16位的数据传输和控制功能,支持立即传输和块传输两种方式。在系统中,SAA7l46A的DEBI跟MPEG-4压缩编码模块相连接,实现MPEG-4压缩码流的接收。同时,通过PCI总线接口模块,利用DMA传输方式在计算机和硬件板卡间实现压缩码流的高速传输。SAA7146A具有I2C总线接口,可以很方便地对具有12C接口的芯片进行控制。

SAA7146A中的D1接口可以和视频解码芯片或视频压缩芯片相连接,利用HPS可以对视频信号进行定标、缩放等处理,也可以利用BRS对视频信号进行CIF、QCIF或者QQCIF格式转换。 除此之外,SAA7146A还提供了与音频处理芯片连接的多个接口。

4 高速数据传输机制的设计

整个系统的软件主要由两部分组成。一是设备驱动程序,主要负责硬件板卡和计算机之间的交互;二是上层应用程序,用于实现系统的功能。由于多路监控系统的数据传输量非常大,因此设计一个高效的驱动程序以实现高速数据传输对整个系统的性能具有重要的影响。

图3

4.1 驱动程序的设计

本系统的设备驱动程序采用了Windows 2000下的Windows Driver Model(WDM)驱动程序。在Windows2000中,系统有两种命名设备的方法:一种是使用符号连接名,但它的安全陛不是很好[4];另一种是利用具有唯一性的GUID号表示设备接口。上层应用程序可以通过上面两种方法获得有效的设备句柄,并利用这个设备句柄实现对设备驱动程序的访问。当上层应用程序调用WIN32AHI函数后,将由Win32子系统调用I/O服务接口,并传送给内核模式下的I/O系统服务模块。接着,I/0管理器将检查这个请求的参数,然后创建一个合适的I/O请求包(1RP)。这个IRP经过分层驱动程序的处理传送给一个合适的设备驱动程序,并由这个程序通过硬件抽象层对硬件进行操作,完成这个IRP请求。最后,I/O管理器把结果和数据还回给应用程序[3]。

在本系统的Windows2000的WDM驱动程序中,除了基本的功能模块[3](如PNP模块、Dispatch模块、Power模块等)外,可以把其余部分大概分为板卡初始化模块、参数设置模块、中断服务模块和DMA传输模块等。

为了能够使PCI总线控制模块实时地从

压缩编码模块中读取压缩码流,并及时地传送给计算机,本系统采用了中断机制。当压缩编码模块中的FIFO满时,压缩编码模块产生一个中断信号,通知PCI总线控制模块启动DMA,利用块传输方式读取FIFO中的数据。同时,IME6400将后面的编码数据暂存在外挂的SDRAM中。PHILIPS公司的SAA7146A是一片具有总线主控DMA控制器的PCI桥芯片,可以实现内存和设备间快速的数据传输。本系统采用“基于包”的DMA传输方式;同时,为了进一步提高速度,使DMA将数据直接搬移到用户应用程序中所申请的循环缓存区中。DMA的流程如图4所示。其中,Saa7l46Read例程的主要功能是进行DMA的初始化操作,并启动编码码流输出。AdapterCon-trol例程确保计算机处理器高速缓存中的内容为当前使用的内存缓冲区中的内容。DpcForIsr例程完成内存物理地址和传输的数据长度的获得,并把它们写到DMA控制寄存器中,该例程还在合适的条件下与应用程序利用事件进行通信。

4.2 传输机制的设计

在数字监控系统中,为了实现数据的实时传输,应该仔细设计设备驱动程序和上层应用程序间的数据传输机制,来确保数据的完整性和实时性。

Windows2000操作系统把虚拟内存地址空间分为用户模式的虚拟地址空间和内核模式的地址空间。一般来讲,内核模式驱动程序几乎不使用用户模式的虚拟地址来访问内存。实际上,Windows2000操作系统为驱动程序访问用户模式的数据缓冲区提供了一种方法:通过应用程序调用DeviceIoControl、ReadFile和WriteFile等API函数,传递给这些函数用户模式的虚拟地址和数据长度等参数,这样就相当于向I/O管理器提供了一个数据缓冲区。I/O管理器再根据设备驱动程序中指定的三种不同机制[3](buffer方式、direct方式和neither方式)中的一种,利用不同的实现方法来实现用户模式和内核模式间数据的共享。

图4

Buffer方式是一种在对速度要求不高的情况下常用的方法。在本系统的板卡初始化模块和参数设置模块中,由于对速度、数据量的要求都不是很高,所以采用了这种方式的共享方法。但是在DMA传输模块中,为了能够实现大量的MPEG-4码流的高速实时传输,本系统设法省去了数据传输中间的复制过程,将编码码流数据直接搬移到应用程序的一个循环缓冲区中去。本系统采用的这种方法有点像neither方式,具体的实现方法如下:应用程序申请并锁定一块循环缓冲区,然后将得到的这块内存的用户模式虚拟地址和长度传送给内核设备驱动程序。在设备驱动程序中,利用传送下来的用户模式地址和缓冲区长度为这块用户模式缓冲区创建MDL(内存描述符),并将它映射到内核模式地址空间,得到一个内核模式的虚拟地址,这样驱动程序就可以通过这个地址直接访问应用程序申请的共享内存块。

除了上述的方法外,共享内存块也可以由内核驱动程序申请的系统缓冲区来充当,并通过转换得到用户模式的虚拟地址,应用程序就可以通过这个地址直接访问系统地址。

篇8

[关键词] 工作过程 行动导向 数控编程

基金项目:本文系陕西工业职业技术学院课题《以行动导向教学开展数控技术专业教学的实践研究》(编号JY10-14)。

前 言

教育部职教中心所姜大源教授曾讲道:“实施行动导向的教学,要求开发过程导向课程、构建行动学习情境、完成教师角色转变、实施个性化教学形式、建立一体化专业教室”[1]。与传统的单向灌输式教学方法相比,行动导向的教学更加注重学生独立解决实际问题及自我管理式的学习。

行动导向的教学法,在教学中更重视“案例”教学,重视“解决实际问题”及“自我管理式的学习”。既可使学生更快地掌握专业技能,又培养了学生解决实际问题的方法能力、与人协作共事的社会能力和创新精神。现以陕西工业职业技术学院数控技术专业的《数控机床编程》课程为例,进行“基于工作过程”的课程应用初探。

《数控机床编程》课程改革的必要性

《数控机床编程》是本专业的一门主干课程,主要教授内容以实际应用为主。《数控机床编程》这门课程中,有很多原理和指令是比较抽象的,对于学生来说难理解,难接受。一本教材、一块黑板、一支粉笔的传统教学方式显然已不适应对学生职业素养的培养。因此,必须转变教学模式。根据《教育部关于全面提高高等职业教育教学质量的若干意见》(教高[2006]16号)文件中提出的“课程建设与改革是提高教学质量的核心”、“加大课程建设与改革的力度,增强学生的职业能力”的要求,结合我院数控技术专业多年来借鉴德国行动导向教学培养模式,按基于工作过程系统化方法来设计课程内容,开发融“教、学、做”为一体的任务驱动的行动导向课程。

基于工作过程的课程设计理念与思路

1.课程设计理念

《数控机床编程》课程是以培养“具有扎实的数控工艺理论基础,有较强的数控编程和实施能力的高素质应用型、技能型人才”为目标。是以学生为中心、工作过程系统化、情境化的专业领域课程。针对职业岗位中核心典型工作任务,重点培养学生编制数控加工工艺、程序,并实施数控加工的核心职业能力。使学生掌握数控车床、数控铣床、加工中心的基本编程与操作方法。在学习过程中,学生首先要获得的是关于职业内容和工作环境的感性认识,进而获得与工作岗位和工作过程相关的专业知识和技能。按照“理论够用,技能强化”的原则设置课程。在实验室或实训场所组织教学,采用“课堂讲授与现场实训一体化、学历教育与技能认证相结合”的教学方法,培养学生的自我学习能力和自我发展能力。形成“实践教学――实习训练――职业培训”的技能培养模式,最大限度地提高学生的职业能力。

2.课程设计思路

《数控机床编程》是直接服务于数控工艺员、数控编程员核心职业能力培养的,通过前续课程的学习,学生已对机械加工工艺和常用的加工方法有了初步认识,再通过工件结合学习,较好地提高了数控机床的操作技能,这里要将典型零件编程加工的实施作为重点来学习。这一典型工作任务仅靠已有的工艺知识和加工技能是不够的,学生必须首先分析零件加工任务,确定加工工艺过程中的主要工艺问题,才能进一步编好程序、仿真模拟、数控加工的工作实施计划。

本课程以职业岗位标准为依据,以工作岗位和后续课程要求为课程定位;以工作任务为驱动和课程目标;以工作任务构建学习情境;以理实一体化为教学环境,利用多媒体课件、视频技术、现场教学等手段,积极采用任务驱动教学法、讲授教学法、演示教学法、分组教学法、现场教学法、引导文教学法等现代先进的教学方法。以体现课程的职业性、实践性、开放性。

基于工作过程教学模式设计与实施

基于工作过程的行动导向式课程,应体现对应职业工作任务的完整工作过程。教学过程可划分为“确认工作任务”、“制订计划”、“实施”及“检查与评价”。在课程教学设计上,采用六步教学法,即资讯―计划―决策―实施―检查―评价的行动导向教学模式,使学生在完整、综合性的行动中进行思考和学习,达到学会学习、学会工作、培养社会能力与方法能力的目的。在结构上,以能力为本位,由简到难,由单一到综合,符合学生认知规律及职业能力成长规律。通过六个学习情景全过程的学习,从而掌握数控加工基本技能。

1.改革后课程描述

2.教学内容设计

《数控机床编程》学习领域课程的教学内容是通过学习情境来反映的。其中学习情景是学习领域的具体化和细化,是案例化的主题学习单元,它将理论知识、实践技能与实际应用环境结合在一起。是教师引导,学生主动学习的教学安排,又是学生对职业行动情景的反思。数控编程员所面临的典型工作任务是不同类型零件的加工工艺和程序编制、加工实施。因而,选择教学内容时,以典型零件为载体。本课程选择了轴类、盘套类、箱体类等六个典型零件作为教学内容,学习情景的设计主要是针对六个典型零件的编程加工。

3.教学组织过程与实施

在教学过程中,按照 “六步工作程序”(资讯、决策、计划、实施、检查、评估)思维模式,设计学习情景中的工作任务,并以完成所学的工作任务为目标来组织教学,把课堂与实训地点一体化,通过教学做一体化的教学形式开展教学。

结 论

本课程根据数控职业岗位划分学习情景,每个情景以典型零件的生产加工过程为导向引入理论教学内容,采取循序渐进的教学方式,由简单到复杂、由易到难进行展开。以典型零件生产加工过程为切入点组织教学,采取教、学、做一体化的教学模式明确培养目标,确定能力标准、知识点,教学内容贴近企业岗位的需求。教学活动以学生为主体,实施通过分组合作来完成工作任务,在具有真实工作场景的数控加工实训基地进行教学,按照“做中学,学中做,先行后知”的原则,实现老师在做中教,学生在做中学,融做、教、学为一体的教学模式,使学生的专业能力、社会能力、方法能力齐驱并驾,对高素质技能型人才的培养有强大的推进作用。

参考文献:

[1]姜大源.职业学校专业设置的理论、策略与方法[M].北京:高等教育出版社,2002.

[2]陈树兰.浅谈国外高校教学方法改革现状[J].四川商业高等专科学校学报,2002(12).

[3]魏秀玲.试述高等院校专业课教学方法之改革[J].成都行政学院学报,2002(10).

篇9

Abstract: In this paper, combining training requirements of the applied mechanical undergraduates and enterprise job skills, according to the actual teaching situation, teaching reform and practice on NC machining and programming technology course is demonstrated from the aspects such as teaching content, teaching method and appraisal method.

关键词: 教学改革;数控加工与编程技术;应用型本科

Key words: teaching reform;NC machining and programming technology;applied undergraduate

中图分类号:G642.0 文献标识码:A 文章编号:1006-4311(2014)10-0285-02

0 引言

数控技术的应用已经得到我国各级政府和企业家的高度重视,数控加工技术已经成为机械加工标志性技术并逐渐得到普及,而数控人才已经成为国家紧缺人才,社会需求巨大。

目前虽然我国各类高等院校加大了培养数控专门人才的力度,但始终不能满足我国数控人才的需求,主要原因之一是教学方法、教学内容和教学模式所培养的学生不能满足企业需求,操作技能不高,实践能力不强,综合应用与创新能力不足。

陕西科技大学机械工程学院在专业建设和教学过程中,摆脱“学科本位”的课程思想,以能力培养为主线,以能力训练为轴心。充分发挥学生学习的主动性,将理论知识和实践技能渗透到一系列的项目教学和实验中。使学生牢固掌握理论知识,熟悉零件的数控加工过程,提高学生的综合能力。

1 教学内容的改革

①解构数控加工与编程技术课程的理论与实践脱节、知识模块相互独立的传统知识体系,把实践与综合应用创新能力的培养融入到相互紧密关联的数控加工工艺、数控加工与编程技术、数控加工综合实验的核心课程中;对课程的内容和实验环节进行重构,实施数控加工工艺-数控加工与编程技术-数控加工综合实验教学模块的系统化串联,即三位一体。

②精选传统内容,强化课程内容的应用型部分。注重编程技术及应用技巧等、实际案例的讲解;注重与机床实际操作、人际互动等相关知识点原理、概念、设置方法等内容的讲解与演示。

③增加CAD/CAM技术在传统编程教学中的比例,强调学生对工具软件的应用能力。增设实验上机环节,给定行业典型零件,要求完成三维建模、工艺规划、程序生成及加工仿真等环节。

④积极扩展新技术应用的内容,使学生及时了解专业前沿动态和应用“热点”,注重课程教学的实用性和前瞻性,合理更新教学内容,改变教学滞后的状况。数控装备的功能复合化、高速切削技术及刀具系统的多样化发展,带来了数控加工工艺的巨大变化,同时也对现代化数控编程技术的改进提出了更高的要求;通过播放日德等先进设备加工视频,查阅资料等,让学生了解数控领域发展的最新动态。

2 突出实验和实践教学

数控加工与编程技术是实践性很强的综合技术,没有实践体验很难获得良好的教学效果。在教学过程中,制订了金工实训数控部分实习指导书、数控加工综合实验指导书、现代加工技术综合实验指导书,以满足学生不同阶段训练需要,对学生进行规范性指导。培养学生独立分析问题、解决问题以及理论联系实际的能力。

在教学设计过程中,把实践教学内容分成三大模块:基础技能、专业技能和综合技能。

基础技能和专业技能阶段,实训工件应完全按教学思想来设计,而不形成产品,遵循由简到繁、由浅入深、循序渐进的教学原则,培养学生全面、扎实的专业基本技能;综合技能阶段,完成实际典型产品的数控综合加工。

①理论教学之后接着进行实践操作(计算机加工仿真实验),充分利用完善的实训条件,强化理论的理解与提高实操的能力,为实际操作数控机床提供了有效训练途径; 教学中,我们利用宇龙数控加工仿真软件,通过数控机床模拟仿真的操作,让学生扮演生产者的角色,在模拟仿真中进行工件的程序编写、程序调试与数控机床的操作,这样学生可以更好理解整个工件的生产过程。

②开设数控加工与现代加工技术两个综合实验,选取制造业中的典型零件,以小组为单位,实现零件的三维造型、工艺规划、程序生成、加工仿真、程序传输、机床操作与加工、零件精度检测等环节,训练学生对数控编程技术及相关工艺知识的综合应用能力。

③在传统的《机械制造技术基础》课程设计中,鼓励学生使用数控装备及工辅具等进行工艺规划,针对方案展开小组讨论和优化,提升学生的团队合作意识以及在传统制造领域应用数控加工与编程技术的能力。

3 教学方法与手段改革

①课程采用“教中学、学中做,学做结合”一体化的教学手段,通过以学生为中心、以数控加工过程为导向的授课方式,项目引领,任务驱动。

以数控铣床编程为例,将原来的内容分解为平面加工、轮廓加工、型腔及孔加工四个模块,分别讲解编程指令、编程技巧、工艺知识等相关内容;在课程实验中分别设置相应的四个模块实验,理论与实践相结合,起到了良好的效果。

②现场教学与教师示范相结合,针对课程中实践性很强的内容,如试切对刀、程序的编辑与调用、安全操作规范的步骤等,安排在工程实训中心进行,达到现场教学与教师示范相结合的教学效果。

③以学生为中心的案例教学方法,教学内容尽量选择有代表性、实用性的案例来进行分析讲评,通过案例教学,教师组织协调,让学生参与讨论,充分发挥学生的主动性、积极性和创新精神,调动学生的学习兴趣。

④采用多媒体教学,改变以往的“单纯课堂”的传统教学模式。充分利用现代化教学设施和手段,采用启发式、互动式、项目驱动等新的教学模式,对于促进教学改革具有重要意义。

⑤建设网络教学资源,推进网络教学发展。在教学建设中,本院建成了《数控加工与编程技术》省级特色精品课程网站,并在学校BBS上开设数控加工论坛版块,充分利用先进的信息技术、丰富的校园网络资源,构建一种教与学的新模式,进一步提高课程的教学质量。

4 考核评价方式改革

建立能力考核为主的评价体系,改革传统的单一卷面考核和一次性终结考核方式来评定学生成绩的方法。考核由卷面考核和项目过程考核相结合,重点按项目和任务进行过程考核,着重考核学生完成工作任务的实际能力。

任课教师结合学生的日常课堂表现给出评价成绩;根据小组的产品精度检测结果及综合实验报告给出小组实验成绩,结合各小组组长提供的贡献率及答辩表现,给出每个组员的实验成绩;期终采用笔试给出理论考核成绩;上述三者分别以2:4:4的比例给出总评成绩。

5 总结

由于数控技术的飞速发展,《数控加工与编程技术》课程的教学始终处在不断摸索的过程中,我们仍将积极实践与探索,以推动教学改革,提高教学质量。

参考文献:

[1]黄瑞,丁守成,尹小霈.加强实验中心建设,提高大学生创新能力[J].实验技术与管理,2006,23(12):128-130.

篇10

经过自动编程刀具轨迹计算产生的是刀位数据文件,而不是数控程序。因此,这时需要设法把刀位数据文件转变成指定数控机床能执行的数控程序,然后采用通信的方式或DNC方式输入数控机床的数控系统,才能进行零件的数控加工。把刀位数据文件转换成指定数控机床能执行的数控程序的过程就称为后置处理。

在安装数控编程软件时系统会自动设置好一些后置处理程序,当编程者采用的数控系统与之相对应,就可以直接选择相对应的后置处理程序,而实际加工时选择的后置处理程序也应与编程者的数控系统相一致,所以在利用编程软件进行数控编程时,必须对后处理器进行必要的设定和修改,以符合编程格式和数控系统的要求。

(来源:文章屋网 )