集成电路设计的基本流程范文

时间:2023-10-19 17:10:36

导语:如何才能写好一篇集成电路设计的基本流程,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

集成电路设计的基本流程

篇1

在非微电子专业如计算机、通信、信号处理、自动化、机械等专业开设集成电路设计技术相关课程,一方面,这些专业的学生有电子电路基础知识,又有自己本专业的知识,可以从本专业的系统角度来理解和设计集成电路芯片,非常适合进行各种应用的集成电路芯片设计阶段的工作,这些专业也是目前芯片设计需求最旺盛的领域;另一方面,对于这些专业学生的应用特点,不宜也不可能开设微电子专业的所有课程,也不宜将集成电路设计阶段的许多技术(如低功耗设计、可测性设计等)开设为单独课程,而是要将相应课程整合,开设一到二门集成电路设计的综合课程,使学生既能够掌握集成电路设计基本技术流程,也能够了解集成电路设计方面更深层的技术和发展趋势。因此,在课程的具体设置上,应该把握以下原则。理论讲授与实践操作并重集成电路设计技术是一门实践性非常强的课程。随着电子信息技术的飞速发展,采用EDA工具进行电路辅助设计,已经成为集成电路芯片主流的设计方法。因此,在理解电路和芯片设计的基本原理和流程的基础上,了解和掌握相关设计工具,是掌握集成电路设计技术的重要环节。技能培训与前瞻理论皆有在课程的内容设置中,既要有使学生掌握集成电路芯片设计能力和技术的讲授和实践,又有对集成电路芯片设计新技术和更高层技术的介绍。这样通过本门课程的学习,一方面,学员掌握了一项实实在在有用的技术;另一方面,学员了解了该项技术的更深和更新的知识,有利于在硕、博士阶段或者在工作岗位上,对集成电路芯片设计技术的继续研究和学习。基础理论和技术流程隔离由于是针对非微电子专业开设的课程,因此在课程讲授中不涉及电路设计的一些原理性知识,如半导体物理及器件、集成电路的工艺原理等,而是将主要精力放在集成电路芯片的设计与实现技术上,这样非微电子专业的学生能够很容易入门,提高其学习兴趣和热情。

2非微电子专业集成电路设计课程实践

根据以上原则,信息工程大学根据具体实际,在计算机、通信、信号处理、密码等相关专业开设集成电路芯片设计技术课程,根据近两年的教学情况来看,取得良好的效果。该课程的主要特点如下。优化的理论授课内容1)集成电路芯片设计概论:介绍IC设计的基本概念、IC设计的关键技术、IC技术的发展和趋势等内容。使学员对IC设计技术有一个大概而全面的了解,了解IC设计技术的发展历程及基本情况,理解IC设计技术的基本概念;了解IC设计发展趋势和新技术,包括软硬件协同设计技术、IC低功耗设计技术、IC可重用设计技术等。2)IC产业链及设计流程:介绍集成电路产业的历史变革、目前形成的“四业分工”,以及数字IC设计流程等内容。使学员了解集成电路产业的变革和分工,了解设计、制造、封装、测试等环节的一些基本情况,了解数字IC的整个设计流程,包括代码编写与仿真、逻辑综合与布局布线、时序验证与物理验证及芯片面积优化、时钟树综合、扫描链插入等内容。3)RTL硬件描述语言基础:主要讲授Verilog硬件描述语言的基本语法、描述方式、设计方法等内容。使学员能够初步掌握使用硬件描述语言进行数字逻辑电路设计的基本语法,了解大型电路芯片的基本设计规则和设计方法,并通过设计实践学习和巩固硬件电路代码编写和调试能力。4)系统集成设计基础:主要讲授更高层次的集成电路芯片如片上系统(SoC)、片上网络(NoC)的基本概念和集成设计方法。使学员初步了解大规模系统级芯片架构设计的基础方法及主要片内嵌入式处理器核。

丰富的实践操作内容1)Verilog代码设计实践:学习通过课下编码、上机调试等方式,初步掌握使用Verilog硬件描述语言进行基本数字逻辑电路设计的能力,并通过给定的IP核或代码模块的集成,掌握大型芯片电路的集成设计能力。2)IC前端设计基础实践:依托Synopsys公司数字集成电路前端设计平台DesignCompiler,使学员通过上机演练,初步掌握使用DesignCompiler进行集成电路前端设计的流程和方法,主要包括RTL综合、时序约束、时序优化、可测性设计等内容。3)IC后端设计基础实践:依托Synopsys公司数字集成电路后端设计平台ICCompiler,使学员通过上机演练,初步掌握使用ICCompiler进行集成电路后端设计的流程和方法,主要包括后端设计准备、版图规划与电源规划、物理综合与全局优化、时钟树综合、布线操作、物理验证与最终优化等内容。灵活的考核评价机制1)IC设计基本知识笔试:通过闭卷考试的方式,考查学员队IC设计的一些基本知识,如基本概念、基本设计流程、简单的代码编写等。2)IC设计上机实践操作:通过上机操作的形式,给定一个具体并相对简单的芯片设计代码,要求学员使用Synopsys公司数字集成电路设计前后端平台,完成整个芯片的前后端设计和验证流程。3)IC设计相关领域报告:通过撰写报告的形式,要求学员查阅IC设计领域的相关技术文献,包括该领域的前沿研究技术、设计流程中相关技术点的深入研究、集成电路设计领域的发展历程和趋势等,撰写相应的专题报告。

3结语

篇2

建设集成电路设计相关课程的视频教学资源,包括集成电路设计基础理论课程讲授视频、典型案例设计讲解视频、集成电路制造工艺视频等;构建集教师、博士研究生、硕士研究生和本科生于一体的设计数据共享平台。集成电路设计是一项知识密集的复杂工作,随着该行业技术的不断进步,传统教学模式在内容上没法完全展示集成电路的设计过程和设计方法,尤其不能展示基于EDA软件进行的设计仿真分析,这势必会严重影响教学效果。另外,由于课时量有限,学生在课堂上只能形成对集成电路的初步了解,若在其业余时间能够通过视频教程系统地学习集成电路设计的相关知识,在进行设计时能够借鉴共享平台中的相关方案,将能很好地激发学生学习的积极性,显著提高教学效果。

二、优化课程教学方式方法

以多媒体教学为主,辅以必要的板书,力求给学生创造生动的课堂氛围;以充分调动学生学习积极性和提升学生设计能力的目标为导向[3],重点探索启发式、探究式、讨论式、参与式、翻转课堂等教学模式,激励学生自主学习;在教学讲义的各章节中添加最新知识,期末开展前沿专题讨论,帮助学生掌握学科前沿动态。传统教学模式以板书为主,不能满足集成电路设计课程信息量大的需求,借助多媒体手段可将大量前沿资讯和设计实例等信息展现给学生。由于集成电路设计理论基础课程较为枯燥乏味,传统的“老师讲、学生听”的教学模式容易激起学生的厌学情绪,课堂教学中应注意结合生产和生活实际进行讲解,多列举一些生动的实例,充分调动学生的积极性。另外,关于集成电路设计的书籍虽然很多,但是在深度和广度方面都较适合作为本科生教材的却很少,即便有也是出版时间较为久远,跟不上集成电路行业的快速发展节奏,选择一些较新的设计作为案例讲解、鼓励学生浏览一些行业资讯网站和论坛、开展前沿专题讲座等可弥补教材和行业情况的脱节。

三、改革课程考核方式

改革课程考核、评价模式,一方面通过习题考核学生对基础知识和基本理论的掌握情况;另一方面,通过项目实践考核学生的基本技能,加大对学生的学习过程考核,突出对学生分析问题和解决问题能力、动手能力的考察;再者,在项目实践中鼓励学生勇于打破常规,充分发挥自己的主观能动性,培养学生的创新意识。传统“一张试卷”的考核方式太过死板、内容局限,不能充分体现学生的学习水平。集成电路设计牵涉到物理、数学、计算机、工程技术等多个学科的知识,要求学生既要有扎实的基础知识和理论基础,又要有很好的灵活性。因此,集成电路设计课程的考核应该是理论考试和项目实践考核相结合,另外,考核是评价学生学习情况的一种手段,也应该是帮助学生总结和完善课程学习内容的一个途径,课程考核不仅要看学生的学习成果,也要看学生应用所学知识的发散思维和创新能力。

四、加强实践教学

在理论课程讲解到集成电路的最小单元电路时就要求学生首先进行模拟仿真实验,然后随着课程的推进进行设计性实验,倡导自选性、协作性实验。理论课程讲授完后,在暑期学期集中进行综合性、更深层次的设计性实验。集成电路设计是一门实践性很强的课程,必须通过大量的项目实践夯实学生的基础知识水平、锻炼学生分析和解决问题的能力。另外,“设计”要求具备自主创新意识和团队协作能力,应在实践教学中鼓励学生打破常规、灵活运用基础知识、充分发挥自身特点并和团队成员形成优势互补,锻炼和提升创新能力和团队协作能力。

五、总结

篇3

IC设计工程师是当今最受人尊敬的金领职业之一,不但收入相当丰厚,而且工作极富挑战性和成就感。在全国就业形式比较严峻的今天,IC设计工程师就业却是另一片天地,在北京、上海、深圳等地,IC设计人才都做为紧缺人才被列进重点引进人才目录,具有经验的设计人员更成为各IC公司高薪争抢的对象,IC设计人才严重供不应求。广大在校学生和初入IC设计行业的工程师也因为缺乏项目经验和实践环境,很难在这一领域获得进一步提升和发展,而IC设计公司也苦于找不到具有工作能力的设计人才。

北京集成电路设计园第五日IC设计培训中心独家推出数字集成电路前端设计就业班,在最短的时间里让学员学习数字IC设计流程,设计方法,常用EDA工具,更以实际专题项目带领学员完成一个从最初的设计规范到门级网表实现的整个前端设计流程,手把手带领学员完成实际项目作品,使学员在领会IC设计知识的同时具备IC设计经验,并学会IC设计公司的团队分工与合作。学成后可以胜任IC设计公司一般性设计工作,最终的专题设计和作品更可以做为求职和职位提升的有力证明。

北京集成电路设计园是全国七个集成电路设计产业化基地之一,园区花费数百万美金购置的EDA设计平台,是北京乃至北方地区唯一可以提供完善的国际顶级EDA设计工具和试验环境的产业基地,同时园区有多家国内外知名IC设计公司入驻,吸引了众多设计人才在这里工作,浓厚的IC产业氛围为学习IC设计提供了绝佳的环境。

“数字集成电路前端设计就业班”已于2005年成功举办两期,学员有来自高校研究生、在职工作人员、应届毕业理工科学生等,实践性的课程使学员完成从对IC设计的陌生到熟悉的过程,亲历IC设计整个前端流程。开班以来得到学员的广泛认可,学员在本课程中学到的技术在求职中起到了关键性作用,先后有多名学员就职于国内知名IC设计公司,包括威盛、华大、六合万通、华为等,受到用人单位的好评。同时,在实践过程中积累的经验和新的方法,将在第三期中得到提升和发展。

如果您正在为就业发愁,正在苦苦寻找一份高薪工作在北京上海这些大城市大展宏图;

如果您想从事IC设计行业却不知道从哪里入手;

如果您刚刚踏入IC设计行业,感觉技术和工作压力很大;

那本课程将会带你踏上这条充满前途的金光大道,您的职业人生将从此与众不同……

课程特色

教授IC前端设计全部流程

特别实用、常用的IC前端技术和方法

真实实践环境,先进设计平台,实际项目设计、亲自动手制作

以直接就业为目的

招生对象

电子、计算机、通信等相关专业大学应届本科毕业生和低年级研究生

参加工作不久,需要提升技术水平和熟悉设计流程的在职工程师

或其它理工科背景有志于IC设计工作的转行人员

开课时间

2006年3月27日

课时数

共70学时

上课时间

每周一、三、五晚18:30-21:30

每周二、四、六自修及作业

上课地点

北京集成电路设计园量子芯座5层培训教室

费用

报名费100元

学费2800元,包括听课、讲义、资料、辅导、上机软硬件费用、证书等,食宿自理。

优惠

2006年3月20日前报名,免收报名费

在校学生2006年3月20日前报名,可享受优惠价2300元!

5人以上团体报名可九折优惠!

食宿

外地学员可帮助联系住宿,可以就近选择北京大运村学生公寓,或方便实惠的公寓、单间、招待所、床位等。

附近有大运村食堂、北航食堂、小吃一条街及多家饭店可供选择,经济实惠,非常方便。

交费方式

银行汇款

开户名称:北京集成电路设计园有限责任公司

开户银行:招商银行北京大运村支行(649)

帐号:6381001510001

报名现场交款

地 址:北京市海淀区知春路27号量子芯座5层IC设计培训中心

报名流程

1. 索取或下载报名表

2. 按要求填表、将报名表传真或Email给我们

3. 电话或Email确认报名信息

4. 交纳报名费和学费

5. 领取交费收据、确认函、听课证

6. 报名成功

联系方式

电话:82357175/83/84-850/851/852/858/859

邮件:.cn

课程大纲和更多信息请查询网站:.cn

注:本班招生30人,招满截止,名额有限,预报从速!若报名人数少于10人则不开班

数字集成电路前端设计人才班

实战提高班

课程简介

北京集成电路设计园第五日IC设计培训中心独家推出具有极强实践性“数字集成电路前端设计实战提高班”课程,针对具有一定工作经验的在职工程师、高年级研究生以及需要项目经验的高校任课教师,按照IC设计公司产品开发流程,采取强化训练、项目实践、专题制作等方法,带领学员在真实的实践环境中提升技术水平。本课程为前端设计高端精华课程,在特别精简的时间内讲解非常完整的流程以及更实用的设计方法,课程涵盖了相关技术的核心内容,老师将自己的实践经验倾囊而授。

本课程在“数字集成电路前端设计就业班”成功举办的基础上,为学员提供技术进阶,目标直指培养较高水平IC设计工程师,在保证学员获得IC前端设计全部技术要点的同时,重点锻炼学员的实际动手能力,更为关键的是在长达45个学时,跨度近两个月的时间内,学生将以一个简单标量流水线处理器的设计为核心,进行RTL设计、逻辑综合、时序分析、芯片测试、综合验证、以及高级技术和设计优化的技术学习和项目实践。学员可以选择参与处理器设计或系统芯片IP模块设计,要求至少参与完成此处理器芯片或独立完成一个系统芯片IP模块从设计规范到网表实现的整个前端设计过程,最终的设计是可以拿去layout和流片的。

同时,本培训中心位于北京集成电路设计园――全国七个集成电路设计产业化基地之一,园区花费数百万美金购置的EDA设计平台,是北京乃至北方地区唯一可以提供完善的国际顶级EDA设计工具和试验环境的产业基地,同时园区有多家国内外知名IC设计公司入驻,吸引了众多设计人才在这里工作,浓厚的IC产业氛围为学习IC设计提供了绝佳的环境。

如果你具有相关专业学历,但缺乏一定的项目实践机会;

如果你面对学习或工作挑战,感觉压力很大;

如果你对芯片设计充满兴趣,希望用最短的时间学到人家需要两三年才能跨越的技术;

那么本课程将会成为你提升技术水平、跻身IC设计高级人才的理想选择!

课程特色

完全不同于学校的课程体系和授课方法

没有冗长而无用的理论介绍,直接教授最实用的设计方法和设计流程

真实实践环境,先进设计平台,实际项目设计、亲自动手制作

要求独立完成项目设计,具备真正意义上的项目经验

学成后做为高级人才可以推荐工作

招生对象

电子、通信、计算机等相关专业本科毕业,一年以上工作经验的在职工程师;

电子、通信、计算机等相关专业较高年级在读研究生;

一般高校需要项目经验的任课教师。

报名要求

有简单或小规模电路设计经验,或初步熟悉IC设计前端工作但缺乏项目经验;

有数字逻辑基础、了解VERILOG语言,会使用UNIX/Linux操作系统。

培训目标

可独立完成ASIC/SOC前端设计,成为中级IC前端设计工程师。

学 时

100学时,其中实习及专题制作45学时。

开课时间2006年3月16日

上课时间

每周四晚18:30-21:30,

每周六上午9:00-12:00、

每周日上午9:00-12:00

周一到周五自修及作业

上课地点

北京集成电路设计园量子芯座5层培训教室

费 用

报名费100元

学费4800元,包括听课、讲义、资料、辅导、上机软硬件费用、证书等,食宿自理。

优 惠

2006年3月1日前报名,免收报名费

在校学生在2006年3月1日前报名,可享受优惠价4200元

5人以上团体报名可九折优惠!

食 宿

外地学员可帮助联系住宿,可以就近选择北京大运村学生公寓,或方便实惠的公寓、单间、招待所、床位等。附近有大运村食堂、北航食堂、小吃一条街及多家饭店可供选择,经济实惠,非常方便。

交费方式

银行汇款

开户名称:北京集成电路设计园有限责任公司

开户银行:招商银行北京大运村支行(649)

帐号:6381001510001

报名现场交款

地 址:北京市海淀区知春路27号量子芯座5层IC设计培训中心

报名流程

1. 索取或下载报名表

2.按要求填表、将报名表传真或Email给我们

3.电话或Email确认报名信息

4. 交纳报名费和学费

5.领取交费收据、确认函、听课证

6. 报名成功

联系方式

电话:82357175/83/84-850/851/852/858/859

邮件:.cn

课程大纲和更多信息请查询网站:.cn

注:本班招生30人,招满截止,名额有限,预报从速!若报名人数少于10人则不开班

集成电路封装工艺员培训

招生对象 大专理工类专业及以上学历

招生人数 限50人

开课时间 2006年2月13日-3月3日

(周一至周五上课)共120课时

课程内容

半导体基础制造程序、集成电路各类产品与应用、集成电路生产常用材料使用简介、集成电路英文应用、集成电路厂务与环境、封装基础知识、集成电路SOP学习、集成电路设备基本操作与应急处理、质量环境及工作安全教育、集成电路封装

开班宗旨

复芯微电子集成电路封装工程师培训为您的职业生涯铸造辉煌的起点

培训优势

订单培养、校企结合、高就业率

课程特色 名校资深讲师与企业主管共同授课;

独家使用教材;

严谨治学、定期考核

附赠行业素质、面试技巧等实用课程

职业前景

集成电路产业是未来全球高新技术产业的前沿和核心,是最具活力和渗透力的战略产业。作为集成电路产业人才缺口最大的封装产业,正需要大量有志于投身该事业的青年加入其中。

应届毕业生从事集成电路(IC)封装行业,年薪3-6万……

封装企业大多提供相当好的福利,包括吃、住、补贴……

想进入集成电路行业的您,请不要犹豫了!

招生对象 本科理工类专业及以上学历

招生人数 限30人

开课时间 2006年3月4日-4月2日

(双休日上课)共120课时

课程内容:

计算机网络与UNIX应用、半导体基础理论、集成电路制造工艺、集成电路设计概论、集成电路设计EDA软件、基本版图知识

开班宗旨:

复芯微电子IC版图设计师培训为您的职业生涯铸造辉煌的起点

培训优势:

订单培养、保证推荐、高就业率

课程特色 校内资深讲师与企业在职工程师共同授课;

独家使用教材;

严谨治学、定期考核

附赠行业素质、面试技巧等实用课程

职业前情:

集成电路产业是未来全球高新技术产业的前沿和核心,是最具活力和渗透力的战略产业。作为集成电路产业的命脉,目前长三角地区IC设计业的人才缺口已达20万……

IC设计业薪酬水平不断攀升,应届本科生从事IC版图设计起薪达3000元……

IC设计师平均月薪高达10000元……

看到这些数字,您还需要犹豫吗?

诚信责任创新

咨询人 宣佳博老师

咨询电话 021-51087308*8301

E-mail

TEL (021)- 51087308

FAX (021)- 50277166

篇4

关键词:电子科学与技术;集成电路设计;平台建设;IC产业

中图分类号:G642 文献标志码:A 文章编号:1674-9324(2014)08-0270-03

国家教育部于2007年正式启动了高等学校本科教学质量与教学改革工程(简称“质量工程”),其建设的重要内容之一就是使高校培养的理工科学生具有较强的实践动手能力,更好地适应社会和市场的需求[1]。为此,我校作为全国独立学院理事单位于2007年6月通过了ISO2000:9001质量管理体系认证[2],同时确立了“质量立校、人才强校、文化兴校”三大核心战略,深入推进内涵式发展,全面提高人才培养质量。对于质量工程采取了多方面多角度的措施:加强教学改革项目工程;鼓励参加校内学生创新项目立项,(大学生创新基金项目);积极参加国家、省级等电子设计大赛;有针对性地对人才培养方案进行大幅度的调整,增大课程实验学时,实验学时占课程的比例从原来的15%提高到25%以上,并且对实验项目作了改进,提高综合性和设计性实验的比重;同时增加专业实践课程,强调学生的应用能力和创新能力;课程和毕业设计更注重选题来源,题目比以前具有更强的针对性,面向专业,面向本地就业市场。不仅如此,学院还建立了创业孵化中心、建立了实验中心等。通过这些有效的措施,努力提高学生的综合素质、创新和应用能力。除了学校对电子信息类专业整体进行统筹规划和建设外,各个二级学院都以“质量工程”建设为出发点和立足点,从专业工程的角度出发,努力探索各个专业新的发展思路和方向。由于集成电路设计是高校电子科学与技术、微电子学等相关专业的主要方向,因此与之相关的课程和平台建设成为该专业工程探索的重点。通过对当前国内外高校该专业方向培养方案分析,设置的课程主要强调模拟/数字电路方向,相应的课程体系为此服务,人才培养方案设置与之相对应的理论和实践教学体系;同时建立相应的实习、实践教学平台。由此,依据电子科学与技术专业的特点,结合本专业学生的层次和专业面向,同时依据本地的人才需求深度和广度,对以往的人才培养方案进行革新,建立面向中山IC产业的集成电路设计专业应用型的设计平台。另外,从课程体系出发,强化IC设计的模拟集成电路后端版图设计和验证,使学生在实践教学环节中得到实际的训练。通过这些改革既可有效地帮助学生迅速融入IC设计业,也为进入IC制造行业提高层次到新高度。

一、软件设计平台在集成电路设计业的重要性

自从1998年高等学校扩大招生以来,高校规模发展很快,在校大学生的人数比十五年前增长了10倍。高校的基础设施和设备的投入呈现不断增长的趋势,学校的办学条件不断改善,同时,各个高校对实验室的建设也在持续增大,然而在实验室建设的过程中,尽管投入的资金量在不断增大,但出现的现象是重视专业仪器和设备的投入,忽视专业设计软件的购置,这可能是由于长期以来形成的重有形实体、轻无形设计软件,然而这种意识给专业发展必将带来不利影响。对于IC专业来说,该专业主要面向集成电路的生产、测试和设计,其中集成电路设计业是最具活力、最有增长效率的一块,即使是在国际金融危机的2009年,中国的IC设计业不仅没有像半导体行业那样同比下降10%,反而逆势增长9.1%;在2010年,国际金融危机刚刚缓和,中国IC设计业的同比增速又快速攀升到45%;2011年全行业销售额为624.37亿元,2012年比2012年增长8.98%达到680.45亿元,集成电路行业不仅增长速度快,发展前景好,而且可以满足更多的高校学生就业和创业。为了满足IC设计行业的要求,必须建设该行业需求的集成电路软件设计平台。众所周知集成电路行业制造成本相对较高,这就要求设计人员在设计电路产品时尽量做到一次流片成功,而要实现这种目标需要建设电路设计验证的平台,即集成电路设计专业软件设计平台。通过软件平台可以实现:电路原理拓扑图的构建及参数仿真和优化、针对具体集成电路工艺尺寸生产线的版图设计和验证、对版图设计的实际性能进行仿真并与电路原理图仿真对照、提供给制造厂商具体的GDSII版图文件。软件平台实际上已经达到验证的目的,因此,对于集成电路设计专业的学生或工作人员来说,软件设计平台的建设特别重要,如果没有软件设计平台也就无法培养出真正的IC设计人才。因此,在培养具有专业特色的应用型人才的号召下,学院不断加大实验室建设[3],从电子科学与技术专业角度出发,建设IC软件设计平台,为本地区域发展和行业发展服务。

二、建设面向中山本地市场IC应用平台

近年来,学校从自身建设的实际情况出发,减少因实验经费紧张带来的困境,积极推动学院集成电路设计专业方向的人才培养。教学单位根据集成电路设计的模块特点确定合适的软件设计平台,原理拓扑图的前端电路仿真采用PSPICE软件工具,熟悉电路仿真优化过程;后端采用L-EDIT版图软件工具,应用实际生产厂家的双极或CMOS工艺线来设计电路的版图,并进行版图验证。这种处理方法虽然暂时性解决前端和后端电路及版图仿真的问题,但与真正的系统设计集成电路相对出入较大,不利于形成IC的系统设计能力。2010年12月国家集成电路设计深圳产业化基地中山园区成立,该园区对集成电路设计人才的要求变得非常迫切,客观上推进了学院对IC产业的人才培养力度,建立面向中山IC产业的专业应用型设计平台变得刻不容缓[4],同时,新的人才培养方案也应声出台,促进了具有一定深度的教学改革。

1.软件平台建设。从目前集成电路设计软件使用的广泛性和系统性来看,建设面向市场的应用平台,应该是学校所使用的与实际设计公司或其他单位的软件一致,使得所培养的IC设计人才能与将来的就业工作实现无缝对接,从而提高市场对所培养的集成电路设计人才的认可度,同时也可大大提高学生对专业设计的能力和信心[5]。遵循这个原则,选择Cadence软件作为建设平台设计软件,这不仅因为该公司是全球最大的电子设计技术、程序方案服务和设计服务供应商,EDA软件产品涵盖了电子设计的整个流程,包括系统级设计,功能验证,IC综合及布局布线,模拟、混合信号及射频IC设计,全定制集成电路设计,IC物理验证,PCB设计和硬件仿真建模,而且通过大学计划合作,可以大幅度的降低购置软件所需资金,从而从根本上解决学校实验室建设软件费用昂贵的问题。另外,从中山乃至珠三角其他城市的IC行业中,各个单位都普遍采用该系统设计软件,而且选用该软件更有利于刚刚起步的中山集成电路设计,也更加有利于该产业的标准化和专业化,乃至进一步的发展和壮大。

2.针对中山IC产业设计。定位于面向本地产业的IC应用型人才,就必须以中山IC产业为培养特色人才的出发点。中山目前有一批集成电路代工生产和设计的公司,主要有中山市奥泰普微电子有限公司、芯成微电子公司、深电微电子科技有限公司、木林森股份有限公司等,能进行IC设计、工艺制造和测试封装,主要生产功率半导体器件和IC、应用于家电等消费电子、节能照明等。日前奥泰普公司的0.35微米先进工艺生产线预计快速投产,该单位的发展对本地IC人才需求有极大的推动力,推动学生学习微电子专业的积极性,而这些也有力地支持本地IC企业的长远发展。因此,建立面向本地集成电路产业的软件设计平台,有利于专业人才的培养、准确定位,并形成了本地优势和特色。

3.教学实践改革。为了提高人才培养质量,形成专业特色,必须对人才培养方案进行修改。在人才培养方案中通过增加实践教学环节的比例,实验项目中除了原有验证性的实验外、还增加了综合性或设计性的实验,这种变化将有助于学生从被动实验学习到主动实验的综合和设计,提高学生对知识的灵活运用和动手能力,从而为培养应用型的人才打下良好的基础。除此之外,与集成电路代工企业及芯片应用公司建立合作关系。学生在学习期间到这些单位进行在岗实习和培训,可以将所学的专业理论知识应用于实际生产当中去,形成无缝对接;而从单位招聘人才角度上来说,可以节约人力资源培训成本,招到单位真正需要的岗位人才。因此,合作双方在找到相互需求的基础上,形成有效的合作机制。①课程改革。针对独立学院培养应用型人才的特点,除了培养方案上增加多元化教育课程之外,主要是强调实践教学的改革,增加综合实验课程,如:《现代电子技术综合设计》计32学时、《微电子学综合实验》计40学时、《EDA综合实验》为32学时、《集成电路设计实验》为40学时,其相应的课程学时数从以验证性实验为主的16个学时,增加到现在32学时以上的带有综合性或设计性实验的综合实践课程。这种变化不仅是实践教学环节的课时加大,而且是实验项目的改进,也是实践综合能力的增强,有利于学生形成专业应用能力。②与单位联合的IC设计基地。IC设计基地主要立足于两个方面:一是立足于本地IC企业或设计公司;二是立足于IC代工和集成电路设计应用。前者主要利用本地资源就近的优势,学生参观、实习都比较方便,同时也有利于学校与用人单位之间的良好沟通,提高双方的认可度和赞同感。如:中山市奥泰普微电子有限公司、木林森股份有限公司等。后者从生产角度和设计应用出发,带领学生到IC代工企业参观,初步了解集成电路的生产过程,企业的架构、规划和发展远景。也可根据公司的人才需要,选派部分学生到公司在岗实习[6]。如:深圳方正微电子有限公司、广州南科集成电子有限公司等。通过这些方式不仅可以增强学生对专业知识的应用能力,而且有利于学生对IC单位的深入了解,为本校专业应用型人才找到一种行之有效的就业之路。

三、集成电路设计平台的实效性

从2002年创办电子科学与技术专业以来,学校特别重视集成电路相关的实验室建设。从初期的晶体管器件和集成块性能测量,硅片的少子寿命、C-V特性、方阻等测量,发展到探针台的芯片级的性能测试,在此期间为了满足更多的学生实验、兴趣小组和毕业设计的要求,微电子实验室的已经过三次扩张和升级,其建设规模和实验水平得到了大幅度的提升。另外,为培养本科学生集成电路的设计能力,提高应用性能力,学校还建立了集成电路CAD实验室,以电路原理图仿真设计为重点,着重应用L-Edit版图软件工具,进行基本的集成电路版图设计及验证,对提升学生集成电路设计应用能力取得了一定的效果。目前,为了大力提高本科教学质量,提升办学水平,重点对实践课程和IC软件设计平台进行了改革。学校开设了专门实践训练课程,如:集成电路设计实验。从以前的16学时课内验证设计实验提升为32学时独立的集成电路设计实验实践课程,内容从以验证为主的实验转变为以设计和综合为主的实验,整体应用设计水平进行了大幅度的提升,有利于培养学生的应用和动手能力。不仅如此,对集成电路的设计软件也进行了升级,从最初的用Pspice和Hspice软件进行电路图仿真,L-Edit软件工具的后端版图设计,升级为应用系统的专业软件平台设计工具Cadence进行前后端的设计仿真验证等,并采用开放实验室模式,使得学生的系统设计能力得到一定程度的提升,提高了系统认识和项目设计能力。通过IC系统设计软件平台的建设和实践教学课程改革,使得学生对电子科学与技术专业的性质和内容了解更加全面,对专业知识学习的深度和广度也得到进一步提高,从而增强了专业学习的兴趣,提高了自信心。此外,其他专业的学生也开始转到本专业,从事集成电路设计学习,并对集成电路流片产生浓厚的兴趣。除此之外,学生利用自己在外实践实习的机会给学校引进研究性的开发项目,这些都为本专业的发展形成很好的良性循环。在IC设计平台的影响下,本专业继续报考硕士研究生的学生特别多,约占学生比例的45%左右。经过这几年的努力,2003、2004、2005、2006级都有学生在硕士毕业后分别被保送或考上电子科技大学、华南理工大学、复旦大学、香港城市大学的博士。从这些学生的反馈意见了解到,他们对学校在IC设计平台建设评价很高,对他们进一步深造起到了很好的帮助作用。不仅如此,已经毕业在本行业工作的学生也对IC设计平台有很好的评价:通过该软件设计平台不仅熟悉了集成电路设计的工艺库、集成电路工艺流程和相应的工艺参数,而且也熟悉版图的设计,这对于从事IC代工工作起到很好的帮助作用。现在已经有多届毕业的学生在深圳方正微电子公司、中山奥泰普微电子有限公司工作。另外,还有许多学生从事集成电路应用设计工作,主要分布于中山LED照明产业等。

通过IC软件设计平台建设,配合以实践教学改革,使得学生所学理论知识和实际能力直接与市场实现无缝对接,培养了学生的创新意识和实践动手能力,增强了学生的自信心。另外,利用与企业合作的生产实习,可以使得学生得到更好的工作锻炼,为将来的工作打下良好的基础。实践证明,建设面向中山IC产业的集成电路设计实践教学平台,寻求高校与公司更紧密的新的合作模式,符合我校人才培养发展模式方向,对IC设计专业教学改革,培养满足本地区乃至整个社会的高素质应用型人才,具有特别重要的作用。

参考文献:

[1]许晓琳,易茂祥,王墨林.适应“质量工程”的IC设计实践教学平台建设[J].合肥工业大学学报(社会科学版),2011,25(4):[129-132.

[2]胡志武,金永兴,陈伟平,等.上海海事大学质量管理体系运行的回顾与思考[J].航海教育研究,2009,(1):16-20.

[3]毛建波,易茂祥.微电子学专业实验室建设的探索与实践[J].实验室研究与探索,2005,24(12):118-126.

[4]鞠晨鸣,徐建成.“未来工程师”能力的集中培养大平台建设[J].实验室研究与探索,2010,29(4):158-161.

[5]袁颖,董利民,张万荣.微电子技术实验教学平台的构建[J].电气电子教学学报,2009,(31):115-117.

[6]王瑛.中低技术产业集群中企业产学研合作行为研究[J].中国科技论坛,2011,(9):56-61.

篇5

集成电路设计公司在招聘版图设计员工时,除了对员工的个人素质和英语的应用能力等要求之外,大部分是考查专业应用的能力。一般都会对新员工做以下要求:熟悉半导体器件物理、CMOS或BiCMOS、BCD集成电路制造工艺;熟悉集成电路(数字、模拟)设计,了解电路原理,设计关键点;熟悉Foundry厂提供的工艺参数、设计规则;掌握主流版图设计和版图验证相关EDA工具;完成手工版图设计和工艺验证[1,2]。另外,公司希望合格的版图设计人员除了懂得IC设计、版图设计方面的专业知识,还要熟悉Foundry厂的工作流程、制程原理等相关知识[3]。正因为其需要掌握的知识面广,而国内学校开设这方面专业比较晚,IC版图设计工程师的人才缺口更为巨大,所以拥有一定工作经验的设计工程师,就成为各设计公司和猎头公司争相角逐的人才[4,5]。

二、针对企业要求的版图设计教学规划

1.数字版图设计。数字集成电路版图设计是由自动布局布线工具结合版图验证工具实现的。自动布局布线工具加载准备好的由verilog程序经过DC综合后的网表文件与Foundry提供的数字逻辑标准单元版图库文件和I/O的库文件,它包括物理库、时序库、时序约束文件。在数字版图设计时,一是熟练使用自动布局布线工具如Encounter、Astro等,鉴于很少有学校开设这门课程,可以推荐学生自学或是参加专业培训。二是数字逻辑标准单元版图库的设计,可以由Foundry厂提供,也可由公司自定制标准单元版图库,因此对于初学者而言设计好标准单元版图使其符合行业规范至关重要。2.模拟版图设计。在模拟集成电路设计中,无论是CMOS还是双极型电路,主要目标并不是芯片的尺寸,而是优化电路的性能,匹配精度、速度和各种功能方面的问题。作为版图设计者,更关心的是电路的性能,了解电压和电流以及它们之间的相互关系,应当知道为什么差分对需要匹配,应当知道有关信号流、降低寄生参数、电流密度、器件方位、布线等需要考虑的问题。模拟版图是在注重电路性能的基础上去优化尺寸的,面积在某种程度上说仍然是一个问题,但不再是压倒一切的问题。在模拟电路版图设计中,性能比尺寸更重要。另外,模拟集成电路版图设计师作为前端电路设计师的助手,经常需要与前端工程师交流,看是否需要版图匹配、布线是否合理、导线是否有大电流流过等,这就要求版图设计师不仅懂工艺而且能看懂模拟电路。3.逆向版图设计。集成电路逆向设计其实就是芯片反向设计。它是通过对芯片内部电路的提取与分析、整理,实现对芯片技术原理、设计思路、工艺制造、结构机制等方面的深入洞悉。因此,对工艺了解的要求更高。反向设计流程包括电路提取、电路整理、分析仿真验证、电路调整、版图提取整理、版图绘制验证及后仿真等。设计公司对反向版图设计的要求较高,版图设计工作还涵盖了电路提取与整理,这就要求版图设计师不仅要深入了解工艺流程;而且还要熟悉模拟电路和数字标准单元电路工作原理。

三、教学实现

篇6

关键词:模拟集成电路;自适应加权;多目标优化;Pareto最优前沿

中图分类号:TM352 文献标识码:A 文章编号:2095-1302(2016)10-00-02

0 引 言

一直以来,人们都想实现模拟集成电路设计的自动化,但考虑到模拟集成电路性能指标多,各性能指标间互相影响等因素,使得模拟集成电路的自动化进程远远落后于数字集成电路,模拟集成电路已经成为制约集成电路发展的瓶颈。随着技术的发展,片上系统将模拟集成电路与数字集成电路整合到一块芯片上。但人们对模拟集成电路的自动化研究却从未中断过,同时也取得了一些成果,其中基于优化的设计方法因适用范围广而受到了人们的青睐。

基于优化的设计方法将模拟集成电路的设计看作是多目标优化问题,电路设计时的性能指标如增益、带宽、相位裕度等就是多目标优化的目标函数。通过多目标优化算法求解出电路目标空间的Pareto前沿,该前沿就是电路各种性能指标折衷后的最优前沿,允许电路设计者从一组相互冲突的设计指标中做出最佳选择。

基于优化的设计方法的核心是多目标优化算法,解决多目标优化问题的常用算法是加权和算法[1],该算法容易理解、操作简单,但是该算法不能求出Pareto前沿上位于凹区间内的解,而当权值均匀分布时,Pareto前沿上凸区间内的解分布不均匀[2]。本文采用了自适应加权和算法,该算法在加权和算法的基础上改进而来,克服了加权和算法的上述缺点。

1 自适应加权和算法原理

自适应加权和算法[3]的权值系数没有预先确定,而是通过所要求解问题的Pareto前沿曲线获得。首先用传统加权和算法产生一组起始解,然后在目标空间确定需要细化的区域。将待细化区域看作可行域并且对该区域施加不等式约束条件,最后用传统加权和方法对这些需要细化的子区域进行优化。当Pareto前沿上的所有子区域长度达到预定值时,优化工作完成。

图1所示的自适应加权算法与传统加权和算法进行了对比,说明了自适应加权和算法的基本概念。真正的Pareto前沿用实线表示,通过多目标优化算法获得的解用黑圆点表示。在该例中,整个Pareto前沿由相对平坦的凸区域和明显凹的区域组成。解决这类问题的典型方法就是加权和算法,该算法可以描述成如下形式:

上式中描述的是两个优化目标的情形,J1(x)和J2(x)分别为两个目标函数,sf1,0(x)和sf2,0(x)分别为对应的归一化因子,h(x)和g(x)分别为等式约束条件和不等式约束条件。

图1(a)为采用加权和算法后解的分布,可以看出大部分解都分布在anchor points和inflection point,凹区间内没有求出解。该图反映了加权和算法的两个典型缺点:

(1)解在Pareto前沿曲线上分布不均匀;

(2)在Pareto前沿曲线为凹区间的部分不能求出解。

因此尽管加权和算法具有简单、易操作的优点,但上述缺点却限制了其应用,这些固有缺陷在实际多目标优化设计问题中频繁出现。图1描述了本文所提出的自适应加权和算法的总体流程以及基本概念。首先根据加权和算法得到一组起始解,如图1(a)所示,通过计算目标前沿空间上相邻解的距离来确定需要进行细化的区域,如图1(b)所示,该图中确定了两个需要进行细化的区域。在确定需要进行细化的区域分别在平行于两个目标方向上添加额外的约束,如图1(c)所示,在该图中向减小方向J1添加的约束为1,J2减小方向添加的约束为2。对细化后添加完约束的区域用加权和算法优化,得出新解,如图1(d)所示,其中加权和算法求解最优解时采用Matlab中的fmincon函数。从该图中可看出,细化区域内产生了新解,Pareto前沿上解的分布较之前更加均匀,且求出了凹区域内的解,继续细化能够找出更多的解,Pareto前沿上的解也将分布地更加均匀。自适应加权和算法的流程图如图2所示。

2 两级运放设计实例

以一个带米勒补偿的两级运放[4]为例,说明自适应加权和算法的多目标优化设计。两级运放电路图如图3所示。

电路的各项性能指标如表1所列。

电路优化过程中采用工作点驱动[5,6]的设计方法,电路的设计变量为电路直流工作点上一组独立的电压、电流。电路性能通过方程获得,但方程中的小信号参数通过对工艺库进行模糊逻辑建模[7,8]得到,使得计算速度提高的同时保证了计算精度。两级运放电路的优化结果如图4所示。

图为算法迭代五代后的优化结果,由图可以发现,经过五代的优化迭代,求出的最优解在Pareto前沿上分布均匀。在同一电路中,单位增益带宽的增加与摆率的增加都会使功耗增加,而电路功耗降低导致的结果是电路的面积增加,或通过牺牲面积来换取低功耗,牺牲面积换取电路的带宽增加。这些结果与电路理论相吻合,同时也再次说明了模拟电路设计过程中的折衷以及模拟集成电路设计的复杂性。

3 结 语

自适应加权和算法能求出位于凹区间内的最优解,并且最优解分布均匀。本文通过两级运放电路验证了算法的优化效果,最终得到了满意的优化结果。

参考文献

[1]阳明盛,罗长童.最优化原理、方法及求解软件[M].北京:科学出版社,2010:92-94.

[2]I.Das, J.E. Dennis. A closer look at drawbacks of minimizing weighte dsums of objectives for Pareto set generation in multicriteria optimization problems [J]. Structral Optimization, 1997(14):63-69.

[3]I. Y. Kim, O. L. de Weck. Adaptive weighted-summethod forbi-objective optimization:Paretofrontgeneration [J]. Struct Multidisc Optim, 2005(29):149-158.

[4]Razavi B. Design of analog CMOS integrated circuits [M]. New York: Mc Graw-Hill, 2001.

[5]陈晓,郭裕顺.工作点驱动的模拟集成电路优化设计[J].杭州电子科技大学学报,35(6):18-22.

[6]Guerra-Gomez I, McConaghy T, Tlelo-Cuautle E. Operating-point driven formulation for analog computer-aided design [J]. Analog Integrated Circuits and Signal Processing, 2013, 74(2):345-353.

篇7

关键词:EDA;SoC;教学特色

作者简介:侯宁(1982-),男,河南镇平人,河南城建学院电气与信息工程学院,讲师;赵张飞(1984-),男,安徽滁州人,河南城建学院电气与信息工程学院,助教。(河南 平顶山 467000)

中图分类号:G642 文献标识码:A 文章编号:1007-0079(2014)08-0088-02

集成电路工艺的不断进步,使得整个嵌入式系统可以集成到单颗芯片中,称为系统芯片(System-on-a-chip,SoC)。SoC是在专用ASIC的基础上发展起来的,其不再是功能单一的单元电路,而是一种面向某种应用的嵌入式系统。[1,2]与由分立器件构成的板级系统相比,SoC在成本、体积、速度、集成度、功能多样性等方面均具有极大优势,是各种自动化设备、汽车电子、家电、消费类电子领域的核心部件。

由于我国在集成电路设计领域起步较晚,虽然历经十余年的奋起直追,但与国外的差距反而有逐步拉大的趋势。2012年,国内芯片进口总量2197.17亿个,总额约1650亿美元,已经超过石油进口总额的1200亿美元。SoC芯片的进口量更是在芯片进口总量中占有极大比重,因此,培养合格的集成电路设计人才是高校面临的一项极其迫切的任务。

一、EDA技术教学面临的挑战

SoC系统设计包含硬件设计和嵌入式软件设计两个方面,需要微机原理、数字电路设计、模拟/射频电路设计、嵌入式软件等多学科的知识与技能。同时,由于SoC系统需要软硬件协同实现系统功能,因此设计者必须在定义SoC功能规范时,确定SoC系统的软硬件划分。随后,按照软件工程方法学设计嵌入式软件,按照VLSI集成电路设计方法学设计硬件。在设计过程中也需要结合软硬件协同设计的思想,加快SoC系统的设计进度。[3,4]

现阶段,我国高校中电子类及通讯类专业均开设有导论性质的SoC系统课程,但是理论性太强,学生缺乏对SoC系统的直观认识并且出现重嵌入式软件,轻体系结构及硬件设计的问题。学生对系统总线、知识产权核(intellectual Property,IP)、软硬件划分、软硬件协同设计等概念不甚了解。

EDA技术是通讯工程、电子信息工程、电子科学与技术及相关专业的一门专业基础课,也是唯一一门讲述现代数字电路设计方法及流程的课程。[5]当前EDA技术实验面临内容单一,实验项目常以验证型实验为主,学生的设计难以突破实验箱的限制。[6]此外,在该课程教学之前,学生通过微机原理、单片机原理等课程的学习,已经对嵌入式系统的体系结构、指令集等概念建立起整体认识,但是由于面对的仍然是8051、8259等分立器件,学生还没有建立系统的概念,特别是软硬件协同设计的思想。因此,EDA技术教学中,在学生掌握了基本组合电路、时序电路设计方法后,利用一个真实的SoC系统平台进行实践教学,可以使学生进一步理解SoC系统,通过SoC系统实验使学生初步建立起软硬件协同设计思想。

二、SoC系统平台介绍

为了满足EDA设计课程教学中SoC系统实验的需要,笔者开发了一款嵌入式SoC系统平台,如图1所示。

嵌入式SoC系统平台包括一款兼容ARM指令集[7]的处理核。AHB总线挂接内部存储器,默认从设备,中断控制器。处理核通过APB总线桥访问常用的慢速外设,包括通用IO、定时器、SPI接口、I2C接口以及UART接口。

嵌入式SoC系统平台结构简单,参数化设计,外设丰富,除了满足SoC系统实验要求外,还可以做为EDA课程设计的基础平台开展一些开放性实验。

笔者开设的SoC系统实验课没有采用Altera公司的SOPC实验环境。[8,9]笔者认为对于初步接触SoC系统的学生而言,该平台涉及的自动化工具过多,容易将学生学习的注意力转移到工具的使用上,而忽略了对SoC系统本身的学习。

三、SoC系统实验介绍

已经开设的SoC系统实验包括系统总线实验、通用总线接口(General Purpose Input Output,GPIO)设计实验和开放性实验三部分。通过这部分内容的学习,要求学生掌握系统总线、IP核的概念,初步建立软硬件协同设计思想并理解软硬件资源开销。

1.系统总线实验

微机原理和单片机课程通常以8051作为授课对象。8051的外部总线是一种板级三态总线,要求地址和数据总线复用,完全不同于强调流水操作的现代系统总线。AMBA总线是ARM公司定义的一种系统总线规范,用于ARM处理核与外设IP间的数据通讯,是一种典型的现代系统总线。①由于ARM处理核超高的市场占有率,AMBA总线标准应用广泛。

AMBA总线规范内容较多,实验仅涉及AHB-LITE总线和APB总线的基本操作。

图2所示为一个典型的AHB-LITE总线系统,实验要求学生自己定义各个外设的总线地址区间,设计出总线的译码器模块和多路选择器模块。

APB总线桥连接AHB总线与APB总线,这部分内容作为开放实验的一部分,供学有余力的同学学习。实验中仅要求学生掌握APB总线的基本读写时序。

通过系统总线实验,使学生理解现代系统总线的设计思路,理解板级总线与片内系统总线的区别。

2.GPIO设计实验

GPIO是SoC系统最基本的外设IP,可以用作各类总线扩展接口,还可以提供额外的控制监视功能。本实验要求学生需要依据设计规范,设计出一款基于APB总线接口的GPIO外设IP,特别要求GPIO支持硬件“读―改―写”操作。通过该实验使学生理解IP核的设计重点,重点建立软硬件划分的设计思想,理解软硬件资源开销。

图3所示为实验技术规范定义的GPIO框图,主要包括数据模块和中断模块。GPIO规范要求设计具有如下特征:软件配置输入或者输出;支持硬件“读-改-写”功能;可配置作为中断源;可配置支持上升沿和下降沿中断。

在实际教学中,要求学生必须完成GPIO的数据模块的设计。中断模块的设计可作为开放性实验。在实验中,要求学生用软件实现“读―改―写”操作,与硬件的“读―改―写”操作比较,深刻理解嵌入式系统设计中的软硬件开销问题,对SoC系统的软硬件划分思想有初步的认识。

3.开放性实验

SoC系统的内容丰富,由于EDA技术学时有限,笔者将一些课程教学无法涉及的内容放在EDA课程设计的开放性实验环节。学生可以在利用SoC系统平台开发外设IP,丰富平台功能。

开放性实验提供的可选实验包括:PWM电机控制实验,要求学生根据规范要求设计PWM IP并控制电机运转;UART通用串口实验,要求学生根据规范设计UART IP并与PC 调试助手通讯;SPI FLASH编程实验,要求学生根据规范设计SPI IP并完成SPI FLASH编程;I2C接口液晶控制实验,要求学生根据规范设计I2C IP并控制液晶模块;RTC实验,要求学生根据规范设计RTC IP并编程支持实时时钟;未来开放性实验还将提供SD Card IP,USB IP,Ethernet IP等实验。

集成电路设计技术发展迅猛,SoC系统平台的扩展和丰富需要教师不断学习,以确保学生在校期间能接触到最先进的集成电路设计知识,快速适应未来工作。

四、 结束语

针对当前本科教育阶段SoC系统教学中重理论,轻实践,重软件,轻硬件设计的问题,笔者利用自己研发的SoC系统实验平台,积极探索EDA技术课程教学,加强实践环节指导,提升学生对SoC系统的理解,使学生初步建立起软硬件协同设计的思想。利用EDA课程设计的开放性实验环节,指导学有余力的学生独立设计一些简单的外设IP,培养学生兴趣,进一步增强学生就业竞争力。

注释:

①参见的内容。

参考文献:

[1]郭炜, 郭筝,谢憬.SoC设计方法与实现[M].电子工业出版社,

2007.

[2][美]罗文.复杂SoC设计[M]. 吴武臣, 侯立刚,译.机械工业出版社,2006.

[3]赵川,徐涛,孙晓光.高性能处理系统的软硬件协同设计研究[J].计算机工程与科学,2009,31(1):20-23.

[4]于海,姚启桂,虞跃,等.基于SoPC的状态监测装置的嵌入式软硬件协同设计[J].现代电子技术,2012,(22):1-4.

[5]周莉莉,周淑阁.EDA课程教学方法的研究与实践[J].实验室科学,2008,(5):55-57.

[6]翟文正,管功湖.将EDA 技术引入计算机组成与结构实验教学的研究[J].实验室研究与探索,2008,(12):12-14.

[7]周立功.ARM嵌入式系统基础教程[M].北京:北京航空航天大学出版社,2008.

篇8

关键词: 嵌入式应用 教学体系 实验教学

嵌入式技术是21世纪计算机技术发展的一个重要方向。嵌入式技术的发展,是当今新型技术时代的一个重大标志。

在当前数字信息技术和网络技术高速发展的后PC时代,技术的飞速进步及市场对高端智能产品需求的日趋增长,8/16位微处理器已无法满足高端智能产品对微处理器性能的最低要求。而32位嵌入式微处理器因其高主频、低功耗、高性价比、可运行嵌入式操作系统等特点,已经在高端智能产品、工业控制、信息家电等领域已取得了广泛应用[1,2]。

近年来,在电子信息学科单片机原理及应用课程、16位及32位微机原理及接口电路等课程的教学中,仍以汇编语言、接口编程等作为主要知识点进行讲授,现有课程内容、教学设施和教学手段与现今嵌入式技术的飞速发展严重脱节,技术差距在不断加大,传统的课程体系和教学方法已经无法满足应用型人才培养的要求。为此,更新嵌入式应用相关课程教学内容,进行课程改革和实验建设迫在眉睫。

1.循序渐进,构建三位一体的课程群体系

目前嵌入式应用的实现主要有三种形式:面向实时性要求较低、无需多线程的简单系统,一般选用单片机等8位或16位处理器的解决方案,适用于低端应用场合;面向处理速度较快、需要操作系统支持的场合,可选用基于FPGA或ARM的片上系统(SOC)的解决方案,适用于高端应用场合;而在如汽车电子、航空航天等工业级应用场合,一般自主开发专用数字集成电路实现嵌入式应用[3]。

图1 嵌入式应用的实现形式

嵌入式应用课程群针对这三个方向开设三门主干课程:单片机原理与应用、片上系统与嵌入式应用和数字集成电路设计,《单片机原理与应用》以8051为代表,主要讲授8位微处理器的结构和工作原理,让学生对嵌入式系统形成基本概念,学习一般微处理器的指令集、工作原理、硬件配置和软件开发。《片上系统与嵌入式应用》以FPGA为平台,着重讲授SOPC系统设计方法,在先修课程的基础上逐步深入,让学生从这门课程的讲授中既能学习到实用性较强的简单数字系统开发,又能接触到如底层驱动程序、实时操作系统等嵌入式应用的前沿技术。最后,特别针对本专业微电子的专业特点,开设《数字集成电路设计》,专门讲授嵌入式处理器数字IC的开发和使用,培养学生具有设计具有自主系统架构嵌入式专用IC芯片的能力,形成本专业特色鲜明的培养模式。

图2 嵌入式应用课程群体系

2.教学科研并重,不断更新教学内容和教学方法

嵌入式领域的技术更新换代速度十分的快,因此,要求教师在教学过程中不断跟踪新技术,更新教学内容和教学方法。在“嵌入式应用”课程群建设的过程中,我们将课程的教学内容和教师所承担各级科研项目中所获得的工程实践经验紧密结合起来,在每个轮次的教学中,都会根据目前最新的前沿技术,加入一部分新的教学内容,以达到更好地提升学生知识水平的效果。我们编写了适合我校办学特色的嵌入式系统实验(实训)指导书、PPT教学课件、AVI视频教学动画等教学资料。目前,课程群中三门课程在教学内容和方法方面都进行了有益的探索。

(1)《单片机原理与应用》课程采用目前工程实践广泛采用的C程序设计语言进行描述,改变了以往使用汇编语言讲授枯燥、乏味的特点,更易于学生理解和实际应用。同时,我们还在课堂教学中引入了Proteus单片机仿真软件进行案例教学。在讲授完单片机的基本原理之后,教师以讲授实际案例为手段训练学生对于各知识点的理解和应用能力[4]。在此过程中,学生与教师同步在课堂中用自己的计算机完成案例的复现,并用Proteus仿真软件验证程序运行的实际效果。应用案例教学法,学生的学习不再是一味地听,而转变为实际动手实践,在实践中尝试、总结和提升,学生学习效果显著强化。

(2)《片上系统与嵌入式应用》是一门新开课程,主要讲授Nios II软核处理器的体系结构、设备和SOPC系统的开发流程。在课程内容上,侧重嵌入式处理器的应用而非原理,避免与单片机课程重复。在上一学期学生学习过单片机课程的基础上,重点讲授SDRAM存储器、Flash存储器、UART接口等低端单片机系统不涉及的内容和应用实例。在教学方法上,采用任务驱动法来激发学生的学习兴趣,以一个简单的设计实例为主体,介绍软硬件的开发流程,开发环境的使用和编程思想,使学生循序渐进,逐步深入[5]。例如:设计一个点阵显示屏控制器,围绕这个任务让学生熟悉构建SOPC系统所要用到的外部RAM接口、外部Flash接口、Avalon三态桥、定时器、锁相环、自定义点阵等外设的特点和编程方法。这种教学方法将学习的难点分散到各个任务中,能使学生在完成任务的同时深刻理解所学内容。

(3)《数字集成电路设计》课程以Verilog语言设计为切入点,从最简单的逻辑电路设计开始,逐步深入复杂的微处理器电路设计。在教学内容上,针对嵌入式应用课程群的特点,围绕微处理器的主要结构如ALU、ROM、寄存器组、RISC模型机等电路的原理和设计方法进行讲授,学生在经过这门课程的学习后,可以掌握自己动手开发一块具有自主知识产权的专用嵌入式处理器芯片的能力。

3.开设综合性、设计性实验,培养学生创新能力

应用型本科人才并不是“狭窄于技术”的工匠,应具有开放的辩证思维和创新精神。在嵌入式课程群实践体系的建设过程中,除了开设常规的基础性实验以外,在《片上系统与嵌入式应用》和《数字集成电路设计》课程设计中开设了一系列的综合性和创新性实验,这些课题来源于实际的工程设计和科研项目,由学生自行提出可行的设计方案,与指导老师共同讨论后实施,整个过程由学生主导,充分发挥学生的主观能动性和创造力。我们将实验内容分为以下三类。

(1)基础性实验。主要是让学生在实验指导书的指导下将理论课上所掌握的知识和概念通过实验的方式进行巩固,通过直观、具体的实验结果验证理论结果,熟悉软件使用方法和设计流程。包括PWM直流电机控制、标准输入输出设备字符串流控制、PIO控制流水灯、自定义外设点阵控制等实验。

(2)综合性实验。这部分实验区别于基础性实验,并不给出具体的实验过程,只给出基本原理和大致方案,要求学生综合运用所学专业知识,周全考虑,自行确定具体的实验步骤和方法。这部分实验往往涉及多门知识点甚至是多门课程,包括无线温度数据采集、μC-OS多任务操作系统、触摸屏人机交互等实验。

(3)创新性实验。这部分实验主要面向部分基础知识过硬、动手能力强的优秀学生,利用课外时间提高他们在嵌入式应用方面的实际能力。这类实验以省、校两级大学生实践创新项目为载体,不拘泥于理论和实验课程的范围,由学生自主选题,形成创新团队,由团队指导老师负责。我们成立了开放的嵌入式创新实验室,实验室由老师、实验员和高年级学生共同值班,学生可以随时申请使用实验设备,完成相应的实验。通过这种形式的锻炼,嵌入式创新实验室的同学在省大学生电子设计竞赛、全国电子专业人才设计与技能大赛中都取得了优异成绩。

4.结语

嵌入式应用课程群经过以上所述课程体系的调整、教学内容的丰富及实验教学的改革,不断增加新知识,改进教学手段和教学方法,通过课堂教学、实验教学和教学科研的结合,在学生创新意识和实践动手能力培养方面进行了有益尝试和探索。未来我们将在深化教学改革的过程中不断探索,不断完善,探索出一套适合应用型人才培养的嵌入式应用教学培养模式。

参考文献:

[1]周立功.SOPC嵌入式系统基础教程[M].北京:北京航空航天大学出版社,2006.

[2]宋彩利,康磊.数字系统设计与SOPC技术[M].西安:西安交通大学出版社,2012.

[3]李兰英,崔永利,李妍等.基于FPGA技术的嵌入式应用型人才培养教学体系[J].计算机教育,2011(16):18-21.

[4]陈林,魏淑桃,石林祥等.应用型本科“SOPC设计与应用”课程教学改革探索[J].计算机教育,2012(19):82-85.

篇9

关键词:JFET;运算放大器;版图设计;可靠性

0 引言

该JFET输入运算放大器主要用在高速积分器、快速D/A转换器、采样-保持等电路中,其关键技术指标是高精度、高速和高可靠。作为集成电路设计流程中最重要的一个环节,芯片版图的设计将是提高电路精度、成品率和可靠性的关键因素。

1 芯片功能及原理图

本文设计的JFET输入双运算放大器输入偏置电流最大200pA,失调电流最大50pA,失调电压最大2mV,共模抑制比最小85dB,电源抑制比最小85dB,电压增益最小90dB,转换速率最小10V/μs,增益带宽积最小4.5MHz。电路由失调调零电路、输入ESD保护电路、偏置电路、差分输入电路、电压放大电路、输出扩流电路、保护电路组成。电路原理图如图1所示。

2 芯片版图设计

2.1 芯片版图的平面设计

本文设计的JFET输入双运算放大器最大的热源就是输出扩流电路,为了保证电路精度,降低温度对输入部分的影响,应该将差分输入电路远离输出扩流电路;保护电路需要测量输出管的电流和结温(主要是电流),因此需把它放在贴近输出扩流电路的位置;电路失调调零电路考虑到电路中测应放在芯片边缘;偏置电路采用正温度系数的扩散电阻和负温度系数的齐纳二极管串联,基本消除了温度的影响,可以放在输出扩流电路边上,同时降低了温度对差分输入电路的影响。

考虑到电路的高可靠性能,在电路的输入、输出、电源端均加上ESD保护电路,提高电路抗静电等级。

综上所述,结合具体布线情况,得出了芯片版图的整体布局,如图2所示。

2.2 主要模块及元器件版图设计

本设计采用4μm双极对通隔离兼容JFET工艺,单层金属布线,共15次光刻版,全部采用负胶接触光刻。最小特征尺寸为4μm,外延层厚度12μm,电阻率3Ω・cm,基区结深2.5~3.0μm。

2.2.1 标准元器件版图设计

本设计中用到的标准元件主要有P沟道JFET、外延型JFET,小功率npn晶体管、横向pnp管、电阻、电容。P沟道JFET沟道长度设计为10μm。外延型JFET沟道宽度设计为32μm。小功率npn晶体管发射区下限尺寸主要受光刻精度的限制,小于4mA的npn晶体管发射区为φ22μm圆形,发射极电流按0.1mA/μm计算【1】;4~25mA的npn晶体管发射区设计为200μm×18μm的矩形。纵向pnp晶体管发射区设计为350μm×30μm的矩形,同时在发射区做重掺杂,提高纵向pnp管的大电流增益。横向pnp管基区宽度设计为14μm。

另外,设计时还采用了发射极铝层大面积覆盖(过EB结势垒区),以减少表面复合,提高npn管和横向pnp管的小电流放大倍数【1】。

本设计中采用的电阻主要有基区电阻和高硼注入电阻。对于精度要求高、匹配性好的电阻采用基区电阻,如差分输入端要求精确匹配的电阻。为了保证电阻的精度和好的匹配性,设计时尽量避免弯头的出现。其余要求不高且阻值较大的电阻采用高B注入电阻,为了形成可靠的欧姆接触,在接触孔下的扩散区做了重掺杂。

电容器的设计采用MIS电容器,考虑电路对转换速率的要求,电容面积按2pF/10000μm2计算。

2.2.2 差分输入电路的版图设计

差分输入电路的精度是影响JFET输入运算放大器的最主要因素。因此,在版图设计时除了合适的布局外,还要充分考虑到该部分电路所用元器件的匹配性,设计时主要采用以下匹配原则:(1)JFET采用统一的几何形状,放置在最相邻的位置,采用共质心拓扑结构交叉耦合的版图设计【2】;(2)JFET所属隔离岛实行N+重掺杂,保证隔离岛等电位,减小JFET表面漏电;(3)npn晶体管发射区采用φ22μm圆形结构,放置在JFET边上,采用交叉耦合的版图设计,减小输入级有源负载失配对失调的影响;(4)匹配好的JFET远离芯片热源,放置在芯片的对称轴上;(5)所用电阻均为基区电阻,条宽为20μm。采用上述原则设计出如下结构:

经布局规划,模块实现和版图优化,得到芯片的整体版图(图4),芯片版图尺寸为:3380μm×1860μm。

3 流片结果及分析

芯片版图经总体布局、布线设计完成后,对版图进行了DRC和LVS检查,并在流片厂双极对通隔离兼容JFET工艺线成功流片,芯片图形如图5所示。

表1是该运算放大器样品的上机测试参数与国外同型号产品对比结果。从表1可以看出,该运算放大器达到了国外同型号产品的参数要求(实测时TI公司同类产品IB为100pA左右,Linear Technology公司同类产品IB为150pA左右),可以替代进口的同型产品。

4 结语

为了实现高精度、高速、高可靠运算放大器,本文设计出了一种输入级完全对称的版图结构。芯片版图经总体布局、布线设计完成,并在流片厂成功流片。结果表明,该芯片的性能指标优于国内同型产品,版图设计很好地实现了电路功能,初测芯片的成品率达90%。

参考文献:

篇10

【关键词】数字 FPGA集成 电路验证

对于数字集成电路而言,其涉及到的工作都是比较复杂的,自身的功能也比较多样,为了在验证方面获得较高的提升,必须在验证指标、验证手段上进行优化。对于数字集成电路FPGA验证而言,其本身就是重要的组成部分,而在参数的验证和功能的分析方面,都表现出了一定的复杂特点,传统的模式无法满足现阶段的需求。所以,我们要针对数字集成电路FPGA验证的特点、目的、要求,完成各项工作的不断提升。在此,本文主要对数字集成电路FPGA验证展开讨论。

1 FPGA概述

在数字集成电路当中,FPGA所发挥的作用是非常积极的,现如今已经成为了不可或缺的重要组成部分。从应用的角度来分析,FPGA是一种现场编程门阵列,它主要是在可编程器基础上,进一步发展的产物。可编程器主要包括PAL、GAL、CPLD等等。FPGA在具体的应用过程中,具有较强的针对性,其主要是作为专用集成电路领域的服务,并且自身所代表的是一种半制定的电路。从客观的角度来分析,FPGA的出现和应用,不仅在很多方面解决了定制电路所表现出的不足,同时又在很大程度上克服了原有的问题,主要是克服了编程器件门电路数有限的缺点。由此可见,数字集成电路在应用FPGA以后,本身所获得的进步是非常突出的,并且在客观上和主观上,均创造了较大的效益,是非常值得肯定的。

2 FPGA器件介绍

随着数字集成电路的不断发展,FPGA的应用效果也越来越突出。目前,关于数字集成电路FPGA验证,业界内展开了大量的讨论。对于FPGA验证而言,需从客观实际出发。FPGA器件,是验证数字集成电路的主要工具,因此首先要在该方面做出足够的努力。在芯片流片之前,对数字集成电路的整体设计,开展有效的FPGA验证,能够针对数字集成电路的实际工作情况,进行深入的了解和分析;针对遇到的问题,可以采取有效的方案来解决,避免造成较大的损失。

相对而言,采用FPGA进行验证的过程中,硬件环境的标准是比较高的。首先,我们在验证工作之前,必须设计出相应的PCB板,完成相关系统的验证和构建。其次,在验证的过程中,必须充分考虑到成本的问题,与芯片的流片费用相比较,FPGA的验证成本较低,是主流的选择。第三,数字集成电路FPGA验证过程中,多数情况是由两个部分组成的,分别是FPGA和器件。器件主要包括开关、存储器、LED、转接头等等。

数字集成电路FPGA验证时,需针对不同的电路实施有效的验证。例如,在实际工作当中,如果是要验证EPA类型的芯片,必须对成本因素进行充分的考量。建议选择Spartan3 XC3S1500 FPGA进行验证处理。选择该类型的FPGA,原因在于,其芯片为150万门级,能够满足EPA的客观需求。同时,在FPGA的利用率方面,超过了90%,各方面均取得较好成果。

3 基于FPGA的验证环境

数字集成电路在目前的发展中,获得了社会上广泛的重视,并且在很多方面都表现出了较强的高端性。为了在FPGA验证方面取得更多的进展,必须针对验证环境进行深入的分析。本文认为,一个比较完整的验证方案,其在执行过程中,必须充分的考虑到芯片的实际工作环境,考虑到理想的验证环境,考虑到二者的具体差别。尤其是在网络的工作环境方面,其包含很多复杂的数据包,将会对最终的验证造成不利的影响。例如,我们在开展EPA芯片的验证工作中,可尝试使用OVM库类验证芯片的基本通信系统、功能,再利用FPGA的辅助验证,与时钟进行同步处理,从而选择合理的验证方式,针对数字集成电路完成比较全方位的验证,实现客观工作的较大进步。

4 关于数字集成电路FPGA验证的讨论

数字集成电路FPGA的验证工作,在很多方面都表现出了较高的复杂性和较强的技术性,现阶段的部分工作虽然得到了较大的进步,但也有一些问题,还没有进行充分的解决,这对将来的发展,会产生一定的威胁和不良影响。例如,FPGA基于查找表结构,有固定的设计约束和要求,以及定义明确的标准功能,而ASIC基于标准单元和宏单元,按照一般IC设计流程进行设计,并采用标准的工艺线进行流片,在设计时存在的选项以及需要考虑的问题往往比FPGA多很多,所以在将FPGA设计转化为ASIC设计时,需要考虑如何转化并了解这些转化可能带来的相关风险。

5 总结

本文对数字集成电路FPGA验证展开讨论,从目前的工作来看,FPGA在验证过程中,表现出的积极效果还是非常值得肯定的,各项工作均未出现恶性循环。今后,应在数字集成电路以及FPGA验证两方面,开展深入的研究,健全工作体系的同时,加强操作的简洁性。

参考文献

[1]陈玉洁,张春.基于EDA平台的数字集成电路快速成型系统的设计[J].实验技术与管理,2012,09:101-102+107.

[2]张娓娓,张月平,吕俊霞.常用数字集成电路的使用常识[J].河北能源职业技术学院学报,2012,03:65-68.

[3]吕晓春.数字集成电路设计理论研究[J]. 就业与保障,2012,12:32-33.

[4]伍思硕,唐贤健.数字集成电路的应用研究[J].电脑知识与技术,2014,19:4476-4477.

[5]闫露露,王容石子,尹继武.基于AT89C51的数字集成电路测试仪的设计[J].电子质量,2010,08:7-9.

作者简介

于维佳 (1982-),男,广西壮族自治区柳州市人。硕士学位。现为柳州铁道职业技术学院讲师。研究方向为智能检测与控制技术。

作者单位

1.柳州铁道职业技术学院 广西壮族自治区柳州市 545616