常用电源电路设计范文

时间:2023-10-17 17:24:23

导语:如何才能写好一篇常用电源电路设计,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

常用电源电路设计

篇1

【关键词】集成运放;AC放大器;DC放大器

1前言

集成运算放大器(简称集成运放)具有功能强、易用诸多优点,被广泛应用于音频电压放大、仪表信号放大、信号滤波等场合,其已成为电子电路尤其是模拟电路的标准器件,也是模拟电子技术课程教学的主要内容之一。为了使入门者更容易理解集成运放的工作原理和更容易解释集成运放电路,在教学中常使用集成运放的理想运放模型,如视输入阻抗无穷大、输出阻抗为零、开环电压增益无穷大和零输入失调电压。在DC放大器设计中,集成运放的零输入失调电压参数对电路设计影响很大,同一电路设计,因选择不同的集成运放,所得结果差异巨大,甚至电路完全不能工作。传统运放电路,通常隐藏公用电源脚,且默认为正负对称双电源供电,而当前,随着电子产品小型化趋势到来,很多场合并不能提供正负对称双电源,而只能提供单电源,由于很多初学者对集成运放电源的供电认识模糊,在设计单电源供电的AC放大器时,不对电路进行相关改造,而是直接用单电源代替双电源,导致电路工作不正常。

2AC放大器设计错误分析

图1为典型的AC放大器,电路采用LM358集成运放,采用正负对称的双电源供电,交流信号的电压放大倍数AV=1+R2/R3=23,输入阻抗Ri=R1=1K。C1为耦合电容,隔掉信号源中的直流成份,C2对直流开路,使直流电压产生100%负反馈,从而稳定直流工作点,C2对交流信号相当于短路,从而不影响交流信号的电压放大倍数。无信号输入时,正相输入端、反相输入和输出端的直流电压都约为0V,有信号时,输出端电压在0V基础上变化。不少块合,如电池供电时,无法提供正负对称的双电源,不少初学者由于对集成运放的供电和集成运放电路的直流工作点认识模糊,在设计AC放大器时,直接用单电源代替双电源,设计电路如图2所示。图2电路,无信号输入时,正相输入端、反相输入和输出端的直流电压都约为0V,而当有交流信号输入时,输入信号为正极性时,输出端可以输出放大后的正极性电压,而输入信号为负极性时,输出端不可能输出负极性电压,导致产生严重的失真。单电源供电条件下,正确的电路设计如图3所示。图3电路增加了电阻R4、R5和电容C3、C4,电阻R4和R5阻值相等,提供7.5V直流电压给集成运放的正相输入端,从而使集成运放的正相输入端、反相输入端和输出端的直流电压都提升至7.5V。当输入交流信号时,输出端电压就可以在7.5V基础上进行上下摆动,从而完成交流信号的不失真放大。电容C3为滤波电容,电容C4为输出耦合电容,起到隔直通交作用。

3DC放大器设计错误分析

DC放大器大量应用于传感器信号放大和自动控制场合,图4为一典型的60dB电压增益的DC放大器,电路包括两级电压放大,每级电压放大倍数为34倍。仿真测试时,若选择理想集成运放模型,零输入时(输入端短路),输出端电压为0V,1mV输入时,输出1V,电路实现设计要求;若选择常用LM358集成运放,仿真测试发现,零输入时,输出端电压3.22V,发生了严重偏离,电路完全不可用。其实,真实的集成运放所组成的DC放大器,零输入时,输出端不可能零输出,输出电压为:VO=Vios×Avd其中,Vios为集成运放的输入失调电压参数,Avd为放大器闭环电压放大倍数。不同的集成运放,其输入失调电压参数相差甚远,理想运放,视输入失调电压为零,因此,采用理想运放的DC放大器,零输入时,可实现零输出。而常用的LM358运放,其输入失调电压达mV级别,因此,60dB电压增益的DC放大器,其输出误差可达数V之大。解决办法是选择低输入失调电压的集成运放,如OP07,其输入失调电压低至几nV,用在本电路,输出端误差能控制在毫伏级别。

4结语

若对集成运放的电源供电条件和集成运放的相关参数了解不够,电路设计容易出错或电路指标不理想。设计单电源供电的AC放大器时,应将直流工作平移至电源电压的一半,设计DC放大器时,应采用低输入失调电压的集成运放。

参考文献:

[1]陈静,史雪飞.“模拟电子技术”课程中若干关键问题的探讨[J].电气电子教学学报,2014(1):59~61.

[2]曹吉花,郭焕银,唐永刚.电子设计工程师认证与电子技术教学改革[J].高校实验室工作研究,2011(1):35~36.

篇2

引言

在现代电子测量、仪器仪表、通信等领域,经常涉及对宽带信号进行数据采集和存储。实际数字采样系统中存在数字转换器引起的量化噪声、采样保持器带来的非线性失真、带宽限制和孔径抖动误差、数据在系统各部分间传送过程中可能引入的噪声干扰以及由电路布局和系统结构的原因耦合的噪声干扰等多种因素会造成采样系统性能下降,这种因素在高速采样系统中影响尤其突出。因此,高速宽带采样系统设计显得尤其重要。

影响高速采样系统性能的主要因素

1 前端电路的构成

合理的前端电路构成,是系统实现中最为关键的一步。在高速数据采集系统的设计中,最重要的技术指标是系统的通过速率。这一指标与预采样滤波器的建立和恢复时间,模拟多路开关的转换时间,驱动放大器的响应时间,采样保持电路的捕捉时间,模数转换器的转换时间等都有关系,即系统各部件的性能参数限制了系统的性能指标。实际上高速数据采集的实现总会受到器件性能的制约,而且对于不同的系统结构,起决定性作用的部件又各不相同,所以选择合适的结构在系统设计中显得尤为重要。在高速数据采集系统中,常用的结构有单通道采集结构和多通道并行采集结构两种。

在前端电路设计时应注意如下几点:

(1)前置放大器在输入信号的带宽范围内应该有足够大的增益和足够短的稳定时间。一般是选择具有大的驱动能力和快的稳定时间的运放。

(2)降低输出瞬态的影响。一个重要方法是保证工作频带内放大器能保持一个较低的输出阻抗。

(3)放大器带宽要保证其稳定时间跟得上ADC的速度。在接近单位增益的交叉点的频率时,放大器闭环增益会降低,导致输出阻抗增大。因此,在设计前置驱动放大器时,决不能忽视带宽的因素,所以在选择放大器时要有足够大的带宽储备量。

(4)除了前置放大器的噪声、增益和带宽的要求外,放大器还具有足够大的动态范围。

ADC的动态范围决定了高速数据采集系统的主要噪声和信噪比指标。在理想情况下n位ADC系统,当输入信号幅度达到满量程时,系统最大信噪比为:SNR=6.02n+1.76(dB)。实际系统中由于存在各种噪声因素,一般但噪声水平比理论分析值要大,获得的动态范围要小,所以在选择ADC时要有一定的动态范围储备量。

2 电源和接地

在高速采样电路设计时,一般设计原则是应把模拟电源与数字电源应分开。在不能单独供电的场合,模拟电源最好使用二次降压稳压电源。降压设计中主要权衡是使用线性稳压器还是使用开关稳压器。线性稳压器体积小,所需的滤波电容较小,这有利于减小浪涌电流。对于线性稳压器来说,效率低是其主要缺点。对于ADC电路和前端输入电路来说,耗电不大,变换效率不是主要问题,一般首选线性稳压器的。对于开关稳压电源在这种降压设计中尽量避免使用,以减小其带来的高频干扰。

高速数据采集系统中,电源连线上感应的高频干扰信号是不可忽视的电路干扰源。除了采用短而宽的电源线减小感抗外,还需在靠近器件输出端加接退藕电容和旁路电容。退藕电容为器件提供局域化的直流旁路电容,能消除高频辐射噪声和抑制高频干扰。

在滤波电路设计中,关键是确定接入电容、电感等元件构成的滤波网络的结构。对于大多数的采样器,具有较小的瞬态需用电流,可以采用容量较小的去藕电容。一般用容量为0.1~0.01μF的小容量电容接连在器件的电源与地之间。不能直接就近接电源层或地层,否则去藕效果不好,应尽量靠近器件的电源引脚,对用于去藕和旁路的电容器,其自谐振频率是决定电容设计的重要参数。常用如下计算公式计算谐振频率 ,L为电容器的等效电感。

3 系统接地

在高速系统中,接地技术是非常重要的。如果接地不良,使地线回路存在公共阻抗,只要电路的一个回路中出现干扰信号,就会通过地线阻抗对其他回路造成干扰。在设计时应尽可能降低地线上的电流,可以有效地降低地线电感的影响。常用方法是将电路分为若干个回路,每个回路使用自己的地线,各回路的地线再在一点共地,可以使各个回路相互隔离,减少互相影响。

4 采样时钟

对于高速采样器,采样时钟的相位噪声对量化噪声影响极大,应选用高精度、低相位噪声外接时钟源,从而减小由于时钟偏斜引起的噪声,以提高高速系统数据采集精度。

高速采样电路设计主要原则

鉴于上述因素,在高速电路板布线时应采用如下原则:

1 模拟地与数字地分开。

为了避免数字电路噪声对模拟电路的干扰,模拟地应与数字地分开,如果能做在不同的层上最好,否则可以用分割带把二者分开。地线的分割会引起分割带之间的传输线特性阻抗不连续,所以分割带不宜过宽,大多数情况下2~3mm为宜,同时应尽量减少跨越这一间隙的信号线数。还可以在模拟地与数字地接磁珠滤波,磁珠的高频阻抗很大,而直流电阻为零,应根据板上主要噪声的频率确定磁珠的选型。模拟地和数字地在电路板上不共地,可以利用总线插槽实现远端单点共地。

2 ADC模拟电路前端采用单独模拟电源供电,可以采用DC/DC进行隔离。

3 电容与电阻元件尽量采用表贴器件,以减小引线电感,提高电源滤波能力。

4 印制版使用尽量宽的地线或大面积地,印制版的周边构成完整的地线回路。

5 小信号地线与大信号地线分开;器件的接地管脚直接接地,减小了串联感抗。

6 对多通道并行数据采集,各通道间延迟不一致带来的非均匀采样采用各种方法补偿,使合成误差最小:

a) 硬件电路设计为对称结构,用对称的布局和布线方式保证两路ADC通道的一致性;

b) 系统时钟宜采用差分提供两路之间时钟偏斜差异最小。

篇3

关键词:单片机 远程自动抄表系统 485总线 232总线

中图分类号:TM933 文献标识码:A 文章编号:1672-3791(2013)07(c)-0021-02

1 系统功能描述

远程抄表系统主要由主站端数据采集计算机、客户端基于单片机的抄表模块、具有串行数据通信接口的电能计量仪表三部分组成。客户端的自动抄表模块与数据采集计算机通过RS-485串行通信接口相连接,实现数据传输。

远程抄表系统的工作原理是:用户终端的智能电表通过RS-232协议将数据传送给抄表终端模块,抄表终端在收到命令后把存储的数据信息发送给上级数据采集计算机,这样就完成了一次数据交换。本次毕业设计主要是研究客户端基于单片机的电能表远程抄表系统终端的实现方案和硬件设计。

综合考虑各种因素之后,将该终端单片机抄表模块所需实现的主要功能定义如下。

第一,正常情况下采用市电(220 V交流电)供电的方式,即采用交流电源即能维持终端模块的正常工作;系统具有备用电池供电功能以保证在断电情况下的供电。

第二,具有数据掉电保护功能,能保存用户用电电量等信息。

第三,抄表终端与智能电表、远方数据采集计算机分别通过RS-232和RS-485协议进行通信。

第四,终端模块具有实时时钟功能,便于实时测量用户用电电量。

2 系统分析

应用于远程自动抄表系统的电能表有脉冲电能表和智能电能表两类。

脉冲电能表:能够输出与转盘数成正比的脉冲串[1]。

智能电能表:可以通过串行口以编码方式进行通信,按照智能表的输出接口通信方式划分,智能电能表可分为串行通行接口型和低压配电线载波接口型两大类[1]。

电能表的两种输出接口比较:输出脉冲方式技术简单但在传输过程中容易发生丢失脉冲或产生多脉冲现象,而且不能重新发送;而具有串行接口输出方式的智能电表则可以通过相关协议将采集的多项数据进行可靠的远程传输[1]。因而本文中采用的电能表为具有串行通信接口的智能电表。

3 系统硬件电路设计

3.1 系统供电方式设计

由于本模块的使用现场环境相对特殊,故对于电源的设计必须充分考虑到系统供电的稳定性和可靠性。长期以来单片机系统中使用的集成电路器件绝大多数在5 V或3 V的典型电压下工作。为了避免采用多电源供电方案带来的供电模块设计过于复杂等问题,在设计本单片机系统时所采用的集成器件的典型工作电压均为5 V。

在本系统中,220 V的单相交流电作为电源输入,输出为稳定的+5 V电压。供电模块用来实现220~5 V的电压转换。设计方案如下:首先220 V的交流电通过防雷抗干扰电路,接着利用220/18 V变压器降压,再经过桥式整流电路得到18 V左右直流电压,再接着通过一系列的隔离滤波进入直流转换稳压器件LM2575最终得到系统正常工作所需要的5 V电压。另外,考虑到现场存在停电的可能性,还应该设计系统的备用电源。备用电源可以采用比较常见的镍氢电池,当系统正常供电时,电池处于充电状态,对于充电的管理可以选用比较常用的电源充电管理芯片MAX713来管理备用电池的充电过程。当现场停电时,自动转为备用电池给抄表终端系统供电[7]。

3.1.1 正常条件下供电电路

系统在正常运行时采用单相交流电源供电方式,提供给单片机稳定的+5 V电源。可以采用典型的单相桥式整流电路得到18 V直流电压,后通过直流转换稳压器件LM2575转换得到系统正常工作所需的+5 V电压。

3.1.2 备用电池充电电路

系统在由外部电源正常供电的同时对备用镍氢电池进行充电。备用电池充电电路的功能主要由电源充电管理芯片MAX713来完成。MAX713系列是Maxim公司生产的快速充电管理芯片,适合1~16节镍氢电池或镍镉电池的充电。它可以通过简单的管脚电压配置进行编程来实现对充电电池数量和最大充电时间的控制。当系统失去外部市电供电电压以后自动切换为由备用电池供电。

3.2 系统基本电路设计

由抄表系统结构原理图可知,抄表终端要使用两个串口分别对上层和下层通信,一个串口用作RS-232,用来和电表进行通信;一个串口用作RS-485,用来和数据采集计算机通信。由于一般的51单片机只有一个串口驱动器,因此主控制器可以直接选用华邦公司的具有两个串口驱动器的W77E58单片机或者采用一般单串口单片机外加串口扩展芯片例如16C550来扩展出第二个串口[5]。

下面对这两种方案做简单的对比。

方案1:采用具有两个串口驱动器的增强型单片机W77E58。

由于串口驱动器在单片机内部,所以不用外部再增加硬件设备就可以实现双串口功能,同时这种方案的稳定性好也比较可靠,而且相对于采用单串口单片机外加串口扩展芯片16C550成本要低一些。

方案2:采用具有一个串口驱动器的单片机外加串口扩展芯片16C550。

这种方案是对单片机扩展了一组外部寄存器,硬件投入比方案1多,系统稳定性没有方案1好。

3.2.1 控制核心W77E58单片机

根据上文所述对单片机功能的要求以及方案的对比,本设计采用华邦公司的双串口单片机W77E58。W77E58单片机内含2个增强型串口和32 kB大容量Flash存储器,指令集与51系列单片机完全兼容,非常适合在智能化监控系统中使用[6]。

时钟振荡电路是CPU所需要的各种定时控制信号的必备单元,它为单片机提供时钟脉冲序列。复位电路由22uF的电容和1 k的电阻及IN4148二极管组成。在满足单片机可靠复位的前提下,该复位电路的优点在于降低复位引脚的对地阻抗,可以显著增强单片机复位电路的抗干扰能力;二极管可以实现快速释放电容电量的功能,满足短时间复位的要求。

3.2.2 W77E58单片机核心电路

单片机的核心电路包括单片机W77E58、单片机系统中常用的地址锁存器芯片74LS373和存储器SRAM6264。

由于单片机的I/O引脚有限,实际应用中常采用地址锁存器进行单片机系统总线的扩展。本设计中地址锁存器74LS373用来扩展单片机的系统总线,以连接单片机和存储容量为8kB的片外随机存储器SRAM6264。SRAM6264采用+5 V的单电源,所有的输入端和输出端都与TTL电路兼容。WE为写信号,CS为片选信号,OE为输出允许信号,D0~D7为8位数据线,A0~A12为13根地址线[3,7,8]。

3.3 掉电数据保护功能的实现

在单片机控制系统中,通常要保证一些重要的数据在系统掉电后不丢失,当系统再次上电后能够正确地读取这些数据。本设计中就需要实现一些通信数据的掉电保护功能。实现掉电数据保护功能的方法有很多,常用的有系统扩展易失性存储器(RAM)外加电池的方法和系统扩展非易失性存储器(ROM)的方法。其中系统扩展非易失性存储器的方法中常使用EEPROM和FLASH作为存储介质。EEPROM也称为可擦除可编程ROM(Electrically Erasable PROM),随着技术的发展,EEPROM的擦写速度将不断加快,容量将不断提高,将可作为非易失性的RAM使用。由于所设计的系统中需要实现掉电数据保护功能的数据不多,所以选用支持IIC总线数据传输协议的串行EEPROM AT24C04作为系统的掉电数据保护介质,它拥有512×8bit的存储容量,具有结构紧凑、存储容量大等特点。它的IIC接口简单、操作方便,特别适合存储单片机控制系统中一些重要参数[7,11]。

3.3.1 IIC总线简介

IIC(Inter-Integrated Circuit)总线是由PHILIPS公司开发的由数据线SDA和时钟线SCL构成的两线式串行总线,用于连接微控制器及其设备。

IIC总线最主要的有点是简单性和有效性。由于接口直接接在组件之上,因此IIC总线占用的空间非常小,减少了电路板的空间和芯片管脚的数量,降低了互联成本。但要注意IIC总线的接口一般为开漏或开集电极输出,所以在实际电路连接时需要加上拉电阻[5]。

3.3.2 掉电数据保护电路设计

由于所选用的W77E58单片机没有IIC总线接口,所以我们要用单片机的I/O口模拟IIC总线的时序来实现芯片的读写功能。用单片机的普通I/O口模拟IIC总线的硬件连接非常简单,只需要使用W77E58单片机的P1.0口连接SCL,P1.1口连接SDA即可。

3.4 基于RS-232、RS-485串行通信接口电路设计

在实际应用中,单片机很多时候不是作为一个独立的控制单元而存在,它还要与其他单元进行通信。串行接口是单片机应用系统常用的通信接口。在实际应用中,单片机系统使用的是TTL电平,单片机中的串口输出的信号也是如此,但是串行通信中一般使用的是RS-232通信协议,二者的电平并不相同,需要外接接口进行电平匹配。实现这种电平变换可以使用分立元件,也可以采用集成电路芯片,目前较为广泛的是使用集成电路转换芯片[7,8]。

由于抄表终端与数据采集计算机的距离较远,采用RS-232标准进行通信,带负载能力差、通信范围小,传送距离不超过15 m,难以满足远距离的数据传输和控制。长距离通信通常采用RS-485方式。在单片机系统中加入RS-485方式的串行通信,就可以完成抄表终端与远程上位数据采集计算机的数据传送。RS-485总线采用差分信号传输,抗干扰能力强,传输距离远。采用双绞线在100 kbit/s的速率时可以传送的距离为1.2 km,若速率降到9600 bit/s则传送距离可达15 km。RS-485可以实现多个负载的功能。用一对线便可连接多达32个不同设备[13]。

RS-232既是电气标准也是物理标准,而RS-485只是电气标准,没有规定现实其电气特性所必需的物理环境,故可采用RS-232的物理标准。这就为在单片机系统中实现RS-485通信提供了方便。应用时仍使用单片机的串口,但是信号传递过程中使用RS-485协议,以达到较长的传输距离。本系统中需要使用两个串行通信接口,一个用来和数据采集计算机通信,一个用来和电表通信,分别采用RS-485和RS-232标准。

参考文献

[1]丁毓山.电子式电能表与抄表系统[M].北京:中国水利水电出版社,2005.

[2]曹振华.电路设计教程:Protel起步与进阶[M].北京:国防工业出版社,2007.

[3]陈立周,陈宇.单片机原理及其应用[M].北京:机械工业出版社,2007.

[4]张盛福,王喜斌,张鹏.华邦51单片机原理及应用[M].北京:北京航空航天大学出版社,2005.

[5]胡耀辉,朱朝华.单片机系统开发实例经典[M].北京:冶金工业出版社,2006.

[6]余永权.世界流行单片机技术手册(欧亚系列)[M].北京:北京航空航天大学出版社,2004.

[7]求是科技.单片机典型模块设计实例导航[M].北京:人民邮电出版社,2004.

[8]求是科技.单片机典型器件及其应用实例[M].北京:人民邮电出版社,2006.

[9]沈红卫.基于单片机的智能系统设计与实现[M].北京:电子工业出版社,2005.

[10]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2005.

[11]严天峰.单片机应用系统设计与仿真调试[M].北京:北京航空航天大学出版社,2005.

[12]清源科技.Protel 99 SE电路原理图与PCB设计及仿真[M].北京:机械工业出版社,2007.

[13]徐德军,蔡键龙,龚建荣.用单片机实现远程自动抄表[J].电子工程师,2001,27(5):17-18.

篇4

关键词:红外遥控; 功能复用; 软件解码; 开关控制

中图分类号:TP29文献标识码:A

文章编号:1004-373X(2010)15-0163-03

Principle and Design of Intelligent Infrared Teleswitch

XIANG Yan1, YU Bing-xiong2, La Li-yi3

(1. Guandong Institute of Science and Technology, Zhuhai 519090, China;

2. School of Phiysics & Telecommunication Engineering, South China Normal University, Guangzhou 510006, China;

3. Raoping Gongtian Vocational School, Chaozhou 515700, China)

Abstract: The principle and design of an intelligent infrared teleswitch are introduced. The teleswitch is designed on the basis of AVR signal chip computer, can identify and remember the infrared signal coding emitted by the common remote controller, and can compare the received infrared signal with the data stored in the E2PROM by the single chip microcomputer to achieve the control of the on-off of the teleswitch and the multiplexing function of the controller. The system using the capacitance step-down DC power has the quality of simple structure, small size, light weight, and is safe and reliable for the household appliances.

Keywords: infrared teleswitch; function multiplex; software decoding; switch control

0 引 言

红外遥控是当前使用最为广泛的通信和控制手段之一,由于其结构简单、体积小、功耗低、抗干扰能力强、可靠性高及成本低等优点而广泛应用于家电产品、工业控制和智能仪器系统中[1]。然而市场上的绝大部分遥控器都是针对各自特定的遥控对象设计的,不能直接应用于通用的智能仪器研发及其更一般的控制场合[1-3]。通常情况下,一般家庭所使用的电视机、空调、VCD/DVD等家用电器都使用了红外遥控器,而这些红外遥控器都是针对各自产品所设计的,从而导致了一般家庭中拥有数个遥控器,那么,能否将这些遥控器的功能进行复用,进而减少遥控器的数量,使遥控器的功能更加强大,就显得十分必要了。

电源开关广泛应用于家庭、工厂、仓库、以及办公室等场所。传统的机械式电源开关存在接触电阻大、易磨损、可靠性低以及寿命短等缺点[4],特别是当家用电器的遥控器繁多的情况下,如果能借助这些遥控器设计开关用于代替传统的机械式电源开关,不仅节约了成本,而且操作方便。使用电视机等家用电器的遥控器实现开关操作,安装和代换都很方便,可以用它代换家居中非常普及的墙壁开关,从而提高遥控器在家电领域的实用价值。

1 工作原理

智能红外遥控开关主要由红外接收、放大整形、微控制器、开关控制以及降压电源等模块组成,其原理框图如图1所示。

图1 原理框图

智能红外遥控开关的功能是将常见家用电器的遥控器,如电视机、VCD/DVD等,由用户任意指定一个按键作为这个红外遥控开关的控制键。使用时,用户按下智能红外遥控开关的“学习”按键,然后再对准遥控开关的红外接收头按下遥控器上指定的这个开关控制按键,遥控器发出的红外编码信号经过红外接收头接收后,再经过放大整形,输入到微控制器,微控制器通过内置的E2PROM记住遥控器这个指定按键的编码。那么,用户下次使用时,当按下遥控器这个指定按键后,其发出的红外编码信号同样经过红外接收头,放大整形后输入到微控制器,由微控制器发出控制信号控制开关控制模块里面继电器的导通与断开,进而控制输出电压的通断。

为了保证对各种用电器实现遥控开关控制,那么控制信号就一定要稳定、安全。为此,在传输过程中要使各模块间的通信信号足够强,这就要求电路的电源能够独立给电路各部分供电。因此,红外遥控开关还必须拥有降压电源模块。

2 电路设计

硬件电路设计包括电源电路的设计和解码电路的设计两部分。电源电路是为解码电路提供电源而设计的,除了要求电压稳定外,还要求其体积小,成本低。解码电路要求能对红外编码进行可靠地接收,同时要能够稳定地控制继电器的开关。

2.1 电源设计

考虑到解码电路的功耗很小,所以电源的设计采用电容降压式电源。它比变压器电源和开关电源的设计要简单得多,而且体积小、成本低,适合作为遥控开关的电源。电源设计的原理图如图2所示。MC2为降压电容器,D1为半波整流二极管,D2在市电的负半周时给MC2提供放电回路,ZD1是5.1 V稳压二极管,R1为关断电源后MC2的电荷泄放电阻。

图2 电源电路

电容降压式电源是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。当交流电压为220 V,频率为50 Hz的工作条件下,电容器MC2在电路中的容抗XC(单位:Ω)为:

XC=12πfC=12×3.14×50×1×10-6=3 18471

流过电容器MC2的充电电流IC(单位:mA)为:

IC=UXC=2203 18471=69.08

篇5

【关键词】稳压电源;斩波电路;单片机;PWM;IGBT

直流稳压电源是一种常见的电子设备,被广泛的应用与各个领域。目前市面上使用的直流电源大部分是线性电源,而线性直流稳压电源由分立器件组成,存在体积大、效率低、可靠性差、操作不便、故障率高等缺点。随着电子技术的迅猛发展,各种电子设备对电源性能的要求越来越高。稳压电源日益朝着小型化、高效率、模块化、智能化方向发展。

本文介绍了一种以单片机系统为核心的新型可调直流稳压电源的设计,他主要由斩波电路和AT89S52单片机控制系统构成。它具有体积小、重量轻(体积和重量只有线性电源的20~30%)、效率高(一般为60~70%,而线性电源只有30~40%)、自身抗干扰性强、输出电压范围宽、模块化等优点。而且价格低廉,操作简单。具有较高的应用价值。

1.系统的总体设计

该系统由两部分组成,即主电路和控制电路。如图1 所示,主电路由整流滤波电路、IGBT斩波电路、滤波电路组成;控制电路由控制电源、AT89S52单片机系统、IGBT驱动电路、ADC模数转换电路、8279键盘显示电路、检测保护电路组成。

主电路中整流滤波电路采用常用的三相桥不可控整流器,将电网的三相交流电压转换成直流,再经电容滤波得到平滑的直流电压。稳压电路是由大功率器件IGBT实现的降压斩波电路。

控制电路以AT89S52单片机为逻辑控制器,用于控制逻辑的实现。键盘和显示电路作为人机交互,用于显示和设定系统数据。ADC0809模数转换电路将系统实时电压反馈给单片机,由单片机进行处理。检测保护电路的作用是保护ADC0809检测电路,由于系统输出电压较高,不能直接接入ADC0809检测电路,需要通过检测保护电路将系统输出电压转换到ADC0809能够检测的范围才能接入电压检测电路。

2.控制电路设计

2.1 控制系统的核心—AT89S52

AT89S52作为该系统的核心,其主要作用为产生并输出PWM波,他根据系统设定电压,调整PWM波的占空比,PWM波作为IGBT驱动电路的输入信号,从而调整输出电压,通过ADC转换电路获得实际输出电压,并与系统反馈的电压值进行比较,对占空比进行微调,是系统达到所需的输出电压。另外,它还用于键盘数据的读取和显示数据的刷新。

2.2 人机交互——键盘显示电路设计

本系统设计了键盘和数码管显示功能,用于设定和显示系统数据。键盘和数码管采用仪表中常用的驱动芯片8279进行控制。8270芯片为一种可编程键盘与显示接口芯片,该芯片编程简单,能够自动扫描,并且与单片机接口方便,已经成为设计单片机应用系统的优选器件之一。以8279为控制芯片的键盘和数码管显示电路如图2 所示,鉴于本系统所需显示和设定的数值较少,故采用4个8段数码管来显示系统数据。键盘为4X4扫描式键盘,16个按键中,10个按键为0~9的数字按键,另外6个按键为功能选择和设定按键。

8279以A0来区分信息特征,当A0=0时,单片机读出为数据;当A0=1时,单片机读出数据位芯片状态字,写入数据为控制命令。8279内部有两个数据缓冲区,即一个16字节的显示数据缓冲区和一个8字节的键盘数据缓冲区,显示数据时,只需要将需要显示的数据写入显示缓冲区即可。当有按钮闭合时,8279会自动去抖,并扫描键值,最后将键值存入键盘数据缓冲区,单片机只需要从数据缓冲区中读取数据即可得到键值,编程简单。

2.3 ADC0809模数转换电路设计

ADC0809是较为常用的一款逐次逼近式A/D模数转换芯片,它是带有微处理机兼容的控制逻辑的CMOS组件,具有8位A/D转换器和8路多路开关,可以和单片机直接接口。ADC0809的组成包括:

一个8路模拟开关;

一个地址锁存与译码器;

一个A/D转换器;

一个三态输出锁存器。

多路开关可分时选通8个模拟通道,芯片允许8路模拟量分时输入,共用A/D转换器进行转换。三态输出锁器用于锁存A/D转换完的数字量,OE为低电平时,说明A/D转换器正在进行模拟量的转换,只有当OE端为高电平时,锁存器读取转换完的数据。

2.4 IGBT驱动电路设计

日本富士公司推出的厚膜驱动集成电路EXB841是专门的IGBT驱动芯片,适合驱动1200V/300A 以下的IGBT模块。EXB841为高速型驱动模块,具有隔离强度高、反应速度快、能够过流保护等优点,市场占有率较高。该驱动电路如图3所示,EXB841的15引脚外加PWM控制信号,当触发脉冲信号施加于14和15引脚时,在GE两端产生约16V的IGBT开通电压;当触发控制脉冲撤销时,在GE两端产生-5.1V的IGBT关断电压。

3.系统的软件设计

整个系统程序采用模块化设计方法,主要包括系统初始化模块、模拟电压读取模块、显示模块、按键处理模块、PWM脉宽调制模块和看门狗模块等。

看门狗模块分为初始化子程序和喂狗子程序两部分,初始化子程序用于启用看门狗功能和初始化看门狗定时器,本系统设看门狗定时器时间为2S,若2S时间内,没有执行喂狗程序,则看门狗电路发出复位信号,系统程序自动复位。

开机后,首先调用初始化子程序,初始化系统,此时系统按照默认参数,计算PWM占空比,并由定时器0和定时器1生成1KHZ的PWM波,由P2.3输出。由定时器2产生一个10MS的定时器中断,中断程序中读取实际电压,然后与设定电压比较,根据误差调整PWM波的占空比,使实际值逐渐趋近设定值。然后刷新输出,由数码管显示系统实时电压。

当有按键按下时,系统进入外部中断子程序,此时在外部中断子程序中调用按键处理子程序,来实现系统电压值的设定。

PWM波的调制程序是系统软件的关键所在,它的功能好坏直接影响系统的稳定性。它由定时器0和定时器1通过中断生成。定时器0和定时器1都工作在定时方式1,定时时间到出发相应中断。由定时器1控制PWM波周期,定时器0控制PWM波的占空比。当定时器1产生中断时,置位PWM输出口P2.3,同时启动定时器0。当定时器0中断发生时,中断程序复位P2.3,同时关闭定时器0。这样只需要调整定时器0的定时时间即可调整PWM波形的占空比。

定时器2产生一个10MS的中断,该中断程序用于调整PWM波的占空比,其流程图如图5所示,首先读取实际电压,然后与设定电压作比较,根据误差改变定时器0的定时时间,调整公式如下:

其中:为本次中断定时器0的初始设定值;

为上次中断时0的初始设定值;

为比例系数;

为设定电压与反馈电压的差值。

经过实际调试,当k取1.5时,系统能够达到较好的稳压效果。

4.结束语

通过系统调试,程序没有出现错误,得到的输出电压稳定可靠,采用键盘和数码管显示作为人机交互,操作简单方便,智能化相对来说比较高。用户反映良好。

基于单片机控制的直流稳压电源采用了先进的单片机控制技术、完善的保护电路及专用高性能基准稳压源元件,具有稳压精度高、纹波干扰小、安全可靠等特性,故可广泛应用于国防、科技、生产等领域。

参考文献

[1]周志敏,周纪海,纪爱华.IGBT和IPM及其应用电路[M].北京:人民邮电出版社,2006.

[2]李文元.高精度工业用可调直流电源的设计和制造[R].兰州理工大学,2000.

[3]童诗白,华成英.模拟电子技术基础[M].北京:高等教育出版社,2001:501-554.

[4]王水平,史俊杰,田庆安.开关稳压电源——原理、设计及实用电路(修订版)[M].西安:西安电子科技大学出版社,2005:1-60.

[5]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2005:29-105.

[6]潘永雄.新编单片机原理与应用[M].西安:西安电子科技大学出版社,2003.

[7]刘新菊.高性能直流电源柜的研制[R].成都理工大学,2001.

[8]王鸿麟.直流稳压电源的原理和设计[M].北京:人民邮电出版社,1981:177-194.

[9]吴斌.脉宽调制型开关稳压电源的研究[R].广西大学,1996.

[10]徐衡平.PWM型大功率开关稳压电源的设计及动态特性研究[R].西北工业大学,1999.

篇6

【关键词】数字电路抗干扰常用措施

一、数字电路抗干扰设计常用措施分析

(1)抑制干扰源。抑制干扰源就是尽可能减小干扰源的du/dt,di/dt,这是抗干扰设计中最优先考虑和最重要的原则,主要通过在干扰源两端并联电容来实现。减小干扰源的di/dt,则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。抑制干扰源的常用措施为;第一,继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。只加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数;第二,在继电器接点两端并接火花抑制电路,减小电火花影响;第三,给电机加滤波电路,注意电容、电感引线要尽量短;第四,电路板上每个IC要并接一个0.01uF~0.1uF高频电容,以减小IC对电源的影响。注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果;第五,布线时避免90度折线,减少高频噪声发射;第六,可控硅两端并接RC抑制电路,减小可控硅产生的噪声。

(2)切断干扰传播路径。干扰的传播路径基本分为传导干扰和辐射干扰两类。传导干扰是指通过导线传播到敏感器件的干扰。高频干扰噪声和有用信号的频带不同,可以通过在导线上增加滤波器的方法切断高频干扰噪声的传播,有时也可加隔离光耦来解决。电源噪声的危害最大,要特别注意处理。辐射干扰是指通过空间辐射传播到敏感器件的干扰。一般是增加干扰源与敏感器件的距离,用地线把它们隔离和在敏感器件上加蔽罩。切断干扰传播路径的常用措施为:第一,充分考虑电源对单片机的影响。许多单片机对电源噪声很敏感,要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片机的干扰。比如,可以利用磁珠和电容组成π形滤波电路。当要求不高时,也可用100欧姆电阻代替磁珠;第二,若单片机的I/O口用来控制电机等噪声器件,则在I/O口与噪声源之间应加隔离;第三,注意晶振的布线。晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定;第四,电路板合理分区,如强、弱信号,数字、模拟信号。尽可能把干扰源(如电机,继电器)与敏感元件(如单片机)远离;第五,用地线把数字区与模拟区隔离,数字地与模拟地要分离。A/D、D/A芯片布线也以此为原则,一般厂家分配A/D、D/A芯片引脚排列时已考虑此要求;第六,单片机和大功率器件的地线要单独接地,以减小相互干扰。大功率器件尽可能放在电路板边缘;第七,在单片机I/O口、电源线及电路板连接线等关键处应使用抗干扰元件,如磁珠、磁环、电源滤波器及屏蔽罩,能显著提高电路的抗干扰性能。

(3)提高敏感器件的抗干扰性能。其常用措施为:第一,布线时,尽量减少回路环的面积,以降低感应噪声;第二,布线时,电源线和地线要尽量粗。除了减小压降外,更重要的是降低耦合噪声;第三,对于单片机闲置的I/O口,不要悬空,要接地或接电源。其它IC的闲置端在不改变系统逻辑的情况下接地或接电源;第四,对单片机使用电源监控及看门狗电路,如IMP809,IMP706等,可大幅度提高整个电路的抗干扰性能;第五,在速度能满足要求的前提下,尽量降低单片机的晶振和选用低速数字电路;第六,器件尽量直接焊在电路板上,少用IC插座。

二、数字电路抗干扰设计经验

(1)软件方面。第一,将不用的代码空间全清成“0”,等效于NOP,或在跳转指令前加几个NOP,目的是可在程序跑飞时归位;第二,在无硬件“看门狗”时,可采用软件模拟“看门狗”,以监测程序的运行;第三,涉及处理外部器件参数调整或设置时,为防止外部器件因受干扰而出错,可定时将参数重新发送一遍,使外部器件尽快恢复正确;第四,通讯中的抗干扰可加数据校验位,采用3取2或5取3策略;第五在有通讯线时,将Data线、CLK线、INH线常态置以高位,其抗干扰效果要比置低位好。

(2)软件方面。第一,地线、电源线的布线要尽可能的宽,且成网格状;第二,线路要去偶;第三,数字地、模拟地要分开;第四,每个数字元件在地与电源之间都要加104电容;第五,为防I/O口的串扰,可将I/O口隔离,可用二极管隔离、门电路隔离、光偶隔离及电磁隔离等方法。

参考文献

篇7

论文摘要:CO是人们日常生活生产中常见的有毒气体,无色无味,不易被人们发现,当人处在CO气体之中是十分危险的,甚至威胁到生命安全。在我国北方冬季用煤炭取暖的居民危害最大的就是一氧化碳中毒,因为该气体易在不能充分燃烧的条件下产生。设计出能检测到CO气体并能报警的电路是十分必要的,在满足基本要求的基础上,电路的设计还要考虑到传感器部分要具有良好的温度、湿度稳定性。

根据生产生活需要设计CO探测报警电路,选用对CO有极高灵敏度的气敏传感器UL281作为报警电路探头,结合UL281结构及其功能,设计与之功能特点相匹配的电路,这些电路由单稳延时电路、稳定电源供电电路、探测电路(热清洗电路)、电压输出电路、报警电路和元件损坏电路。

将电源接通经过热清洗后将传感器放置在清洁空气中,由于敏感元件的电阻很大,IC2 放大倍数近似于1。因此用电压表测量H、L点之间的电压很小,电路不报警,可调节电位器RP2 ,可改变IC3的负输入电压,电路最终完成之后,调节滑动变阻器RP2 ,使IC3的负输入电压为2.9V。将传感器放大装有300ppm气样的密封塑料袋内,调节RP1,使IC2的输出为3.00V。此时电压比较器IC3正输入大于负输入,其输出正饱和而使VT3导通报警。

第一章 概 述

第一节 传感器的概述及组成

一、引 言

CO是人们日常生活生产中常见的有毒气体,无色无味,不易被人们发现,当人处在CO气体之中是十分危险的,甚至威胁到生命安全。我国的CO报警控制系统经历了从无到有、从简单到复杂的发展过程,其智能化程度也越来越高,其系统复杂、成本较高。而在居民住宅区、机房、办公室等小型单位场所,需要设置一种单一、廉价实用的CO探测报警装置,基于此种现象,应用所学的电路知识设计出一种简单易于实现,低成本的CO报警电路,不仅对于所学知识是一次综合复习的机会,而且更是练习如何应用所学的书本知识解决实际生产生活问题的能力,这是相当必要的。

二、 传感器概述

人们通常将能把被测量物理量或化学量转换为与之有确定对应关系的电量输出的装置称为传感器。传感器也叫做变换器、换能器或探测器。传感器输出的信号有不同的形式,如电压、电流、频率、脉冲等,以满足信息的传输处理、记录、显示和控制等要求。传感器是测量装置和控制系统的首要环节。如果没有传感器对原始数据参数进行精确可靠的测量,那么无论是信号或是信息处理,或者是最佳数据的显示和控制,都将成为一句空话。可以说,没有精确可靠的传感器,就没有精确可靠的自动检测和控制系统。

三、 传感器组成框图

传感器一般由敏感元件、传感元件和其他辅助元件组成,有时也将信号调节与转换电路、辅助电源作为传感器的组成部分。

敏感元件

传感元件

信号调节转换电路

辅助电源

传感器组成方框图

第二节 气敏传感器概述

一、 气敏传感器的检测对象及检测原理

此次设计的电路是一氧化碳探测报警器,由于一氧化碳是有毒气体,因此检测到一氧化碳并实现报警功能的电路设计就需要选用气敏传感器。

气敏传感器是一种把气体(多数为空气)中的有毒成分检测出来,并将它转换成适当的电信号的器件,如果以人们的感觉器官在作比喻,那么气敏传感器相当于人的鼻子(嗅觉)。但是人的嗅觉在灵敏其感知对象也是多样的。在我们周围,实际上存在的各种各样的气体,它们中的大部分将会成为气敏传感器的检测对象。气敏传感器的典型用途见于附表1.2.1和1.2.2。

首先被实际应用的气敏传感器是用于防止可燃性气体(LPG等)爆炸瓦斯泄露报警器。其后,随着环境监测等,又不断地提出研制新型气敏传感器的任务。

气敏传感器是化学传感器的一个重要组成部分。这里涉及到用于化学传感器的化学物质的检测原理。为了将化学物质检测出来分类,也就是同物理传感器一样,可分为能量变换式和能量控制式。前者是以被测物质所具有的化学能(化学电势)作为信号源,传感器相当于将化学能变换成电能的变换器(换能器)。

所谓半导体气体传感器,是对利用半导体气敏元件同气体接触,造成半导体性质变化,借此来检测气体成分或者测量其浓度的传感器的总称。

半导体气敏传感器大体上分为电阻式和非电阻式两种,电阻式半导体气体传感器利用氧化锡、氧化锌等金属材料来制作敏感元件;利用其阻值的变化来检测气体的浓度。气敏元件,有多孔质烧结体、厚膜、以及目前正在研制的薄膜等几种非电阻式半导体传感器。根据气体的吸附和反应,利用半导体的功函数,对气体进行直接的检测。目前,正在积极开发的有金属/半导体结型二极管和金属栅的MOS场效应晶体管的敏感元件,主要利用它们与气体接触后整流特性以及晶体管作用的变化,制成对表面单位有直接测定的传感器。

二、 “电阻式半导体气敏传感器”概述

半导体元件的电阻,由于与气体接触而发生变化,将利用这种现象的传感器,称之为电阻式半导体气敏传感器。这类气敏传感器元件的构造简单,也不需要专门的放大电路来放大信号。由于这些特点,所以它很早被研究,而且已制成商品。元件的种类有:在绝缘基片上用蒸镀或是溅射法制成的薄膜元件(厚度约小于1000Å);把氧化物半导体粉末调制成的浆料印刷到基性的烧结型元件。传感器元件通常在加热条件下才能动作,因此必须有加热装置。把气体敏感膜加热器与温度测量探头集成在一块硅片上,从而制成集成开关电路动作,蜂鸣器和灯泡开始接通。半导体元件,大多在通电初期,阻值暂时变高而产生高输出。这是由于在没有通电时,元件吸着水蒸汽的缘故。一旦通电,元件初始阻值随着温度的上升而变低,随着温度的再次升高,由于水蒸汽的解吸而阻值增加,呈现出一种过渡的现象。为防止这种误报警,通常在通电初期增设防止误报警电路。为防止突发性噪声,机内应装入延迟电路。

B1——开关电路

B2——防止通电初期误报警电路

B3——信号发生电路

B4——电源指示灯

B5——蜂鸣器电路

半导体的气敏特性如图,元件的电阻R与空气中所含有的被测气体浓度C之间的关系,根据经验一般用对数表示的如下公式是成立的:㏒R= m㏒C+n

m、n是由传感器元件,测量气体的种类,测量温度等因素决定的常数。m表示相对气体浓度变化的敏感程度,m越大,敏感程度越大,但对通常的可燃性气体的检测,一般取为1/2~1/3,设Rª为普通气体(空气)浓度为零时的电阻,则气体灵敏度(即响应率)可由Rª/R来表示,它是气浓度C的函数为便于气体检测,用C为定值时的相对灵敏度作比较。从图知道,相对灵敏度随气体而不同,虽然还随着传感器的种类、添加剂、测量温度的不同而有很大差异,但是一般越容易燃烧的气体,其含碳量越大,它的相对灵敏度也就高。这是因为在元件上的气体的燃烧,在本质上与气体的响应特性有关。

第二章 一氧化碳探测报警传感电路设计

第一节 CO探测报警电路设计的要求

CO是人们日常生活生产中常见的有毒气体,无色无味,不易被人们发现,当人处在CO气体之中是十分危险的,甚至威胁到生命安全。在我国北方冬季用煤炭取暖的居民危害最大的就是一氧化碳中毒,因为该气体易在不能充分燃烧的条件下产生。设计出能检测到CO气体并能报警的电路是十分必要的,在满足基本要求的基础上,电路的设计还要考虑到传感器部分要具有良好的温度、湿度稳定性。

第二节 电路设计所需的主要元器件的选用

一、UL281的选用

基于实际的需要,针对一氧化碳要选用对于一氧化碳气体具有较高的灵敏度的气敏元件,通过查阅资料选出UL281作为探头。

一氧化碳检测保护仪,其特征在于采样传感器为UL281半导体探头,作为采样传感器,并配置探头预热工作转换电路,解决了传感器在不同条件下其特征变化大的问题,并保证了探头工作在最佳状态。其探测极(2、3)端接9伏直流电源,(5、6)端输出接放大电路,其灯丝极(1、4)端之间接有探头预热工作转换电路。

表UL281参数

项目

测量范围

灵敏度

加热电压

加热电流

测量电压

工作温度

相对湿度

响应时间

单位

10-6

R0/RX

V

mA

V

°C

%RH

S

型号UL281

0~300

大于5

5±0.5

160~180

15±1.5

-10~50

不大于95

60

注:R0为在空气中的阻值,RX为在2*10-4酒精浓度时的阻值

它的灵敏度曲线如图所示,其响应曲线如图所示。

二、555单稳延时电路的选用

由于在工艺上气体敏感膜加热器与温度测量探头集成在同一块硅片上,从而制成集成化元件。当元件检测到气体时,电阻降低。半导体元件,大多数在通电初期,阻值暂时变高而产生高输出。这是由于在没有通电时,元件吸着水蒸汽的缘故。一旦通电,元件初始阻值随温度上升而变低,随着温度的再次升高,由于水蒸汽的解吸而阻值增加,产生一种过渡现象。这样对于电路会产生误报警,为了防止误报警现象的产生,在电路内部需要装入延迟电路。因此在此次CO探测报警电路的设计中,采用555时基集成电路组成单稳态延时电路。

在实际应用中,555除了单一品种的电路外,还可组合出很多不同电路,如:多个单稳、多个双稳、单稳和无稳,双稳和无稳的组合等。本设计中所需要的是单稳电路,其电路及参数如下:

单稳类电路

单稳工作方式,它可分为3种。见图示。

第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 和1.1.2为代号。他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。

第2种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。他们的输入特点都是“RT-7.6-CT”,都是从2端输入。1.2.1电路的2端不带任何元件,具有最简单的形式;1.2.2电路则带有一个RC微分电路。

第3种(图3)是压控振荡器。单稳型压控振荡器电路有很多,都比较复杂。为简单起见,我们只把它分为2个不同单元。不带任何辅助器件的电路为1.3.1;使用晶体管、运放放大器等辅助器件的电路为1.3.2。图中列出了2个常用电路。

根据电路的需要,采用1.2.1所示的脉冲启动单稳,其具有最简单的形式又能实现延时功能。

三、 电路中三极管的选用2SC2001和2SC945结构及参数

本电路设计采用了三极管2SC2001其结构及参数如下 :

Description

Transistor. General purpose applications high total power disipation

Pol

NPN

Ic(max)

0.7A

Pc(max)

0.6W

Vceo(max)

25V

hfe(min.-max.)

90~400

Pins/Package

3P/TO-92

Application

LF A

2SC945结构及参数

NPN三极管 (与2SA733互补)

作为低噪声前置放大,应用于:彩电、收录机、遥控玩具等电子产品。

1、发射极 E

2、集电极 C

3、 基

极 B

极限值(TA=25℃)

集电极、基极击穿电压

VCBO

60

集电极、发射极击穿电压

VCEO

40

发射极、基极击穿电压

VEBO

6

集电极电流

IC

200

集电极功率

PC

625

结温

TJ

150

贮存温

TSTG

-55-150

四、LM324的选用

电路设计中所采用的运算放大器IC1~IC4 在制作时用一块集成运算放大器LM324即可实现其功能。其内部具有四个相同的运放,其结构及主要功能参数如下:

LM324MX 结构图及主要参数

Description

Low Power Quad Operational Amplifiers

Pins/Package

14P/DIP

第三节 电路整体设计框图及整体电路图

一、电路设计框图:

稳定电源供电电路

探测电路(热清洗电路)

电压输出电路(报警电路)

二、整体设计电路图:

转贴于

第四节 电路分析

一、 单稳延时电路的设计

设计单稳延时电路的原因是因为当元件检测到气体时,电阻降低。半导体元件,大多数在通电初期,阻值暂时变高而产生高输出。这是由于在没有通电时,元件吸着水蒸汽的缘故。一旦通电,元件初始阻值随温度上升而变低,随着温度的再次升高,由于水蒸汽的解吸而阻值增加,产生一种过渡现象。这样对于电路会产生误报警,为了防止误报警现象的产生,在电路内部需要装入延迟电路。

采用555时基集成电路,它组成单稳态延时电路,接通电源后大约经过165s,555的输出端3脚输出高电平,使VT2 、VT5 导通。LED3 与R24 组成电源显示电路,当电路工作时,发光二极管LED3 发出绿光,显示电路电源供电正常。

二、稳压电路

设计稳压电路的原因是因为UL281工作时需要对其加热丝进行加热,其加热电源要求稳定,故采用稳压电路对其供电。

稳压电路由IC1, VT1 和R1-R4组成。IC1同相输入端上的电压为U+ =15/(47+15)=2.9V,IC1为一同相放大器,输出电压约为6V左右。因此,晶体管VT1导通,加在传感器加热丝与地之间的电压约为11V。,如果空气是清新的,通过气敏元件的电流仍很小(其电阻很大)。

三、加热电路

由于UL281工作时需对其加热丝进行加热,所以设计由VT2组成初始加热清洗电路,VT2 导通后,将R6、R7短路,A点流经传感器加热丝的电流增大,对其附表面进行加热清洗,VT5组成初始清洗指示电路,VT5导通后,LED2(黄)发光。

如图3

四、电压放大电路、报警电路

IC2组成电压放大器,其正输入端输入基准电压6V,当空气清洁时,气敏元件的电阻很大,IC2的放大倍数接近1,当一氧化碳浓度增加时,气敏元件阻值下降,IC2的放大倍数增加,输出电压亦增加,调整电位器RP1(10K)可改变放大倍数。

IC3 为电压比较器,它和晶体管VT3组成报警电路,调节RP2可调节报警浓度设定值,当CO浓度超过设定值时,IC3 输出高电平,VT3 导通,蜂鸣器报警。

(如图4,电压放大电路)

(如图5,报警电路)

五、元件损坏指示电路

传感器气敏元件损坏时,会对探测电路的测量结果造成严重的影响,因此有必要设置一种指示气敏元件是否正常工作的指示电路,如下图所示。IC4、VT4、组成气敏元件损坏指示电路,IC4接成比较器,其输入端的电位约为4.3V。气体元件正常工作时,R6、R7的压降大于4.3V,IC4输出为负,VT4截止,LED1(红)不亮,当传感器加热丝被烧断时,R6、R7悬空,其压降为0,IC4输出为高电平,VT4导通,LED1亮,红灯显示元件已损坏。

(如图6)

六、电路调试

(1)将电源接通经过热清洗后将传感器放置在清洁空气中,由于敏感元件的电阻很大,IC2 放大倍数近似于1。因此用电压表测量H点、L点之间的电压应很小,否则电路或传感器接线有故障。

(2) 调节电位器RP2,使IC3的负输入端的电压为2.90V

(3) 将传感器放大装有300ppm气样的密封塑料袋内,调节RP1,使IC2的输出为3.00V。此时电压比较器IC3正输入大于负输入,其输出正饱和而使VT3导通报警。

第三章 电路设计总结

一、优点总结

通过实际生活的需要而设计的CO检测报警电路,此电路设计体现了该电路具有的优点,总结如下:

第一、首先针对需要被检测的有毒气体CO,选用什么样的气敏元件至关重要。要选择对一氧化碳有极高的灵敏度,这样才能使检测更准确,对一氧化碳有无以及浓度大小作出灵敏判断,并且要求湿度、温度稳定性好,以适应生产生活环境中湿度和温度的变化。通过查阅资料找到针对一氧化碳CO灵敏度极高的是气敏元件UL281。这样关键器件的选用问题解决了。

第二、选出的UL281对CO具有极高的灵敏度,但它不是孤立存在的,还要设计出与其相匹配的电路及探测报警电路。根据UL281的结构及其特点设计电路,既保证了UL281要求电源供电稳定,又保证了UL281的加热丝加热的要求。此电路还可通过滑动变阻器RP1 调节放大倍数。出于对报警安全严谨的考虑,还设计了气敏元件损坏指示电路,为了防止因元件损坏无法检测而造成无法报警,因此设计了气敏元件损坏指示电路。

二、 有待改进的地方总结

即使该电路的设计具有解决问题的主要优点和特点,但任何一项电路设计都不可能是完美的、没有缺憾的,因此我根据实际生活需求概括出此电路在实际应用中有待改进的地方如下:该电路设计只是根据实际的问题需要设计的探测报警电路原理图,如果把理论应用到实际生产生活中还要考虑产品如何才能更方便的使用。我想到的就是电源供电的问题。该设计用的是直流12V电源,不方便日常生活使用,在产品制作工艺上,电源部分设计成交流电源(生活用电),通过桥式整流等电路转换成直流电,作为电源供电,我想这样会更有益于日常生活推广使用。

参考文献

[1] [日] 高桥清小长井诚 编著 《传感器电子学》宇航出版社 , 1986

[2]《新型数字电压表原理与应用》 北京:国防工业出版社,1985

[3] 丁镇生 著 《传感及其遥感遥测技术应用》北京:电子工业出版社 , 2002

[4] 刘迎春 编著 《传感器原理 设计与应用》 长沙:国防科技大学出版社, 1988

[5] 《中国集成电路大全CMOS电路》北京:国防工业出版社, 1985

[6] 刘迎春,叶湘滨 著 《现代新型传感器原理与应用》北京:国防工业出版社, 2002

[7] 赵负图 编著 《传感器集成电路手册》 北京:化学工业出版社, 2002

[8] 《新编中国半导体器件数据手册》 北京:机械工业出版社, 1992

[9] 《实用电子文献》, 北京:电子工业出版社,1990-1995

篇8

PPTC器件技术已广泛应用于便携式电器、手机、计算机和远程通信设备的过流和过热电路保护设计中。汽车电子技术委员会推出的有关无源部件的新标准,推动了PPTC电路保护技术在汽车工业中的应用,主要针对电子电路和机动附件,如电动车窗、电动座椅、天窗控制和远程信息处理装置,旨在降低成本及提高可靠性和功能性。

电机驱动和控制装置要经受某些严酷的工作环境,而且要求能够连续和可靠地运行。现场的故障是无法避免的,选择正确的电路保护策略将有助于确保产品的可靠性,并将制造商和客户的维修成本控制在最低。采用泰科电子公司Raychem电路保护部提供的PolySwitchPPTC可复位电路保护器件,开发出更为稳固和可靠的产品,在电机的驱动和控制系统中能对某些常见的故障提供保护。

PPTC器件的小巧外形有助于节省宝贵的电路板空间,由于其具备自复式功能,因此可以允许布置在用户无法接触到的位置,这与传统保险丝需要布置在用户能够方便更换的位置相比具有明显的差异。由于PPTC器件是固态器件,因此还能够耐受机械冲击和振动,可为各种不同的应用场合提供可靠的电路保护。

电源保护

PolySwitch

图2:PPTC器件对输入/输出接口的保护。

PPTC器件一直以来应用于电源直流输出端的过载和短路保护。在开发出LVR系列产品后,目前PolySwitch器件已经可以应用在电源输入端的交流主电路中,将交流线路变压器和其它线路侧设备置于它的保护范围内。这些产品能够在中性线不小心处于断开状态或交流线电压用于24VAC输入端时,能够为电源提供保护。

LVR器件适用于电源系统,在120VAC和240VAC电压下,其最大输入电流可高达400毫安。而电流更大的电源系统可以将PolySwitch器件安置在次级端的输出电路,用于保护由于过电流状态所引发的电源故障(如图1所示)。

输入/输出接口的保护

许多驱动器和控制装置均配备了通讯和数据接口,用于各个系统元件之间的信息传输。而这些接口的接线有时会与交流或直流电源电缆并排敷设。这些线束可能由于正常的磨损、意外事故、安装接线错误或在中央配电箱上进行的误操作,而出现短路现象。如果电源电缆与通讯电线出现短路现象,PolySwitch器件能够保护任何与这条短路线路相连接的系统,以免造成通讯接口的损坏。在某些情况下,这种现象有可能影响到很多系统。而PolySwitch器件在保护接口处所起的作用,可以明显地降低设备常见故障的停运时间和修理成本(如图2所示)。

过热保护

由于PolySwitch器件能够对来自外部的热量和内部电流产生的热量所引发的温度上升作出响应,并可与高压设备建立起热量方面的联系,为高压设备提供过热保护。建立这种热量联系可以通过将这些器件布置成与高压设备发生接触或靠近高压设备的方式来实现。

此接触的方式使该器件能够很容易地与设备形成物理接触,从而提高了保护的效果。在这类设备中,变压器是一个很好的例子,PolySwitch器件可以捆绑在外部线圈上或外壳上(如图3所示),从而建立起热量联系,还可以在设计时结合到电路中,使其具备在变压器过热时向控制器发送警告,系统马上停止运行。

近距离方式适用于电源半导体部件的保护,而且在小型的表面贴装PolySwitch器件与电源器件同处于一个铜底板时效果最好。这是一种成本低廉的热量联系方式,使PolySwitch器件能够在温度超过其动作点时进行动作,同时通知电源器件处于过热状态下时应该停止运行。

在这种应用中,会存在一定程度的热延迟现象,所以这一保护方案无法保护大电流部件以及部件在毫秒级的时间内就发生故障的电源器件。但是,对于绝大多数的过负载状态,这种配置均可以对电源器件提供保护。

运动机械均有可能出现堵塞或断裂故障,并可导致电机失速。在电机失速时继续供给电源会导致电机的损坏和/或驱动装置的损毁。将PolySwitch器件与电机驱动器串联起来(如图4所示),可以保护电机和驱动电子电路,防止在失速或负载过大的状态下系统发生故障。在故障清除后(而且电源断开后),系统可以重新开始正常的运行,无需进行维护或更换部件。多年以来,PolySwitch器件一直是汽车工业中最为常用的保护车座、车窗和其它电机的方案。

在这些应用中,使用PolySwitch器件要求考虑串联电阻的阻值和器件的最大保持电流额定值。室温下的最大工作电流为:16V以下为15A,30V以下为9A。

在这些应用中,当这些系统由于过电流或过热状态而导致外部故障时,PolySwitch器件能够允许电机驱动和控制器系统继续运行。其优点在于提供了一种功能强大和可靠的产品,在其它部件出现故障时可以保护系统。

汽车IEEE1394网络应用

在汽车工业中,家庭生活方式与汽车日益紧密的联系方兴未艾。采用由美国汽车多媒体接口协会(AMI-C)制订的标准化全球接口,就能方便地与各种消费电子设备相连,并为这些设备的快速安装提供便利。在消费电子业界称为IEEE1394串行总线的网络,在设计时以多媒体内容的传输为目标。这一针对汽车工业的附加标准被称为IDB-1394,由“1394联合汽车工作组”制订。

IDB-1394设计用于高速多媒体应用,即在车内快速传输大量的信息。这项开放式的标准允许便携式的电子设备与车载网络之间进行连接和互动操作,为两者建立了沟通渠道。

电源接口需要提供过电流保护,而现有的汽车体系所使用的电源标准是在多年以前颁布的。由于用户便利端口(CCP)用于传输信号和供电,所以必须对它进行保护,以防止由于各种故障,例如接触不良的电缆或接头插入到商品时,发生短路或造成下行设备的损坏。这种情况有可能经常发生,所以中央控制面板的短路保护必须有效而可靠。

应用综述

如图5所示,车载网络的架构可分为内嵌式网络和用户便利端口(CCP)。目前的技术规格将内嵌式塑料光纤(POF)车载网络定义为与现有的MOST(媒体定向系统传输)技术相似的规格。但是,前者的架构更加稳固、能够提供更高的数据传输速率,并且更易于实现。这个网络能够连接各种电子设备,例如DVD播放机、视频显示屏、导航系统、收音机接收设备、通讯设备,如无线电话或应急自动远程通信及信息处理技术术语,以及其它的多媒体应用。

这套视频-音频网络包括一个CCP,可供乘客将自己的CD机、游戏机和其它应用1394总线的设备和外设连接到网络中,所配电缆通用于家中和车上。

电路保护要求

在热插拔汽车环境中,由于客户经常要在电源接口上连接和断开各种外设,所以明显存在发生短路损坏的潜在危险。电源接口要求具备过电流保护的功能,而应用于目前汽车系统中的现有电源标准是多年以前制订的。因为用户便利接口用于传输信号和供电,所以必须对它进行保护,以防止由于各种故障,例如接触不良的电缆或接头插入接口时,发生短路或造成下行设备的损坏。这种情况有可能经常发生,所以中央控制面板的短路保护必须有效而可靠,而且最好是能够复位的。

图5:车载视频-音频网络架构。

电流限制可以通过使用电阻、保险丝、开关或PPTC器件来实现。目前很少采用电阻保护方案,因为它会在正常电流状态下产生过大的电压降。有可能采用一次性保险丝方案,但是这种保护易于损坏,而且必须在发生故障后予以更换。双金属开关的局限性在于它存在反复接通,并有可能导致触点熔连故障。在很多汽车应用中,最好的保护方案为PPTC器件,这种器件在正常工作状态下呈现低阻抗,而在发生故障时呈现高阻抗。

PolySwitchPPTC器件广泛用于IEEE1394应用,经常为计算机、外设和便携式电子设备提供可复位式电路保护。在汽车多媒体应用中,这种器件常用于为连接到汽车网络的GPS定位设备、CD换片机、音响和其它电子外设的输入输出接口提供电路保护(如图6)。

PPTC器件与传统的熔断器相似之处在于:能够在故障产生和持续状态下限制危险的大电流;而不同之处在于:在故障消除后和/或电路电源断开后,PPTC器件能够自行复位。另一项优点是这种器件较为小巧,能够直接安装在电路板上,并且可安装在电子模块、接线盒和配电中心部件内。

采用通用电子工业标准的车载产品能够有助于客户利用新面市的产品来升级汽车。而通用的总线也有助于汽车制造商在技术进步、不断超前汽车设计循环周期的情况中,解决由此引发的技术过时的问题。在热插拔汽车环境中,由于客户经常要在电源接口上连接和断开各种外设,所以明显存在发生短路损坏的潜在危险。而PPTC器件为这一问题提供了有效的过电流保护方案。这种可复位的电路保护器件也有助于制造商生产出安全可靠的产品,以满足管理机构的要求,并且降低产品保修和修理成本。

图6:PolySwitchPPTC器件可帮

助电路设计师满足电路设计的

安全需求,并为连接到车载网络

中的电源接口、远程信息处理设备和

便携式设备提供电路保护。

篇9

Abstract: In recent years, with the use of a large number of power electronic components and other nonlinear devices, the harmonic pollution has affected the serious deterioration, which has affects the electrical equipment. The harmonic problem has become the three major pollutions in the power system with electromagnetic interference and power factor reduction. As a three-phase electric energy meter measurement, ADE7878 is widely used in the power grid signal analysis because of its high precision and flexible method. However, due to the defects of the sampling interval, there are obvious deficiencies in harmonic analysis. Aimed at this problem, this paper proposes a rapid analysis method for power system harmonic based on the weighted interception and spline interpolation. It can ensure the accuracy and improve the efficiency. The final experiment proves that the harmonic analysis results are correct.

关键词: ADE7878;加权截取; 样条插值;FFT;谐波快速分析

Key words: ADE7878;weighted interception;spline interpolation;FFT;rapid analysis of harmonic

中图分类号:TM933.4 文献标识码:A 文章编号:1006-4311(2017)02-0154-05

0 引言

近年来,随着大量电力电子元件及其它非线性设备的使用[1],使得电网谐波污染严重恶化,已经影响到用电设备,谐波问题已经与电磁干扰、功率因数降低并列为电力系统中的三大公害。及时准确地掌握电网中的谐波分量参数[2],才能为谐波治理提供良好的依据,维护电网的安全运行。

ADE7878作为三相电能测量IC,因其精度高、使用灵活而在电网信号分析中得到广泛应用[3],但其在谐波分析中存在明显不足。ADE7878的采样间隔为125us,每个周波采样160个点,不是2的整数幂,因而无法进行常规基-2FFT运算,这也限制了其在电能质量分析中的应用。

在进行FFT变换时,通常要求采样点数N是2的整数幂,不满足这个条件时可以直接进行DFT运算,但是计算效率较低;也可以通过简单增添有限长的零取样序列来使N为2的整数幂,但对于ADE7878的应用,N=160,28=256,27=228,需补零96个点,频谱会发生很大变化,从计算的效率上看也不经济。本文提出一种针对ADE7878采样特点的快速精确计算电力系统谐波参数的方法和装置。

为克服ADE7878在谐波分析方面存在的上述不足,本文提供一种电力系统谐波快速分析方法及运行装置。本算法中采用汉宁窗对电压、电流采样数据进行加权截取,对截取的信号进行组合数FFT,先进行常规基-2FFT变换,再进行5点DFT变换,在保证计算精度的前提下,提高了效率。在此基础上通过插值修正,得到最终的准确的谐波分析结果。

1 基于ADE7878智能电表硬件设计

ADE7878是Analog Device公司(ADI)设计生产的一款高精度多功能三相电能计量专用芯片,内置多个二阶型模数转换器、数字积分器、基准电压源电路和所必需的信号处理电路,可以实现对电网基本电参量的测量以及对电网电能质量进行监测的功能[4]。

ADE7878可以工作在三线制或四线制系统中[5],而且对电路的接法也不受限制,可以对电网运行的电参量数据进行实时采集并发送到上层控制芯片,方便控制芯片对电参量数据进行后续处理。ADE7878的电压和电流通道[6]为24bit 型ADC,电压和电流有效值在动态范围为1000:1的动态下小于0.1%,电能在动态1000:1下小于0.1%,在动态3000:1下小于0.2%。ADE7878与上层控制芯片之间具有多种灵活的通信方式,如SPI、I2C和HSDC。ADE7878提供四种工作模式[7],其中有一种正常模式和三种低功耗模式,这样可以保证系统在断电情况下能及时作出相应的处理,提高了系统整体的稳定性。

1.1 基于ADE7878智能电表硬件整体设计

由于ADE7878具有工作环境多样、测量精度高、通信接口灵活等优点,使得ADE7878在电力仪器仪表中的应用十分广泛。

智能电表的硬件电路设计包含以下几个部分:DSP最小系统设计、信号采样电路设计、实时时钟电路设计、数据存储电路设计、RS485通信电路设计、控制电路设计以及智能电表供电电源设计。ADE7878智能电表硬件整体设计如图1所示。

本文智能电表采用ADE7878电能计量芯片进行相关电参量数据的采集。ADE7878采用3.3V供电,外加16.384MHz石英晶体振荡器,待测电流信号采用差分形式输入,待测电压信号采用单端输入方式,电压、电流信号输入范围为-0.5V~0.5V。ADE7878的I/O最大耐压为±2V,因此需要添加相应的保护电路。ADE7878的电路设计如图2所示。

图2中,IAP/IAN、IBP/IBN、ICP/ICN、INP/INN分别对应A、B、C三相电流和零线电流经过转换后的差分电压输入信号。VAP、VBP、VCP、VN对应的是A、B、C三相电压输入信号和零线电压输入信号,这些信号输入口的最大电压变化范围是-0.5V~0.5V。REF为ADE7878基准电压的参考引脚,通过此引脚可以访问片内基准电压源。片内基准电压的标称值为1.2V,也可以在此引脚上连接1.2V±8%的外部基准电压源。这两种情况下,都需要外加一个4.7uF钽电容和一个0.1uF的陶瓷电容并联来对此引脚进行去耦。芯片复位后,使能片内1.2V基准电压源。

1.2 电压信号采样电路设计

电压信号采样电路的设计是信号采集电路的关键部分之一[8]。根据智能电表的需求分析,配电网一侧的设计参考电压范围为3×65V~465V。在第二章中,已经对电压信号采样的方案设计做出了说明,本文中电压信号采集选择高精度电压互感器完成。使用电压互感器进行电压信号采样电路设计,会产生一定的相位延迟,并且不同的设计方法产生的测量相位延迟也不同,但均可以在后续软件设计中进行修正。

本文选择的是电压互感器是山东力创公司设计生产的一款高精度电流型电压互感器LCTV31CE-2mA/2mA。这种电压互感器的一次侧和二次侧的电流比为1:1,环路额定电流值为2mA,互感器体积小,电路设计较为简单。

由于ADE7878的电压测量输入范围是-0.5V~0.5V,电流型电压互感器的二次侧额定回路电流为2mA,因此,选择249Ω(1%)精密电阻作为电压互感器二次侧取样电阻比较合适。由于电压互感器二次侧和一次侧的回路电流为1:1,因此选择249kΩ(1%)精密电阻作为电压互感器一次侧的限流电阻较为合适[9]。这样设计可以使得一次侧输入电压上限达到500V,完全可以满足配电网65V~465V的设计参考电压需求。

通过电压互感器、限流电阻、取样电阻,已经将配电网的交流大电压信号转换成了可测量交流小电压信号,但待测信号送入ADE7878芯片之前还要经过滤波电路和信号调理电路,使得输入信号便于测量。电压信号采样电路设计如图3所示。

由于电压互感器的使用,会使得测量的信号与实际信号之间存在较大的相位误差,图3中所示的电压采样电路,电压信号的相位延迟在30°左右。可以对这个电压信号采集电路进行改进,改进后的电压采样电路如图4所示。

按照改进后的电压采样电路进行电压测量,可将信号的相位延迟控制在5°左右。

1.3 电流信号采样电路设计

对于交流电流信号的测量,最后送入ADE7878的电流信号为差分电压信号的形式,因此需要将交流电流信号变换为差分电压信号的形式。根据智能电表的需求分析,配电网一侧的设计参考额定电流为5A~20A,并且有一定的过流过载要求。

为了给设计留有余量,取样电阻选择15Ω(1%)的高精度金属膜电阻。详细电路设计如图5所示。

图5中,电流互感器的二次总负载为30Ω,远远低于LCTA21CE-40A/20mA所要求的二次侧额定负载最大为100Ω,因此这样的电路设计可以获得较好的线性。

根据ADE7878元器件自身的特性,在ADE7878的信号输入端,还应该添加1kΩ和33nF的电容并联,进一步对输入信号进行滤波去耦。

由于ADE7878的模拟信号输入端有最大承受电压

±2V的限制,因此在信号输入端应该添加电压钳位电路,以免影响测量精度,甚至烧坏元器件。本项目中所选的电压钳位元件是BAV99。±2V电压产生电路如图6所示。采用的是电阻分压方式从±5V电源之间产生±2V电源。

2 基于加权截取及样条插值的智能电表谐波快速分析算法

2.1 加权截取

2.1.1 电压电流信号采样

利用微处理器设置定时器中断,每500us读取一次ADE7878寄存器VAWV、VBWV、VCWV、IAWV、IBWV以及ICWV,连续采样四个周期,获得电力系统三相电压、电流信号瞬时值序列vA(n)、vB(n)、vC(n)、iA(n)、iB(n)及iC(n),采样点数N=60,离散采样序号n∈[0,N-1]。

2.1.2 汉宁窗加窗截断

3 实验及分析

本文所设计的智能电表电能质量监测功能包括监测各相断相、失流、过负荷、全失压、电压电流逆相序次数、各相电压电流的2~19次谐波分析等。相对于其它电能质量指标来说,谐波含量是电能质量中较为重要的一个指标。本文在测试中重点对智能电表对电网谐波分析的功能进行了详细的测试。

本文中智能电表具备2~19次谐波分析功能。为了方便实验比对,选择美国福禄克公司设计生产的F434型三相谐波分析仪作为标准仪器用于实验数据对比。Fluke F434型三相谐波分析仪如图8所示。在本文的实验设计中,由于ADE7878的采样间隔为125us,每个周波采样160个点,不是2的整数幂,因而无法进行常规基-2FFT运算,故普通FFT采用的是以零补齐的方式,而本文提出的算法由于不受2的整数幂限制,没有零补齐。由表1及图9的实验结果可知,本文所提出的谐波分析算法经标准谐波测试分析仪Fluke F434验证,误差控制在0.2510%-1.9646%之间,且本文算法2~19次谐波分析测试结果均优于普通FFT结果,且在2次谐波处误差获得最大2.1%的降幅。

4 结论

本文方法解决了ADE7878电能计量芯片在谐波分析时无法进行常规FFT的问题。将160个采样数据份分成5组,分别进行32点的基-2FFT,充分利用基-2FFT算法的高效性,既保证数据处理的准确性,又提高了谐波分析的效率;采用汉宁窗截取采样序列,减少频谱泄漏;采用插值修正算法克服了非同步采样引起的栅栏效应。

参考文献:

[1]陈盛燃,邱朝明.国外城市配电自动化概况及发展[J].广东输电与变电技术,2008(4):64-67.

[2]张红,王诚梅.电力系统常用交流采样方法比较[J].华北电力技术,1999(4):25-27.

[3]谷晓津.浅析三相四线费控智能电能表特点及功能[J].科学之友,2011(32):36-38.

[4]刘耀勇,李树广.智能电网的数据采集系统研究[A].2010年航空试验测试技术峰会论文集[C].2010:273-276.

[5]吴晓静.基于DSP的单元串联多电平高压变频器的研究与实现[D].东南大学,2010.

[6]王金明,于小娟,孙建军,等.ADE7878在新型配变监测计量终端上的设计应用[J].电测与仪表,2010,47(Z2):142-145.

[7]郭忠华.基于ADE7878芯片的电力参数测量仪的设计[J].电工电气,2010(12):25-30.

[8]王金明,于小娟,孙建军,等.ADE7878在新型配变监测计量终端上的设计应用[J].电测与仪表,2010,47(Z2):142-145.

[9]李(木冈)宇.数字中频模块的硬件设计与调试[D].西安电子科技大学,2007.

篇10

关键词 电子技术综合设计;实践能力;创新思维

中图分类号:G642.3 文献标识码:B

文章编号:1671-489X(2017)02-0113-02

Reform and Practice of Integrated Design of Electronic Techno-logy//ZHOU Tao, ZHANG Ruimin, LIU Qiao, LI Shuanming, ZHONG Furu

Abstract This article introduces the curriculum reform and practice from the aspects of teaching goal, teaching content, teaching imple-mentation, teaching method, examination method and teaching effect. The reform of the integrated design course of electronic tech-nology will be beneficial to the improvement of students’ practical ability, and to cultivate the students’ innovative thinking.

Key words integrated design of electronic technology; practical ability; innovative thinking

1 引言

随着石河子大学人才培养模式的不断改革,以及社会对高等教育培养具备实践能力、创新思维人才目标要求的提出,实践教学环节作为工科专业人才培养体系中的重要组成部分[1],成为当下大学生创新思维和创新能力培养的重要环节。电子技术综合设计是一门实践性非常强的实训类课程,是电子技术人才培养成长的必由之路。由学生自行设计、自行制作和自行调试电子电路,旨在培养学生掌握综合模拟、数字、高频电路知识,解决电子信息方面常见实际问题的能力,培养学生电子电路设计与EDA(Electronic Design Automation)调试工具的使用方法,以及开展项目管理的基本方法。

2 现状

以往的教学安排中主要侧重电子电路的设计和仿真,留给学生自己用于思考和设计的时间有限,设计基本停留在纸上和计算机上。因此,教学效果很难达到预期的教学目的。虽然W生在参加接下来的相关课程的课程设计、大学生训练计划、全国大学生电子设计大赛、毕业设计时理论分析能力得到提高,但实际设计和调试时却出现大量问题很难得到快速解决的现象。所以,这种教学模式不再适应目前新的人才培养方案对于电子信息工程专业提出的要求以及创新人才的培养。

3 课程改革探索与实践

电子技术综合设计课程的改革与探索主要从课程教学目标、课程教学内容、课程教学实施、教学方法、考核方法和教学效果等几个方面进行。

课程目标 电子技术综合设计将学生已学过的电路基础、模拟电路、数字电路以及高频电路等课程的知识综合运用在该课程中[2],从而培养学生具备电子元器件的识别和选择,电子电路仿真和电路设计软件的使用,电子电路的分析和设计以及实际应用电路项目的开发、管理等综合能力,使学生切实经历从原来课本上的电路到EDA软件的仿真电路再到实际看得到、摸得着的电路的实现过程。该课程是对现有课程体系的完善和补充[3],帮助学生拓展视野,提升学生参加课外科技活动、校级SRP(Student Research Project)活动、国家大学生创新计划以及全国电子设计竞赛等专业竞赛的兴趣和毕业设计的质量与水平。

教学内容 课程的主要内容按照基本知识验证、专业知识综合、创新设计能力培养的原则进行安排,主要包括:常用电子元器件基础知识;常用电子测量仪表的使用;电路仿真软件的使用;印刷电路板的设计与实现;电子电路系统设计方案提出、论证、设计、元件焊接、系统调试;撰写总结报告、答辩等。

1)常用电子元器件基础知识:主要讲解电阻、电容、电感、电位器、变压器等常用元件的区分,还包括一些电子常用术语,比如单面板、双面板、焊盘、焊接面、虚焊、桥接等。

2)常用电子测量仪表的使用:包括万用表、示波器、函数发生器、直流稳压电源的基本使用方法。

3)电路仿真软件的使用:主要讲解电路仿真软件Multisim的使用。

4)印刷电路板的设计与实现:Altium Designer软件中电路原理图的绘制和PCB图的绘制方法。

5)电子电路系统设计方案提出、论证、设计、元件焊接、系统调试:对全班学生进行分组,四个人一组,每组一个设计题目,每组经过方案的提出、讨论、修改、教师审核、论证后设计出电路仿真图,仿真没有问题后设计PCB图,然后制成单面板进行元件焊接、调试。

6)撰写总结报告、答辩:系统设计完成后,每组撰写总结报告,提出系统的优点和设计不足,以及设计过程中自己的心得体会,最后制作幻灯片进行课程汇报答辩。

教学实施 在完成各个教学内容时,课程采用项目驱动的方式使学生在掌握理论知识的同时,实践能力也得到不同程度的提高。整个教学过程分为4个项目进行,通过项目的完成,学生逐步完成课程的学习,综合能力也在不知不觉中得到锻炼。

1)基本元件及电路测试项目。教学内容的前两部分讲解完成后,要求每个学生进行基本元件参数的测试、电路虚焊、双面板线路测试等。通过该项目,学生掌握电子元件与电路测试的基本方法和常用测量仪器的使用方法。

2)电子电路设计和仿真项目。在该项目中,教师首先讲解电路仿真软件Multisim的使用方法,然后以实例设计一个两级晶体管放大电路。在此过程中,教师从元件参数的选取、放大倍数的计算、系统测试和修改等方面给学生进行讲解。讲解完成后,学生参考实例设计一个放大倍数不同的晶体管放大电路作为练习。练习完成后,全体学生设计一个波形发生电路用来产生方波、三角波信号。学生设计过程中可相互交流,碰到问题可询问教师,最终完成项目预期目标。该项目完成后,学生可以掌握电路仿真软件的使用方法和电路设计的基本原则。

3)电子电路制板与焊接调试项目。前两阶段的项目完成后,教师讲解电路制板软件Altium Designer的使用方法和手工腐蚀法制作单面电路的流程,讲解和制作过程以上一个项目中的两级晶体管放大电路为例,讲解的过程中学生如果有问题可随时提出,教师进行解答。最终要求学生自己实现一个两级晶体管放大电路的印刷电路板的绘制,以及电路的腐蚀、焊接、通电调试。通过该项目,学生掌握了电子电路从书本的理论知识到实物实现的过程。

4)C合设计与总结项目。学生按学号进行随机选题,题目内容涵盖模拟电路(如连续可调直流稳压电源)、数字电路(如循环彩灯控制器)、高频电路(如小信号阻容耦合放大电路设计)。题目选定后,题目相同的学生分成一组,组建项目小组。项目组成员提出设计方案,经过理论论证,设计完成仿真电路和PCB电路,然后采用手工腐蚀法实现电路系统的板面布线,最后进行元件焊接和调试。系统完成后,整个课程基本接近尾声,每组学生要对自己的设计方案进行汇报答辩。通过该项目,学生掌握了复杂电路的设计与实现,以及团队合作完成项目设计、管理、总结的过程。

教学方法 课程的教学方法,打破传统理论课程完全靠教师讲授以及实验课程以学生动手为主的模式,采用教师讲授、项目训练、学生参与设计和讨论、分析讲解和答辩的形式。学生有机会表达自己的观点和设计思路,充分调动积极参与的兴趣。

考核方法 课程的总评成绩由5个部分组成:考勤10%+课程表现10%+项目完成情况30%+课程答辩情况20%+课程报告30%。新的考核标准打破原来课程总评成绩主要由平时成绩、设计成绩两部分组成的模式,主要以学生在教学实践活动中的参与度和完成度作为考量,注重学生实践能力和综合能力的培养。

教学效果 经过两周的项目驱动训练和实践环节的总结,学生对于测量仪器的使用更加熟练,对常用电子元器件的选用和封装了解得更为清楚,对电子电路的设计和实现更加有信心,分析问题、解决问题的能力得到了很大的提高。

4 结论

课程改革和实践在石河子大学电子信息工程2012级、2013级和2014级为期两周的电子技术综合设计课程中进行,学生对于课程内容安排和各个环节的设计比较欢迎,加大了学生创新思维和创新能力的培养。课程实施的整个过程侧重基础能力培养,将项目管理理念贯穿整个课程的始终,加大创新能力的培养。学生在后续的毕业设计和课外科技活动中凸显了较强的实践和创新能力。■

参考文献

[1]吴大鹏,黄沛昱.“电子系统综合设计”课程建设探索[J].电气电子教学学报,2014,36(6):41-43.