通信技术发展范文

时间:2023-10-16 17:38:06

导语:如何才能写好一篇通信技术发展,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

通信技术发展

篇1

关键词:无线通信;需求;发展趋势

近些年无线通信技术与互联网系统、移动媒体终端系统融合越来越紧密,发展势头迅猛。基于其可移动的特点,无线通信技术给用户提供了更加丰富多彩的服务。以前人们想象中的移动办公、实时服务现在都在无线通信技术的支持下成为了现实。现如今我们正处于信息爆炸的时代,网络已经成为人们生产生活所必须的工具,因此作为网络应用基础的通信技术越来越受到人们的重视。目前无线通信技术是人们应用的最为广泛的技术,因为其不受地域和空间的限制,节省了有线网络通信中的很多硬件资源,能进一步的融合整合各类服务,因此对于今后无线通信技术发展趋势的研究具有现实意义。

1国内无线通信技术现状

中国移动和中国联通目前是国内最大的两家ISP服务供应商,它们几乎垄断了国内的通信市场,业务范围包括数字电话、数字电视、网络访问等等,技术手段经历了由2G、3G到4G的过渡阶段。其中2G的数据传输速率大致在10~200kb/s范围,3G的数据传输速率在几百kbps,4G最大数据传输速率已经超过100Mbps。目前我国正在着手5G网络的研发以及全民WIFI网络的搭建,然而要想真正实现这一目标还需要很长的一段时间。

2国外无线通信技术现状

无线接入技术和蜂窝电话是国外通信网络技术中最具代表性的技术和应用。20年前国外最先使用的无线通信技术是模拟的AMPS/TACS技术、之后经历了模拟通信向数字通信的转变。80年代数字的GSM/CDMAONE,以及WCDMA/TD-SCDMA、HSDPA等技术相继出现,成为了通信网络中的核心技术。为了缩短国内与国外在无线通信网络技术上和应用上的差距,我国应从两方面进行研发。其一要想赶超国外无线通信技术,我们必须具有属于自己的具有自主知识产权的无线通信核心技术;其二大力扩展网络应用规模,提升大中城市的网络使用率和覆盖率,构建高速的无线接入网络,为用户提供良好的远程无线接入用户体验。

3无线通信技术发展趋势

任何技术的发展都必须遵循连个基本原则,即技术本身的发展及其以市场为驱动力的发展,无线通信技术发展也不例外。鉴于这两个基本原则,现提出几点无线通信技术的发展趋势:

3.1网络高度融合。无线通信技术发展的必然趋势即网络的高度融合,通过网络融合实现异构网络的互联及其资源的整合与共享。如果不遵循这一趋势,而重新构建一个全新的无线网络则会面临很多技术和资金方面的问题。从技术层次方面讲,如今无线网络种类繁多,若以其中一种网络类型为基本模型进行重新构建则损失了其他已经具有良好体系结构的网络;从资金方面来讲,重新构建一个网络则会花费巨额的资金。

3.2高效频谱接入。无线频谱资源是固有的战略资源,各国都在争用无线频谱信道进行无线通信技术的研究与应用。如何高效的利用无线频谱是无线通信技术领域里亟待解决的问题。认知无线电技术的出现很好的解决了这个问题。认知无线电技术特点是通过不断的训练学习构建应用系统模型,使之能够动态地认知并判断其工作环境,自适应地调整工作频率及其相关操作参数,以便更加高效地占用频谱信道,提高整个信道的利用率。

3.3宽带局域无线接入。用户通过接入系统进入通信网络进行数据访问,最初的有线接入方式存在诸如综合布线的局限性,限制了通信技术和网络技术的发展。目前无线通信技术的出现和发展很好的解决这种局限性问题。客户终端的移动性也为无线接入方式提供了发展的可能,其必然成为未来无线接入的重要发展方向。

3.4链路容量扩展。链路容量扩展的瓶颈问题来自于有限的频谱资源,在固有的频谱范围之内,越来越多的用户需要瓜分其中的频率值,而由于技术特点的要求,可用的频率又是有限的,因此如何解决这一矛盾是技术人员需要考虑的重要问题。既然信道无法无限划分,那么只能从提高通信设备的数据传输速率上进行着手研究。因此高速化的网络传输设备的研发是无线通信技术发展的另一个方向。

3.5集成多种抗干扰波形。为了提高信道容量,根据香农定理C=Wlog2(1+S/N)可知,当带宽W和信号功率S不变的情况下,噪声功率N趋于0时,信道容量C则趋于无穷大。因此无线通信技术发展的另一个方向就是尽可能的集成多种抗干扰波形去减少噪声对信道的干扰。目前无线通信技术手段已经能够很容易的侦测出中低速跳频电台,从而对其屏蔽,但对于高速跳频电台的侦测和屏蔽依然是很难实现的问题。

3.6通信与保密相融合。无线通信容易暴露出通信双方的信息,现在越来越多的用户要求在通信时采取与之相适应的保密手段。当前大多数保密机或保密卡依靠通信设备提供的通信链路实现保密通信,这种方法会带来较大的额外带宽开销,降低了通信效率,使无线频谱资源白白遭受损失。通过深入分析会发现战术电台中的通信与保密在很大程度上可以相互结合,降低无线信道的开销,在技术体制上,完全可以实现通信同步与保密同步二合一,跳频图案由保密算法导出等,一方面减少了通信频谱的开销,另一方面使得侦察和破译的概率大大降低,充分发挥出通信与保密相结合的优势。

3.7多功能综合集成。由于用户业务需求的广泛性,未来的无线通信系统必须实现多种功能的综合集成:IP业务和非IP业务的综合;话音、数据和图像等业务的综合;多MAC接入的综合;无线传输模式的综合;服务模式的综合等。无线通信系统的多功能综合集成能够为不同的业务需求提供有力的保障,同时能够继承已有技术的优势,缩短新产品研发的周期。

4结论

无线通信为用户提供话音、数据、图像等通信保障,面对各种应用业务的需求变化,无线通信技术必将相应地发生较大变化。文中通过深入分析国内外无线网络通信的特点,指出了今后无线通信技术的发展趋势。

作者:孙霞 单位:哈尔滨铁道职业技术学院

参考文献:

[1]庾志成.2005~2006移动通信新技术发展分析[J].移动通信,200,(1):20-24.

篇2

【关键词】无线通信技术;现状;发展前景

随着无线通信技术现代化的发展,无线通信技术已经应用到各个领域,其规模在不断扩大,对人们的日常生活的影响力也越来越大。随着人们对无线通信技术的需求不断增加,无线通信技术的发展前景也呈直线上升。

1 无线通信技术的发展现状

当前我国的无线通信技术发展形势凶猛,对无线通信技术的应用也是也来越广泛。其中主要包括以下方面:

1.1 移动通信

目前我国的移动通信技术最新的的发展是4G移动网络,但是当前应用较为广泛的是全球3G移动网络。3G移动网络给业务的发展提供了更全面,更广泛的发展平台。根据市场调查,我们生活周围的90%以上用户开始使用3G移动网络服务,调查证明3G移动网络通信在未来的网络通信市场中将占据着巨大的比重,而移动网络通信的未来市场发展前景也是相当可观。

1.2 蓝牙技术

随着现代的无线网络技术迅速发展,实现了网络化的无线远程通信,将远程信息以无线数据和语音等方式进行传输,这种无线通信技术被称为蓝牙。蓝牙技术的应用是以现代无线通信技术为基础,传输无线数据和语音,实现全球通信的开放式。蓝牙技术与短距离的无线连接,一般在10米以内[1]。它使数据传输变得更加迅速有效,并且降低传输成本。(关于蓝牙的描述好像不太对,这个10米以内和实现全球通信的开放式好像没什么相关性。)

1.3 无线宽带技术

无线宽带技术就是以固定的无线通信为基础的宽带接入技术。如今无线宽带技术在我国得到了广泛的应用。多个用户通通过WLAN共享技术实现了无线网络的高速连接,用户可以随时随地的通过WLAN介入网络,轻松方便的享受网络带来的各种服务。但是与国外的无线宽带技术相比,我国的无线宽带技术仍然处于发展时期,用户的数量以及应用的范围时都十分有限,同时在无线宽带的技术上也有一定的差距。在未来的发展过程中,无线宽带技术在中国的各大城市还有很强的发展潜力。在来来,中国也会加强对无线网络技术的开发和研究,提高自身的自主知识产权,同时会加大无线宽带技术在大中城市的网络覆盖率和使用率,为用户提供更加全面的无线网络。

2 无线通信技术的发展前景

随着无线通信技术的应用规模的不断扩大和应用范围的不断提升,无线网络通信技术在未来将越来越受到人们的青睐。随着新技术的不断发掘,无线网络通信技术将会不断的深化发展,其发展趋势也将朝着更便捷更高速的方向进行,通过上文对当今无线通信技术的现状进行了分析得出,无线通信技术的发展趋势主要包括以下几个方面:

2.1 各个无线通信技术之间的技术互补增加

各个无线通信技术都有不同的特点,包括在技术特点,覆盖范围,使用区域点呢个方面都有自己有点,比如3G达到了广域无缝覆盖和强漫游的移动需求,WLAN保证了中距离多数人的高速数据传输,而蓝牙技术则实现了短距离低成本的高速数据传输[2]。每一种无线通信技术都有自己的特点和对用户最为有用的方面,我们要加强对无线通信技术的开发和研究,综合各种无线通信技术的特点,提取精华摒弃糟粕,使无线通信技术进一步一体化和多元化。

2.2 无线通信信息的个性化

无线通信技术现代化的发展目标是无线通信信息的个性化。它的主要表性形式突出在促进各种移动IP在移动设备上自由使用。如今智能手机、平板电脑等越来越受到用户的喜爱,生活中使用智能移动终端的用户随处可见,推动了整个无线通信行业的发展。随着市场对智能终端需求的不断扩大,无线通信技术的市场也在不断扩大。

2.3 网络优化融合与演进并轨

科技的发展促进了网络优化与融合的不断进步,大部分运营商都借助增量升级,继续抢占3G网络市场。随着市场的发展,网络融合是现代无线通信发展的必然要求。随着科技的发展与技术的进步,市场经济和用户需求的不断变化,市场竞争将日趋激烈,这也将进一步使计算机网、电信网、电视网等融为一体,宽带IP技术也将是三网融合在一起的支撑点和结合点,并逐渐形成统一的三网综合管理[3]。

2.4 无线通信技术的跨行业创新应用

随着无线通信技术的蓬勃发展和广泛应用,无线通信技术应用的行业也越来越多,包括医学领域、军事领域和科研开发领域等,都广泛的应用了无线通信技术。无限通信技术把各个学科的物联网包括健康、教育、军事、信息等各方面联系到一起。例如,在医学方面,随着人们对医疗质量的改善和成本的降低以及健康知识的关注提升,医院采用和无线通信技术相结合的可佩带的传感器用在用户身上或者有传感器的手机上,用户就可以随时监测自己的身体状况或者治疗慢性疾病。

2.5 未来无限网络的联合化、一体化、宽带化

不同的接入网络需要协同工作才能满足用户在不同场合不同应用的需求。由目前无线通信技术发展的情况来看,LTE技术将会变成无线通信技术的主导,形成对全世界移动网络的无缝覆盖,而类似WLAN等宽带技术,将在不同覆盖范围内与移动通信网络形成有效的互补。未来的无线通信终端也将是计算机和通信的融合,在应用的过程中,不同用户的通信终端不相互干涉,能够适应检测当前的网络环境,完成相应的网络感知与选择,并且可以优化升级下载。随着用户业务的不断广泛增加,未来通信系统的多功能化集合是发展的大势所趋,以3G或者超3G的技术为主导,WLAN等宽带接入技术为互补,形成语音、数据和图像的综合业务以及无线传输模式综合和服务模式综合[4]。

3 结束语

无线通信技术的发展给人们的生活工作带来了方便,在未来的无线通信技术发展过程中,无线通信技术也会根据不同的用户需求和社会的变化,不断提升自己的科学技术,来满足用户的需要。因此,无线通信技术在未来的发展中,前景可观,是一支拥有实力的潜力股。

【参考文献】

[1]徐迎,郑凌娟,龚宇清,杨尚瑾.光纤通信在电力系统通信中的发展前景[J].才智,2010,09(23):55-56.

[2]赵璐,张坤.对现代无线通信技术若干理论问题的研究[J].民营科技,2012,23(09):105-106.

篇3

随着国民经济和社会发展的信息化,人们要通信息化开创新的工作方式、管理方式、商贸方式、金融方式、思想交流方式、文化教育方式、医疗保健方式以及消费与生活方式。无线通信也从固定方式发展为移动方式,移动通信发展至今大约经历了五个阶段:

第一阶段为20年代初至50年代初,主要用于舰船及军有,采用短波频及电子管技术,至该阶段末期才出现150MHZVHF单工汽车公用移动电话系统MTS。

第二阶段为50年代到60年代,此时频段扩展至UHF450MHZ,器件技术已向半导体过渡,大都为移动环境中的专用系统,并解决了移动电话与公用电话网的接续问题。

第三阶段为70年代初至80年代初频段扩展至800MHZ,美国Bell研究所提出了蜂窝系统概念并于70年代末进行了AMPS试验。

第四阶段为80年代初至90年代中,为第二代数字移动通信兴起与大发展阶段,并逐步向个人通信业务方向迈进;此时出现了D-AMPS、TACS、ETACS、GSM/DCS、cdmaOne、PDC、PHS、DECT、PACS、PCS等各类系统与业务运行。

第五阶段为90年代中至今,随着数据通信与多媒体业务需求的发展,适应移动数据、移动计算及移动多媒体运作需要的第三代移动通信开始兴起,其全球标准化及相应融合工作与样机研制和现场试验工作在快速推进,包括从第二代至第三代移动通信的平滑过渡问题在内。

2无线通信领域的未来发展趋势

首先,无线通信领域各种技术的互补性日趋鲜明。这主要表现在不同的接入技术具有不同的覆盖范围,不同的适用区域,不同的技术特点,不同的接入速率。比如3G和WLAN、UWB等,都可实现互补效应。3G可解决广域无缝覆盖和强漫游的移动性需求,WLAN可解决中距离的较高速数据接入,而UWB可实现近距离的超高速无线接入。因此,在政策上我们应该综合推进各种无线接入的发展,推进组网的一体化进程,通过建网的接入手段多元化,实现对不同用户群体的需求覆盖,达到市场细分和业务的多元化,解决移动通信发展不均衡的状况。

其次,我国政府应该给企业配置更多的无线频率资源,推进不同技术相关频谱的规划和应用工作。这样才有利于不同的企业根据不同的发展策略和市场需求,综合地规划自己的无线通信网络,实现资源的有效配置和利用。当然,政府也需要加强对有限频率资源的管理,对于企业闲置不用的频率占用,考虑适当的手段予以收回。

其三,从公众移动通信网络发展来看,3G已经成为全球包括中国移动网络演进的主要进程。从欧美发达国家的经验来看,由于其移动话音用户的普及率高,通过发展用户实现增长的模式已成为历史。因此,他们期望通过3G搭建更大的业务平台,从而实现利润的新来源。由于3G技术的成熟,目前3G商用网络部署已经在全球范围内启动。就我国而言,也要借鉴欧美的经验,在用户数量增长放缓之前,就应提前培育新兴移动市场。目前,政府应该开始积极考虑3G牌照发放和商用问题,把握住这个移动业界的巨大历史机遇。

其四,从宽带无线接入技术来看,全球该领域发展十分火热。该领域的发展呈现出向高带宽快速跃进、覆盖范围逐步扩张的趋势。未来,该领域还可能出现更强大的新技术,从另一个角度对整个无线通信产业起到推进作用。但从近期来看,我们对宽带无线接入技术发展应该有一个理性的态度和科学的把握。目前的宽带无线接入技术主要集中在固定环境下的高速接入,其移动性和话音支持能力无法和公众移动通信网络抗衡。在发展中,我们应该从全局的观点来把握,使之成为与移动网络互补的重要技术手段,这样既可以充分发挥其技术个性,又防止出现不必要的资源竞争和浪费。

其五,移动与无线技术在演进中走向融合。当前,移动、无线技术领域正处在一个高速发展的时期,各种创新移动、无线技术不断涌现并快速步入商用,移动、无线应用市场异常活跃,移动、无线技术自身也在快速演进中不断革新。在网络融合的大趋势下,3G、WiMAX、WLAN等各种移动、无线技术在演进中相互融合。

在多元融合的大趋势下,3G、WiMAX、WLAN等各种无线技术在竞争中互相借鉴和学习,涌现出了同时被上述无线技术采用的新型射频技术,如MIMO和OFDM技术等。与此同时,在以ITU和3GPP/3GPP2为引领的蜂窝移动通信从3G到E3G,再走向B3G/4G的演进道路上,以及IEEE引领的无线宽带接入从无线个人域网到无线局域网、无线城域网,再到无线广域网的演进道路上,都开始增加对方的内容,例如:移动通信不断强化宽带传输性能,无线宽带接入不断增强漫游性能以及安全性能。

借鉴WiMAX的高速数据传输特性,蜂窝移动通信启动了LTE,即“3G长期演进”项目,用以增强宽带传输性能。LTE的确立,令蜂窝移动通信系统的技术线路与定位为“低移动性宽带接入”的WiMAX有了很多的相似之处。

在“无线+宽带”的大趋势下,无论是蜂窝移动通信技术还是WiMAX、WLAN等无线宽带技术,都面临着同样的考验:信道多径衰落和频谱效率。在这样的情况下,OFDM和MIMO就成为各种无线技术的共同选择。OFDM在解决多径衰落问题的同时,增加了载波的数量,造成了系统复杂度的提升和带宽的增大;MIMO则能够有效提高系统的传输速率,在不增加系统带宽的情况下提高频谱效率。因此,OFDM和MIMO的结合,成为推动“无线+宽带”发展的重要力量。

其六,更远的未来,按当前专家们的预想,通信信息网络将向下一代网络NGN融合。在未来NGN概念中,固定网络将形成一个高带宽、IP化、具有强QoS保证的信息通信网络平台。在这一平台上,各种接入手段将成为网络的触手,向各个应用领域延伸。而3G、宽带固定无线接入、各种无线局域网或城域网方案,都将成为大NGN平台的延伸部分。从而形成集固定无线手段于一体,各种接入方式综合发挥效用,各种业务形成全网络配置的一体化综合网络。当然,这一进程将是漫长的,也必将遇到很多挫折。

由于无线通信网络存在的带宽需求和移动网络带宽不足的矛盾,用户地域分布和对应用需求不平衡的矛盾以及不同技术优势和不足共存的矛盾,因此,决定了发展无线通信网络需要综合运用各种技术手段,从全局和长远的眼光出发,采取一体化的思路规划和建设网络。发挥不同技术的个性,综合布局,解决不同区域、不同用户群对带宽及业务的不同需求,达成无线通信网络的整体优势和综合能力。对此,我国政府管理部门也应该积极为运营商配备充足的频谱资源,为其综合规划提供有力的支撑和保障。

总之,无线通信中期未来的发展趋势表现为:各种无线技术互补发展,各尽所长,向接入多元化、网络一体化、应用综合化的宽带无线网络发展,并逐步实现和宽带固定网络的有机融合。

篇4

21世纪是一个信息社会,信息交流已经成为人们生活的基本需要。通信作为传输和交换信息的重要手段,是推动人类社会文明、进步与发展的巨大动力。电话技术的演变日新月异,传输媒介、交换设备、传输设备、终端设备和通信方式的改变都是影响电信通信的因素。

1.现代通信技术概述

现代的主要通信技术有数字通信技术,程控交换技术,信息传输技术,通信网络技术,数据通信与数据网,ISDN与ATM技术,宽带IP技术,接入网与接入技术。

2.现代通信技术发展趋势

2.1移动通信

为了实现客户对通信业务种类及数量的需求,移动电话通信系统在经历了模拟、GSM数字系统变革后,,又提供了一种能够全球漫游、支持多媒体等数据业务且有足够容量的第三代移动通信技术,既是码分多址技术(CDMA)——数字蜂窝移动通信系统。码分多址无线电通信技术是第三代无线电通信技术,目前已在北美、东南亚和韩国被大规模投入商用。以前的模拟手机只能在模拟网覆盖地区使用,GSM手机只能在GSM网覆盖区使用,两大系统互不兼容,造成频率资源的浪费。采用CDMA技术的新型手机由于实行的是双模式,所以无论是数字网,还是模拟网覆盖的地区,都能自动转换工作方式,不但可以提高频率资源利用率10~20倍,而且给用户带来方便;二是通话质量高,接近市话效果;三是发射功率在0.1~2000毫瓦之间所以对,人体辐射小。四是断话率低,保密能力强,因此,倍受用户的青睐。另外,低地球轨道卫星开辟了移动通信的新领域,掀起了卫星全球移动通信的新浪潮。将多个卫星链接在一起,把地球天衣无缝地覆盖起来,由多个蜂窝交换机网,可连通地球上任何一点,从而实现全球卫星移动通信,实现“电子地球村”的目标。

2.2光纤通信

光纤通信是由光运载信号来传输信息的方式。光纤通信将是21世纪初最主要的通信手段之一。将以异步传输模式作为宽带综合业务数字网,传输技术采用同步数字系统,传输主干为光纤,并辅以卫星通信和微波通信,终端设备采用多媒体技术。全球将进入宽带综合业务数字网的全面应用阶段。21世纪光纤通信技术的主要特点是充分利用新的电子与光子技术,重点开发全光通信、光孤子通信、密集波分复用、宽带副载波光通信、光量子通信等技术。波分复用技术已进入实用阶段,相干光通信,光孤子通信已取得重大进展;传输复用采用同步数字系列SDH使各国复用系列得到了统一,上下电路则更为灵活;同时采用数字交叉连接设备DXC使传输网上具有电路换功能,大大便利了组网,并提高了网的效率和可靠性。

這些系统技术将采用1.55Lm的色散移位单模光纤,用光放大代替光(电)中继器,利用密集小波分复用和光集成收发端机取代常规的光电收发端机。21世纪所需的各种通信业务有可能由B-ISDN和光

用户环路网,通过光纤到路边、光纤到大楼、光纤到家庭或光纤同轴电缆混合网来实现。到那时,光纤通信技术的整体水平将产生一个重大飞跃。

2.3卫星通信

卫星通信是在空间技术和微波通信技术的基础上发展起来的一种通信方式。其利用人造地球卫星作为中继站来转发无线电信号,可实现两个或多个地球站之间的通信。全球卫星通信产业正在飞速发展,卫星通信技术和电子技术取得了突破性进展,包括中、低轨道全球卫星移动通信系统在内的新系统不断涌现出来,归纳起来,分为非同步(含低轨道LEO、中轨道MEO)和同步(同步轨道GEO)两大类。

以低轨道卫星为基础的系统,具有时延短、路径损耗小、能有效地频率复用、卫星互为备份、抗毁能力强等特点,多星组网可实现真正意义上的全球覆盖。典型的有“铱”系统、“全球星”系统。以静止轨道卫星为基础的系统,使用卫星少,卫星静止可实现昼夜通信,监控卫星系统简单。这些系统,正在步入产业化、商业化和国防化的轨道。卫星通信还有几项新技术:小天线地球站——VSAT卫星通信系统和GPS全球定位系统。随着技术的提高,卫星通信会越来越便捷。

2.4宽带综合业务数字网

随着计算机技术的飞速发展,信息交换正从话音为主走向视听为主,以单一媒体向多媒体、以点到点走向多点间的通信。原有的各种通信技术和手段很难满足发展的需要,一种能满足未来通信需求的宽带综合业务数字网(B-ISDN)被美国人开发出来了。它是以光纤为传输媒体,能实现网络业务可视化、智能化和个人化的高级通信网络。也就是说,它是一种能在网络内传送多种业务信息的网络,如图象、数据、语音等,宽带业务本质上是多媒体的。它将在商业和科学领域首先得到应用,支持局域网远程连接、远程病理诊断、超级计算机接入、高速多媒体数据库查询、计算机辅助设计和制造、电子交易、电子推销和家庭娱乐等业务。

从整体看,各国在开发B-ISDN上都经由三个阶段:综合数字网(IND),窄带综合业务数字网(N-ISDN),宽带综合业务数字网(B-ISDN)。B-ISDN可向用户提供宽带可视电话、宽带会议电视、视频音频信息传输业务、高速数字信息、传输业务、高速传真等会话型业务;可提供宽带可视图文、图象检索、数据检索等电子信函和检索业务;还可提供高清晰度电视、付费电视、文件分配和图象信息分配等分配型业务。所以,展望21世纪,B-ISDN应用前景十分广阔。

3.结语

社会和市场的需求是刺激技术发展的原动力,对于信息技术的发展,市场同样起着举足轻重的推动作用。随着社会的发展,特别是近年来全球经济的发展,信息在社会生活中的地位越来越重要。以往那种单一、低效的信息传输方式已难以满足社会的需求,人们不仅要求所获取的信息数量更多、质量更好,还要求获得信息的手段更加方便、快捷,并能对信息系统实现实时、交互控制。社会与市场的这种需求再加上现代计算机技术的发展,对现代通信技术的发展起到了举足轻重的促进和导向作用。

参考文献:

[1]马晶,卫星光通信技术发展及其影响因素分析[J].光通信技术,2004,28(10).

[2]吕洪涛.光纤通信技术进展[J].光纤通信技术,1992(5).

[3]尤肖虎.未来移动通信技术发展趋势与展望[J].电信技术,2003(6).

篇5

移动通信业务之所以发展迅猛主要是其满足了人们在任何时间。任何地点与任何个人进行通信的愿望。移动通信是实现未来理想的个人通信服务的必由之路。论文百事通在信息支撑技术、市场竞争和需求的共同作用下,移动通信技术的发展更是突飞猛进,呈现出以下几大趋势:网络业务数据化、分组化,网络技术宽带化,网络技术智能化,更高的频段,更有效利用频率,各种网络趋于融合。了解、掌握这些趋势对移动通信运营商和设备制造商均具有重要的现实意义。

2网络业务数据化、分组化

2.1无线数据——生机无限当前移动数据通信发展迅速,被认为是移动通信发展的一个主要方向。近年来出现的移动数据通信主要有两种,一种是电路交换型的移动数据业务,如TACS、AMPS和GSM中的承载数据业务以及GSM系统的HSCSD;另外一种是分组交换型的移动数据业务,如摩托罗拉的DataTAC、爱立信的Mobitex和GSM系统的GPRS。

目前,无线数据业务只占GSM网络全部业务量中的很小一部分,但是在未来的两年中这种状况将开始扭转,并大大改变。1999年以后,随着HSCSD、GPRS等新的高速数据解决方案显露峥嵘,并成为数据应用的新焦点,无线数据将成为运营商经营计划中越来越重要的部分,它预示着未来大量的商业机遇。

(1)应用驱动市场

无线数据业务的主要驱动力在于用户的应用。话音是单一的、易于被大众所接受的业务,然而无线数据则不同,无线数据最初的应用重点放在运输管理这样的专业市场。近期无线数据业务的目标市场是销售人员或现场工程师这样的用户群。从这些先发目标的应用中积累无线数据的经验,并从中受益。

在过去的十年里,传统的生活方式已经在迅速改变,人们更经常性地移动,职业和个人生活之间的分界变得模糊,人们需要不分时间、地点访问很重要的信息。发生在用户身上的这种生活方式的改变将成为驱动无线数据业务发展的重要因素。

(2)因特网的影响

和通信的其他领域一样,无线数据业务的一个最重要的驱动力来自Internet。根据最近的研究,未来两年欧洲的因特网用户数量将翻一番。在我国,因特网用户的年增长率将高达300%,显然用户在运动中接入因特网的需求将会增长。

为了满足接入因特网的需求,一个全球性的开放协议——无线应用协议(WAP)应运而生。WAP为将Internet的信息内容以及增值业务传送到移动终端提供了一种开放的通用标准,实现了IP与GSM网络的桥接,是一个为厂商提供加速市场增长、避免网络割接、保护运营商投资的标准,WAP确保任何与WAP兼容的GSM手机都能工作。

(3)数据速率的发展

GSM承载业务所提供的GSM数据速率最高只能达到9.6kbit/s。国际上1998年引入的高速电路交换数据(HSCSD)技术将实现57kbit/s的数据速率,对要求连续比特率和传输时延小的应用是理想的,如会议电视、电子邮件、远程接入企业的局域网和无线图像。1999年商用化的GPRS是第一个GSM分组数据应用,将实现超过100kbit/s的数据速率。对较短的“突发”类型业务是理想的,如信用卡认证、远程测量和远程事务处理。EDGE(增强数据速率GSM改进模式)使用修改过的GSM调制方式来实现超过300kbit/s的数据速率。EDGE会让GSM运营商特别受益,他们不但可以赢得第三代移动通信的经营执照,还可以提供有竞争力的宽带数据业务。

2.2个人多媒体通信——网络演进的方向

对随时随地话音通信的追求使早期移动通信走向成功。移动通信的商业价值和用户市场得到了证明,全球移动市场以超凡的速度增长。移动通信演进的下一阶段是向无线数据乃至个人移动多媒体转移,这一进展已经开始,并将成为未来重要的增长点。个人移动多媒体将根据地点为人们提供无法想像的、完善的个人业务和无线信息,将对人们工作和生活的各个方面产生影响。在个人多媒体世界里,话音邮件和电子邮件被传送到移动多媒体信箱中;短信将成为带有照片和视频内容的电子明信片;话音呼叫将与实时图像相结合,产生大量的可视移动电话,还将实现移动因特网和万维网浏览。像无线会议电视这样的应用将随处可见,电子商务将蓬勃开展。对于运动中的用户还有随时随地的各种信箱和娱乐服务。

3网络技术的宽带化

在电信业历史上,移动通信可能是技术和市场发展最快的领域。业务、技术、市场三者之间是一种互动的关系,伴随着用户对数据、多媒体业务需求的增加,网络业务向数据化、分组化发展,移动网络必然走向宽带化。

通过使用电话交换技术和蜂窝无线电技术,70年代末诞生了第一代模拟移动电话。AMPS(北美蜂窝系统)、NMT(北欧移动电话)和TACS(全向通信系统)是三种主要的窄带模拟标准。第一代无线网络技术的一大成就就是去掉了将电话连接到网络的用户线。用户第一次能够在他们所在的任何地方无线接收和拨打电话。

第二代系统引入了数字无线电技术,它提供更高的网络容量,改善了话音质量和保密性,并为用户引入了无缝的国际漫游。今天世界市场的第二代数字无线标准,包括GSM、MMPS、PDC(日本数字蜂窝系统)和IS95CDMA等,均仍为窄带系统。

第三代移动系统,即IMT-2000,是一种真正的宽带多媒体系统,它能够提供高质量宽带综合业务并实现全球无缝覆盖。2000年以后,窄带移动电话业务需求将依然很大,但随着Internet等高速数据通信及多媒体通信需求的驱动,宽带多媒体综合业务将逐步增长,而且就未来信息高速公路建设的无缝覆盖而言,宽带移动通信作为整个移动市场份额的子集将显得愈来愈重要。

第三代系统预计在2002年投入商用。

从第二代到第三代系统的变化并不像从第一代模拟网络到第二代数字网络那样存在重大的技术变迁。从目前的技术发展现状和趋势来讲,第二代系统将逐步子滑过渡到第三代系统,在此演进过程中,移动网络所能实现的数据速率逐步升级:GSM承载业务所能提供的数据速率为9.6kbit/s,1998年商用的HSCSD技术实现了57kbit/s的数据速率,1999年引入的GPRS将实现超过100kbit/s的数据速率,将在2000年引入的EDGE技术可实现超过300kbit/s的数据速率。2001年后投入商用的第三代系统将能够在广域网上实现384kbit/s的数据速率,在办公室和家中还可以达到2Mbit/s。

4网络技术的智能化

移动通信需求的不断增长以及新技术在移动通信中的广泛应用,促使移动网络得到了迅速发展。移动网络由单纯地传递和交换信息,逐步向存储和处理信息的智能化发展,移动智能网由此而生。移动智能网是在移动网络中引人智能网功能实体,以完成对移动呼叫的智能控制的一种网络,是一种开放性的智能平台,它使电信业务经营者能够方便、快速、经济、有效地提供客户所需的各类电信新业务,使客户对网络有更强的控制功能,能够方便灵活地获取所需的信息。移动智能网通过把交换与业务分离,建立集中的业务控制点和数据库,进而进一步建立集中的业务管理系统和业务生成环境来达到上述目标。通过智能网,运营公司可以最优地利用其网络,加快新业务的生成;可以根据客户的需要来设计业务,向其他业务提供者开放网络,增加收益。

关于移动智能网的研究,早在1995年就已开始,刚开始并没有具体的标准协议出现,各厂商各自制定了自己的标准,并且据此进行了不少的研究工作,如Alcatel、Nortel、Ericsson等都先后推出了自己的初期产品。这些工作为最终移动智能网标准的形成积累了经验。

1997年末,美国蜂窝电信工业协会(CTIA)制定了移动智能网的第一个标准协议——IS-41D协议。1998年1月,欧洲电信标准研究所(ETSI)在GSMphase2+阶段引入了CAMEL协议(移动通信高级逻辑的客户化应用程序),当时的版本是Phase1。1998年4月,ITU-T在新推出的智能网能力集一2标准中描述了移动接入的功能实体,称为CAMELphase2标准。

伴随着移动网络向第三代系统的演进,网络的智能化程度也在不断地提升。智能网及其智能业务是构成未来个人通信的基本条件。

5更高的频段

从第一代的模拟移动电话,到第二代的数字移动网络,再到将来的第三代移动通信系统,网络使用的无线频段遵循一种由低到高的发展趋势。1981年诞生的第一个具有国际漫游功能的模拟系统NMT的使用频段为450MHz,1986年NMT变迁到900MHz频段。我国目前的模拟TACS系统的使用频段也为900MHz。在第二代网络中,GSM系统的开始使用频段为900MHz,IS-95CDMA系统为800MHz。为了从根本上提高GSM系统的容量,1997年出现了1800MHz系统,GSM900/1800双频网络迅速普及。2002年将投入商用的第三代系统IMT-2000则定位在2GHz频段。

6更有效利用频率

无线电频率是一种宝贵资源。随着移动通信的飞速发展,频谱资源有限和移动用户急剧增加的矛盾越来越尖锐,出现了“频率严重短缺”的现象。解决频率拥挤问题的出路是采用各种频率有效利用技术和开发新频段。

模拟制的早期蜂窝移动通信系统采用频分多址方式,主要通过多信道共用、频率复用和波道窄带化等技术实现频率的有效利用。随着业务的发展,模拟系统已远不能满足用户发展的需求。数字移动通信比模拟移动通信具有更大的容量。同样的频分多址技术,数字系统要求的载干比较小,因而频率复用距离可以小一些,系统的容量可以大一些。而且,数字移动通信还可采用时分多址或码分多址技术,它比模拟的频分多址制在系统容量上大4-20倍。

GSM作为最具代表性和最为成熟的数字移动通信系统,其发展历程就是一部频率有效利用技术的演进史。GSM采用时分多址制式,其对频率的有效利用主要是通过频率复用技术的不断升级实现的。从传统的4×3方式,到3×3、1×3、MRP、2×6等新的复用技术,频率复用的密集度逐步提升,频谱效率快速提高,GSM系统的容量得到逐步释放。1995年开始投入商用的IS-95CDMA(窄带)系统,以无线技术的先进性和大容量等特点著称。它以扩频技术为基础,不同用户的信号靠不同的编码序列来区分,如果从频域或时域来观察,多个CDMA信号是相互重叠的,故理论上CDMA系统的频谱利用率比GSM系统更高,网络容量更大。同时CDMA系统具有一定的过载能力,即系统具备软容量。作为未来第三代移动通信系统主流无线接入技术的WCDMA(宽带码分多址)能够更高效地利用无线电频率。它利用分层小区结构、自适应天线阵和相干解调(双向)等技术,网络容量可得到大幅提高,可以更好地满足未来移动通信的发展要求。新晨

7网络趋于融合,走向统一

7.1第三代移动通信系统的结构

第三代系统的主要目标是将包括卫星在内的所有网络融合为可以替代众多网络功能的统一系统,它能够提供宽带业务并实现全球无缝覆盖。为了保护运营公司在现有网络设施上的投资,第二代系统向第三代系统的演进遵循平滑过渡的原则,现有的GSM、D-AMPSIS-136等第二代系统均将演变成为第三代系统的核心网络,从而形成一个核心网家族,核心网家族的不同成员之间通过NNI接口联结起来,成为一个整体,从而实现全球漫游。在核心网络家族的,形成一个庞大的无线接入家族,现有的几乎所有的无线接入技术以及WCDMA等第三代无线接入技术均将成为其成员。

篇6

【关键词】光纤通信;全光网络;波分复用技术光纤通信技术是指通过光学纤维传输信息的技术。在发信端,信息被转换成电信号,电信号控制光源,使发出的光信号具有所要传输的信号的特点,从而实现信号的电一光转换。发信端发出的信号,通过光纤传输到远方的收信端,经光一电转换成电信号,再经过处理和转换而恢复为与原发信端相同的信息,光纤通信技术尚有很大的发展空间。

1.光纤通信系统简介

光纤通信是一种利用光波作为载波来传送信息,用光纤作为传输介质的通信方式,其工作频段属于近红外光段,常用的通信窗口有0.85UM,1.31UM,1.55UM。光纤多采用石英,而常用的光源有半导体激光器和发光二级管等。

1.1基本的光纤通信系统组成包括三大部分:光发射、光纤传输和光接收

光纤通信系统既可以传输数字信号,也可以传输模拟信号,并且可以将多种不同类型的信号在一起传输,如话音,图像,数据,多媒体信息等。

1.2光纤通信的优点

例如光纤所采用的石英材料是一种电绝缘体,因此不受各种电磁z因此不受各种电磁场的干扰和闪电雷击的损坏,并且适合在易燃易爆环境中使用,光纤的重量很轻,中心折射率略高的纤芯和折射率稍低的包层组成同轴圆柱形的结构,直径一般只有125UM,即使外层经过环氧树脂或硅橡胶的涂敷,并制作成8芯的光缆,也只占同样芯数的电缆重量的1/15;此外光纤的损耗很小,容许频带宽,因此可以进行大容量长距离的传输。

2.光纤通信系统中的新技术

目前,光纤通信技术在通信网,广播电视网与计算机网,以及其他数据传输系统中,都已经得到广泛应用,新技术也不断涌现,提高了通信能力,拥有很大的需求和市场。

2.1光纤通信的发展趋势

光纤到家庭(FTTH)的发展。FTTH可向用户提供极丰富的带宽,所以一直被认为是理想的接入方式,对于实现信息社会有重要作用,还需要大规模推广和建设。FTTH所需要的光纤可能是现有已敷光纤的2-3倍,过去由于FTTH成本高,缺少宽带视频业务和宽带内容等原因,使FTTH还未能提到日程上来,只有少量的试验,近来,由于光电子器件的进步,光收发模块和光纤的价格大大降低,加上宽带内容有所缓解,都加速了FTTH的实用化进程。

2.2光器件的集成化

光电子器件的发展趋势就是集成化,小型化。要实现全光通信网络,器件的集成必不可少。光子集成芯片的制造需要将激光器,检测器,调制器和其他器件都集成到芯片中,这些集成需要在不同材料多个薄膜介质层上重复地沉积和蚀刻,这些材料包括砷化甸镓,磷化铟等。尽管这是一种复杂的技术,但是由于互联网语音和视频业务的不断增长,传统的IM-6M互联网接入带宽变得不足,介理通过增加设备来提高速度扩大带宽已经不现实,因此光器件的集成是必须的,也是保证互联网持续增长的重要因素。

2.3光交换技术

商用光纤通信系统,单信道传输速度率已超过10GB/S。实验WDM系统的传输速率已超过3.28TB/S。现有网络中,高速光纤通信系统仅仅充当点对点的传输手段,网络中重要的交换功能还是采用电子交换技术,但是传统电子交换机的端口速率只有几MB/S到几百MB/S,因此成为了整个通信网速率提高的瓶颈。彻底解决这个问题的办法,就是实现全光交换。

目前,光交换技术可分成光的电路交换和光分组交换两种主要类型。光交换技术可分成光的电路交换和光分组交换两种主要类型。

2.4光纤通信的市场

FTTH毕竟是信息社会的需求,光纤通信的市场一定有美好的情景,发达国家的FTTH已经开始建设,已经有相当的市场,大体上看,器件和设备随市场的需要,其利润会逐步回升,2007-2008年可能良好,但光纤产业,尽管反倾销成功,目前价格也仍低迷不起,利润甚微,实际上,在世界范围内,光纤的生产规模过大,而FTTH的发展速度受社会环境、包括市民的经济条件和数字电视的发展的影响,上升缓慢。

3.光纤通信的展望与前景

3.1通信速度超高速化

光纤通讯经历了诞生、低速发展,只是常态使用化的过程,期间最明显的就是传输速度不断的得以提高,从最初的时分复用方式其传输速度一般在45Mbps到10Gbps,这个速度的增加也是大概用了十几年的发展时间,目前成熟的系统主要是ETDM技术,可以达到160Gbp,同时进入新世纪信息革命时代,越来越多的科研工作者和企业把提高传输速度当成一项重要课题得以研究,其速度有50Gbps的系统,640Gbps的OTDM等等。但有的目前还在实验室模拟阶段,真正用到实际生活中还有很长的时间要走。

3.2向超大容量超长距离波分复用系统的发展

WDM传输光信息的基本原理是根据单根光钎的传输能量来决定的,在已经铺设的光钎上进行传输可以有效的提高利用率,而且可以根据项目要求实时的增加光传输设备或者弃用老的设备。这样可以解决光传输过程的传输能力问题。可以对系统的容量进行随时增加。

3.3多节点融合技术

在光路传输过程中必须经过交换技术,光的传输部分,光电转化部分,以及数字转化、波分复用等多个中间环节,而每一个环节融合的好坏直接影响光路传输质量。所以为了解决光路传输过程节点过多问题,科研工作者提出了传输节点融合技术,即one box传输融合技术,该技术主要将各种光路传输系统有效的进行物理实体结合,统一管理和控制,减少了各节点之间的独立操作时间,以及减少设备成本,有效地进行了成本压缩,同时可以节约电缆降低功耗,达到节能环保的效果。

3.4光传送整体联网

进入90年代以来,我们一直使用点对点的波分复用技术来进行光纤通信,其优势和缺点同样明显,优势是有着巨大的传输能力在,这是由其传输特点决定的。然而随着系统的越来越复杂庞大,波分复用的改进速度明显跟不上时代的转变需求,所以迫切需要一种全新的联网系统来代替DXC系统。

光传送联网系统随之诞生,这是世界光纤通信的又一次大改革,极大的提高了光纤通信各方面的性能,随着系统的不断完善和发展,其资本市场开始显现,而且我国重视信息产业化建设,有利于光传送系统的灵活化,透明话的发展。对于我国提高信息产业技能和信息产业链条有着极大的促进作用。

3.5新一代全波光纤

要实现光纤传输质量,就要在各个方面下功夫,新型的全波光纤成为一个很好的突破口。随着科技的不断进步,我们的传输速度和距离都得不断增加。而且业务量会不断的变复杂和庞大,怎样有效的管理和支持良好的传输效果,是摆在科研工作者面前的一道难题。研究新型光钎成为流行的课题之一。

全波光纤的研究过程中,科研工作者采用了新的生产工艺,使其的噪音进一步减弱,过滤因其传输衰减的波段,增加波段传输范围,同时尽可能多的应用各种光学器件融合在光路中,使整个系统整体代价减低。同时这种全波光纤具有很好的使用寿命。

4.结束语

光纤通信以其众多优点已经成为当今通信网络中的中坚力量,随着信息技术的发展,人们对大容量长距离通信系统的需求越来越大,而光纤通信还有很大的潜力可挖,必将迎来更大的发展和应用。

【参考文献】

[1]刘增基等编著.光纤通信[M].西安:西安电子科技大学出版社.2006.

[2]王磊,裴丽.光纤通信的发展现状和未来[J].中国科技信息.2006.

篇7

关键词:无线电通信技术;发展;创新

前言

所谓的无线电通信技术也就是利用无线电波,来对其相关的数据信息进行输送,满足人们信息通信的相关要求。目前随着社会的不断发展,人们也将许多先进的科学技术应用到其中,从而对其无线电通信技术进行相应的改进和完善,这就使得无线电通信技术的应用效果得到了进一步的提高。

1无线电通信技术的发展历程

早在19世纪末,人们就已经发现了无线电通信技术,并且将其应用在信息输送当中。而且随着社会的不断发展,人们也将许多先进的科学技术应用到其中,这就使得无线电通信技术的应用范围和效果得到进一步的保障。而且在现代化信息通信技术发展的过程中,人们为了保障信息通信的效果得到提升,人们也将微电子技术、光电技术以及计算机技术等应用到其中,从而满足了现代化通信行业发展建设的相关要求。然而,虽然现代化无线电通信技术的通信效果得到了进一步的优化,给人们的生活和生产的带来了许多的便利,但是其技术上还是存在着许多的问题,为此我们还需要在不断的实践过程中,来对其进行相应的优化处理。

2无线电通信技术的特点

目前,在无线电通信技术发展的过程中,无线接入技术的应用不仅有利于其信息数据的快速传播,还有效的降低了无线电通信技术的应用成本,使其自身的各方面性能得到提升,从而促进我国通信行业的发展建设。因此在现代化无线电通技术发展过程中,其自身的特点主要体现在以下几个方面:

第一,不受时空的限制。传统的无线电通信技术在运用的过程中,容易受到时空的限制,这就使得数据通信的应用效果受到影响。因此我们在无线电通信技术发展的过程中,就需要将一些先进的科学技术应用到其中,从而无线电通信技术的灵活性、多样性得到进一步的提升,保障信息输送效果得到进一步的增强。而且随着全球化时代的到来,人们也将通信技术和网络机械有机的联系在了了一起,这样就很好的保障了无线电通信技术的应用效果。

第二,具备高度的机动性及可用性。无线电通信技术传输数字化、功能多样化、设备小型化、智能化及系统大容量化决定了其具备高度的机动性和可用性,尤其在军事构建地域通信网方面起到很大的作用。

第三,可靠性高。无线电通信比起有线通信的一个卓越优点在抵抗水淹、台风、地震等方面有较大的可靠性,一般情况下除非信号干扰都能保持通信的畅通,这也是无线架输的最大特点。

3无线电通信技术方法

3.1WiMAX技术

WiMAX技术即全球微波接入互操作系统,这种技术原在西方国家很受欢迎,如今在我国也掀起了热潮。它是一种宽带无限连接方案,对无限局域网的组建起到了不可替代的作用。它的数据传送距离和传送速度均优于Wi-Fi技术。

3.2Wi-Fi技术

Wi-Fi技术是无线局域网的接入技术,其技术标准为802.11,而我国网络均采用802.11b标准,它对移动通信起到了补充作用。

3.3 3.5GHz技术

3.5Ghz宽带固定无线接入技术MMDS,是工作于3.5GHz无线频段上的中宽带无线接入技术,宽带固定无线接入技术因为其高带宽、建设 速度快、接入方式灵活等特点,受到了业界的关注。其优点是可以远离入网,但在我国却受到带宽不足的限制。其缺点是易受外界因素的影响。

3.4 3G技术

3G,全称3rdGeneration,中文含义就是指第三代数字通信。其主要特征是可提供丰富多彩的移动多媒体业务,其传输速率在高速移动 环境中支持144kb/s,步行慢速移动环境中支持384kb/s,静止状态下支持2Mb/s。国际电信联盟(ITU)在2000年5月确定W- CDMA、CDMA2000和我国拥有自主知识产权的TDS-CDMA为三大主流无线接口标准,写入3G技术指导性文件《2000年国际移动通讯计划》。

3.5 Bluetooth(蓝牙)

Bluetooth(蓝牙),是一种支持设备短距离通信(一般10m内)的无线电技术。能在包括移动电话、PDA、无线耳机、笔记本电脑、相 关外设等众多设备之间进行无线信息交换。利用“蓝牙”技术,可以使短距离内的众多设备略去繁多的线路接入。简化空间布局。蓝牙采用分散式网络结构以及快跳 频和短包技术,支持点对点及点对多点通信,工作在全球通用的2.4GHzISM(即工业、科学、医学)频段。其数据速率为1Mbps。采用时分双工传输方 案实现全双工传输。

4 无线电通信技术之通信方法的拓新

21世纪无线电通信技术正处在关键的转折时期,尤其最近几十年最为活跃。信息化的飞速发展和IP技术的兴起,欲求无线电通信技术适应未来社会生产和生活的需求。务必在通信方法上进行一系列的拓新。针对以上无线电通信技术的缺陷,可以采取以下控制方法。

4.1采用了数字通信技术

提高系统频谱资源的利用率,维持信号上的稳定,避免通信信号收到干扰,增大了系统通信容量,提供话音、图像和数据等多种通信服务,确保用户信息安全保密。

4.2 推广通信信息技术宽带化的发展

信息的宽带化对于光纤传输技术和高通透量网络的发展起到关键的推进作用,尤其近年来世界范围内全面展开,无线通信技术正朝着无线接入宽带化的方向演进,这个方向对无线电通信信号源稳定来说的确非常之重要。

4.3推广个人信息化技术

个人信息化在全球个人通信已经有着不争的发展趋势。个人信息话,能够有效地减低传输路线的信息量堵塞,大幅度提高通信的传播速度。

4.4提高无线通信网络可持续性

无线电通信技术的网络设备如果没有良好的配置和网络部署,一旦受到安全威胁,其后果不堪设想。因此,无线电通信技术通信方法的拓新我们与必要提高网络设备性能、优化设备配置、冗余备份等等手段来保证网络的可靠性。

5 结语

总而言之,在无线电通信技术发展的过程中,对其进行相应的优化创新有着十分重要的意义,这样不仅可以使得无线电通信技术的应用效果得到进一步的保障,还促进了我国通信行业的稳定发展。而且随着时代的不断进步,人们也将许多先进的科学技术应用到其中,这就为全息性化建设提供了前提条件。■

参考文献

篇8

【关键词】 量子通信 发展 存在问题 现状分析

20世纪80年代是量子通信技术研究的开启性时代,其实从历史角度看量子通信技术的研究要早于这个时间,早在20世纪70年代威斯纳已经写出了“共轭编码”这篇著名文章。量子通信技术是在量子力学快速发展的前提下发展的新领域,它在信息传递方面存在很大优势已成为目前研究的热点。但是随着通信技术的快速发展,也存住诸多问题。

一、量子通信技术发展中存在的弱相干光源安全性问题分析

根据量子通信技术研究表明量子通信是利用了光子等粒子的量子纠缠原理,量子纠缠是指在微观世界里两个粒子间的距离不论有多远,一个粒子的变化会影响另一个粒子变化的一种现象。因此,量子通信技术离不开光源技术。由于单光子源技术难度太高,我国量子通信技术一般采用弱相干光源技术,但是这种光源在实用发展中存在诸多安全性问题。

1、量子通信技术发展中存在的单光子分离攻击问题。光子是光最小的单位,单光子是不可再分的。但是我国通信技术使用的弱相干光源技术,它的脉冲中不止一种光子,在理论上这种脉冲中所包括的光子是可以再进行分割的。量子通信系统的基本部件由量子态发生器、量子通道和量子测量装置三部分组成,主要涉及量子密码通信、量子远程传态、量子密码编码等,按量子通信所传输的信息是经典还是量子分为两大类,它的基本思想是将原物信息分成经典和量子两种信息,分别经由经典通道和量子通道传递给接受者,在传递过程中量子通信的通道损耗非常大。对于单光子源技术来讲,即使通道损耗再大也是安全的,因为单光子不可再分割。但对弱相干光源来讲就会存在安全隐患,窃听者可以通过光子分离攻击假冒量子通信技术的通道而获得全部密码,并且不会被量子通信技术发现。

2、量子通信技术发展中存在的木马攻击和侧信道攻击问题分析。量子密码编码是量子通信技术使用中主要涉及部分之一,木马攻击就是利用量子密码信号源和接收器等部件的设计漏洞进行攻击,有效窃取量子通信技术里的量子保密系统的内部信息。这种窃取信息的方法主要有侧信道攻击、光能部件高能破坏攻击和大脉冲攻击等。[1]

二、量子通信技术发展中存在的通信效率低、通信距离受限制的问题分析

1、通信技术发展中存在的光子源产生单光子效率低问题分析。根据研究表明,单光子源具有非常强的量子力学性能,因其不可再分割的特性使每个单光子脉冲都是最安全的,即使量子通信技术的量子密码通信的两种通道损耗率特别大也能完整的完成原物信息传递任务。但因为单光子的制备存在诸多困难,目前我国量子通信技术很难利用单光子源技术,只能退而求其次利用弱光脉冲技术,而弱光子脉冲大多数的光子源发出的脉冲是没有光子的空脉冲,这不但严重降低量子通信技术的量子密码通信通道的传输效率还会增大量子密码通信通道传递量子密码编码的误码率。[2]

2、量子通信技术发展中存在的探测效率低的问题分析。量子通信技术的量子测量一般采用正定测量、通用测量和投影测量三种测量方式进行信息测量,这三种测量信息的基本原理是通过外部设备和北测量子的相互作用达到测量通信信息的目的,在量子通信技术的测量过程中会改变通道里量子的传输状态,由此造成通信信息测量误差。另一方面在对统一状态下的通道量子进行测量时,由于量子通信技术采用弱相干光源造成测量的通道量子种类不同,而种类不同又会导致测量量子的不同塌缩,最终造成测量结果出现偏差降低量子探测效率。[3]

3、量子密码通信系统与全光网光纤信道不能完全相结合的问题分析。量子通信技术的量子密码通信系统与全光网光纤信道不能完全相结合,会造成量子通信技术的量子通道损耗过高和量子通信通道效率降低,这些会导致远距离通信受限制。当前我使用的量子通信光纤尚未达到单模光纤的效果,导致光纤通信损耗率太大也会限制远距离通信。[2]

结束语:随着我国量子力学的发展,我国量子通信技术已经达到世界顶尖水平。本文从对量子通信技术发展中存在的弱相干光源安全性问题、通信技术发展中存在的光子源产生单光子效率低问题两方面进行了浅析。虽然量子通信技术在发展中存在诸多问题,但是它相对还是具有传输信息容量大、传递信息效率高和安全性能高等特点,在军事安全通信、高度保密的重要信息传递和生活通信等方面有很大应用前景。

参 考 文 献

[1]马锦城,王茹.量子密码通信技术与应用前景研究[J].通信世界,2016(273):298-299.

篇9

    1.1网络方面

    虽然我国的电力通信系统中已经出现了多样化的通信方式,且通信网络发展的也较为完善和完整,但是,相对于全球的电力通信发展趋势和方向来看的话,我国的电力系统网络还存在很多的不足,尤其是在电力系统的发展过程中又出现了新的发展形式的情况下,我国的电力通信更是显示出了不足之处,不能满足业务发展提出来的要求。在电力通信系统中,主要是以星型和树型的结构模式为主的干网络,网络结构的复合性较为明显,但是互联性却极差,增加了电路迂回构成的难度,因此电力通信网络具备的可靠性和灵活性也比较差。在电力通信网络中,网络体制发展的不完善,严重制约了电力通信网络技术的发展,需要对其进行改进和完善。

    1.2管理方面

    现阶段,我国的电力通信网络用户在与电力通信网络接入时,会处在一个相对薄弱的状态,一般情况下,都是通过电话线的接入方式进行的,电力系统的用户大部分是通过模拟式信号的接口与电力通信系统相连接的,无法对里面的数据信息进行传输和调整的处理。我国对网络系统进行管理还处在一个初级阶段,还只能通过分路监测对电路进行检查和控制。但是在电力通信网络中,通信规约和接口都不统一,因此,这就大大限制了设备和通信方式的发展,阻碍了它们向着多元化的方向发展,也阻碍了电力通信网络中传输网络体制的发展,给收集网络管理所需的信息增加了难度,导致了网络管理系统的发展不够完整。

    2我国电力系统的业务

    为了保证电力系统的安全生产,电力通信网络被不断的建设和完善,因此电力系统中的业务也与电力系统有着极为密切的联系,随着电力系统的发展也会不断的出现新的业务形式。目前,我国的国家电网比较重视特高压输电技术的发展。由于特高压技术具备距离长和控制范围较为广泛的特点,可以实现电力系统的长距离和大范围的传输自动化数据业务和继电保护等。根据国家标准IEC61850建立的并已投入运行的变电站都是通过电力通信网络来实现变电站与变电站的数据传输,能够对故障录波数据进行实时的传输,能够推动电力通信网络的快速发展。主要业务在电力调度数据网络中。进行的业务包括以下几种:实时性强的业务包括EMS/SCADA系统、继电保护数据、水调自动化以及电力市场实时数据等;准实时性的业务包括EMS网络分析数据和电度量计费系统两种;非实时性的业务包括很多种类,例如,调度计划等。电话业务分为两类:调度电话、行政电话。通用广域网络中的业务包括的种类也较多,例如,数据业务中,包括企业管理信息数据、电力市场数据等;电力通信网络中的多媒体业务又包括会议电视、电子邮件以及远程教育等多种类型。业务的发展随着电力系统的不断发展,电力通信网络中也出现了很多新的业务,例如,与特高压应用联系较为密切的数据业务,包括继电保护数据与自动化数据等。新业务中还包括与根据标准IEC61850建起来的变电站有关的数据业务。

    3我国电力通信技术发展的措施

    电力通信发展的目的就是为电力系统的生产服务,又由于电力通信的发展是以电力系统为基础的,为电力系统的安全生产提供服务。就目前我国电力通信技术发展的趋势来看,必须使用新的通信网络技术来推动电力系统的快速发展。

    3.1网络技术

    在电力通信网络中,还包含着逻辑网,逻辑网能够保证电力通信网络所具备的功能和效益得到有效地发挥,从而提高电力通信网络的稳定性和可靠性,提高电力通信网络进行各种业务传输信息时的质量。就目前我国的电力通信网络的设备来说,应该在实现网络化上投入更多的研究精力,并与同步数字传输体系技术进行有机的结合,对同步数字传输体系技术中的网络管理技术进行重点的解决,并将网络同步技术也解决掉。

    3.2宽带综合通信平台技术

    目前,我国现有的电力通信网络的规模都较小,被进行逐级的划分之后,电力通信网络中的通信资源就显得较为紧张了,且利用率不高。如果要想改变目前我国电力通信网络中存在的这种状况的话,就需要以综合通信平台为基础,不断完善电力通信网络,并对与综合业务数字网技术有关的问题进行重点的解决,其中包括ISDN协议转换和接口标准等问题,是窄带ISDN逐渐向着宽带ISDN的方向过渡。异步传输模式技术是决定宽带综合通信平台实现并应用到电力通信网络中的关键技术,接下来研究的重点就应该放在如何通过ATM技术的利用,来实现我国电力通信网络中的关键业务。

    4电力通信技术的发展趋势

    4.1网络平台技术的发展趋势

    在电力通信平台的发展过程中,最需要考虑的问题就是远程保护和远程遥控等与远程有关的业务。近几年,我国的电力系统中分布着很多的多点联动分布式网络、保密与非保密等子系统的应用,大大推动了我国点来看I通信技术的发展,并为电力通信技术指出了发展的趋势。由于电力通信业务具备较为鲜明的多样性和差异性,有些较为特殊的业务就需要将网络底层作为直接承载进行工作,而有的业务则需要通过上层的IP来解决,还有一部分的业务则需要使用到电力通信网络中间的某一层进行,因此电力通信网络并不是与公网完全一样,它也有要满足电力通信的要求而发展来的。目前,西方发达国家的电力通信技术都向着电力系统网络中的某个局部通过适当的技术就可以组成电力通信技术发展需要的子网络的方向发展,而这些子网络使用网络互联技术就可以形成一个较为完整的网络平台,但是如何对电力通信网络中的局部区域进行划分是一个比较困难的工作,从而能够保证电力通信网络不仅具有灵活性,而且还具备局部优化的功能,能够将电力通信网络锁具备的互联性发挥到最大化。就目前来看,宽带城域网会成为我国电力通信网络未来发展的趋势。

    4.2传输介质的发展趋势

    我国的电力通信传输技术已经发展的较为成熟了,应用范围非常广泛,成为我国传输技术未来发展的趋势。但是在光缆技术的发展的过程中,要注意以下问题:在对ADSS进行施工防护以及监视的施工时,需要用OPGW带电施工技术带更换地线。只有施工人员掌握的施工技术较为全面了,才能够提高电力通信技术发展的灵活性,最大努力的降低制约电力通信技术发展的因素存在。在对光缆进行选型时,需要根据纤芯的性能、成本、市场等多个因素进行考虑,以选出性价比较高的纤芯种类。不同的生产厂家在制造纤芯时,所使用的制造工艺会对光缆的使用寿命产生影响,因此要尽量需用符合国际标准的光缆进行施工,以保证施工的质量。

篇10

关键词:智能电网;智能配电网;通信系统;发展方向

中图分类号:TP915 文献标识码:A 文章编号:2095-1302(2013)01-0049-05

0 引 言

保障能源安全、应对全球气候变化是全人类所面临的重大挑战。为应对这一严峻挑战,欧洲、北美等主要发达国家于本世纪初相继提出了智能电网(Smart Grid)的建设愿景,希望用智能电网技术解决可再生能源规模化利用、资源大规模优化配置、电动汽车大规模接入等系列问题,从而达到调整能源消费结构、保证国家能源安全、降低碳排放标准等系列目的。这一设想,立即在全世界范围得到认可与响应,各国都把电力建设的重点放在了智能电网的研究与建设上。所谓智能电网,就是建立在集成的、高速双向通信网络基础上,通过先进的传感和测量技术、先进的设备技术、先进的控制方法以及先进的决策支持系统技术的应用,实现与用户的互动及电网的可靠、安全、经济、高效、环境友好和使用安全的目标[1,2]。

在智能电网的建设过程中,智能配电网是其研究重点,而通信技术则是实现智能配电网的基础。没有先进的通信网络,任何智能配电网的优点都没法体现,所以,要实现智能电网的关键一步,就是建立双向、高速、集成的通信网络。

本文首先介绍配电网通信现状,然后介绍常用的几种通信方式、智能配电网通信应用的场景以及通信的标准,最后对智能配电网通信系统未来的发展方向进行了简单探讨。

1 配电网通信现状

目前,配电网的通信系统接入方式多种多样(包括PLC技术、微波、GSM/CDMA等),然而,配电网通信缺乏统一的网络规划,通信信道稳定性差,数据信息传输速率比较低且安全性低,技术设计和标准等存在差异,电力系统现有资源无法得到有效利用,通信的单向性导致对互动性的支撑不足,缺乏对未来新业务的扩展能力[3,4]。随着大量的分布式电源接入电网,以及用户对电能质量的要求提高,系统对电网可靠性要求增加[4],现有的配电网通信系统无法应对新的供用电形式和需求。这主要表现在以下几个方面:

(1) 智能配电网强调与用户的互动,需要双向的通信网络;

(2) 混合充电汽车的不断普及、用户需求侧响应决策等,需要配电网进行实时的监测;

(3) 随着配电网规模的不断增大,会产生越来越多的数据;

(4) 大量的分布式电源接入配电网,需要对其进行实时稳定的管理与控制。

可见,为满足智能配电网通信系统的可靠、安全、稳定的要求,需要对现有的配电网通信系统进行重新规划设计。

2 智能配电网对通信系统的要求

为了保证智能配电网的特征能够实现,其通信系统需要满足高可靠性、安全性、实时性和灵活性等条件[5]。

2.1 高可靠性

高可靠性就是指数据信息能够在任何环境下传输到控制中心或者传输给子站及智能电力设备。电网的可靠性都是依靠通信网络发送和接收重要信息来维持的。可靠性在有线网络中并不是个严重的问题,但是在无线网络和PLC(电力载波通信)网络中就是个挑战了,因为它们的通信信道可能会受到外界干扰而发生变化。通信系统自己并不能够直接获得电网拓扑结构的变化,于是通信网本身就需要具有较强的鲁棒性。

2.2 安全性

随着电力网和信息网的融合,以及配电网距离的增加,有关能源分布的数据信息总是特别重要,尤其是当它们与交易信息及控制、保护有关的时候,安全问题变得非常重要。例如,如果通信方式采用无线公用网络,公用网的分享性与容易接入,使得电力数据容易获得,易被不法分子截取数据,从而进行破坏。

2.3 实时性

电网中的一些设备需要实时的数据,而电力设备的实时性需求主要依赖于应用的紧急程度。例如PMU就有严格的实时性,它提供电压和电流的实时测量,并把数据传输给控制中心进行分析控制。对于保护装置,当某处发生故障时,控制中心必须实时把控制指令发送到智能电力设备,以使其动作,切断故障,如果没有实时性的通信保障,就可能会发生电网的连锁故障。

2.4 灵活性

不同于输电网,配电网的结构总是在不断增加和改变的。对于通信系统,不仅仅是第一次安装,对于今后配电网的结构改变需要能够继续扩展而不必改变原有的通信模式,也要在运行期间易于管理和维护。除此之外,智能配电网通信系统还要支持组播技术,使得同级智能电力设备之间可以分享相关的信息。

3 常用通信方式

先进的技术和应用融合到智能配电网中,就会产生大量数据,并需要进一步分析、控制和实时管理,于是需要选取可靠、经济、双向的通信方式进行数据传输。目前,常用的通信技术分为无线通信和有线通信两种。有线通信技术包括光纤通信、电力线载波通信(PLC)、以太网无源光网络(EPON)等。无线通信技术包括ZigBee、全球微波接入系统(WiMAX)、GPRS等。有线和无线各有优缺点:无线成本较低,适用于很难达到的地区;有线相对比较稳定,可靠性较高。不同的通信方式适合于不同的环境和地区,要建立高效、可靠的智能配电网通信系统,就必须根据实际情况,几种通信方式搭配使用。下面简单地介绍几种常用通信方式。

3.1 以太网无源光网络

以太网无源光网络是无源光网络(PON)的一种,是一种点到多点结构的单纤双向光接入网络。EPON由网络侧的光线路终端(Optical Line Terminal,OLT)、光分配网络(Optical Distribution Network,ODN)和用户侧的光网络单元(Optical Network Unit,ONU)组成。OLT置于中心机房,是一个多业务平台,可提供面向EPON的光纤接口。ONU放在用户设备端附近或与其合为一体,主要提供面向用户的多种业务接入。ODN完成光信号功率的分配,为OLT与ONU之间提供光传输通道。EPON系统下行传输数据采用广播方式,上行数据则采用时分多址技术(Time Division Multiplexing,TDM)。

EPON的应用通常是作为骨干网络结构,即35 kV以上的电网通信。EPON的优点:一是能够提供透明宽带的传送能力,数据传输速率快;二是组网灵活,能够组建复杂的混合型网络,并且根据网络节点的实际地理位置灵活联网或改变网络拓扑结构;三是维护简单,长期运营和管理成本低;四是网络可靠性以及安全性高。EPON的缺点则是建设光纤的铺设工程量大,初期投资高;同时,由于配电信息点分布日新月异,拓扑结构不稳定,EPON的组网难度大,后期运维和故障排查工作量较大。

3.2 电力线载波

电力线载波通信(PLC)是一种电力系统特有的通信方式,利用现有的电力电缆作为传输媒质,通过载波方式传输语音和数据信号。在中低压配电网中,PLC可以为配电网自动化、AMI等提供数据传输通道。目前,PLC的传输速率可以达到数十千位每秒,而随着科技的发展,其传输速率会更大。现在又出现了一种新的PLC通信技术,就是基于OFDM(正交频分复用)的PLC技术[6,7]。它对传统PLC技术进行了改进,提高了可靠性和传输速率。

PLC技术主要应用在室内环境下,比如AMI的通信,而不需要安装专用的通信线路。PLC的优点是利用电力线缆作为传播媒介,建设成本较低;另外,它的通道可靠性高,抗破坏能力强。同时,PLC也有缺点:一是由于电力线信道的恶劣性,传输距离较短;二是易受电网负载和结构的影响,抗干扰能力差。

3.3 全球微波接入系统

全球微波接入系统(WiMAX)是基于IEEE 802.16x系列标准的宽带无线接入城域网技术,能够实现固定及移动用户的高速无线接入,其基本目标是为企业和家庭用户提供“最后一公里”的宽带无线接入方案。WiMAX网络体系由核心网和接入网组成。核心网包含路由器、AAA服务器、用户数据库以及网关设备,实现用户认证、漫游、网络管理等功能,并提供与其他网络之间的接口;接入网包含基站和用户站,负责为WiMAX用户提供无线接入[8]。

WiMAX技术可以应用在AMI、用户最后一公里接入等领域。其优点:一是可以通过无线方式实现宽带连接,不需要铺设线缆,组网速度快,建设成本低;二是网络覆盖面积广,只要少数基站就可以实现全城覆盖,无线信号应用范围广。WiMAX的缺点是容易受天气、地形等影响,使传输质量降低;另外,虽然技术比较成熟,但是在某些国家(比如中国)没有分配电力专用频率段。

3.4 ZigBee

ZigBee是基于IEEE802.15.4标准的低功耗局域网协议。根据这个协议规定的技术是一种短距离、低功耗的无线通信技术。ZigBee可以把设备发出的信息传输给用户,而用户也可以获得他们实时的电力消费信息。

在家庭自动化、能源监测和AMI的应用中,ZigBee是个比较理想的通信技术。ZigBee的优点:一是功耗和成本低;二是容量比较大,安全性高。ZigBee的缺点是传输速率比较低,传输距离比较近;同时其抗干扰能力较差。

3.5 GPRS

GPRS是GSM移动电话用户可以使用的一种移动数据业务。GPRS可以说是GSM的延续。GPRS和以往连续在频道传输的方式不同,是以封包(Packet)方式来传输的,因此使用者所负担的费用是以其传输资料单位计算,并非使用其整个频道,理论上较为便宜。GPRS的传输速率可提升至56~114 kb/s[9]。

GPRS可以应用在需求响应、家庭网络自动化的应用中,以及有线通信无法达到或者需要建设成本较低的地区。GPRS的优点是传输距离较远;成本比较低。GPRS的缺点:一是由于是公网,容易接入,安全性比较差;二是稳定性较差,信号容易受干扰。

表1总结了上述各种通信方式的特性及应用方式,使用时,可以通过比较并根据具体的环境选择合理的通信方式。

4 通信标准

智能配电网通信中的许多应用、技术等已经比较成熟或者正在研究当中。现在智能配电网通信面临的主要挑战是缺乏统一的标准,这种情况影响了智能电力设备、智能电表和可再生能源的融合以及它们的相互操作。建立智能配电网通信的统一的国际标准是现在急需的,这有利于智能配电网的早日实现。表2总结了各种智能配电网通信的标准,并列出它们的应用范围。

4.1 IEEE标准

IEEE建立了很多电力系统的标准,其在电力通信方面的标准主要有以下几种:

(1) IEEE C37.1标准提供了SCADA系统与变电站自动化系统的的基础定义、规范、技术性能分析和应用。它定义了变电站中的系统结构和功能——协议选择、人机界面和执行问题。另外,它还规定了可靠性、可维护性、安全性和可扩展性等网络性能需求。

(2) IEEE 1379标准介绍了变电站中的IED (智能电力设备)和RTU(远程终端单元)之间的通信与相互操作的操作指导及实际应用。特别是该标准还描述了变电站网络通信协议栈对IEC60870和DNP3的映射。它还讨论了如何扩展在变电站中应用的数据元素和目标,以提高网络功能。

(3) IEEE 1547标准定义和描述了与电网相互连接的分布式能源,包含电力系统、信息交换和验证检验三部分。

(4) IEEE 1646标准规定了变电站内部和外部的通信传输时间的需求。这个标准把变电站通信分为几个类别,并定义了每个类别的通信延迟需求。

4.2 IEC标准

IEC在电力系统的通信和控制方面提出了许多标准。常用的如下:

(1) IEC60870提出了电力系统通信和控制方面的许多标准。标准定义了用于电力系统控制的通信系统,通过这个标准,电力设备间可以相互操作,以实现自动管理。

(2) IEC61850标准侧重于变电站的自动控制;它定义了全面的系统管理功能和通信需求,以促进变电站的管理。

(3) IEC61968标准提供了配电领域与输电领域的设备和电网之间数据交换的信息模型。

(4) IEC62351描述了网络安全,它规定了达到不同安全目标的需求,包括数据认证、数据保密、接入控制和入侵检测。

4.3 ANSI标准

ANSI设定的电力通信标准主要有:

(1) ANSI C12.19标准描述了电力行业终端的数据表。它定义了终端设备和计算机之间数据传输的表结构,终端设备和计算机之间利用二进制代码与XML传输。

(2) ANSI C12.18标准是专为智能电表通信设立的,它负责智能电表(C12.18设备)和用户(C12.18客户)之间的双向通信。

5 通信系统在智能配电网中的应用

通信系统在配电网中的应用有很多,比如变电站自动控制、自动抄表技术、用户需求响应等,这些都是智能配电网中的重要应用。它们利用先进的通信技术,与电力设备和控制中心等进行数据传输,达到自动控制或保护的目的。

5.1 变电站自动化控制

变电站是电力系统中很重要的部分,它可以调节输电线路的电压和潮流。通常变电站由变压器、电容器、电压控制器和断路器等组成。变电站自动化控制将会在智能配电网中广泛的应用,利用地区局域网进行实时监测与控制。变电站通信中的技术一般包括以太网和无线局域网。为了连接变电站中的各个设备以及收集到变电站外的的电力设备的一些数据信息,需要安装专用的传感器。传感器把收集到的数据通过局域网传输到控制中心,然后控制中心根据数据情况进行分析再把指令发送到各个电力设备。图1表示的是一个典型的变电站自动化通信系统的结构图。

因为以太网的传输速率和可靠性都比较高,所以在变电站自动控制中,骨干网一般都采用以太网通信技术。在变电站与下面的子站及电力设备的通信选用无线网组成的局域网,因为它的成本较低且易于扩展维护。安装在电力设备上的传感器产生的数据经过网络协议栈的处理后,将通过网络实时传输给控制中心。当控制中心收到这些数据时,经过处理会作出反应,并给电力设备发回控制信息。由于变电站同时监测和控制许多设备,这些设备共享变电站的通信网络带宽。对于变电站的数据信息,如果是用作维护,通信延时允许在1 s内。如果数据提供的是实时监测与控制信息,延时时间就必须在10 ms内。对于紧急的信息,比如故障信息,就必须立刻传输给控制中心,延时时间应在3 ms内。

5.2 自动抄表技术

自动抄表技术是配电发展的重大进步,可用于减少工人的工作量,提高效率,增加数据分析的速度。自动抄表技术可以看作是智能配电网中AMI的部分或者是其前身。它主要由智能电表、数据传输通道和主站系统组成。智能电表中的采集器将电能表中的用电信息传输给集中器,集中器一方面向采集器下达电量数据冻结指令,一方面将用户用电数据等主站需要的信息传输到主站数据库,主站系统通过接收到的用电数据进行处理并反馈给集中器。图2所示是自动抄表技术的通信结构。

自动抄表技术在每个用户端都安装有智能电表,电表通过无线网络将数据传输给主站。在数据传输过程中,自动抄表系统可对用户实现分级授权管理,并加装防火墙及进行数据备份。智能电表采集到的用电信息可以同时传输给主站控制中心或者传输给用户,在传输给用户的过程中,一般允许有几秒的延时。

5.3 用户需求响应决策

在智能配电网中,越来越多的分布式电源接入电网,许多家庭也安装了自己的分布式电源,比如太阳能板、小型风机等。由于大量的分布式电源接入,电力市场也变得多样化,实行阶梯式电价将更加有利。小型或者中型的分布式电源通过通信网络和电力交易平台连接在一起。根据电力产生和消耗的变化,电力市场中的电价将不断变化。用户通过之前建立的通信网络实时地获得电价信息,从而决定何时用电或者给电网供电,从而实现电网和用户的供需平衡,也保证了用户的需求。图3所示是用户需求响应决策的通信结构。

电力供应者和消费者通过广域通信网络公布他们的电力供应水平或者需求。用户通过不同的网络接入技术连接到电力市场中,比如普通用户可以用PLC或者电话线接入,一个大型的发电企业可能有它们专门的局域网连接到电力市场。需求响应的通信是实时、双向的,而且是高可靠性的。用户对于自己的用电信息和实时电价会比较关心,从而决定自己用电设备的启停。对于用户来说,他们希望需求响应的延时时间在几秒之内,以便可以随时掌握动态的电价信息。需要指出的是,图3中的普通用户、发电厂、工商业用户之间也是可以相互通信的。

6 智能配电网通信系统的未来发展方向

目前,对于智能配电网通信系统的研究范围已经比较广泛,涉及很多方面,比如可靠的通信技术、利于统一的通信协议等。然而,新兴的通信技术虽然对之前的技术有了很大的改进,但是,如果大规模替换会导致话费巨大。现在各个机构都建立了很多通信系统协议,但是并没有一个统一的标准,导致很多通信设备无法通用。总结本文论述的智能配电网的技术发展,未来智能配电网的通信网络的研究将侧重以下内容:

(1) 对智能配电网通信的建设要在现有的基础上进行改进升级,而不应当完全抛弃现有的通信网;

(2) 在研究新的通信技术的同时,对通信系统的规划应该根据实际情况来决定,合理搭配使用通信技术,使其可靠稳定而又经济;

(3) 由于智能配电网缺乏统一的标准,因此需要制定新的适合智能配电网的标准和协议;

(4) 研究评估一个通信系统的性能的仿真方法。

7 结 语

智能配电网的实现需要建立双向、高速、实时可靠的通信系统的支持。本文综述了智能配电网中通信系统的相关内容,重点介绍了通信技术、通信系统的协议标准以及通信系统应用。在后续的智能配电网通信系统的研究中,确定统一的通信标准以及研究评估通信系统好坏的仿真方法是其关键。

参 考 文 献

[1] 余贻鑫,栾文鹏.智能电网的基本理念[J].天津大学学报,2011,44(5):377-384.

[2] 陈树勇,宋书芳,李兰欣,等.智能电网技术综述[J].电网技术,2009,33(8):1-7.

[3] 辛培哲,李隽,王玉东,等.智能配、用电网通信技术及组网方案[J].电力建设,2011(1):22-26.

[4] 张岚.配电网自动化通信方式综述[J].电力系统通信,2008(4):42-46.

[5] SAUTE T, LOBASHOV M. End-to-end communication architecture for smart grids [J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1218-1228.

[6] MANEERUNG A, SITTICHIVAPAK S, HONGESOMBUT K. Application of power line communication with OFDM to smart grid system [C]// Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). Shanghai: Circuits and Systems Society, 2011: 2239-2244.

[7] 崔玉峰,杨晴,张林山. OFDM通信技术在AMI及智能用电中的应用[J].云南电力技术,2010(3):1-3.