电子电路设计与分析范文

时间:2023-10-11 17:24:21

导语:如何才能写好一篇电子电路设计与分析,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

电子电路设计与分析

篇1

关键词:计算机专业 课程进度 数字电路与设计

中图分类号:G642.0 文献标识码:C DOI:10.3969/j.issn.1672-8181.2013.15.132

“数字电路与逻辑设计”是电气信息类专业一门重要的专业基础课。该课程是后续专业基础课和专业课的先修课程和基础,是学生开展课外科技创新活动的必备知识,是解决工程实际问题的重要理论和方法,结合目前的实际情况,对数字电路与逻辑设计教学进行改革。

1 数字电路与逻辑设计的本质

数字电路与逻辑设计是计算机科学与技术必修的一门重要课程。该课程中介绍了与数字系统相关的知识,体系等。设置这门课程的重要性在于让学生能够更好地了解数字计算机和其他系统的基本逻辑电路,能够熟练运用课程中所学到的知识并在实际操作中对案例进行分析,客观地提出要求。

通过这门课程的系统学习,可以加强同学的逻辑思维能力,落实到具体工作中,可以解决具体问题,可以对系统硬件进行检测,并有一定的创新能力。数字电路课程教学之所以进行改革是为了提高学生对计算机硬件设施的了解,为日后的学习做铺垫。我们从计算机科学的角度划分,可以把其课程分为:分析电路,数字电路与逻辑设计,微机原理等。从这些课程不难看出,数字电路与逻辑设计起的是承上启下的作用。

2 电子技术的广泛应用加快了数字电路的发展

现阶段,是科技的时代,电子技术已经应用广泛,电子元素是计算机和电路不可缺少的构成元素。国民经济和国防各领域的逐渐渗透,使得数字电子技术在相关专业的地位越来越重要。通过探讨,认为要对以前的教程进行革新,减少理论性过强的内容,着重掌握数字集成电路器的特性与实际运用,将重点放在学生的实际操作上面。

此外要加强创新能力的培养,引导学生们多进行课外实践活动,让学生们把课堂上所学的知识用于实践,这样让学生们在实践中总结理论知识,有利于学生们知识的全面掌握。多媒体技术可以形象并明了地展示复杂的图表,便于老师课堂上的教学,还方便了学生们观看和理解。更重要的一点是,它节约了课堂信息量,增加了课堂上的教学内容。以培养学生创新精神和实践能力为主线,坚持“三个结合”,实现“二个转变”,达到“一个提高”。坚持实践内容与理论知识相结合,创新实验与科学研究相结合,课堂教学与课外实验相结合;实现由基础验证性实验向综合设计性实验转变,由传统型实验向创新型实验转变;达到学生实践能力和创新精神的提高。提高教学的工作环境,利于开展实践教学,从而有利于人才的培养和教学质量的提高。围绕实践这个中心,增加新的教学内容,根据电子信息技术的专业特点,制定科学的实验课程,在内容中多以实验为主,增加教学模板,提高教学方法,总结出一套科学性、系统性的教学体系。

3 数字电路教学的改革方向

由于数字电路与逻辑设计的实践性很强,所以,在实际的教学改革中要做到周全考虑,针对各项内容都要做出调整。还需要注意的是,做到书本上所学的知识配套进行实践。理论结合实际,多结合实际情况进行训练。其内容包括:工具运用能力,绘制电路,电路分析能力,项目综合能力等。

3.1 课程体系的调整

为了更好地适应电子科学技术的发展,要优化课程结构的总体要求出发,进行模块化的设计,使数字电路与逻辑课程内容体系具有系统性,科学性,先进性等。

数字电路与逻辑设计基础从课程内容上被分为两大块。数字电路介绍了数字系统的组成,数字信号的特点等;在内容上先逻辑电路,逻辑部件,先单元电路后系统电路等等。数字电路多以理论为重点,在讲解中多涉及外部逻辑功能。数字电路部分多以运用为主。这样的课程组合可以让学生对数字电路更加了解。

3.2 教学内容的调整

数字电路与逻辑设计的课程很多,为了让学生在有限的实践内把课程学好,要求教师掌握基本理论的同时有效地组织课程教学。在介绍运用时,要根据其不同的侧重点进行分析。实验教学从随堂实验到改革教学后进行独立实验,这其中包括验证性实验等。

通过有效的组织,可以增加学生们的实践操作,调动学生们的积极性,从而有助于知识能力的提高。

3.3 加大实践的内容与次数

数字电路与逻辑设计在教学中需要增加实践内容,这有利于课程的安排,更提高了学生们的动手能力。在实践中发挥良好的教学效果,要合理地拆分实践内容:①基本实验;②设计实验。我们来了解一下这两种实验的概念:基本实验室使用电子仪器的能力;而设计实验则是为了实现逻辑功能,而采用的是数字系统。在设计实验中鼓励学生自拟实验的项目,并将课外活动结合进来,使学生的思维更加广阔。

目前的电子大赛就是为高校的改革服务,它是结合了电子信息的专业内容,这种比赛在教学改革中起到了引导的作用。这十多年来,在全国开展了很多电子计算机的竞赛,这些竞赛对高校体系改革帮助十分明显,它有助于有才能的年轻人展示自己的能力与专业水平。在电子竟赛出题中增大数字电路EDA的内容可以引导高校建设EDA的实验室,例如:SOPC(系统集成芯片)是我国“十一五”制定的重大专项,目前全国已在12个高校中成立了集成电路人才培养基地。

4 结语

现阶段是电子化的时代,科学的进步带动了电子技术的广泛应用。大量的可编程器件被采用,这使得传统的数字逻辑方法明显变化。计算机的应用范围越来越高,使得人们对计算机的认识逐渐深刻,计算机的设计理念开始突破原有的范围。数字电路与逻辑设计在各种现代技术的合力推动之下,得到了明显的提升,可以做到使学生紧跟在市场的前沿。所以,数字电路和逻辑设计的改革加快了这门科学的发展,提高了学生们解决实际问题的能力,给学生们的就业和发展打下了坚实的基础。

参考文献:

[1]李晓辉.数字电路与逻辑设计[J].

[2]曹魏,徐东风.计算机教育[J].

篇2

关键词:紫外探测器;前置放大器;噪声;稳定性

中图分类号:TN72 文献标志码:A 文章编号:2095-2945(2017)20-0011-03

引言

空空导弹系统中多为红外制导和雷达制导。随着干扰手段的发展,单一的探测手段已经不能满足抗干扰的需求。于是,出现了双色探测器等多探测体制,如紫外/红外、紫外/激光、红外/激光等多种复合探测体制。继红外探测技术之后紫外探测技术成为又一重要的军民两用光电探测技术。相较于红外探测系统,紫外探测技术因其独有优势,受到了军方的关注。

正是因为军方的重和紫外探测技术的独特性,本文开展紫外信号检测放大技术的研究,以此来确定一种更适合紫外信号的前放电路结构,并对它的噪声特性及抑制方法进行分析和验证。

1 紫外探测器

紫外探测器件主要分为点探测器和像探测器。半导体紫外探测器件因其体积小、过载高在军事中应用较多。本系统中采用GaN基紫外探测器,光谱响应区间在260~380nm,峰值响应波长为365nm。

在探测器应用中多采用PIN结构[2],I层会加大耗尽层厚度。I层有更高的电阻相对于PN层,这里的反向偏压形成高电场区,加宽了光电转换的有效工作区域,使暗电流有所降低,提高了灵敏度,探测器的电容也有减小。

紫外探测多采取直接探测,所以在光信号功率小时,电信号输出相应也较小。一般在实际探测器的应用中,为了方便后续处理,通常使用前置放大电路将信号放大。紫外探测器中就要设计合理的前置放大电路,以保证探测系统能够在一定的输出信噪比下工作。

2 前置放大电路

微弱光电信号前置放大器,信号小,输入信噪比低,在空空导弹系统等军用系统中多有专门的低噪声放大器。

而在低噪声放大器的设计中,噪声水平、放大器的增益和放大器的带宽通常要依据其中的带宽综合考虑。

2.1 光电二极管的等效电路模型

紫外探测为直接探测方式。光信号功率小,紫外探测器的电信号输出也相应较小,在本设计中所采用的探测器芯片的响应较小,ID约为5nA左右,零偏阻抗100MΩ,结电容CJ≈50pf,等效电路[4]如图1所示。

它包含一个被辐射光激发的电流源,一个理想的二极管,结电容和寄生串联及并联电阻。IL为二极管的漏电流,ISC为二极管光电流,Rpo为寄生电阻,ePD为噪声源,结电容大致为20pf。

在本文的应用中,紫外探测器芯片工作在零偏置即光伏模式下。

在此模式下探测器芯片作为光电二级管可以非常精确的线性工作。零偏置条件下,无暗电流,二极管噪声等同分电路电阻的热噪声;反偏置条件下,则有暗电流产生附加噪声源。本文就要对这种光伏模式进行最优化设计。

2.2 光电检测电路设计

由于探测器工作状态时产生的是电流信号,在后续使用中要将它转换为电压信号,主放大器的作用就是对光电流进行I-V转换,并放大到所需要的值。

2.2.1 电流-电压转换电路分析和设计

本文所采用的光电转换电路为高灵敏度的电流-电压转换器,二极管偏执由运算放大器的虚地维持在零电压,短路电流即被转换为电压。电流电压转换电路如图2所示。

由于在最高灵敏度时该放大电路[5]必须能检测1nA的二极管电流,采用普通结构的电流电压转换器会使反馈电阻非常大,例如对于1nA的二极管电流,要求输出0.1V的电压,则需要100MΩ的偏置电阻,而电阻是对总输出噪声影响最大的因素之一。这对系统噪声的影响是不可想象的。

该主放大器的输出VO=-k1Rfid

k1=1+R1/R2+R1/Rf

可见这个电路是靠倍乘因子k来增加R的,于是我们基于一个合理的R值,依靠倍乘因子k来提高灵敏度。

针对本电路为了实现0.1nV/nA的灵敏度,由式可知k1Rf=0.1/10-9=100M?赘,这是一个相当大的值,为了不至产生太大噪声,由Rf=1M?赘出发,然后乘以100以满足技术指标,因此,1+R1/R2+R1/106=100。在采用R2=1k?赘时,可得R1≈99k?赘(用最接近标准值的100kΩ)

2.2.2 前置放大电路的噪声分析

外部噪声(系统的外界干扰)和内部噪声(光电系统本身产生的噪声,是光电检测器件和检测电路的器件固有噪声)为光电检测电路的主要噪声来源。

外部噪声要通过外部手段控制,本文中我们主要研究通过选择电路元件和合理的电路设计来减小内部噪声,提高系统的检测精度。

光电二极管、前置放大电路构成了光电检测电路,它的噪声模型如图3所示:

Isc:光电二极管的光电流;Ins:光电二极管的散粒噪声电流;Ind:光电二极管内阻产生的热噪声电流;Cd:光电二极管的结电容;En、In:放大器的等效输入噪声电压和等效输入噪声;Unf:反馈电阻Rf和R1产生的热噪声电压。其中:

I2ns=2eIscf,f为电路的通频带;

I2nd=4kTf/Rd

U2nf=4kTRff

由此:

由上面的公式[6]得出,反馈电阻Rf和R1和输出信噪比成正比。要想提高输出信噪比和信号增益,需要提高Rf和R1的阻值。所以我们可以选择阻值大、噪音小的金属膜电阻。

此外,输出信号电压幅度的也限制Rf和R1的选择,还应根据光电流的最大值来确定Rf的大小。

电路的通频带f和输出信噪比成反比。电容Cs与Rf并联就是为减小电路的通频带。它们构成一个高频截止频率为1/2?仔RfCs的滤波电路。直流和低频,信号增益不变;频率超过1/2?仔RfCs时,信号增益下降信号幅度线性失真,因此电路的通频带f=1/2?仔RfCs。

Rf和Cs和通频带也成反比。如果电路的通频带太小会造成输出信号频率失真;如果Cs太大,系统响应会变慢;Cs也有消除自激震荡的作用。

2.2.3 集成运算放大器的选用

考虑集成运放的等效输入噪声电压En和等效输入噪声电流In,同输出信噪比成反比。故应选用En和In小的低噪声和低偏置电流的集成运算放大器。

场效应管为输入级的运放具有开环输入阻抗高、输入偏置电流小和不随温度变化的优点,适合选用。同时,提高_环放大倍数,使光电二极管在无偏压状态工作;其次,选用的集成运放的失调电压和电流应较小。

由于要精确测量纳安级的光电流,运算放大器的偏执电流不应该大于数纳安,并且放大器本身引入的噪声要非常小,这就大大缩小了选择的余地。

我们最终采用了噪声低,精密,输入为FET的AD795k型运算放大器。它具有两种优势:(1)双极型输入运算放大器的低电压噪声和低失调漂移;(2)FET输入器件的极低偏置电流。

其性能参数为:

失调电压:在25°C时,最大为250uv,

失调电压漂移:最大为3uV/°C

输入偏置电流:在25°C时,最大为1PA

0.1~10HZ 电压噪声2.5uVp-p

1/f转折频率12Hz

电压噪声:在100Hz处为10nV/√Hz

电流噪声:在100Hz处为0.6fA/√Hz

在±15V时的功耗为40mW

增益带宽乘积1MHz

2.2.4 前置放大器稳定性分析

考虑光电二极管小信号模型后,完整的前置放大电路如图4:

该系统的传输函数[7]为:

其中,Aol(j?棕)为放大器开环环路增益;?茁为反馈系数,即1/(1+Zf/Zin);Zin为分布式输入阻抗

展开后可得:

式中

由于Rd远大于Rf,故fz

图中显示了Aol(j?棕)曲线与1/?茁曲线在fx处相交,且在交点处|Aol?茁|=1。放大器需在工作中不振荡、稳定。工程应用上,要求相位裕度?准m>>4/?仔,当?准m=4/?仔时,fp=fx。放大器在系统稳定的前提下,要得到最大带宽,可令:

式中:可以求得GBW为运放的增益带宽积。最终可求得:

对于更大的相位裕度,这个电容值还会增大,但也会降低I-V转换器的带宽。

3 电路仿真计算

利用multisim10 软件[8]对图5所示电路进行仿真分析。

交流仿真结果如图6所示。

噪声分析如图7所示。

4 结束语

本文推出了光电检测电路信噪比的公式,并对光电转换电路的稳定性进行了详细的研究,总结了设计低噪声光电检测电路的方法。

某预研项目中,根据本文讨论的方法设计的前置放大器已有应用,我们可以看到实际测试结果达到了预期效果,所以此设计方案可行。不足之处在于,本设计中印刷板本身带来的寄生电容问题。这就要求我们必须小心布线以控制寄生电容;另外,可在输出端增加滤波器,以减小系统噪声。

参考文献:

[1]Gil Tidhar, Raanan Schlisselberg. Evolution Path of MWS technolo

gies: RF, IR and UV[J]. Proceedings of SPIE,2005,5 783:6622673.

[2]Degnan J J. Theory of op timally coup led Q2switched laser 220. [J]. IEEE J. Quantum Electron., 1989,25(2):2142.

[3]孙培懋,刘正飞.光电技术[M].北京:机械工业出版社,1992.

[4]何俄章.线性测量系统中光电探测电路的设计[J].达县师范高等专科学校学报:自然科学版,2000,10(2):109-111.

[5]赛尔吉欧・弗朗哥.基于运算放大器和模拟集成电路的电路设计[M].

西安交通大学出版社,2005.

[6]王立刚.低噪声光电检测电路的研究与设计[J].电测与仪表,2007(8):63-65.

篇3

关键词:电路设计;proteus;应用

中图分类号:TN702 文献标识码:A 文章编号:1007-9416(2017)03-0248-01

二十一世纪的今天,社会科技进步较快,proteus仿真软件在电路设计中的应用也越来越广泛。该仿真软件是计算机技术发展的重要成果之一,可以对模拟电路,数字电路和电路进行仿真操作,软件自身具备先进的虚拟器,包括示波器,逻辑分析仪,信号发生器等,为了更全面的了解和更深刻的分析proteus在电子电路设计中的应用,就要在软件开启的仿真条件下,对整体电路和包含的各个零部件进行逐一研究,为之后的电路设计打下坚实的基础思路。

1 Proteus仿真软件简述

Proteus软件是英国Lab Center Electronics公司出版的EDA工具软件(该软件中国总为广州风标电子技术有限公司)。它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及器件。它是目前比较好的仿真单片机及器件的工具。虽然目前国内推广刚起步,但已受到单片机爱好者、从事单片机教学的教师、致力于单片机开发应用的科技工作者的青睐。该软件包含ISIS和ARES两个软件部分,这两个部分在大环境下扮演着两个不同的重要角色,都有着举足轻重的作用。在日常工作中,ARES部分是用来当PCB设计工作的助手,进行有效辅佐,而ISIS则是主要负责在仿真开启的环境下对电路原理和模拟电路的设计工作。

2 Proteus仿真软件进行仿真电路设计的过程分析

在电子电路实训过程中,proteus仿真软件在进行仿真电路设计时,要在软件编辑界面,按照需要模拟的实际电路思路,设计出一套最符合实际情况的电子电路图,再通过许多相关数据计算,尽可能在最短的时间内完成对电路的初步设计和对数据的测量与计算整理,最后完成整体的模拟电路设计,然后利用软件的电路生成功能,输出最后的电路设计图。为了确保电路设计的顺利进行,仿真电路设计过程可以这样:先确定核实设计项目,然后运行proteus软件,绘制初步的电路原理图,然后根据原理确定需要的元件种类和数量,启动仿真系统,用虚拟仪器检测然后读出数据,分析结果,如不符合要求,对元件或者电路作适当修改然后再次检测,当符合要求时,要对电路进行完善,确定无误后敲定最终设计方案,然后系统自动生成电路图。

3 Proteus仿真软件的仿真电路设计与调试

在进行电路工作前,相关人员要检查虚拟测量仪器与被测量点的两个终端是否处于正常连接状态,还要确定信号源良好的接地情况,其中还要注意示波器与地线的连接状况。测量结束后要确保测量结果是GND的相反波形,有利于后续对电路的研究。实验过程中,要时刻注意电压表,电流表的指针位置,而在仿真电路时,要注意串联电路中电流指针的指数,如有任何问题,要及时地在相应的执行操作界面,通过网络,对电压作出适当调整,然后继续进行仿真电路的研究试验,推动proteus仿真软件在电子电路设计应用中的发展。

4 Proteus仿真软件的实用电路分析

在今后的与电路设计有关的工作当中,我们不光要充分发挥并发展proteus仿真软件,还要通过合理的方法来判断研究proteus仿真软件在未来电路研究中的发展趋势,然后进行相应改进。而proteus软件还需要通过传感器电路,正弦电路等实用电路中不断的进行试验和探索,最后才能把此项技术落实到实际电子科技产品的生产环节当中去。所以,我们再使用该软件进行电路设计和分析时,要把重点放到传感器电路和正弦电路等电路的实用性上,结合实际情况探究,才能更好地让软件适用于各种实用电路的应用。还能开发出仿真系统的其他用法和功能,促使电子行业发展,为以后的研究工作打下坚实的基础。

5 结语

综上所述,现阶段proteus仿真软件的应用已经十分广泛,而其使用功能也十分便利和强大,在进行电子电路设计时,为了能够更深刻研究电路的工作情况,更准确地对电路中存在的不足之处进行调整,我们要进一步对软件进行挖掘研究,明确操作规范,开发出更实用的功能以便使用。还能改善传统的电子电路设计工作,并z测出其中的缺陷,为降低电路实验成本,更有效地完成实验和缩短实验时间等方面,都有积极的推进意义。

参考文祥

篇4

【关键词】 电子电路 设计与辅助 传统电子电路的设计问题

计算机电子电路技术对于各行各业来说,起到的作用是非常明显,不仅能提高相关人员的工作效率和质量,还能对设计的电子电路进行仿真分析实验,以方便解决实际电路搭建中所遇到的各种困难。该文就电子电路的具体原理以及计算机辅助系统中一系列环节出现的问题进行分析,明确电子电路的具体原理,对计算机的辅助设计进行一系列的分析,以满足我们的日常工作需求。下文,将对电子电路对计算机辅助设计的联系展开铺设,以解决难题。

1 电子电路原理以及计算机的辅助设计

电子电路的基本原理相对来说是比较容易理解的,在电子基础中,电就像是水一样,电路类似于俗称的水路,将各种电子元件连接成相应的通路,以实现特定的功能。任何电子产品都是由电子元件组成的,所以为了更加深入的了解电子电路的原理,需要对电子元件进行一系列的辨析,也就因此掌握了电子应用。对电子电路的原则基本认识之后,能够应用一系列的电子工具,进行一系列的产品设计。

电场这个概念对于电子电路来说并不陌生。电场通常是指电产生作用力的一个范围。磁场就是磁产生作用力的一个范围,其他类似。导体就是电容易通过的物体。绝缘体,就是电比较难通过的物体。导体与绝缘体在实际生活中并没有决定化的定义,这两者的导电能力相差好几倍。有些物体,在不同的外界环境下,比如电场,磁场,温度,光照等方面的影响下会呈现出不同的导电状态,我们称这类物体为半导体。对导体、绝缘体以及半导体的具体应用就能组成各种的电子元件,我们就能对电能进行方便简单的检测与利用,开关是一个类似短路器与开路器系列的东西,电阻在零欧姆与无穷大的两个阻值上相互变化的元件,它与自来水开关的效果原理类似。任何时候,只要电流流过,就会产生一个闭合的通路系统。也就是电流回路,如果不考虑电源内部的问题,电流一定是从正极流向负极。电源类似于特殊的电子元件,在闭合通路下,才有可能产生电流,如果没有导体以及电子元件连接就不能形成闭合的通路也就不会产生电流,并且没回路就一定没有电流,有电流就肯定有回路。并且实际中对于交流电流的运用并不需要物理上的通路、真空、空气也能形成电流回路。两个不同水位线之间存在一个水差就是水压。水压之间如果存在一根管,水就会因此流动,水流动就会受到阻力。越细的水管,其阻力越大,水流进越小。如果水压越高,其水流越大。

在一系列工程设计中,计算机担当的角色是计算、制图、信息存储的功能角色,在应对不同的行业中,通常利用不同方案进行大量计算、分析与比较,以确定出其最优方案,其设计信息所谓计算机技术的一种应用,能够随时迅速的被使用者找到,有些设计人员自己构建草图,而对草图的进一步完善,需要通过电子计算机的渲染。利用计算机可以进行一些图片的操作,对其进行加工工作,利用计算机的辅助设计电子电路技术能够提升设计人员的工作效率与工作质量。并且在企业的实际运用中起到了不可缺少的关键作用。

2 计算机系统的系列构成

电子电路辅助计算机的应用需要一定的计算机基础,比如其基本图形功能应用,系统中起作用的设备为:电子计算机的主机,图形的输入板,图形显示终端,打印机,扫描仪以及给类绘图处理件等。一般来说,工程工作站指的是具有超级小型功能与三位图形处理能力的单用户交互式计算机系统。它有比较强的计算能力,比较高端的图形软件,具有高分辨率现实,并且可以在网上办公。完善的CAD系统对于日常生活的帮助是显然易见的。

图形输入输出设备不仅仅包括计算机主箱以及其他的外在连接设备,也包括其他的一系列内在软件。图形的输入输出设备主要应用于计算机辅助设计中。图形输入设备的作用,是把平面上的点坐标投射到电子计算机里。软拷贝与硬拷贝组成了图形的输出设备,前者是对于各种图形的显示装备,有利于人机互动。后者经常用作图形显示的附属设备,主要进行复印的作用。以实现整体环节中的分工协作等。

CAD软件是运用比较广泛的软件,它应用于各个行业,比如建筑业,广告设计业中,它除了具备可操作性,编译程序外,还有对一系列交互式图形显示软件,以及CAD应用软件与数据管理软件使用。交互式的图形显示软件应用于图形显示的编辑,开窗,观看与图形的变换修改,人与计算机之间的良好互动。CAD软件能够提供制图,特征计算与几何造型等功能,广泛应用于各个专业领域。构造应用软件的四个主要组成是,算法,用户界面,数据结构以及数据管理等。数据管理软件应用于存储、检索以及大量数据的处理,其中包括对文字图形信息的编辑处理。为了方便其进行处理,需要建立工程数据库系统。与一般的数据库系统相比,其拥有以下的特点,比如多样化的数据类型,实体关系的复杂管理,频繁变动的数据结构与库中数值。实际上,设计者的操作是一种具有实行性的交互处理行为。其基本的技术包括交互技术、曲面造型以及实体造型技术等。

3 对于仿真软件的举例分析

3.1 电子工作平台的应用(Electronic Workbench)

Electronic Workbench是一种比较高效的电子电路计算机辅助设计软件,它使用的是windows的平台,能对一系列信息进行模拟,数字以及模数混合电路的设计,其具有一系列的特点,比如高精确度,强悍性能,友好的界面,方面的操作等,以其虚拟仪器而闻名,它把系统管理者放在一个虚拟的电子实验室里,弥补了当面一系列高档仪器数量不足,元器件耗费等的缺陷。

3.2 MultisimX系列的仿真工具

Multisim X适用于数字电路的设计工作,基于windows平台的仿真工具。它具体包含了电路原理图的图形输入以及一系列硬件描述语言的输入,具有非常强大的仿真分析能力。通过具体操作可以进行电路图的输入以及编辑信息等的电路搭建。对于元器件挑选界面的应用,可以根据不同的需要对电路进行相应观测和分析。对于Multisim X的电路仿真来说,以仿真软件作为其平台进行一系列模拟电子电路设计,从接收任务以及到获得最终的设计结果,电路仿真软件都能够仿照前期模拟电子电路的设计进行一系列的电路的可辅助设计。可以实现硬件实验环境的具体模拟,并且对模拟过程中的现场进行记录与分析。

3.2.1 对于电路的具体分析,及其说明

对条幅电路进行模拟电路的仿真设计以及分析。为了达到目的,可以先将待搬移的信号和参考信号之间进行时域相乘,获得两者的混合频率分量,再用其滤波器滤除无用的频率分量就行。在实际运用中,由于模拟乘法器IV芯片的优点,比如小体积,低功耗,高可靠性,高性能等对于整体电路具有稳定的调整性能等。设计的时候,可以选择模拟乘法器芯片和一系列电路之间形成振幅调制等线性频谱搬移的完整电路。

3.2.2 针对整体电路的仿真设计和电路的调试

在具体的电路设计中,单纯性阻值不是电阻选择的唯一方面,在选择的时候对于高频特性也要考虑进去。在仿真设计的过程中,如果提升其工作频率,元器件分布参数也会相应变大,并且还会出现电路失控、波形失真的问题,在具体工作中想要防止因工作频率升高而导致的电路工作失常的现象,就必须使用特定规格参数的金属氧化膜电阻器,比如其很小的分布参数,这一系列都能说明仿真电路确实能够实现实际电路的模仿。在实际的硬件运行的条件下,如果出现三极管故障,就会导致工作出现问题以及整个电路工作不正常的事例。在一系列的仿真过程中,要选择各个方面性能都比较优秀的晶体三极管比如2N910以及二极管1N1204C等一系列元件,来搭建MC1596芯片内部电路,使其具有很好的电气性能。

4 电子电路计算机辅助设计与电子电路传统设计的联系

在早期的时候,模拟电路设计步骤都是比较简单的,一般分为电路形式与元器件型号,进行元件参数的大致计算,确定电路形式以及元件参数值的硬件电路实验环节,进行电路图的绘制,印刷电路板的制作,进行焊接并调制投入等,电路仿真的具体应用。这就是传统电子电路设计制作的步骤。它的好处显而易见,可以随意的实现对电路形式和元器件参数值的修改,使其满足高性能指标,这样不仅增大了实际工作的效率,而且还减少了实际元器件的消耗问题。电路的仿真设计,能够分清电子电路的一系列具体功能作用,基本分析方法与设计方法,还可以以仿真软件作为实验的平台,使用库中的电子测量仪器观测值、实验现象以及得出相应的结果,设计的电路是否能满足性能指标,是否需要进行进一步调整元件的参数进行电路优化。值得注意的是在电路的仿真设计中其仪器库里的测量仪器不过是理想性的东西,无法实现对实际电路设置的完全模仿能力。并且由于仿真软件商利用分立元件进行电路的搭建,其集成程度也会受到限制。

5 结语

根据该文所陈述的,电子电路设计必须要重视两大方面,一是对于硬件的设计,二是对于软件仿真的运用。前者是电子电路的物质基础,一切的前提,软件设置能够充分发挥硬件的功能,对于软件仿真的运用,能实现在现实环境中无法实现的一系列实验设计,从一个侧面来看,软件仿真引领电路电路的前进方法。对于电子电路中设计周期的缩短,降低成本,只有通过一系列软件仿真才能达到,软件仿真对已整体性能的发挥起到很重要的作用。需要根据实际情况,对于软件仿真进行深化剖析,找到更好的切入点,促进技术更新,完善我们的工作质量与效率的提升。

参考文献:

[1]Bassam Halabi.因特网的路由选择技术.北京:电子工业出版社.

篇5

关键词:可进化硬件遗传算法电子电路设计现场可编程门阵列

在人类的科学研究中,有不少研究成果得益于大自然的启发,例如仿生学技术。随着计算机技术和电子技术的发展,许多的科学研究越来越与生物学紧密相联。在人工智能方面,已经实现了能用计算机和电子设备模仿人类生物体的看、听、和思维等能力;另一方面,受进化论的启发,科学家们提出了基于生物学的电子电路设计技术,将进化理论的方法应用于电子电路的设计中,使得新的电子电路能像生物一样具有对环境变化的适应、免疫、自我进化及自我复制等特性,用来实现高适应、高可靠的电子系统。这类电子电路常称为可进化硬件(EHW,EvolvableHardWare)。本文主要介绍可进化硬件EHW的机理及其相关技术并根据这种机理对高可靠性电子电路的设计进行讨论。

1EHW的机理及相关技术

计算机系统所要求解决的问题日趋复杂,与此同时,计算机系统本身的结构也越来越复杂。而复杂性的提高就意味着可靠性的降低,实践经验表明,要想使如此复杂的实时系统实现零出错率几乎是不可能的,因此人们寄希望于系统的容错性能:即系统在出现错误的情况下的适应能力。对于如何同时实现系统的复杂性和可靠性,大自然给了我们近乎完美的蓝本。人体是迄今为止我们所知道的最复杂的生物系统,通过千万年基因进化,使得人体可以在某些细胞发生病变的情况下,不断地进行自我诊断,并最终自愈。因此借用这一机理,科学家们研究出可进化硬件(EHW,EvolvableHardWare),理想的可进化硬件不但同样具有自我诊断能力,能够通过自我重构消除错误,而且可以在设计要求或系统工作环境发生变化的情况下,通过自我重构来使电路适应这种变化而继续正常工作。严格地说,EHW具有两个方面的目的,一方面是把进化算法应用于电子电路的设计中;另一方面是硬件具有通过动态地、自主地重构自己实现在线适应变化的能力。前者强调的是进化算法在电子设计中可替代传统基于规范的设计方法;后者强调的是硬件的可适应机理。当然二者的区别也是很模糊的。本文主要讨论的是EHW在第一个方面的问题。

对EHW的研究主要采用了进化理论中的进化计算(EvolutionaryComputing)算法,特别是遗传算法(GA)为设计算法,在数字电路中以现场可编程门阵列(FPGA)为媒介,在模拟电路设计中以现场可编程模拟阵列(FPAA)为媒介来进行的。此外还有建立在晶体管级的现场可编程晶体管阵列(FPTA),它为同时设计数字电路和和模拟电路提供了一个可靠的平台。下面主要介绍一下遗传算法和现场可编程门阵列的相关知识,并以数字电路为例介绍可进化硬件设计方法。

1.1遗传算法

遗传算法是模拟生物在自然环境中的遗传和进化过程的一种自适应全局优化算法,它借鉴了物种进化的思想,将欲求解问题编码,把可行解表示成字符串形式,称为染色体或个体。先通过初始化随机产生一群个体,称为种群,它们都是假设解。然后把这些假设解置于问题的“环境”中,根据适应值或某种竞争机制选择个体(适应值就是解的满意程度),使用各种遗传操作算子(包括选择,变异,交叉等等)产生下一代(下一代可以完全替代原种群,即非重叠种群;也可以部分替代原种群中一些较差的个体,即重叠种群),如此进化下去,直到满足期望的终止条件,得到问题的最优解为止。

1.2现场可编程逻辑阵列(FPGA)

现场可编程逻辑阵列是一种基于查找表(LUT,Lookupbr)结构的可在线编程的逻辑电路。它由存放在片内RAM中的程序来设置其工作状态,工作时需要对片内的RAM进行编程。当用户通过原理图或硬件描述语言(HDL)描述了一个逻辑电路以后,FPGA开发软件会把设计方案通过编译形成数据流,并将数据流下载至RAM中。这些RAM中的数据流决定电路的逻辑关系。掉电后,FPGA恢复成白片,内部逻辑关系消失,因此,FPGA能够反复使用,灌入不同的数据流就会获得不同的硬件系统,这就是可编程特性。这一特性是实现EHW的重要特性。目前在可进化电子电路的设计中,用得最多得是Xilinx公司的Virtex系列FPGA芯片。

2进化电子电路设计架构

本节以设计高容错性的数字电路设计为例来阐述EHW的设计架构及主要设计步骤。对于通过进化理论的遗传算法来产生容错性,所设计的电路系统可以看作一个具有持续性地、实时地适应变化的硬件系统。对于电子电路来说,所谓的变化的来源很多,如硬件故障导致的错误,设计要求和规则的改变,环境的改变(各种干扰的出现)等。

从进化论的角度来看,当这些变化发生时,个体的适应度会作相应的改变。当进化进行时,个体会适应这些变化重新获得高的适应度。基于进化论的电子电路设计就是利用这种原理,通过对设计结果进行多次地进化来提高其适应变化的能力。

电子电路进化设计架构如图1所示。图中给出了电子电路的设计的两种进化,分别是内部进化和外部进化。其中内部进化是指硬件内部结构的进化,而外部进化是指软件模拟的电路的进化。这两种进化是相互独立的,当然通过外部进化得到的最终设计结果还是要由硬件结构的变化来实际体现。从图中可以看出,进化过程是一个循环往复的过程,其中是根据进化算法(遗传算法)的计算结果来进行的。整个进化设计包括以下步骤:

(1)根据设计的目的,产生初步的方案,并把初步方案用一组染色体(一组“0”和“1”表示的数据串)来表示,其中每个个体表示的是设计的一部分。染色体转化成控制数据流下载到FPGA上,用来定义FPGA的开关状态,从而确定可重构硬件内部各单元的联结,形成了初步的硬件系统。用来设计进化硬件的FPGA器件可以接受任意组合的数据流下载,而不会导致器件的损害。

(2)将设计结果与目标要求进行比较,并用某种误差表示作为描述系统适应度的衡量准则。这需要一定的检测手段和评估软件的支持。对不同的个体,根据适应度进行排序,下一代的个体将由最优的个体来产生。

(3)根据适应度再对新的个体组进行统计,并根据统计结果挑选一些个体。一

部分被选个体保持原样,另一部分个体根据遗传算法进行修改,如进行交叉和变异,而这种交叉和变异的目的是为了产生更具适应性的下一代。把新一代染色体转化成控制数据流下载到FPGA中对硬件进行进化。

(4)重复上述步骤,产生新的数代个体,直到新的个体表示的设计方案表现出接近要求的适应能力为止。

一般来说通过遗传算法最后会得到一个或数个设计结果,最后设计方案具有对设计要求和系统工作环境的最佳适应性。这一过程又叫内部进化或硬件进化。

图中的右边展示了另一种设计可进化电路的方法,即用模拟软件来代替可重构器件,染色体每一位确定的是软件模拟电路的连接方式,而不是可重构器件各单元的连接方式。这一方法叫外部进化或软件进化。这种方法中进化过程完全模拟进行,只有最后的结果才在器件上实施。

进化电子电路设计中,最关键的是遗传算法的应用。在遗传算法的应用过程中,变异因子的确定是需要慎重考虑的,它的大小既关系到个体变异的程度,也关系到个体对环境变化做出反应的能力,而这两个因素相互抵触。变异因子越大,个体更容易适应环境变化,对系统出现的错误做出快速反应,但个体更容易发生突变。而变异因子较小时,系统的反应力变差,但系统一旦获得高适应度的设计方案时可以保持稳定。

对于可进化数字电路的设计,可以在两个层面上进行。一个是在基本的“与”、“或”、“非”门的基础上进行进化设计,一个是在功能块如触发器、加法器和多路选择器的基础上进行。前一种方法更为灵活,而后一种更适于工业应用。有人提出了一种基于进化细胞机(CellularAutomaton)的神经网络模块设计架构。采用这一结构设计时,只需要定义整个模块的适应度,而对于每一模块如何实现它复杂的功能可以不予理睬,对于超大规模线路的设计可以采用这一方法来将电路进行整体优化设计。

3可进化电路设计环境

上面描述的软硬件进化电子电路设计可在图2所示的设计系统环境下进行。这一设计系统环境对于测试可重构硬件的构架及展示在FPGA可重构硬件上的进化设计很有用处。该设计系统环境包括遗传算法软件包、FPGA开发系统板、数据采集软硬件、适应度评估软件、用户接口程序及电路模拟仿真软件。

遗传算法由计算机上运行的一个程序包实现。由它来实现进化计算并产生染色体组。表示硬件描述的染色体通过通信电缆由计算机下载到有FPGA器件的实验板上。然后通过接口将布线结果传回计算机。适应度评估建立在仪器数据采集硬件及软件上,一个接口码将GA与硬件连接起来,可能的设计方案在此得到评估。同时还有一个图形用户接口以便于设计结果的可视化和将问题形式化。通过执行遗传算法在每一代染色体组都会产生新的染色体群组,并被转化为数据流传入实验板上。至于通过软件进化的电子电路设计,可采用Spice软件作为线路模拟仿真软件,把染色体变成模拟电路并通过仿真软件来仿真电路的运行情况,通过相应软件来评估设计结果。

篇6

计算机系统所要求解决的问题日趋复杂,与此同时,计算机系统本身的结构也越来越复杂。而复杂性的提高就意味着可靠性的降低,实践经验表明,要想使如此复杂的实时系统实现零出错率几乎是不可能的,因此人们寄希望于系统的容错性能:即系统在出现错误的情况下的适应能力。对于如何同时实现系统的复杂性和可靠性,大自然给了我们近乎完美的蓝本。人体是迄今为止我们所知道的最复杂的生物系统,通过千万年基因进化,使得人体可以在某些细胞发生病变的情况下,不断地进行自我诊断,并最终自愈。因此借用这一机理,科学家们研究出可进化硬件(EHW,EvolvableHardWare),理想的可进化硬件不但同样具有自我诊断能力,能够通过自我重构消除错误,而且可以在设计要求或系统工作环境发生变化的情况下,通过自我重构来使电路适应这种变化而继续正常工作。严格地说,EHW具有两个方面的目的,一方面是把进化算法应用于电子电路的设计中;另一方面是硬件具有通过动态地、自主地重构自己实现在线适应变化的能力。前者强调的是进化算法在电子设计中可替代传统基于规范的设计方法;后者强调的是硬件的可适应机理。当然二者的区别也是很模糊的。本文主要讨论的是EHW在第一个方面的问题。

对EHW的研究主要采用了进化理论中的进化计算(EvolutionaryComputing)算法,特别是遗传算法(GA)为设计算法,在数字电路中以现场可编程门阵列(FPGA)为媒介,在模拟电路设计中以现场可编程模拟阵列(FPAA)为媒介来进行的。此外还有建立在晶体管级的现场可编程晶体管阵列(FPTA),它为同时设计数字电路和和模拟电路提供了一个可靠的平台。下面主要介绍一下遗传算法和现场可编程门阵列的相关知识,并以数字电路为例介绍可进化硬件设计方法。

1.1遗传算法

遗传算法是模拟生物在自然环境中的遗传和进化过程的一种自适应全局优化算法,它借鉴了物种进化的思想,将欲求解问题编码,把可行解表示成字符串形式,称为染色体或个体。先通过初始化随机产生一群个体,称为种群,它们都是假设解。然后把这些假设解置于问题的“环境”中,根据适应值或某种竞争机制选择个体(适应值就是解的满意程度),使用各种遗传操作算子(包括选择,变异,交叉等等)产生下一代(下一代可以完全替代原种群,即非重叠种群;也可以部分替代原种群中一些较差的个体,即重叠种群),如此进化下去,直到满足期望的终止条件,得到问题的最优解为止。

1.2现场可编程逻辑阵列(FPGA)

现场可编程逻辑阵列是一种基于查找表(LUT,LookupTable)结构的可在线编程的逻辑电路。它由存放在片内RAM中的程序来设置其工作状态,工作时需要对片内的RAM进行编程。当用户通过原理图或硬件描述语言(HDL)描述了一个逻辑电路以后,FPGA开发软件会把设计方案通过编译形成数据流,并将数据流下载至RAM中。这些RAM中的数据流决定电路的逻辑关系。掉电后,FPGA恢复成白片,内部逻辑关系消失,因此,FPGA能够反复使用,灌入不同的数据流就会获得不同的硬件系统,这就是可编程特性。这一特性是实现EHW的重要特性。目前在可进化电子电路的设计中,用得最多得是Xilinx公司的Virtex系列FPGA芯片。

2进化电子电路设计架构

本节以设计高容错性的数字电路设计为例来阐述EHW的设计架构及主要设计步骤。对于通过进化理论的遗传算法来产生容错性,所设计的电路系统可以看作一个具有持续性地、实时地适应变化的硬件系统。对于电子电路来说,所谓的变化的来源很多,如硬件故障导致的错误,设计要求和规则的改变,环境的改变(各种干扰的出现)等。

从进化论的角度来看,当这些变化发生时,个体的适应度会作相应的改变。当进化进行时,个体会适应这些变化重新获得高的适应度。基于进化论的电子电路设计就是利用这种原理,通过对设计结果进行多次地进化来提高其适应变化的能力。

电子电路进化设计架构如图1所示。图中给出了电子电路的设计的两种进化,分别是内部进化和外部进化。其中内部进化是指硬件内部结构的进化,而外部进化是指软件模拟的电路的进化。这两种进化是相互独立的,当然通过外部进化得到的最终设计结果还是要由硬件结构的变化来实际体现。从图中可以看出,进化过程是一个循环往复的过程,其中是根据进化算法(遗传算法)的计算结果来进行的。整个进化设计包括以下步骤:

(1)根据设计的目的,产生初步的方案,并把初步方案用一组染色体(一组“0”和“1”表示的数据串)来表示,其中每个个体表示的是设计的一部分。染色体转化成控制数据流下载到FPGA上,用来定义FPGA的开关状态,从而确定可重构硬件内部各单元的联结,形成了初步的硬件系统。用来设计进化硬件的FPGA器件可以接受任意组合的数据流下载,而不会导致器件的损害。

(2)将设计结果与目标要求进行比较,并用某种误差表示作为描述系统适应度的衡量准则。这需要一定的检测手段和评估软件的支持。对不同的个体,根据适应度进行排序,下一代的个体将由最优的个体来产生。

(3)根据适应度再对新的个体组进行统计,并根据统计结果挑选一些个体。一

部分被选个体保持原样,另一部分个体根据遗传算法进行修改,如进行交叉和变异,而这种交叉和变异的目的是为了产生更具适应性的下一代。把新一代染色体转化成控制数据流下载到FPGA中对硬件进行进化。

(4)重复上述步骤,产生新的数代个体,直到新的个体表示的设计方案表现出接近要求的适应能力为止。

一般来说通过遗传算法最后会得到一个或数个设计结果,最后设计方案具有对设计要求和系统工作环境的最佳适应性。这一过程又叫内部进化或硬件进化。

图中的右边展示了另一种设计可进化电路的方法,即用模拟软件来代替可重构器件,染色体每一位确定的是软件模拟电路的连接方式,而不是可重构器件各单元的连接方式。这一方法叫外部进化或软件进化。这种方法中进化过程完全模拟进行,只有最后的结果才在器件上实施。

进化电子电路设计中,最关键的是遗传算法的应用。在遗传算法的应用过程中,变异因子的确定是需要慎重考虑的,它的大小既关系到个体变异的程度,也关系到个体对环境变化做出反应的能力,而这两个因素相互抵触。变异因子越大,个体更容易适应环境变化,对系统出现的错误做出快速反应,但个体更容易发生突变。而变异因子较小时,系统的反应力变差,但系统一旦获得高适应度的设计方案时可以保持稳定。

对于可进化数字电路的设计,可以在两个层面上进行。一个是在基本的“与”、“或”、“非”门的基础上进行进化设计,一个是在功能块如触发器、加法器和多路选择器的基础上进行。前一种方法更为灵活,而后一种更适于工业应用。有人提出了一种基于进化细胞机(CellularAutomaton)的神经网络模块设计架构。采用这一结构设计时,只需要定义整个模块的适应度,而对于每一模块如何实现它复杂的功能可以不予理睬,对于超大规模线路的设计可以采用这一方法来将电路进行整体优化设计。

3可进化电路设计环境

上面描述的软硬件进化电子电路设计可在图2所示的设计系统环境下进行。这一设计系统环境对于测试可重构硬件的构架及展示在FPGA可重构硬件上的进化设计很有用处。该设计系统环境包括遗传算法软件包、FPGA开发系统板、数据采集软硬件、适应度评估软件、用户接口程序及电路模拟仿真软件。

遗传算法由计算机上运行的一个程序包实现。由它来实现进化计算并产生染色体组。表示硬件描述的染色体通过通信电缆由计算机下载到有FPGA器件的实验板上。然后通过接口将布线结果传回计算机。适应度评估建立在仪器数据采集硬件及软件上,一个接口码将GA与硬件连接起来,可能的设计方案在此得到评估。同时还有一个图形用户接口以便于设计结果的可视化和将问题形式化。通过执行遗传算法在每一代染色体组都会产生新的染色体群组,并被转化为数据流传入实验板上。至于通过软件进化的电子电路设计,可采用Spice软件作为线路模拟仿真软件,把染色体变成模拟电路并通过仿真软件来仿真电路的运行情况,通过相应软件来评估设计结果。

4结论与展望

进化过程广义上可以看作是一个复杂的动态系统的状态变化。在这个意义上,可以将“可进化”这一特性运用到无数的人工系统中,只要这些系统的性能会受到环境的影响。不仅是遗传算法,神经网络、人工智能工程以及胚胎学都可以应用到可进化系统中。虽然目前设计出的可进化硬件还存在着许多需要解决的问题,如系统的鲁棒性等。但在未来的发展中,电子电路可进化的设计方法将不可避免的取代传统的自顶向下设计方法,系统的复杂性将不再成为系统设计的障碍。另一方面,硬件本身的自我重构能力对于那些在复杂多变的环境,特别是人不能直接参与的环境工作的系统来说将带来极大的影响。因此可进化硬件的研究将会进一步深入并会得到广泛的应用而造福人类。

篇7

关键词:任务驱动法;微任务;电子电路;实训教学

中图分类号:G4

文献标识码:A

文章编号:16723198(2015)22018502

1电子电路设计实训课程教学现状

电子电路设计是电类专业为绘制电子电路图所必需掌握的一门计算机综合性设计课程。然而,随着课程改革在各高校逐渐开展,一些课程的课时量也相应递减,比如笔者所在学校电气自动化专业的《电子电路设计》课程已由原36学时减至24学时。如何在减少的课时的课程中让学生掌握同样程度的技能水平以适应社会的需求,考验着每一位专业教师。

以往传统的电路设计教学的方式大多是由教师先讲授知识点,然后将知识点所涉及到的图例向学生绘制演示,最后让学生依样画葫芦。在整个教学过程中,教师为主导,而学生仅限于单纯的模仿与记忆,并没有主动学习,导致学习效率低下。因此在教学中应该有意识到加入兴趣式教学,调动他们的求知欲,激发学生更积极主动的思考,学习甚至创新,打造优质课堂,全面提高教学质量与学习效率。

2任务驱动法

2.1任务驱动法原理

任务驱动法是近年来被广为应用的一种教学手法,它一改传统的灌输式教学,尝试采用任务驱动式的教学方法。需要教师将课程学习内容划分为多个特定任务,每个任务包含一定知识点,只要学生完成了课程中设定的任务,就可以掌握课程学习的内容。

任务驱动法的核心内容就是由教师在教学过程中创设任务情境,教学任务必须融合学生所需要掌握的技能点和相关的知识点,同时又具有一定的生活性、探究性和创造性,让学生带着解决问题完成任务,激发他们的学习兴趣,让学生自主或协作性学习,使他们真正了解知识点在实际工程中的应用,学以致用。

2.2任务驱动法在电路设计实训中的应用

电路设计实训课程的教学目的为电子电路图形绘制,电路图形仅为简单的二维制版,因此在绘制电路原理图时较为简单易学。但无论多简单的图形,在绘制的过程中都要利用到基本绘图工具、图形编辑和图层管理各知识点综合才能完成。因而课程教授过程中不能简单的按书本章节顺序来讲,而是应该由教师将所有知识融会贯通后重新组织,将它们融入到一个个工程任务中再向学生展示,如向学生展示电动小车电路设计图纸,将其作为一个工程任务,让学生尝试用学过的知识来绘制,或让学生在绘制过程中遇到难题再提出并讲解。这样就更能增添学生的学习兴趣和在完成任务后的成就感,形成良性循环。因此电路设计实训课程非常适合采用任务驱动式教学法。

3微任务驱动法

3.1微任务驱动法原理

采用任务驱动法教学所提供的任务由于综合性较强所以工程量较大且难度较高,学生在一节课中难以完成,即使有些基础好,动手能力强的学生完成了任务,也会因为知识点过多过杂而难以消化。因此需要由教师把握学生素质和能力,将大任务进行科学性的分解,将之细化为中任务,小任务甚至微任务。让具有不同层次知识能力的学生都能被激发兴趣,在任务量合适的微任务环境中尝试和实践。

以上所述即为微任务驱动教学法,它就是以任务驱动法为基础,将总任务依靠知识的内在逻辑或采取分类的方式进行具体化,以微任务的形呈现。较之任务驱动法,其目标更为明确,导向性更强,教师使用这种方法教学也更容易控制课堂教学的节奏,保证能在规定时间内完成教学进度。

3.2微任务教学设计

微任务驱动法的实施过程是:教师先依据教学目标设计一个总任务,引起学生的学习兴趣。再引导学生分析总任务的解决方法并将总任务拆分为一个个的微任务,各微任务之间可以是从属或并列关系。拆分出来的微任务不能太难或任务量太大,应设计为学生较易完成的程度,以便于将学生的理解逐步引向深入。通过一个个的微任务引导和推动学生一步步上升,一层层提高,不断接近并最终达到复杂的学习任务的顶点。

微任务法的核心是如何科学合理的设计微任务。首先,任务必须要有明确的目的性,教师提出的每一个微任务,原则上都是为了完成总任务而设计的,尽量不设置多余任务,不能本末倒置。其次,教师选择微任务时应考虑到大多数学生的水平,注意难易适度。并且在教学过程中,根据学生的反应与掌握程度以及课程进度随时调整微任务,不能任务教条化僵化。第三,微任务还应遵循完整性原则。教师所设计的微任务必须连贯,不能有断续感,让学生知道自己要做什么,可以解决什么问题,使他们获取的知识完整且有条理。最后,微任务的设计要适当增添趣味性,可以在教学过程中加上图片插画,视频音频等数字教学资源,让学生在完成任务的同时体会到学习的乐趣。

3.3微任务驱动法在电路设计实训课程中的应用

Altium Designer软件的工具栏较多,常用工具栏中的各命令参数也较杂,若逐个讲解,则显得各知识点杂乱无章,学生记的多忘得快,但在实际绘图时还是束手无策,不知该用哪个工具来绘制。

例如,在介绍AD软件常用绘图工具栏中的直线、多边形、椭圆弧线、文字和文本框等,若单纯讲述这些知识点,难免枯燥乏味,且容易与布线工具栏的功能弄混。围绕这些教学内容,可设计对应电路制图微任务,围绕一个小目标,教师可以设计多个由简单到复杂的小任务,布置学生循序渐进地完成任务,在练习中熟悉各种命令的操作。例如,基本绘图训练可将学生已在模拟电路和数字电路课程中学过的常用电子元件符号如:变压器、运算放大器(如图1(a)、(b)所示)融入其中,将它们设计为一个个需要完成的微任务。每个任务都考虑到学习课程的前后连贯和趣味性,让学生绘制自己所熟悉的事物。随着学习的深入,可以布置学生完成如图1(c)所示的七段数码管等稍复杂的绘制任务。完成任务后的喜悦感和成就感会更加强烈,也为以后的学习增添了动力。

微任务驱动法在教学过程中将知识点分解到一些小任务中进行,学生头脑中的知识是零散的,有时会降低知识的系统性和完整性。因此,这样的设计任务和完成过程是十分必要的,教师可以通过一个较为完整的任务引导学生将已完成的微任务中的知识点进行归纳总结,加深对所学知识和技能的记忆和理解,完成真正意义上的知识建构。

例如,上完第三次课后,教师即可布置学生完成如图2所示“八路彩灯控制电路图”大任务。从创建元器件、调用常用元件开始,直至综合运用各种绘图指令及编辑工具完成绘图。让学生在本次课中复习巩固了前面微任务中所学的小知识并将其融合,初步完成了一张简单的电子电路设计原理图样,并总体上掌握了一张较完整电子电路工程图的绘制过程,具有综合应用性。

3.4电路设计课程与其余课程的前后融合

电路设计课程在介绍一般电路绘图技巧与制版规则时,还会涉及到数字电路、模拟电路、单片机技术应用等课程的接续关系。将本课程绘制图中所涉及到的器件类原理基础前移到数字电路和模拟电路等课程中解决,诸如实际译码电路、三态电路与缓冲器芯片等知识点不再占用本课程学时。本课程把握好衔接关系,主讲等电路板制版规范、电路设计的仿真方法等要点主题,把以往重复性内容节省的学时用于应用层面。

在重点讲述电子电路图绘制方式的时候,还应适当向学生加强常用接口电路的连接方法知识点,并向学生扩展对嵌入式处理器及新技术的了解,为后续单片机原理课以及传感与检测技术中各种传感器与微处理器的连接使用,智能传感器、数字式一体传感器等内容的讲授打下基础。

4总结

本文提出在电路设计实训课程中提出微任务驱动教学的思路,该方式以“微任务为主线,教师为主导,学生为主题”崭新教学模式,改变了往常的以教定学到被动教学模式,让学生学会在解决任务中学习知识点与解决问题的方法,通过这种方法,既能激发学生勤于思考的热情,有加深了对知识点理解,提高了创新思维的能力。在教学中始终贯穿“应用入手,学中建,建中学;分解项目,逐步深入与完善”的理念,对人才培育重点落在实际操作能力的培养上,提升整体教学水平。

参考文献

[1]苏秋慧.微任务驱动法在中职CAD教学中的实验研究[J].长春:东北师范大学,2013.

[2]周红丽.《电子线路》任务型课堂教学过程和实施步骤的探讨[J].新课程学习,2009,(2):105108.

[3]杨瑞萍.基于工作过程的项目化课程教学改革实践――以“计算机辅助电子线路设计”课程改革为例[J].吉林省教育学院学报,2015,31(7).

篇8

电子电路是无线电工程等专业重要的基础课程之一,是一门实践性很强的课程。本文结合教学经验,分析了该课程的教学背景与现状,并从高校的教学设施、教师自身素质及教学内容等方面详细阐述了该课程相关的教学策略。

【关键词】:

电子电路教学

一、课程教学背景分析

《电子电路》这门课程对于与信息工程、无线电工程专业以及其他电类专业都是非常重要的专业基础课。它涉及许多理论知识、电路中常用的基本功能部件以及实际电路,是一门实践性很强的课程。

课程教学现状

目前,国内很多高校都开设有工程专业,而电子电路作为该专业的基础课程之一,其教学虽然取得了一定成绩,但在某些程度上,仍然存在一定的问题。

学校教学实验设施

计算机机房

大部分高校的计算机机房仍是很多年前的设备,计算机配置相对落后,运行速度较慢,上机操作形同虚设。

电工实验室

电工实验仍然使用十几年前的仪器设备,与现代工业的发展及电路设计的要求脱节,实验质量在一定程度上受到很大影响。

教师教学方法

目前,很多高校使用的教材仍然是十多年前的旧版教材,虽然很多专业知识在理论上并无太大变化,但随着科技的进步,很多新型电子元器件与仪器产品已经应用到各个行业,如果仍以陈旧的教学课程来培养学生,显然达不到社会对人才的需求标准。

另外,本课程的实践环节也非常重要,但是由于我国高校大部分教师是应试模式教育中培养出来的,本身即缺乏一定的实践经验,所以在教学过程中,有意无意的避开实验教学环节,不能达到培养学生实践能力的目标,更不用说培养学生的思维能力、创新能力。

学生学习理念

由于课程本身比较抽象,而学校的教学设施相对落后,教师授课枯燥乏味,就会极大的影响学生的学习兴趣,尤其是遇到某些困难和问题时,就会出现厌学现象,仅仅在考前突击复习,应付考试,对很多理论概念掌握不够深刻,实际动手应用能力也很难达到要求。

综上所述,各种原因综合导致了很多学生毕业参加工作后,很难适应企业的对人才要求的标准,不能胜任工作需求,需要再次参加培训。所以对于高校教学人员来说,如何能够培养出思维灵活、动手能力强且有创新意识的新一代专业人才,是一项艰巨的任务。

教学策略分析

(一)改善教学设施

高校要合理增加对教学实验设施的投入,建设符合现代要求的实验室,增加教学实验环节,把理论培养与实践创新放到同等重要的地位。

(二)提高教师自身素质

教师要充分了解学科技术的前沿,将当前更多的新工艺(现代新产品设计流程)、新电子元件(目前广泛使用的新器件)、新仪器产品(现代电子仪器的使用)等内容融入课堂教学,提高学生的学习兴趣,变被动学习为主动学习,激发创新思维、提高动手能力。

(三)课程教学内容

1.要突出对学生能力培养。

能熟练使用焊接工具和常用仪器仪表;

能对典型电子电路进行分析,并进行简单电子产品功能分析、设计;

能进行电子电路原理图的绘制;

了解产品的成本核算方法,会进行电子产品成本估算;

熟练掌握基本的、规范的操作技能,能进行小型电子电路的制作;

能进行电子电路调试并熟练检查、排除故障;

能进行信息查询和资料整理;

能进行中间调试过程的记录并编写最终技术文档;

能以团队合作形式完成电子产品的开发;

会使用各种信息媒体对制作成果进行演示。

2.以典型电子产品为载体实施教学,增强学生的学习兴趣。如选择竞赛抢答器、LED数字显示器、运动小车、信号灯、数字钟、电子秤、电子锁、报警器、稳压电源等常见的、学生易于接受的电子产品作为设计分析的对象,使学生更容易进入电路分析的氛围中,同时有利于学生形成个性化的设计方案。

3.学习情境重点突出,能力培养有所侧重。学习情境的设置依托了数字电路和模拟电路各关键知识点,教学任务的安排不仅考虑到了本课程在专业课程体系中的位置,同时以电路分析、设计能力,电路接线、制板能力,技术指标分析编制能力为能力培养的主线,从浅入深、由易至难,循序渐进地培养学生全面技能。

4.在工作任务实施过程中,促进学生的自主创新意识,在工作任务确定的知识领域中引导学生进行自主性的电子产品单元电路设计、制作、调试。在引导学生自主创意设计的过程中,把握学生设计思路的难易程度、理论范围,充分体现学生的创新思想,丰富学生制作的多样性,提升学生设计制作的兴趣和积极性。同时,在多个工作任务的实施过程中,通过创新思考、理论分析与设计、电路制作调试、功能实现报告展示的学做练一体的教学模式,加强了学生的创新能力、制作技能、团队配合和个体表达能力;同时反复而不断提升的设计、制作、验证、报告过程,让学生的电子电路设计制作的基本技能得到了巩固。评价采用分阶段分重点评价的模式,重点评价学生的职业能力,兼顾重要的理论知识点。

5.在实验教学和实验室科学化管理中加强计算机的应用。引入包括多媒体演示、电子教案、计算机仿真技术、局域网教学在内的多种教学手段,将直接影响实验教学质量。

篇9

电子设计正朝向自动化方向发展,使电路设计教学中开始采用一些虚拟设备,通过仿真分析使原本抽象的教学内容更为直观。电工电子实验教学中引入了电路仿真软件,可以使电路设计更为直观,且有助于教师在教学中针对设计电路进行分析,以提高学生对设计电路的理解能力。

1 Multisim 仿真软件是电子类课程教学中的常用软件

在众多的电路仿真软件中,Multisim 仿真软件是较为常用的,主要在于其操作方便,且电路的仿真分析能力很强。具体操作中,Multisim 仿真软件可以在Windows基础上配备虚拟测量仪器,将电路原理图输入软件操作平台上,就可以启动仿真软件进行仿真教学了。很多开设电子类课程的学校都逐步引进了Multisim 仿真软件,仿真电路在电脑显示器上清晰地呈现出来,不仅激发了学生的学习兴趣,而且还让学生的实践操作能力得到了训练,大大地提高了电工电子教学效率。

2 Multisim软件简述

Multisim软件是Electronics Workbench(简称:EWB)的升级版。作为仿真设计软件,主要用于电子电路的设计,其仿真功能是非常强大的。目前所普遍使用的Multisim软件为Multisim 12.0,与其他的仿真软件相比,Multisim的功能性更强,在虚拟操作中,软件可以提供电路元器件达几千个,还可以提供各种电路设计中所使用的虚拟仪器,包括信号发生器、万用表以及示波器等等,而且这些电路元件和虚拟仪器的图形与实物具有很高的相似性。操作功能上,Multisim软件可以对所设计的电子电路进行演示,对电子电路的操作情况进行测试,且能够设计所需要类型的电路诸如,数字电路、基础电路、射频电路、微控制器电路、接口电路等等。设计者在进行电路设计的时候,可以将Multisim所提供的虚拟元器件利用起来进行电路设计,并将所选择的各种设备连接起来。电路就通过计算机绘制出来。当电路设计完毕之后,还要对各种元器件的参数进行确定,还要测试元器件的性能指标。从电子类课程教学的角度而言,由于Multisim操作简单,学生在短时间内就可以进行基本操作。由于操作简单且仿真软件所涉及的电路直观性较强,因此而在电子类教学中广泛使用。

3 电工电子试验中电路仿真软件的应用

3.1 学生应用Multisim 软件绘制电路仿真图

电工电子试验教学中,以试验教学为主,将理论教学内容融入到实验教学中,以提高学生的理论应用能力。学生应用Multisim 软件绘制电路仿真图,在计算机上启动Multisim 软件,根据试验内容将实验电路绘制出来之后,选择所需要的虚拟电子元器件配备到电路中,并进行仿真操作和测试,将实验结果记录下来。对电路的仿真测试合格之后,学生课可以利用实物将与虚拟电路相同的实际电路构建起来,对电路进行调试,并将调试结果详细地记录下来。在实验操作总,还要仔细观察实际电路的运行状态,以及所获得的运行结果,采用对比分析法对虚拟电路的方针结果与实物运行中所获得的结果进行比照。由于虚拟仿真电路所连接的元器件以及各种仪器设备都是处于理想运行状态,因而虚拟电路和实际电路的运行结果会存在一定的误差。如果误差范围没有超过规定的范围,这个试验操作所获得的结果就是有效的。在电工电子试验中,采用电路仿真软件进行仿真操作,实现了电子类课程的理论教学与实际教学的有效结合,而且还使试验结果更为清晰,加之学生亲自参与虚拟仿真试验,学生对相关理论知识通过试验得到了验证,不仅可以提高电工电子实验教学的质量,还使学生的学习积极性被激发起来。

3.2 Multisim 软件仿真试验的动态观测

对Multisim 软件仿真试验进行动态观测,以流水灯实验为例。

使用Multisim 软件所设计的电路为自行振荡电路和显示器对各种电路轮流显示。按照规定的设计内容,流水灯电路设计需要使用的器具包括四位二进制计数器、译码器、LM555、发光二极管显示器8个。其中,四位二进制计数器是将74IS163连接成为二进制的计数形式。使用指示灯监测其对74IS163的计数进行检测。将三个指示灯接入到地址控制端,使能端都处于使能状态。输出端所连接的是发光二极管显示器,共8个,都连接在LED显示管的负极上。当进行仿真调试的时候,可以看出三个指示灯都按照三位二进制数进行计数发光。与此同时,还将LED显示管依次点亮。当两边的灯都亮起来的时候,就现实译码器5处于低电平状体的时候,所连接的发光二极管就会亮起来,这就可以证明电路设计是有效的。

4 总结

综上所述,计算机技术的发展,人们的生产生活方式都发生了变化。为了促进教学与实践有效结合,一些学校在电工电子实验教学中使用了电路仿真软件,以使学生可以在实验室模式实验,不仅可以激发学生的学习积极性,还能够激发学生对知识探索的兴趣。Multisim软件是电子类实验教学中的常用工具,由于操作简单,学生能够利用软件自主设计电路,由此而使得学生的操作能力得以增强。

参考文献

[1]吴根忠,李剑清.基于 Multisim的电工学虚拟实验教学[J].实验室科学,2011,14(03):19-21.

[2]姜凤利,朴在林,王义明,等.电工与电子技术课程网络教学研究与实践[J].沈阳农业大学学报(社科版),2013,15(02):196-199.

篇10

【关键词】计算机;仿真技术;多媒体;EWB

Electronics Workbench简称EWB,即电子工作平台,它是一种在电子技术界广为应用的优秀计算机仿真设计软件,被誉为“计算机里的电子实验室”――虚拟电子实验室。

利用EWB可以在计算机上学习模拟电子技术和数字电子技术,并进行电路设计、仿真调试等在实验室完成的实验。只要我们拥有一台计算机加上一套电子仿真软件,我们就相当于拥有了一个设备先进的电子实验室。以虚代实、以软带硬使得电子电路设计变成了一件轻松愉快的事情。

一、EWB的特点

1.具有完整、精确的元件模型

EWB提供了相当广泛的元器件,从无源器件到有源器件,从模拟器件到数字器件,从分立元件到集成电路,应有尽有。EWB不仅提供了各种实际元器件的精确数据和模型参数,而且提供了较宽的选择余地,在设计过程中,学生可以根据需要自己选择元件。

2.具有各种功能强大的电子测量仪器

EWB提供了齐全的虚拟电子测量仪器,包括示波器、函数信号发生器、万用表、频谱仪和逻辑分析仪等,操作起来非常真实和容易。

3.具有专业的原理图输入工具

EWB提供了方便友好的操作界面,学生可以轻松地完成原理图的输入。单击鼠标,可以方便地完成元件的选择;拖动鼠标,可以将元件放在原理图上。另外,EWB具有连线的功能,同时也允许学生调整电路连线和元件的位置。

4.具有强大的分析工具

EWB提供了14种分析工具,利用这些工具,学生不仅可以清楚地了解电路的工作状态,还可以测量电路的稳定性和灵敏度。

5.具有集成化、一体化的设计环境

EWB具有全面集成化的设计环境,在设计环境中可以完成原理图输入、数模混合仿真以及波形图显示等工作。当学生进行仿真时,波形图和原理图同时有效和可视,当改变电路连接或改变元件参数时,显示的波形立刻反映出相应的变化,即可以清楚地观察到具体电路中元件参数的改变对电路性能的影响。

二、计算机仿真技术的作用

1.创新能力的培养

计算机仿真技术可以对学生在学习过程中所提出的各种假设电路进行虚拟,通过虚拟系统可以直观地观察到这一假设所产生的结果或效果。例如在虚拟《电子电路》实验中,学生可以按照自己的假设,将不同的元件组合在一起,计算机便虚拟出组合的电路来。通过这种探索式的学习方式,有利于激发学生的创造性思维,培养学生的创新能力。

2.突破实验室的局限性

随着科学技术的发展以及器件的不断更新,原有的实验仪器和实验器材不能满足教学需要,使实验教学十分不便。由于实验室提供的设备和器件有限,在《电子电路》教学中,往往会因为设备、场地、经费等方面的原因,使一些应该开设的教学实验无法进行。

利用EWB软件,可以弥补这些方面的不足,在计算机上模拟出实验室的环境、仪器设备和元器件,而不受实验室在元器件品种、规格和数量上的限制。与传统实验方式相比较,更能突出实验教学中以学生为中心的开放式实验教学模式,从而提高学生对电路的综合分析能力、设计能力以及创新能力。

三、计算机仿真技术的应用

1.在学习过程中的应用

计算机仿真技术能够为学生提供生动、逼真的学习环境,学生在进行计算机仿真时可以通过软件自由选择学习内容。由于教学内容的真实模拟,学生在学习过程中具有身临其境的感觉。这对调动学生的学习积极性,突破教学的重点、难点,培养学生的技能都将起到积极的作用。

计算机仿真系统在教学中的运用,是教学改革的一个重要途径。在仿真教学中,运用计算机的交互性,进行个性化教学和因材施教,充分发挥学生的创造性和主观能动性,提高教学效果。

2.在实验过程中的应用

笔者曾经组织学生在计算机上用EWB进行电路基础、模拟电路和数字电路实验,效果很好。实验时,在EWB电路设计窗口输入实验电路的电路网络拓扑结构、电路及元件参数。

由于仿真的手段切合实际,选用的元器件以及仪器与实际情形非常相近,绘制的电路图需要的元器件,电路仿真需要的测试仪器均可直接从屏幕上选取,而且仪器的操作开关,按键同实际仪器极为相似,因此学习和使用非常容易。

通过电路仿真,既可以掌握电路的性能,又熟悉仪器的使用方法。学生在仿真实验时能反复地进行从理论到实验,从实验到理论的过程,这一过程有助于学生加深对电子电路的基本原理、分析方法的理解,加强了学生实际分析问题与处理问题的能力,切实做到理论与实际的密切配合,改变了传统实验与理论脱节的局面。

另外,仿真实验能避免真实实验所带来的各种危险。在实际电子电路实验中,学生由于操作或线路连接等方面的错误会导致设备的损坏,甚至对学生造成各种危险。利用计算机仿真技术进行虚拟实验,则可以避免这种顾虑。学生在虚拟实验环境中,可以放心地去做各种危险的实验。

3.在设计过程中的应用

作为虚拟工作的电子工作台,EWB提供了详细的电路分析手段,以帮助学生设计和分析电路的性能。