模拟集成电路原理与设计范文
时间:2023-10-10 17:27:35
导语:如何才能写好一篇模拟集成电路原理与设计,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词:IP技术 模拟集成电路 流程
中图分类号:TP3 文献标识码:A 文章编号:1674-098X(2013)03(b)-00-02
1 模拟集成电路设计的意义
当前以信息技术为代表的高新技术突飞猛进。以信息产业发展水平为主要特征的综合国力竞争日趋激烈,集成电路(IC,Integrated circuit)作为当今信息时代的核心技术产品,其在国民经济建设、国防建设以及人类日常生活的重要性已经不言
而喻。
集成电路技术的发展经历了若干发展阶段。20世纪50年代末发展起来的属小规模集成电路(SSI),集成度仅100个元件;60年展的是中规模集成电路(MSI),集成度为1000个元件;70年代又发展了大规模集成电路,集成度大于1000个元件;70年代末进一步发展了超大规模集成电路(LSI),集成度在105个元件;80年代更进一步发展了特大规模集成电路,集成度比VLSI又提高了一个数量级,达到106个元件以上。这些飞跃主要集中在数字领域。
(1)自然界信号的处理:自然界的产生的信号,至少在宏观上是模拟量。高品质麦克风接收乐队声音时输出电压幅值从几微伏变化到几百微伏。视频照相机中的光电池的电流低达每毫秒几个电子。地震仪传感器产生的输出电压的范围从地球微小振动时的几微伏到强烈地震时的几百毫伏。由于所有这些信号都必须在数字领域进行多方面的处理,所以我们看到,每个这样的系统都要包含一个模一数转换器(AD,C)。
(2)数字通信:由于不同系统产生的二进制数据往往要传输很长的距离。一个高速的二进制数据流在通过一个很长的电缆后,信号会衰减和失真,为了改善通信质量,系统可以输入多电平信号,而不是二进制信号。现代通信系统中广泛采用多电平信号,这样,在发射器中需要数一模转换器(DAC)把组合的二进制数据转换为多电平信号,而在接收器中需要使用模一数转换器(ADC)以确定所传输的电平。
(3)磁盘驱动电子学计算机硬盘中的数据采用磁性原理以二进制形式存储。然而,当数据被磁头读取并转换为电信号时,为了进一步的处理,信号需要被放大、滤波和数字化。
(4)无线接收器:射频接收器的天线接收到的信号,其幅度只有几微伏,而中心频率达到几GHz。此外,信号伴随很大的干扰,因此接收器在放大低电平信号时必须具有极小噪声、工作在高频并能抑制大的有害分量。这些都对模拟设计有很大的挑战性。
(5)传感器:机械的、电的和光学的传感器在我们的生活中起着重要的作用。例如,视频照相机装有一个光敏二极管阵列,以将像点转换为电流;超声系统使用声音传感器产生一个与超声波形幅度成一定比例的电压。放大、滤波和A/D转换在这些应用中都是基本的功能。
(6)微处理器和存储器:大量模拟电路设计专家参与了现代的微处理器和存储器的设计。许多涉及到大规模芯片内部或不同芯片之间的数据和时钟的分布和时序的问题要求将高速信号作为模拟波形处理。而且芯片上信号间和电源间互连中的非理想性以及封装寄生参数要求对模拟电路设计有一个完整的理解。半导体存储器广泛使用的高速/读出放大器0也不可避免地要涉及到许多模拟技术。因此人们经常说高速数字电路设计实际上是模拟电路的
设计。
2 模拟集成电路设计流程概念
在集成电路工艺发展和市场需求的推动下,系统芯片SOC和IP技术越来越成为IC业界广泛关注的焦点。随着集成技术的不断发展和集成度的迅速提高,集成电路芯片的设计工作越来越复杂,因而急需在设计方法和设计工具这两方面有一个大的变革,这就是人们经常谈论的设计革命。各种计算机辅助工具及设计方法学的诞生正是为了适应这样的要求。
一方面,面市时间的压力和新的工艺技术的发展允许更高的集成度,使得设计向更高的抽象层次发展,只有这样才能解决设计复杂度越来越高的问题。数字集成电路的发展证明了这一点:它很快的从基于单元的设计发展到基于模块、IP和IP复用的
设计。
另一方面,工艺尺寸的缩短使得设计向相反的方向发展:由于物理效应对电路的影响越来越大,这就要求在设计中考虑更低层次的细节问题。器件数目的增多、信号完整性、电子迁移和功耗分析等问题的出现使得设计日益复杂。
3 模拟集成电路设计流程
3.1 模拟集成电路设计系统环境
集成电路的设计由于必须通过计算机辅助完成整个过程,所以对软件和硬件配置都有较高的要求。
(1)模拟集成电路设计EDA工具种类及其举例
设计资料库―Cadence Design Framework11
电路编辑软件―Text editor/Schematic editor
电路模拟软件―Spectre,HSPICE,Nanosim
版图编辑软件―Cadence virtuoso,Laker
物理验证软件―Diva,Dracula,Calibre,Hercules
(2)系统环境
工作站环境;Unix-Based作业系统;由于EDA软件的运行和数据的保存需要稳定的计算机环境,所以集成电路的设计通常采用Unix-Based的作业系统,如图1所示的工作站系统。现在的集成电路设计都是团队协作完成的,甚至工程师们在不同的地点进行远程协作设计。EDA软件、工作站系统的资源合理配置和数据库的有效管理将是集成电路设计得以完成的重要保障。
3.2 模拟集成电路设计流程概述
根据处理信号类型的不同,集成电路一般可以分为数字电路、模拟电路和数模混合集成电路,它们的设计方法和设计流程是不同的,在这部分和以后的章节中我们将着重讲述模拟集成电路的设计方法和流程。模拟集成电路设计是一种创造性的过程,它通过电路来实现设计目标,与电路分析刚好相反。电路的分析是一个由电路作为起点去发现其特性的过程。电路的综合或者设计则是从一套期望的性能参数开始去寻找一个令人满意的电路,对于一个设计问题,解决方案可能不是唯一的,这样就给予了设计者去创造的机会。
模拟集成电路设计包括若干个阶段,设计模拟集成电路一般的过程。
(l)系统规格定义;(2)电路设计;(3)电路模拟;(4)版图实现;(5)物理验证;(6)参数提取后仿真;(7)可靠性分析;(8)芯片制造;(9)测试。
除了制造阶段外,设计师应对其余各阶段负责。设计流程从一个设计构思开始,明确设计要求和进行综合设计。为了确认设计的正确性,设计师要应用模拟方法评估电路的性能。
这时可能要根据模拟结果对电路作进一步改进,反复进行综合和模拟。一旦电路性能的模拟结果能满足设计要求就进行另一个主要设计工作―电路的几何描述(版图设计)。版图完成并经过物理验证后需要将布局、布线形成的寄生效应考虑进去再次进行计算机模拟。如果模拟结果也满足设计要求就可以进行制造了。
3.3 模拟集成电路设计流程分述
(1)系统规格定义
这个阶段系统工程师把整个系统和其子系统看成是一个个只有输入输出关系的/黑盒子,不仅要对其中每一个进行功能定义,而且还要提出时序、功耗、面积、信噪比等性能参数的范围要求。
(2)电路设计
根据设计要求,首先要选择合适的工艺制程;然后合理的构架系统,例如并行的还是串行的,差分的还是单端的;依照架构来决定元件的组合,例如,电流镜类型还是补偿类型;根据交、直流参数决定晶体管工作偏置点和晶体管大小;依环境估计负载形态和负载值。由于模拟集成电路的复杂性和变化的多样性,目前还没有EDA厂商能够提供完全解决模拟集成电路设计自动化的工具,此环节基本上通过手工计算来完成的。
(3)电路模拟
设计工程师必须确认设计是正确的,为此要基于晶体管模型,借助EDA工具进行电路性能的评估,分析。在这个阶段要依据电路仿真结果来修改晶体管参数;依制程参数的变异来确定电路工作的区间和限制;验证环境因素的变化对电路性能的影响;最后还要通过仿真结果指导下一步的版图实现,例如,版图对称性要求,电源线的宽度。
(4)版图实现
电路的设计及模拟决定电路的组成及相关参数,但并不能直接送往晶圆代工厂进行制作。设计工程师需提供集成电路的物理几何描述称为版图。这个环节就是要把设计的电路转换为图形描述格式。模拟集成电路通常是以全定制方法进行手工的版图设计。在设计过程中需要考虑设计规则、匹配性、噪声、串扰、寄生效应、防门锁等对电路性能和可制造性的影响。虽然现在出现了许多高级的全定制辅助设计方法,仍然无法保证手工设计对版图布局和各种效应的考虑全面性。
(5)物理验证
版图的设计是否满足晶圆代工厂的制造可靠性需求?从电路转换到版图是否引入了新的错误?物理验证阶段将通过设计规则检查(DRC,Design Rule Cheek)和版图网表与电路原理图的比对(VLS,Layout Versus schematic)解决上述的两类验证问题。几何规则检查用于保证版图在工艺上的可实现性。它以给定的设计规则为标准,对最小线宽、最小图形间距、孔尺寸、栅和源漏区的最小交叠面积等工艺限制进行检查。版图网表与电路原理图的比对用来保证版图的设计与其电路设计的匹配。VLS工具从版图中提取包含电气连接属性和尺寸大小的电路网表,然后与原理图得到的网表进行比较,检查两者是否一致。
参考文献
篇2
集成电路作为关系国民经济和社会发展全局的基础性和先导性产业,是现代电子信息科技的核心技术,是国家综合实力的重要标志。鉴于我国集成电路市场持续快速的增长,对集成电路设计领域的人员需求也日益增加。集成电路是知识密集型的高技术产业,但人才缺失的问题是影响集成电路产业发展的主要问题之一。据统计,2012年我国对集成电路设计人才的需求是30万人 [1-2]。为加大集成电路专业人才的培养力度,更好地满足集成电路产业的人才需求,2003年教育部实施了“国家集成电路人才培养基地”计划,同时增设了“集成电路设计和集成系统”的本科专业,很多高校都相继开设了相关专业,大力培养集成电路领域高水平的骨干专业技术人才[3]。
黑龙江大学的集成电路设计与集成系统专业自2005年成立以来,从本科教学体系的建立、本科教学内容的制定与实施、师资力量的培养与发展等方面进行不断的探索与完善。本文将结合多年集成电路设计与集成系统专业的本科教学实践经验,以及对相关院校集成电路设计专业本科教学的多方面调研,针对黑龙江大学该专业的本科教学现状进行分析和研究探索,以期提高本科教学水平,切实做好本科专业人才的培养工作。
一、完善课程设置
合理设置课程体系和课程内容,是提高人才培养水平的关键。2009年,黑龙江大学集成电路设计与集成系统专业制定了该专业的课程体系,经过这几年教学工作的开展与施行,发现仍存在一些不足之处,于是在2014年黑龙江大学开展的教学计划及人才培养方案的修订工作中进行了再次的改进和完善。
首先,在课程设置与课时安排上进行适当的调整。对于部分课程调整其所开设的学期及课时安排,不同课程中内容重叠的章节或相关性较大的部分可进行适当删减或融合。如:在原来的课程设置中,“数字集成电路设计”课程与“CMOS模拟集成电路设计”课程分别设置在教学第六学期和第七学期。由于“数字集成电路设计”课程中是以门级电路设计为基础,所以学生在未进行模拟集成电路课程的讲授前,对于各种元器件的基本结构、特性、工作原理、基本参数、工艺和版图等这些基础知识都是一知半解,因此对门级电路的整体设计分析难以理解和掌握,会影响学生的学习热情及教学效果;而若在“数字集成电路设计”课程中添加入相关知识,与“CMOS模拟集成电路设计”课程中本应有的器件、工艺和版图的相关内容又会出现重叠。在调整后的课程设置中,先开设了“CMOS模拟集成电路设计”课程,将器件、工艺和版图的基础知识首先进行讲授,令学生对于各器件在电路中所起的作用及特性能够熟悉了解;在随后“数字集成电路设计”课程的学习中,对于应用各器件进行电路构建时会更加得心应手,达到较好的教学效果,同时也避免了内容重复讲授的问题。此外,这样的课程设置安排,将有利于本科生在“大学生集成电路设计大赛”的参与和竞争,避免因学期课程的设置问题,导致学生还未深入地接触学习相关的理论课程及实验课程,从而出现理论知识储备不足、实践操作不熟练等种种情况,致使影响到参赛过程的发挥。调整课程安排后,本科生通过秋季学期中基础理论知识的学习以及实践操作能力的锻炼,在参与春季大赛时能够确保拥有足够的理论知识和实践经验,具有较充足的参赛准备,通过团队合作较好地完成大赛的各项环节,赢取良好赛果,为学校、学院及个人争得荣誉,收获宝贵的参赛经验。
其次,适当降低理论课难度,将教学重点放在掌握集成电路设计及分析方法上,而不是让复杂烦琐的公式推导削弱了学生的学习兴趣,让学生能够较好地理解和掌握集成电路设计的方法和流程。
第三,在选择优秀国内外教材进行教学的同时,从科研前沿、新兴产品及技术、行业需求等方面提取教学内容,激发学生的学习兴趣,实时了解前沿动态,使学生能够积极主动地学习。
二、变革教学理念与模式
CDIO(构思、设计、实施、运行)理念,是目前国内外各高校开始提出的新型教育理念,将工程创新教育结合课程教学模式,旨在缓解高校人才培养模式与企业人才需求的冲突[4]。
在实际教学过程中,结合黑龙江大学集成电路设计与集成系统专业的“数模混合集成电路设计”课程,基于“逐次逼近型模数转换器(SAR ADC)”的课题项目开展教学内容,将各个独立分散的模拟或数字电路模块的设计进行有机串联,使之成为具有连贯性的课题实践内容。在教学周期内,以学生为主体、教师为引导的教学模式,令学生“做中学”,让学生有目的地将理论切实应用于实践中,完成“构思、设计、实践和验证”的整体流程,使学生系统地掌握集成电路全定制方案的具体实施方法及设计操作流程。同时,通过以小组为单位,进行团队合作,在组内或组间的相互交流与学习中,相互促进提高,培养学生善于思考、发现问题及解决问题的能力,锻炼学生团队工作的能力及创新能力,并可以通过对新结构、新想法进行不同程度奖励加分的形式以激发学生的积极性和创新力。此外,该门课程的考核形式也不同,不是通过以往的试卷笔试形式来确定学生得分,而是以毕业论文的撰写要求,令每一组提供一份完整翔实的数据报告,锻炼学生撰写论文、数据整理的能力,为接下来学期中的毕业设计打下一定的基础。而对于教师的要求,不仅要有扎实的理论基础还应具备丰富的实践经验,因此青年教师要不断提高专业能力和素质。可通过参加研讨会、专业讲座、企业实习、项目合作等途径分享和学习实践经验,同时还应定期邀请校外专家或专业工程师进行集成电路方面的专业座谈、学术交流、技术培训等,进行教学及实践的指导。
三、加强EDA实践教学
首先,根据企业的技术需求,引进目前使用的主流EDA工具软件,让学生在就业前就可以熟练掌握应用,将工程实际和实验教学紧密联系,积累经验的同时增加学生就业及继续深造的机会,为今后竞争打下良好的基础。2009―2015年,黑龙江大学先后引进数字集成电路设计平台Xilinx和FPGA实验箱、华大九天开发的全定制集成电路EDA设计工具Aether以及Synopsys公司的EDA设计工具等,最大可能地满足在校本科生和研究生的学习和科研。而面对目前学生人数众多但实验教学资源相对不足的情况,如果可以借助黑龙江大学的校园网进行网络集成电路设计平台的搭建,实现远程登录,则在一定程度上可以满足学生在课后进行自主学习的需要[5]。
其次,根据企业岗位的需求可合理安排EDA实践教学内容,适当增加实践课程的学时。如通过运算放大器、差分放大器、采样电路、比较器电路、DAC、逻辑门电路、有限状态机、分频器、数显键盘控制等各种类型电路模块的设计和仿真分析,令学生掌握数字、模拟、数模混合集成电路的设计方法及流程,在了解企业对于数字、模拟、数模混合集成电路设计以及版图设计等岗位要求的基础上,有针对性地进行模块课程的学习与实践操作的锻炼,使学生对于相关的EDA实践内容真正融会贯通,为今后就业做好充足的准备。
第三,根据集成电路设计本科理论课程的教学内容,以各应用软件为基础,结合多媒体的教学方法,选取结合于理论课程内容的实例,制定和编写相应内容的实验课件及操作流程手册,如黑龙江大学的“CMOS模拟集成电路设计”和“数字集成电路设计”课程,都已制定了比较详尽的实践手册及实验内容课件;通过网络平台,使学生能够更加方便地分享教学资源并充分利用资源随时随地地学习。
四、搭建校企合作平台
篇3
关键词:功率MOSFET;线性高压;运算放大器;功率驱动
中图分类号:TN722.7文献标识码:B
文章编号:1004-373X(2010)02-010-02
Design of Linear High Voltage Amplifier Based on Power MOSFET
ZHANG Hao1,WANG Lixin1,LU Jiang1,LIU Su2
(1.The Institute of Microelectronics,Chinese Academiy of Sciences,Beijing,100029,China;
2.School of Physical Science and Technology,Lanzhou University,Lanzhou,730000,China)
Abstract:In order to achieve the linear control of high_voltage output in operational amplifier,based on the electrical properties of power MOSFET,a high_voltage operational amplifier is designed with new structure with power NMOS.Through simulation and experimental results,the linear output voltage is 0~50 V can be achieved,when the range of the input voltage is 0~5 V.And with the further improvement by utilizing power PMOS,the output voltage is -140~+140 V can be acquired,which indicates the high linearity,and with low cost,the needs of high voltage operational amplifier can be met.There is significance in the high power driving of modern communication.
Keywords:power MOSFET;linear high voltage;operational amplifier;power drive
0 引 言
高电压放大器已经广泛应用于通信、信号检测、功率驱动等方面\,并且已成为下一代无线通信系统的关键技术之一。采用各种手段和方法实现放大器高效率且高线性度的工作,对于未来无线移动通信技术的发展和实现有着十分重大的实际意义。
功率场效应晶体管具有跨导高,漏极电流大,工作频率高和速度快等特点,线性放大的动态范围大,在有较大的输出功率时也能有较高的线性增益。这里成功应用功率场效应晶体管设计出一种高压运算放大器。该放大器的制作成本低廉,输出线性可控,适用范围广。
1 功率MOS器件结构与分析
功率MOS场效应晶体管是在MOS集成电路工艺基础上发展起来的新一代电力开关器件,具有输入阻抗高,驱动电路简单,安全工作区宽等优点\。图1给出功率MOS晶体管的结构剖面图及其电学特性曲线。采用双扩散结构\制作适合用作功率器件的短沟道高压晶体管,需要短的重掺杂背栅和宽的轻掺杂漂移区。由于外延层厚度决定了漂移区的宽度,因此也决定了晶体管的工作电压,其漏源电压公式为\:
VDS=(RJEFT+RACC+RFP)IMOS+Vf(1)
式中:RJFET为结型场效应管电阻;RACC为N-层表面电子积累层电阻;RFP为外延层电阻;IMOS为反型沟道电流;Vf为沟道压降。
图1 功率MOS结构图及电学特性
2 电路设计
高压运算放大器电路主要由运算放大器和功率场效应晶体管组成\,其结构原理图如图2所示。
图2 高压运算放大器电路图
所设计的电路中使用价格低廉的运放LM358和NMOS功率管IRF630构成负反馈回路\,双极晶体管C8050和电阻R4实现过载保护\,防止流过IRF630的电流过大,整个电路为反比例放大电路,R2为反馈电阻,其输入和输出的关系式为:
Vout=-(VinR2)/R1(2)
3 实验结果及分析
根据图2制作试验电路板如图3所示。供应电压为60 V,R11.963 kΩ,R220 kΩ,放大倍数约为10.19。当输入电压为0~5 V时,先用EDA软件对电路进行模拟仿真,然后对电路板进行测量,并进行比较,结果如表1所示。
图3 实验电路板
表1 输出电压的模拟结果与测量结果V
输入电压值仿真输出测量输出输入电压值仿真输出测量输出
0- 0.18- 1.52.5 -25.51-26.4
0.1 - 1.05- 2.13.0 -30.60-31.6
0.5 - 5.13- 6.23.5 -35.69-36.7
1.0 -10.22-10.94.0 -40.79-41.8
1.5 -15.32-16.14.5 -45.88-47.5
2.0 -20.41-21.35.0 -50.98-52.8
由表1可画出输入/输出关系变化图形,如图4所示。从表1和图4中可以看出,模拟结果和测量结果存在误差,误差ε=-1.095,这是因为测量精度和器件自身精度的误差所引起的。当输入电压从0 V扫描到5 V时,得到等比例的放大输出电压,且呈线性变化,能够实现输入电压对输出电压的线性控制,具有很好的驱动能力。
图4 电路输入/输出变化图
根据以上分析,用PMOS功率管进一步改进电路,和用NMOS管构成一种推挽结构\的输出电路,可以满足输入正负电压的要求,如图5所示。若选用耐压350 V的NMOS功率管IRF713和耐压300 V的PMOS功率管IRF9631,以及晶体管Q1,Q2和电阻R4,R5构成过载保护电路,则选取R2=280 kΩ,R1=10 kΩ,对电路进行仿真,输入电压范围是-5~+5 V。当输入电压为负压时,PMOS管导通,NMOS管截止,输出为正电压;当输入电压为正压时,NMOS管导通,PMOS管截止,输出为负电压。输入/输出的线性关系如图6所示,电压输出为+140~-140 V,可实现高压的双极性线性等比例放大输出。
图5 改进的线性高压运算放大器
图6 输入/输出线性关系图
4 结 语
利用功率场效应晶体管的电学特性,并运用反馈运放的基本原理成功设计了高压运算放大器。实验结果和模拟结果验证了所设计的电路输出电压线性度高,能够对高压进行有效的线性控制。选择耐压高的功率管,可以实现更高电压的线性输出,达到高压驱动的要求,电路结构简单,制作成本低,可以满足不同领域的要求,且具有很高的实用价值。
参考文献
[1]Ting J W,Peng W P,Chang H C.High Voltage Amplifier\.IEEE Nuclear Science Symposium Conference Record\.2003(2):1 247_1 249.
[2]陈星弼.功率MOSFET与高压集成电路\.南京:东南大学出版社,1990.
[3]Liu Sanqing,Cao Guangjun,Ying Jianhua,et al.Design of Double Diffused Structure Power ICs\.IEEE Semiconductor Conference\.1995:363_365.
[4]弓小武,高玉民,罗晋生.IGBT和VDMOS解析模型和模拟\.电力电子技术,1996,30(3):94_96.
[5]王英,何杞鑫,方绍华.高压功率VDMOS 管的设计研制\.电子器件,2006,29(1):5_8.
[6]钟清华,黄伟强,李子升.基于线性电源的高压放大器\.现代电子技术,2004,27(15):6_7.
[7]童诗白,华成英.模拟集成电路设计\.北京:高等教育出版社,2000.
[8]Paul R Gary,Paul J Hurst,Stephen H Lewis.模拟集成电路的分析与设计\.4版.张晓林,译.北京:高等教育出版社,2002.
[9]朱正涌.半导体集成电路\.北京:清华大学出版社,2001.
[10]谢书珊.功率集成电路技术的进展\.电力电子,2005,3(1):4_10.
篇4
【关键词】带隙比较器;温度高阶补偿;正反馈;迟滞
1.引言
随着集成电路技术的发展,电池供电的便携式电子产品得到了广泛的应用,其对电源控制芯片的稳定性、开关频率、功耗等方面的要求也越来越高,以保证其在带能源电压波动的情况下能安全可靠的工作。
电源芯片在上电启动时,电源会通过输入端的等效电阻和电容对其充电,直至电压上升到所设计的开启电压时电路开始工作。开启瞬间,若系统负载电流较大,有可能把电路两端的电压拉到开启电压以下,出现一启动就关断的情况。为保证电路启动后能进入正常工作状态并稳定工作,也为了保证电路工作时电源电压的波动不会对整个电路和系统造成损害,通常需使用欠压锁定电路(Under Voltage Lock Out,UVLO),对电源电压进行监控和锁定。当电源电压低于设定值时,欠压锁存电路关断芯片中的其他模块,防止系统崩溃。这已成为现代电源芯片设计的一个趋势。然而许多用于电源控制芯片的欠压锁定电路需要基准电压源和比较器,使电路比较复杂且增加了功耗,启动电流较大,响应速度不够快,不利于有效地实现芯片保护功能[1]。
针对传统UVLO的不足,许多文献提出了不需要额外基准电压源和额外比较器的UVLO[1-4]。其中,文献[1,2,3]采用了带隙比较器电路,实现了电路简单、系统响应速度快以及温漂小等优点的UVLO。本文在延续带隙比较器的基础上,引入比较器的正反馈机制和带隙电压的温度高阶补偿,从而实现了响应速度更快、温度特性更好的UVLO。
2.欠压锁定电路工作原理
欠压锁定电路的基本原理如图1所示,电路包括采样电路、比较器、输出缓冲器和反馈回路。VDD为待检测的电源电压,电阻R1,R2,R3组成对VDD的采样电路,实现对VDD的采样;MOS管N1,N2,P1和P2构成比较器电路,对采样电压与基准电压进行比较,并输出比较结果;反相器INV为逻辑校正和缓冲电路,可对比较器的输出波形进行整形和缓冲,并提高电路的负载能力;PMOS开关管P3构成正反馈回路,可实现电路的迟滞功能,防止电路在阈值附近震荡,提高了系统的稳定性。调整电阻R1,R2,R3和比较电压VREF的大小可实现不同的阈值点和迟滞量的VDD欠压保护功能。
如图1所示的传统欠压锁定电路,虽然电路结构简单,但响应速度跟不上,功耗也较大,更重要的是这种电路需要带隙基准参考电压源和额外比较器,使得电路庞大而成本较高。
因此,本文提出一种基于CSMC 0.5um BCD工艺的UVLO电路,在不使用额外基准电压源和比较器以及复杂数字逻辑的情况下,进一步引入正反馈机制和温度高阶补偿,可实现电路结构简单、高反应速度、低温度敏感性和精准的门限电压。同时,占用版图面积小、功耗较低。
3.改进的欠压锁定电路
针对UVLO电路须具备反应速度灵敏、门限电压稳定,迟滞区间合理,温度漂移较低等特点,改进的欠压锁定电路如图2所示。
晶体管Q1和Q2以及电阻RP和Rnwell利用了带隙基准原理组成的比较器,有些文献也把这种比较器称为带隙基准比较器[5]。文献[2]给出了该比较器结构,但其带隙电压只有一阶温度补偿,所以其温度特性还不够好。MOS管P1,P2为有源负载,P1,P2,P3,P4和Q3,Q4构成镜像管,P5,P6对镜像电流引入正反馈机制,可使比较器的灵敏度增强。R1,R2,R3,R4和P8构成分压网络。P7,N1,Q5对比较器输出进行波形整形,使其有更快的响应速度。反相器INV1,INV2为缓冲器,对输出结果进行缓冲和波形整形。其中,电阻RP、Rnwell,P8,P5,P6以及P7,N1,Q5的作用下面将详细介绍。
3.1 带隙电压的温度高阶补偿
首先带隙比较器的比较电压为带隙电压,即实现的是采样电压与带隙比较器产生的带隙电压VBGR的比较。由于采样电路由电阻分压网络构成,而分压网络的电阻采用同一温度系数的电阻构成,所以采样电压应该与电源电压VCC成比例,而与温度无关。所以要使UVLO有温漂小,门限电压稳定,就应使带隙比较器产生的带隙电压具有低的温度敏感性。
根据文献[6],带隙电压可写为:
(1)
而且双极性三极管的基极-射极电压VBE可写为:
(2)
两个不同温度系数的电阻比值可写为:
(3)
由于(3)式中K1、K2、T0、R1(T0)和R2(T0)都为常数,所以(3)式也可以写为:
(4)
根据文献[6],不同材料电阻的温度系数正负差异越大,曲率补偿效果就越好。由于基极-射极电压VBE为负温系数,所以R2/R1要为正温系数。所以电阻R2的温度系数要大于R1的温度系数。在CSMC 0.5uM BCD工艺中,高阻多晶电阻和低压N阱电阻的温度系数分别为-3047 ppm/℃和+5025 ppm/℃,故采用这两种电阻来设计,理论上能够实现效果较好的曲率补偿。
把(4)式,(2)式代入(1)式,可得:
(5)
由于带隙电压VBGR是由一正温系数的多项式加上一负温系数的多项式,进而使得VBGR温度特性的多项式的系数被减弱或抵消,所以从理论上讲,我们可以通过不断调整多项式的系数,来实现更好的温度补偿,由于温度的低次项比高次项影响较大,所以可以在保证室温下一阶温度系数为零的情况,进行系数的调整,实现带隙电压更好的温度特性曲线。该过程可用matlab等数学软件或spectre等电路仿真软件来模拟。
至此,实现了UVLO的低温度敏感性和阈值电压稳定性,所以,只要再对UVLO的响应速度进行提速,就能得到响应速度灵敏、门限电压稳定,迟滞区间合理,温度漂移较低等特点的UVLO。
3.2 改进的UVLO工作原理分析
许多文献已经对带隙比较器进行了定量分析,这里就不再赘述,具体可参考文献[2],比较文献[2]所提出的UVLO电路结构和本文所提出的电路结构,发现两种电路工作原理是一样的,本文只是在文献[2]比较器基础上,引入正反馈机制,使比较器有更高的响应速度。所以工作原理相同之处也不再赘述,这里只对正反馈机制进行分析。
假设流过P3管的电流为I1,流过P4管的电流为I2,其中,P3,P4,P5和P6的宽长比为W/L,而P1,P2的宽长比为2(W/L)。由图2可得:
(6)
(7)
(6)式减(7)式,可得:
(8)
下面分析VCC由低逐渐上升时三种情况的正反馈机制的作用。
(1)当VCC低于正常工作电压时,由文献[2]可知,IC1>IC2.由(8)式有,I1>I2,从而实现了对较小的电流IC2通过正反馈管P6注入一较大的电流I1,对较大的电流IC1通过正反馈管P5注入一较小的电流I2,进而实现I1的进一步增大,I2的进一步减小。再通过Q3,Q4镜像管,使得Q5更快关断,P7更快导通。从而实现快速输出高电平。此时,反馈开关管P9关断,采样电压Vsense为:
(9)
(2)当VCC进一步上升到接近或等于阈值点Von时,IC1=IC2,从而I1=I2。此时,流过P4管的电流I2与流过Q4管的电流I1相等。由于Q3,Q4构成镜像电流镜,只要VCE4不等于VCE3,双极性晶体管的基区宽度调制效应就会起作用,使得VCE4=VCE3=VBE,所以只要调整好VBIAS电位,使得此时,VOUT为VCC/2。再设置反相器INV1中NMOS管的宽长比大于PMOS管,则后级可实现较好的逻辑电平。
(3)当VCC上升到大于阈值点VON时,IC1<IC2.由(8)式有,I1<I2,从而实现了对较小的电流IC1通过正反馈管P6注入一较大的电流I2,对较大的电流IC2通过正反馈管P5注入一较小的电流I1,进而实现I2的增量进一步增大,I1的增量进一步减小。再通过Q3,Q4镜像管,使得Q5更快导通,P7更快关断。从而实现快速输出低电平。此时,反馈开关管P9导通,采样电压Vsense为:
(10)
由(10)式可知,反馈开关管P9导通,使得Vsense进一步增大,从而避免了电源电压波动导致UVLO输出震荡,提高了系统的稳定性。
由上面分析可得,(9)式所对应的VCC应该为UVLO的开启电压Von,而(10)式所对应的VCC应该为欠压关断电压Voff。从而可得:
(11)
(12)
那么,UVLO的迟滞区间为:
(13)
4.电路仿真与分析
用spectre电路仿真软件,在CSMC 0.5um BCD工艺库下对UVLO电路进行仿真。上述分析可知,要使UVLO有很好的温度特性,则带隙电压的温度特性尤其重要,图3显示了带隙比较器产生的带隙电压的温度特性。结果表明,带隙电压为1.183V,且在-60~160℃的温度范围内,温度系数为11.1ppm/℃。
为确保UVLO迟滞区间的温度特性,在此,对UVLO在不同温度下进行仿真,尽可能把迟滞区间的误差缩小到最小范围内,以满足应用要求。表1是对本文设计的UVLO电路在-60℃,25℃,100℃,160℃下的仿真结果。从表1可得,在25℃时,迟滞区间为1.56V。其他温度下,最大偏差也不超过0.12V。可见,该UVLO可在宽温度范围内工作而不失精度。
由以上正反馈机制分析,UVLO电平翻转与镜像电流源电流I1,I2的变化速度快慢密切相关,所以对I1,I2,VCC,UVLO进行瞬态仿真。从仿真结果如图3所示,在16.5us前,I1>I2.UVLO曲线与电源VCC重合,即输出高电平。在16.5us(VCC=12.2V)时,I2迅速增大,I1迅速减小为零,UVLO输出低电平,即VCC大于12.2V时,系统摆脱欠压状态。在40us(VCC=10.6V)时,I1迅速增大,I2迅速减小为零,UVLO输出与VCC重合,即输出高电平,表明系统又进入欠压状态。
5.总结
本文在对基于带隙基准比较器结构的UVLO进行分析得到,要使UVLO有更低的温度灵敏度,就要设计更低温度特性的带隙基准产生电路,从而对带隙比较器引入高阶温度补偿,进而得到在-60~160℃的温度范围内,UVLO的迟滞区间为1.56V,且其最大偏差仅为0.12V。另外,为了让UVLO有更快的转换速率,在比较器电路中,引入了正反馈机制,从而使比较器镜像电流的快速增大和快速减小,进而实现UVLO输出电平迅速、稳定的转换。
参考文献
[1]王瑾,田泽等.一种改进的BiCMOS工艺欠压锁定电路的设计[J].现代电子技术,2007,24(65):
182-184.
[2]王伟,李富华.基于0.5um BCD工艺的欠压锁存电路设计[J].现代电子技术,2009,32(20):7-10.
[3]王锐,唐婷婷.一种BiCMOS欠压保护电路的设计[J],电子科技,2006,10(21):76-78.
[4]孙令荣,曾子玉.一种高速低压低静态功耗欠压锁定电路[J].电子技术应用,2007,33(1):46-48.
[5]吴晓波,张永良,章丹艳.基于BCD工艺的单片热插拔控制集成电路设计[J].半导体学报,2006,
5(27):948-954.
[6]杨鹏,吴志明,吕坚,蒋亚东.一种二阶补偿的低压CMOS带隙基准电压源[J].微电子学,2007,
37(6):891-898.
作者简介:
余清华(1987—),男,福建宁化人,硕士研究生,主要研究方向:模拟集成电路设计。
篇5
关键词:集成电路,移相电路元件参数发生变化,扭环形计数器,专用可控硅移相KJ004集成电路,单一移电路,快速同步压控振荡器
1.关于新型专用移相器件和触发器件的研发
即使目前有些科研单位及厂家研制出专用移相集成电路,使得三相桥式触发电路更简单,可靠性高大为提高。
如20多年前,西安交通大学自动化教研室曾经使用过的KJ系列专用触发集成电路是陕西航空部一间分公司在出品的,由KJ系列专用触发移相集成电路和六路双脉冲形成电路组成的三相桥式触发电路,使原来由普通公立元件组成的六块触发电路板比较来说已显得简单很多了,这种电路在脉冲输出端加功率扩展可以触发较大功率的可控硅。
这种由KJ004及KJ041组成的触发电路仍需要三块KJ004移相集成电路和三套电压过零采样变压器及其相关电路组成,这样必需存在三套电压过零采样变压器及其相关电路和三套移相电路。移相电路均由RC元件组成,每个移相电路由一个电阻和一个电容器组成RC时间常数电路,存在三个移相电路,即起码有六个RC元件及三块KJ004移相集成块,这样难免由六个RC元件参数变化及多块集成电路参数不一致性而引起三个移相电路存在不同的相位的差异,也同样会造成三相电压波头不平;采用三套电压过零采样变压器及其相关电路组成,其中一套电压过零采样变压器及其相关电路出故障,造成更大的输出电压波头不平,出现上面已讲过的故障原因。
2.国内企业应用经验
在20年前,己有行家想到这一问题,为了避免采用三套电压过零采样变压器及其相关电路和三套移相电路,曾经使用KC05组成的单一套电压过零采样变压器及其相关电路和单一移相电路。
例如以A相作为电压过零采样基准,KC05便得到+A、-A两脉冲,采用以A相作为同步电压作基准,通过延时电路得到其他两相的脉冲,根据相序关系,-C滞后+A 60度,+B滞后+A 120度,+C滞后-A 60度,-B滞后-A120度,则60度相当于3.33ms,而120度相当于6.67ms,通过延时3.33ms及6.67ms得到B相和C相的脉冲,作为移相触发电路,可见此办法可行,但是要存在四套延时电路,这四套延时电路偏偏与B相和C相的移相有关,由于延时元件参数存在物理的差异及使用时间长了所产生的变值,也同样会造成三相电压波头不平,又可见没有真正解决存在问题。
3.本文采用单电压过零采样及单个移相电路的构思与实现
本文主要介绍如何实现及克服前面所述各种电路结构存在的问题,这里一举改变传统的做法,将前面陈述过的使用三组移相电路组成的三相桥式SCR触发电路的传统模式去掉,试图只采用A相作为单电压过零采样作基准、一块专用的可控硅移相KJ004集成电路、一块KJ041六路双脉冲电路及模拟集成电路和数字集成电路组成的三相桥式的一种新型的可控硅触发电路。
3.1电路组成见图1。
图1
电路结构将由一块而不再是三块KJ004移相集成电路和一块KJ041六路双脉冲集成电路及四块数字逻辑电路的CD4013双D触发器、二块CD4023三输入三与非门逻辑电路、一块带缓冲器的六反相CD4069集成电路、一块CD4070二输四异或门电路、一块双运放LM741线性集成电路、一块CD4029可预置十进制/十六进制可逆计算器和由九个线性电阻所组成的D/A转换电路由一块CD4029可预置十进制/十六进制可逆计算器和线性电阻所组成的D/A转换电路及一块VCO压控振荡等组成新的三相桥式SCR触发电路,这种电路几乎全数字化。各集成电路的详细的工作原理在这里不作介绍。
3.2这种电路的特点及优点
(1)本电路特点是只用单个电压过零采样变压器及其相关元件,并以A相电压过零采样作为基准,B相和C相脉冲通过逻辑电路分配而获得,在电路原理说明中再表述。避免了传统的采用三个电压过零采样变压器及其相关元件所组成的电压过零采样电路,传统的采用三个电压过零采样变压器及其相关元件中一个电压过零采样变压器及其相关元件的参数差异和变化所造成输出电压波头不平的缺点。
(2)本电路又一特点是用一块专用的可控硅移相KJ004集成电路,与由三块KJ004组成的移相电路相比,电路显待简单得多及可靠得多,并解决了传统、典型的三相桥式触发电路由六个RC元件参数变化及多块集成电路参数不一致性而引起三个移相电路存在不同的相位的差异所造成三相电压波头不平;移相电路只采用一块而不再是三块移相集成电路,故影响相位变化的元件只有两个RC元件及只有一块移相集成的变化,当它们发生参数变时,则三相电压波头都同时变化,不会出现波头不平的现象。
(3)用数字集成电路、模拟集成电路等组成A相、B相和C相的可控硅元件的触发脉冲,A相、B相、C相脉冲通过逻辑电路分配而获得,也是这一电路特点之一,其原理在电路原理说明中再表述。
(4)本电路再一特点是用一块KJ041六路双脉冲电路,这种电路做在一块电路板上,由于使用的是集成电路,分立元件少,外接线口十分少,故事故发生率也少,特别与分立元件所组成的触发电路比较来说,电路显得更简单可靠。
由于这里使用的集成电路都是采用插座式连接,更换集成电路很方便,如果集成电路发生故障更换很容易(比较分立元件来说),如果分立元件发生故障,只要将IC全部拔出,那么电路板所集成的分立元件很少,很容易查找问题,一般的电气技工也很容易处理故障等。论文大全。
(5)做多几块整体电路,当故障出现时,整块更换,能使故障停台时间为零。
3.3这种新型的可控硅触发电路的组成及工作原理
(1)只用单个电压过零采样变压器与移相集成电路KJ004内部部分电路组成电压过零采样电路,并以A相作为电压过零采样基准。
(2)同步电路与普通的触发电路相同。
(3)移相电路由专用移相集成电路KJ004组成,KJ004是国内生产的,移相相位起点取决于移相输入电压,实际上是一个压控移相电路。脉冲输出由输出端输出正、负两路方波:输出口OUT1及OUT2,即得到+A、-A两脉冲,但+A、-A两脉冲并不直接控制+A、-A两个可控硅,而是只将+A取出作为KJ041六路双脉冲电路的基准时钟,送到紧接连的内同步电路。
(4)这里设置了一个内同步电路,电路组成见2,其原理简介如下。
图2
该电路的主要作用是使高稳定度的压控振荡器的振荡频率通过扭环形计数器后取出六分之一即A1的作频率及相位反馈,并与外部基准频率Fref作精确地同步。
压控振荡器的振荡频率CP=3*A1=3x100=300Hz/s,A1=Fref。
电路由可预置可逆计数器CD4029、双D触发器CD4013、四异或门CD4070和运算放大器LM741等组成为快速同步压控振荡器。其中IC1:CD4013将外部基准频率Fref进行4分频,产生相位差为90度的二个信号分别送入IC3:CD4070的门1和门2,IC2:CD4013也将压控振荡器输出的频率Fout进行4分频后送入IC3:CD4070的门1和门2,门1和门2两个输出端输出信号之间的相位关系取决于压控振荡器的频率高于还是低于外部基准频率Fref,而频率取决于压控振荡器的频率与基准频率之差。
IC4、IC5:LM741组成施密特触发器为IC6:CD4029提供时钟CP及控制信号V/D。如果压控振荡器的频率低于外部基准频率,则IC4输出高电平“1” 状态,IC6按照与频率差成正比的速率进行加计数,虫IC6和2R-R梯形电阻网络组成的数/模转换器把增加的电压供给压控振荡器,从而提高振荡器的频率。如果压控振荡器的频率高于外部基准频率时其作用恰好相反。论文大全。
该D/A转换电路将由九个电阻及CD4029可预置十进制/十六进制可逆计算器四位输出端组成,由电阻组成的D/A转换电路价格较便宜,即简单的数模转换。该电路可用DAC0808,8位数/模电路代替。进行D/A转换后控制压控振荡器(VCO),由VCO发出脉冲,送给扭环形计数器构成的顺序脉冲发生器。论文大全。压控振荡器(VCO)的振荡频率fout=3fin=3x100=300Hz/s。
(5)扭环形计数器构成的顺序脉冲发生器。
由3个D触发器(实际上由两块二D触发器的CD4013集成电路)和两块三入三与非门的CD4023集成电路及一块带缓冲器的六反相器CD4049集成电路所组成;采用扭环形计数器构成的顺序脉冲发生器是不存在数字脉冲竟争冒险现象。
电路采用了上升沿触发,触发信号是由VCO发出的脉冲串作扭环形计数器的时钟,由于交流电每一个周期采样有两次过零,50个周期共有100次过零采样脉冲,即fin=100Hz/s,所以fout=3fin,fin是已经实施了相位移动的+A相的触发脉冲,并以此作为内快速同步器的基准时钟。
使得VCO每两次同步后就发出六个时钟信号去控制扭环形计数器,使扭环形计数器所发出的六路脉冲间隔相等而发生时间不同的脉冲信号,再送到KJ041C 实行双脉冲发生,以触发六个可控硅。
该电路每次发出六个脉冲信号,且每次从A1取出一个脉冲送回内同步电路作比较,所以该电路的脉冲次数每次都相等并以后保证相位同步。
整个电路还未画出是六个脉冲信号与六个可控硅的直流电路隔离部份,直流电路隔离可用光电方式隔离或用脉冲变压器方式电感隔离,该电路还可以扩展使用。
4.结论
1)此电路是基于各种技术知识综合而设计而成的。如模拟电子技术、数字电路技术、可控硅技术、集成电路开发应用等知识所组成。本电路是否完善,请专家们批评指出。本人利用业余时间及用自己出资购买的元件对本电路做了实验。
2)可控硅触发电路还有电路组成更简单的,就是采用单片微机即单片机IC组成。采用单片微机组成的可控硅触发电路可谓简单可靠而且成本低廉,但必须遍写控制程序,其程序也十分简单,但必须依赖计算机程序员,一般技工无法完成,这是使用单片机的缺点。
3)不采用专用移相IC及双脉冲IC,用普通数字IC及运算放大器和定时器等也可以组成与用专用移相IC及双脉冲IC组成的可控硅触发电路有相同的效果。
【参考资料】
[1] 阎石主编.数字电子技术基础第五版,清化大学电子教研室编,2006.
[2] 童诗白主编.模拟电子技术基础第二版.清华大学教研组编,2006.
[3] 童诗白,徐振英编.现代电子学及应用.高等教育出版社,1994.
[4] 龙忠琪,贾立新.数字集成电路教程.科学出版社,2003.
篇6
【关键词】集成电路;应用
一、引言
集成电路技术作为微电子技术的一个重要门类和组成部分,其技术发展遵循着著名的摩尔定律,仅仅需要1.5年的时间就能够将相同性能的电路压缩到原有体积的一半,而进40年来,集成电路的体积几乎缩小了30000倍。当前,顶尖的集成电路研发技术掌握在少数几个发达国家的研究机构手中,而与集成电路息息相关的IC产业已经被高度整合,从设计,到制造,到封装再到测试,已经形成了一条完整的产业链,集成电路的广泛应用不断地推动着科技的进步,也不断地改变着人类的生活。本文将讨论集成电路的原理,分析集成电路的发展,最后讨论集成电路的应用。
二、集成电路概述
微电子学是一种结合了电子学以及材料物理学的综合学科,该学科的主要研究认为是将半导体材料进行适当处理,制造出微型电子电路、微型电子系统以满足各种应用需要。基于微电子技术发展起来的集成电路技术主要囊括了材料技术、电路技术、集成封装技术等几个门类,主要通过将晶体管器件、电阻器件、电容器件等按照电路原理高度集成在一起,从而实现电路的某种功能,从集成电路输入输出关系来看,集成电路一般可以分为模拟集成电路和数字集成电路两种。
三、常见集成电路举例
1.74LS138译码器
74LS139集成电路是常见的两个2线-4线译码器,共有54/74S139和54/74LS139两种线路结构型式,当选通端(G1)为高电平,可将地址端(A、B)的二进制编码在一个对应的输出端以低电平译出。若将选通端(G1)作为数据输入端时,74LS139还可作数据分配器。A、B译码地址输入端,高电平触发;芯片的G1、G2为选通端,低电平触发有效;Y0~Y3为译码输出端。
2.74ls244缓冲器
74LS244是一种3态8位缓冲器,一般用作总线驱动器。74LS244芯片没有锁存的功能,地址锁存器就是一个暂存器,74LS244根据控制信号的状态,将总线上地址代码暂存起来。8086/8088数据和地址总线采用分时复用操作方法,即用同一总线既传输数据又传输地址。
当微处理器与存储器交换信号时,首先由CPU发出存储器地址,同时发出允许锁存信号ALE给锁存器,当锁存器接到该信号后将地址/数据总线上的地址锁存在总线上,随后才能传输数据。
3.555定时器
555定时器是一种模拟和数字功能相结合的中规模集成器件,是最常见的定时器集成电路。一般用双极性工艺制作的称为555,用CMOS工艺制作的称为7555,除单定时器外,还有对应的双定时器556/7556。555定时器的电源电压范围宽,可在4.5V~16V工作,7555可在3~18V工作,输出驱动电流约为200mA,因而其输出可与TTL、CMOS或者模拟电路电平兼容。一般来说,555定时器的功能实现由比较器决定。两个比较器的输出电压控制RS触发器和放电管的状态。在电源与地之间加上电压,当5脚悬空时,则电压比较器C1的同相输入端的电压为2VCC/3,C2的反相输入端的电压为VCC/3。若触发输入端TR的电压小于VCC/3,则比较器C2的输出为0,可使RS触发器置1,使输出端OUT=1。如果阈值输入端TH的电压大于2VCC/3,同时TR端的电压大于VCC/3,则C1的输出为0,C2的输出为1,可将RS触发器置0,使输出为0电平。
555的应用:
(1)构成施密特触发器,用于TTL系统的接口,整形电路等;
(2)构成多谐振荡器,组成信号产生电路,振荡周期:T=0.7(R1+2R2)C;
(3)构成单稳态触发器,用于定时延时整形及一些定时开关中。
555应用电路采用以上三种方式中的1种或多种组合起来可以组成各种实用的电子电路,如定时器、分频器、脉冲信号发生器、元件参数和电路检测电路、玩具游戏机电路、音响告警电路、电源交换电路、频率变换电路、自动控制电路等。
四、集成电路发展
电路工艺是集成电路技术中最为基础的部分,主要涉及到扩散技术、氧化技术、光刻腐蚀技术以及薄膜再生技术等方面。上世纪六十年代末,微电子研究人员充分研究了氧化二硅系统的电性质,完成了界面物理研究的理论储备,紧接着科学家通过控制钠离子玷污的手法,配合使用高纯度的材料,成功实现了MOS集成电路的生产,由于MOS电路在工艺上易于控制、功耗很低、集成度高、可裁剪性强等优点,当前半导体工业中,绝大多数的集成电路有使用MOS或者CMOS结构。
制版技术方面的关键技术的光刻技术,光刻技术最初被使用在照相术上面,上世纪五十年代末被应用到半导体技术中,仙童公司巧妙地使用光刻技术实现了集成电路的图形结构。使用光刻技术制造的器件相互连接时可以不使用手工焊接技术,而是采用真空金属蒸发技术,使用光刻技术实现电路的绘制。近年来,随着光刻技术的发展,光刻技术的加工精度已经达到超深亚微米数量级。
电路设计方面。1971年,Intel公司第一台微处理器的发明是集成电路技术对人类做出的最大贡献之一,微处理器的发明开辟了计算机时代的新纪元。微处理器的发明带动了以CMOS为基础的超大规模集成电路系统的发展,也带动了智能化电子产品的飞速发展,是信息技术的基础原件和实物载体。近年来,随着集成电路技术的发展,科学家将量子隧穿效应技术应用到集成电路领域,推动了信息化社会的进程。
工艺材料方面。随着材料科学的不断发展,很多新材料技术和新物力技术不断地被应用到集成电路领域当中,铁电存储器和磁阻随机存储器就是其中的代表。当前集成电路技术的发展突显出一些新的特征,主要表现在从一维向多维发展,向材料技术、微电子技术、器件技术以及物理技术提出了更高的要求,集成电路的发展也正因为如此遭遇瓶颈,物理规律的限制、材料科学的限制、技术手法的限制。不过与此同时,宽禁带的SiC、GaN以及AIN等材料击穿电压值高、禁带值高、抗辐射性能好,应经被广泛应用,所制造器件在高频工作状态、高温状态以及大功率状态下性能优异,是集成电路的发展方向。
五、结语
集成电路是上世纪人类社会最伟大的发明之一,集成电路的广泛应用不断地推动着科技的进步,也不断地改变着人类的生活。本文系统分析了集成电路的原理,列举了几种常见集成电路,并对集成电路的发展进行了讨论和研究。
参考文献
[1]张允炆.半导体技术[M].哈尔滨工业大学出版社,2004.
[2]李祁镇.集成电路概述[M].北京:清华大学出版社,2003.
[3]韩周子.数字集成电路概述[M].西安:西安电子科技大学出版社,2004.
[4]方寒.浅谈集成电路的发展[M].中国科技纵横,2003.
篇7
关键词:ICL8038;信号发生器;调频电路;电子仪器
中图分类号:TP39文献标识码:A文章编号:1009-2374(2009)05-0014-03
信号发生器是一种能产生标准信号的电子仪器,是工业生产和电工、电子实验室中经常使用的电子仪器之一。在现代电子学的各个领域,常常需要高精度且频率可方便调节的信号发生器。一般来说,频率越高、产生波形种类越多的发生器性能越好,但器件成本和技术要求也大大提高,因此在满足工作要求的前提下,性价比高的发生器是我们的首选。常见的信号发生器是用ICL8038制成的简单信号发生器,但这种信号发生器仅能产生正弦波、三角波和矩形波,而本文要研究的就是如何在ICL8038基础上结合其电路以及直接调频电路使其产生其他的信号。
一、总体设计
(一)信号发生器的设计框图
信号发生器框图如图 1所示:
图1中,波形产生电路由单片集成电路函数发生器ICL8038及其电路组成,用来显示方波、正弦波及三角波;直接调频电路由石英晶体及变容二极管等组成,波形产生电路产生的正弦波经此电路会产生一个调频波;显示电路由单片频率计ICM7216D、晶体、电容、开关及LED数码管[11]等组成,用来显示输出波形的频率值。
(二)信号发生器的总电路图
信号发生器的总电路如图2所示:
二、各部分电路设计
(一)基于ICL8038的波形发生电路设计
ICL8038组成的函数发生器如图3所示。电阻R1与电位器 RP1用来确定8脚的直流电位U8,通常取U8≥2UCC/3。U8越高,IA和IB越小,输出频率越低,反之亦然。因此,ICL8038又称为压控振荡器(VCO)或频率调制器(FM)。RP1可调节的频率范围为20HZ~20KHZ。U8还可以由7脚提供固定电位,此时,输出频率f0仅由RA,RB及电容Ct决定。UCC采用双电源供电时,输出波形的直流电平为零。当采用单电源供电时,输出波形的直流电平为UCC/2。
(二)晶体振荡器的变容管直接调频电路设计
图4是100MHz晶体振荡器的变容管直接调频电路。图4中,T2管接成皮尔斯晶体振荡电路,并由变容管直接调频。T2管集电极上的谐振回路调谐在晶体振荡频率的三次谐波上,完成三倍频功能。T1管为音频放大器,将输入的信号放大后,经2.2μH的高频扼流圈加到变容管上。同时T1的电源电压也通过2.2μH高频扼流圈加到变容管上,作为变容管的偏置电压。
对晶体振荡器进行调频时,由于振荡回路中引入了变容二极管,因此频率稳定度相对于不调频的晶体振荡器有所降低。一般,其短期频率稳定度达到10-6数量级,长期频率稳定度达到10-5数量级。
(三)基于ICM7216D的显示电路设计
显示电路是由单片频率计ICM7216D、晶体、电阻及电容等构成。ICM7216D是美国Intersil公司首先研制的专用测频大规模集成芯片。它是标准的28引脚的双列直插式集成电路,采用单一的+5V稳压电源工作。它内含高频振荡器、十进制计数器、七段译码器、位多路复用器、能够直接驱动LED显示器的8段一段码驱动器、8位一位码驱动器。其基本的测频范围为DC至10MHz,若加预置的分频电路,则上限频率可达40MHz或100MHz,单片频率计ICM7216D只要加上晶振、量程选择、LED 显示器等少数器件即可构成一个DC至40MHz的微型频率计,可用于频率测量,机械转速测量等方面的应用。
图5为基于ICM7216D的显示电路。用晶体和电容C1、C2构成的10MHz振荡频率作为基准频率,经ICM7216D内部分频后,产生闸门时间脉冲。用开关K选择量程。另用开关S1控制电路复位,S2可时电路处于保持状态。8个LED数码管的DP都与DP小数点输入脚(23脚)相连,由内部小数点逻辑单元产生正确的小数点位。当被测信号输出时,ICM7216D对其频率计数,8位LED逐位显示被测频率,从而实现测量和显示的目的。
具体工作过程为:使用一个2.5MHz的晶振及22MΩ的电阻、电容C1、C2来满足内部振荡器的正常工作。由于内部振荡器是一个高增益的CMOS反相器,因此用电阻与晶振并联以提供足够的偏压,此时芯片的基振为2.5MHz。如果使用1MHz晶振代替2.5MHz晶振需要将芯片的脚25、脚26之间的电容作些调整,这时芯片的基振为1MHz。另外芯片还允许使用外部振荡器,如果使用外部振荡器时,芯片的基频等于外部振荡电路的频率,此时芯片内部振荡电路仍在工作,但不影响芯片的正常测量。若内部振荡频率小于1MHz或只有外部振荡电路在工作时,必须将脚25、脚26连接在一起,以保证足够的悬挂电平。如果外部振荡电路输出为TTL 电平时,则需要在脚25、脚26之间接一个22MΩ的电阻,并且要将脚24、脚25连在一起,如果外部振荡电路的频率小于100KHz,则外部振荡电路对芯片不起作用,芯片仍以内部振荡电路的频率工作。
被测信号从脚28输入,如果输入信号较小,可以采用前置放大电路。如果输入信号较太,可以采用限幅电路。D1~D8八条位驱动线分别与八位LED的公共端相连,段驱动输出线a~g与LED相应的引脚相连将LED的第1至7位的小数点都与脚23连在一起,则由内部小数点逻辑单元产生正确的小数点位。八位LED是示器逐位显示,频率为500Hz ,位信号时间为244μs,两位显示之间有6μs的位空白时间,以防止重影。芯片的最大段驱动电流为15mA,额定段驱动电流为12mA。要增加显示亮度,可将电源电压增加到6V,在测量显示时,小数点左边的零被消除,右边的位照常显示。当被测信号的频率超出频率计的测量范围发生溢出时,芯片内部能够点亮第八位的小数点,表示此时发生溢出。
图5中,K为一个四档开关,用于选择不同的量程。S1为一个按键开关,当其按下时,脚12为低电平,主计数器停止计数,显示为零。当S2按下时,脚27为高电平,主计数器暂停计数,此时数据自锁并显示;当S2断开,主计数器才重新启动计数。由于复合控制输入端所用信号是位驱动信号,为避免复合控制信号影响位信号,使用二极管进行隔离,与芯片管脚1相连的电阻及电容的作用是降低噪声,减少干扰。
(四)整形电路设计
由于ICM7216D芯片只能对脉冲信号进行计数,所以波形产生电路产生的正弦波和三角波要先进行整形,然后才能送进显示电路进行频率显示,而整形电路只需用一个与非门就可实现。本文选择了74LS20芯片进行整形。74LS20芯片引脚图如图6所示:
三、结果分析
本文采用±10V、5V直流电源供电,运用数字示波器显示输出波形。
信号发生器能输出正弦波、三角波、矩形波及调频波;正弦波、三角波、矩形波的最低频率为55.10Hz,最高频率为16.13KHz;正弦波的峰峰值可达到4.36V;三角波的峰峰值可达6.6V,占空比可在44.4%~50.4%之间调节;矩形波的峰峰值可达到20.2V,占空比则可在41.3%~57.5%之间调节;调频电路中的载波峰峰值为5.6V,频率为13.3MHz;显示电路由于加了4分频电路,则测频上限频率可达40MHz。
四、结语
本文是采用函数发生芯片ICL8038结合电路产生正弦波、三角波及矩形波,再把产生的正弦波输入晶体振荡器的变容管直接调频电路,产生调频波输出,各波形通过ICM7216D组成的显示电路显示出其频率。该系统完全由硬件构成,避免了编程方面的问题,电路简单,易于调试,产生的波形种类多。
参考文献
[1]吴慎山,等. 电子线路设计与实践[M]. 北京:电子工业出版社,2005.
[2]王昊,李昕.集成运放应用电路设计360例[M]. 北京:电子工业出版社,2007.
[3]赛尔吉欧・佛朗哥.基于运算放大器和模拟集成电路的电路设计[M]. 西安:西安交通大学出版社,2004.
[4]余小平,奚大顺.电子系统设计(基础篇)[M]. 北京:北京航空航天大学出版社,2007.
[5]王彦朋,张凤凌,等. 大学生电子设计与应用[M]. 北京:中国电力出版社,2007.
[6]PAULR,GRAY,等.模拟集成电路的分析与设计[M]. 北京:高等教育出版社,2005.
[7]张肃文. 高频电子线路[M]. 北京:高等教育出版社,2004.
[8]萧家源. 电子仪表原理与应用[M]. 北京:科学出版社,2005.
[9]Paul Scherz. 发明者电子设计宝典[M]. 福州:福建科学技术出版社,2004.
[10]周云波. ICL8038扫频信号发生器[J]. 现代电子技术,2003,(17).
[11]姚行洲. ICL8038原理及应用[J]. 北京广播电视大学学报,1999,(1).
篇8
一、无线电液控制技术基本原理
无线电液控制技术的基本工作原理:首先,无线电液控制系统将操作者或机器的控制指令进行数字化处理(包括对信号的滤波,A/D转化等处理),变为易于处理的数字信号;其次,对数字指令信号进行编码处理;再次,指令信号在经发射系统进行数字调制后,通过发射天线以无线电波的方式传递给远处的接收系统。最后,接收系统通过接收天线把带控制指令的无线电波接收下来,经过解调和解码,转换为控制指令,实现对各种类型阀的进行控制。
由于无线电液控制技术在工程机械领域占有重要地位,它也越来越受到各国的重视,都投入了很多的技术力量和资金进行研究开发。虽然红外遥控也可以实现电液控制技术的远程遥控,但是由于红外遥控存在对工作背景要求高、能耗高、传输距离短(一般不会超过10米),且必需在同一直线上,中间不能有任何障碍物以及易受工业热辐射影响等缺点,使得无线电液控制技术成为当前研究的主要方向。
二、无线电液控制技术的研究现状及趋势
(一)无线电液控制技术的研究现状
最初,遥控电液控制系统都是采用有线遥控方式进行的。早在60年代初期,人们就能利用拖缆遥控装置来控制液压机械上的手动、电液多路阀,操作时通过拖缆遥控装置上的双向单轴摇杆输出线性比例信号来控制电液比例多路阀,线控盒摇杆的信号完全能模拟液压多路阀上手动拉杆的动作。虽然这种方式也可以使操作人员在作业区外对机械设备进行操作控制,但是由于控制信号在电缆线中的衰减,使得遥控的距离有限,同时由于电缆线的存在,影响了操作的灵活性,而且数米长的电缆经常是生产事故中的主要根源。[2]
随着无线电技术的成熟,把无线电技术引入电液控制系统成为了可能。由于无线电液控制技术是通过无线电波来传递控制指令,完全消除了拖缆式遥控装置所带来的故障隐患。但是一开始的无线电液控制系统都只能发射简单的指令,如:打开/关闭等指令。进入70年代后,随着大规模集成电路及专用微处理器的出现,开发出了可靠性更高的手持式无线遥控系统。后来,随着数字处理技术的快速发展,无线数字通信技术的日趋成熟,利用数字通信技术的抗干扰能力强、易于对数字信号进行各种处理等等的优点,使得遥控系统的抗干扰性能逐步提高,安全性能大大改善;与此同时,模拟集成电路设计的迅速发展,各种高精度的模拟/数字转换器(A/D)和数字/模拟转换器(D/A)的研制成功,并把他们应用到无线电液控制系统中,使得无线电液控制系统不但能够传输开关信号,也能够传输模拟控制量并且对控制指令有较高分辨能力,也就是说,无线电液控制系统不但能够控制普通的电磁开关阀,而且能够控制比例阀。由于无线电液控制技术既有电液控制技术的优点,又有无线技术的优点,因此它有着很广泛的应用,特别是在工程机械领域中。无线电液控制系统的典型应用场合如工业行车、汽车吊、随车吊、混凝土泵(臂架)车、盾构掘进机的管片拼装机等。
80年代初,美国Kraft TeleRobtics和约翰·迪尔等公司,相继开发出无线遥控系统,并应用于挖掘机中,成功推出遥控挖掘机。其中,比较典型的是约翰·迪尔公司的690CR型遥控挖掘机。
1983年,日本小松制作所研究开发了各种工作装置的微动控制和复合动作的无线电操纵,并成功改装PC200-2型液压挖掘机。
1987年,德国HBC公司研制成功应用于工程机械领域的工业无线电遥控装置。这种遥控装置采用了先进的数字化通信技术,传输的比例控制信号安全、可靠和实用,并对发射的指令有很高的分辨率;在接收端使用模拟技术可以使执行机构的加速、减速动作与无线电遥控装置发射器上的动作完全成比例,从而实现对执行机构的无级控制。利用它,结合电液比例伺服驱动机构、液压比例多路阀和电液比例减压阀及普通电磁控制开关阀,就可以实现工程机械的无线遥控。德国HBC无线电遥控系统采用的比例输出信号(0-5V/10V、4-20mA、PWM0-2A)可与多个厂家电液多路阀信号匹配,可模拟手动操作方式达到与液压控制系统互相间的协调。
与国外对无线电液控制技术的研究应用相比较,国内则相对比较晚,技术相对也落后一些。上海宝山钢铁公司于1997年引入HBC无线遥控系统、意大利FABERCOM的比例液压伺服模块,对黄河工程机械厂生产的ZY65型履带式装载机进行了遥控改造,使其成为一台遥控装载机。
(二)无线电液控制技术研究趋势
随着数字通信技术和超大规模集成电路的高速发展,把数字通信技术和高性能、高集成度的集成电路应用到无线电液控制技术中,使得无线电液控制器的性能更加完善,可靠性更加高。它们都推动着无线电液控制技术的发展,具体表现在以下几个方面:(1)超大规模集成电路的飞速发展使无线电液控制器硬件电路的可靠性提高,同时为实现更强大的(下转第152页)(上接第193页)功能提供了可能性;(2)数字通信技术提高了无线电液控制器的性能;(3)纠错编码技术提高了无线电液控制器的抗干扰能力。
三、无线电液控制技术在盾构管片拼装机中的应用
盾构管片拼装机是一六自由度机械手,由电液比例多路阀控制各个方向执行器动作,实现管片的拼装。利用无线遥控系统控制电液比例多路阀的先导级就可以控制进入多路阀的流量。采用电液比例技术能提高管片机的拼装速度,有效地降低工程造价。
四、结语
由于无线电液比例技术具有多方面的优点,在工程机械领域得到了广泛的应用。将无线遥控技术应用于盾构管片拼装机系统,将具有重要的工程应用意义。
【参考文献】
[1] 郑贵源.无线遥控装置在工业控制中的应用[J].机械与电子,1997,(2).
篇9
关键词:本科教育;微电子;课程体系;结构优化
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)04-0033-03
一、引言
微电子技术是随着集成电路,尤其是超大型规模集成电路而发展起来的一门新的技术。微电子技术包括系统电路设计、器件物理、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术,是高科技和信息产业的核心技术。微电子产业是基础性产业,对国民经济有着巨大贡献,并渗透到其他很多学科,是发展现代高新技术和国民经济现代化的重要基础。作为电子通信类高校,南京邮电大学建校近50年来,正朝着信息科技类大学进军。随着电子、通信和信息等产业的飞速发展,国内外都需要大量的微电子学人才,我校成立微电子学专业,旨在为我国的ASIC设计方面,培养急需的人才[1-6]。我国“十五”计划纲要明确提出大力发展半导体集成电路产业,为了满足社会的发展和需求,我校微电子专业成立于2001年,并于2007年招收第一批本科生。在学校各级领导的重视和关心下,专业建设取得了飞速发展。本科人才培养方案是各专业人才培养目标、培养规格以及培养过程和方式的总体设计,是学校组织本科教学、规范教学环节、实现人才培养目标的纲领性文件,对人才培养质量具有决定性的影响。当今的高校教育不仅需要培养大量理论基础较扎实、具有开拓创新精神的专业型人才,也更需要培养大量工程应用型人才。所谓“应用型人才”主要是指德、智、体、美等方面全面发展的,能够将专业知识和技能应用于所从事的专业社会实践的高级专门人才。“应用型人才培养模式是以能力为中心,以培养技术应用型专门人才为目标的”。它更加注重的是实践性、应用性和技术性。即基础知识比高职高专学生深厚、实践能力比传统本科生强,是本科应用型人才最本质的特征。本科应用型人才培养模式是根据社会、经济和科技发展的需要,在一定的教育思想指导下,人才培养目标、制度、过程等要素特定的多样化组合方式。
二、深化完善本科教学体系改革的措施探讨
人才培养方案制(修)订工作对于学校实现人才培养目标、进一步深化完善本科教学体系改革具有重要意义,人才培养方案制(修)订需要全面贯彻国家中长期教育改革和发展规划纲要,认真落实教育部关于全面提高高等教育质量的若干意见等文件要求,不断适应国家和社会发展需要,进一步深化教育教学改革,优化人才培养过程,提高人才培养质量,促进学生全面发展。具体的改革措施探讨如下。
1.进一步明确本专业的特点和优势。培养方案是高等学校实现人才培养目标、开展人才培养工作的总体设计和实施方案,为全面贯彻教育部关于全面提高高等教育质量的若干意见,以执行最新颁布的普通高等学校本科专业设置管理规定为契机,推动我校新一轮专业建设和教学改革,以不断适应知识经济、科技、社会发展对各类高素质创新人才的需要,根据我校教育教学改革的实际,及时总结人才培养经验,以“本科教学工程”建设工作为抓手,积极参与教育部“卓越工程师教育培养计划”及“工程教育专业认证”,进一步更新教育观念,深化教育教学改革,提高本科教育质量,构建和完善适合我校办学指导思想、具有我校办学特色的本科创新人才培养体系,根据新《目录》规定的各专业培养目标、培养要求、主干学科、核心课程、主要实践性教学环节、主要专业实验,紧密结合近年“本科教学工程”改革实践,开展本科专业培养方案的修订。本专业培养适应社会发展需要,道德文化素养高,社会责任感强,身心健康,掌握扎实的自然科学基础知识和必备的专业知识,具有良好的学习能力、实践能力、专业能力和创新意识,能在微电子器件、工艺和集成电路设计及相关的电子信息科学领域从事科学研究、产品研发、工程设计、技术管理等工作的专门技术人才。主要专业方向为微电子器件、工艺和集成电路设计。注重集成电路设计、集成电路版图设计、微电子器件设计和MEMS设计。
2.课程设置进一步优化。课程的设置是否合理对人才的培养起到了至关重要的作用,尤其是现今提出的对专业人才的更高要求,需要进一步优化课程体系,合理安排课程内容。首先,在课程设置方面,当前,南邮本科微电子专业经过几年的发展,取得了不少成绩。但世界范围内微电子产业飞速发展的特点决定了高校微电子学科的教学必须紧紧跟随产业发展的步伐。我们在看到以前所取得的成绩的同时也必须看到其中所存在的一些问题,并积极进行改革创新。我校的微电子专业在设立初期,经过各方专家的反复讨论和论证,建立了一套统一的专业课程和教学大纲。这套课程满足该专业最基本的专业要求。但由于微电子专业设立时间不长,仍属于起步阶段,由于硬件条件和师资力量的缺乏和不到位,无法设立多样的课程体系和科目,所以目前的教学仍然是基本上按统一的教学大纲和教学要求组织。随着学校办学规模的扩大,通达微电子学院的设立,选修微电子专业课程的学生人数不断增加,原有的教学课程体系和科目还需要进一步细化、深化、推广。为此,在课程设置上,我们必须对已经投入使用的培养方案进行分析和总结、不断地进行修订和完善,将整个学科的课程结构体系、到具体到每一门课程的知识体系,都进行优化设计,以期在最短的学时内使学生掌握牢固的知识。最终使学生获得以下几方面的能力:掌握扎实的数学、物理等方面的基本理论和基本知识;系统掌握量子与固体物理、半导体物理与器件物理、半导体集成电路设计和制造的基本知识,具有独立进行微电子器件、工艺和集成电路设计的基本能力;了解电子信息类专业的一般原理和知识,受到科学实验与科学思维的训练,具有本学科与跨学科的科学研究与技术开发的基本能力;在综合类实践、实验中具有较强的独立设计、分析和调试系统的能力,能够完成综合性和探索性工作的能力;养成良好的学习习惯,对终身学习有正确认识,具有不断学习和适应发展的能力;其次,对于理论课程的内容,针对南京邮电大学的学科特点和电子科学与工程学院的实际情况,以及本专业的特色建设,主要专业方向为微电子器件、工艺和集成电路设计。注重集成电路设计、集成电路版图设计、微电子器件设计和MEMS设计。以能力培养为基础来设计,并考虑学生毕业后从事的职业,根据工作的要求对教学中的课程进行专项的能力和综合能力培养。在通识教育类课程中设置了高等数学、大学物理、物理实验、程序设计等。专业教育类课程中设置了信号与系统、数字电路与逻辑设计、模拟电子技术及电工电子实验等。这些是所有涉及到电类专业的学生都必须学习的课程。在微电子专业的专业课中安排了固体物理、半导体物理、半导体集成电路工艺、半导体器件物理、通信原理,这些课程都是基础理论课程,是为微电子专业的学生打下基本的专业基础。考虑到工程认证的需要,在集成电路与CAD的课程设置上,专门增加了16小时的实验,加强学生的实验和操作技能。在集成电路分析与设计的课程设置中,专门将模拟和数字分开,设置了各48小时的模拟集成电路分析与设计、数字集成电路分析与设计,这不同于其他院校的课程设置,应该也算是我专业的一个特色和优势。使学生掌握初步的集成电路设计知识,加强了学生的集成电路分析和设计的能力。除了已经设置的32小时的VLSI设计实验课和32小时的微电子专业实验,还增加了32小时的工艺实验,这也大大加强了实验和上机比例。具体来讲,已经在建设的ASIC设计实验室的基础上开展了ASIC设计实验课程的教学,并筹备建立了微电子专业实验室,拥有了一批工作站、计算机等硬件资源和ISE、MAXPlus II、Synopsys Cadence等软件资源、学会一到两种EDA工具的使用方法。建设微电子器件和半导体物理专业实验课程,在广泛调研的基础上购置了必要的仪器设备、编写了实验教程、开展了半导体材料实验和晶体管测试实验;基于以上措施,建立一整套完备的、覆盖微电子产业前端和后端工序的微电子实验课程体系。开展了器件和工艺设计实验。掌握一定微电子实验能力是微电子专业本科生应当具备的基本素质。在微电子专业的专业选修课中设置了VLSI版图设计基础、片上系统设计、微电子器件设计、MEMS与微系统设计、新型微电子器件、通信集成电路等多门课程,涵盖了微电子方向的器件设计、电路设计、工艺设计等各个方面。更好地体现了应用型人才的培养方向和目标。再者,实践课程的内容上,由于微电子专业是一个实践性较强、实践内容多的专业,从集成电路的生成流程来看,其实践内容包括系统和电路设计、器件设计、工艺设计、版图设计、实际流片和测试。实践课程的设置对培养学生解决问题能力、判断能力和创新能力极为关键;需要工程认证的专业的实验实践课程必须要达到30%以上。因此,还拟通过建立微电子专业实验室,开设微电子和半导体测试实验课,在培养学生理论知识的同时,加强实践能力的培养,培养既有较深理论基础,又有一定动手能力的全面发展的学生。在实践型环节的课程设置中,通识基础课和学科基础课中安排了电类学科所必须的程序设计、电装实习、电子电路课程设计等。在专业基础课和专业课中,设置了软件设计、微电子课程设计等,尤其是微电子课程设计,将进行较大的改革,要求改革后设计内容都是与本专业紧密相关,全面运用到所学的专业知识。
3.师资队伍的建设。本专业现在拥有专业教师14名,完全满足本科的专业教学需要,但从事集成电路设计方向的老师比较缺乏。还有,学生的个性不同,使学生在学习的兴趣、主动性等方面差异很大;随着社会竞争的日益激烈和社会需求的不断变化,又使学生的未来发展面临很大挑战,学生的需求随之呈现多样化。因此,多元化的培养规格应当成为共识。将学生的具体情况和社会需求相结合,这就要求我们必须打破现有的统一模式,根据学生的实际和社会需求建立多样化的课程体系,实施分类教学,在保证打好扎实的专业基础的前提下,设立尽可能多的适应当今社会发展的方向性课程。建立既具有深厚扎实的理论知识功底,又具有精通实践、有很强的动手操作能力和解决生产实际问题能力的教师队伍迫在眉睫。近几年,我学院在引进高水平的师资力量方面进行了不懈的努力,微电子专业教师的队伍在不断扩大,教师的专业方向也在不断丰富,能够胜任并有选择性地担任各主要方向的专业课教学。但仍然缺乏学科带头人,缺乏一个凝聚人心的事业平台,学术梯队。这就要加速建设学科带头人、重点骨干教师和优秀青年教师4个层次的学术梯队。通过培养和引进,形成一批整体素质高、学术实力强、结构合理、具有团结协作精神的学术梯队,使其在学科建设中发挥突出作用。鼓励教师积极申报各类项目,积累一定的设计、实验和操作经验。鼓励教师与公司、研究所合作,鼓励教师到国内外高校去做访问学者,积极参加国内外举办的国际会议,从而了解专业的最新发展、前沿问题,开阔眼界。
三、小结
总的来说,微电子学是发展现代高新技术和国民经济现代化的重要基础。培养方案是高等学校实现人才培养目标、根据我校教育教学改革的实际,及时总结人才培养经验,以“本科教学工程”建设工作为抓手,积极参与教育部“卓越工程师教育培养计划”及“工程教育专业认证”,进一步更新教育观念,深化教育教学改革,提高本科教育质量,迫在眉睫。其中需明确我校的特点和优势,以通信集成电路设计为主要方向,同时兼顾工艺设计与器件设计。相信通过培养方案、课程设置、师资等各方面的建设,一定会培养出高质量的微电子学领域人才,为我国的微电子工业做出贡献。
参考文献:
[1]杨宏,王鹤.微电子机械技术的发展与现状[J].微电子学,2001,31(6):392-394.
[2]李文石,钱敏,黄秋萍.施敏院士论微电子学教育[J].教育家,2003,(3):11-16.
[3]刘瑞,伍登学,邬齐荣等.创建培养微电子人才教学实验基地的探索与实践[J].实验室研究与探索,2004,23(5):6-8,23.
[4]李斌,黄明文.微电子技术专业创新教育探索[J].中山大学学报论丛,2002,22(1):108-109.
[5]严兆辉.微电子的过去、现在和未来[J].武汉工程职业技术学院学报,2003,15(2):30-34.
[6]蒋元平.学科建设的内涵诠释和实现策略[J].中国西部科技,2007,(1).
篇10
摘要:本文设计了一种应用于AC/DC开关电源芯片的片内电源电路。该电路输入电压范围110V~220V,输出电压稳定在约5.8V。本电路仅在开关电源芯片中功率开关关断的半周期,通过高压JFET抽取外部电源电能给储能电容充电,来维持输出电压的稳定,具有输入电压范围广,电路结构简单的特点。通过HSPICE仿真实验,取得预期的效果。
关键词:片内电源;AC/DC开关电源;低功耗
片内电源电路是集成在半导体芯片内部的电源模块。其作用主要是从外部电源(例如220V市电)中获取电能,并把能量转化芯片内部其它模块可接受的稳定直流电平,给内部其它模块供电。目前,片内电源在纹波幅度、调整范围、功耗等技术指标上还不能达到外部电源的水平,但是,片内电源具有设计指标灵活、成本低廉、可集成等外部电源不可比拟的优势。因此,片内电源将会成为未来电源的另一个发展方向。
1电路结构及功能分析
如上图1所示,是本文设计的应用于AC/DC开关电源芯片的片内电源电路整体结构。Vin为片内电源电路的输入端口,220V的交流电源经过半桥整流滤波后通过此端口输入。BP为片内电源电路的输出端口,输出一恒定电压Vout为AC/DC开关电源芯片的其它子模块供电。Gate为AC/DC开关电源芯片中功率MOSFET栅驱动信号,为高时功率MOSFET导通,为低关断。输入检测信号为本片内电源电路的欠压保护信号,当Vin低于110V时片内电源停止工作对开关电源芯片进行保护。
在AC/DC开关电源芯片工作过程中,每个时钟周期对片内电源模块输出电压Vout进行检测,如果输出电压低于设计要求,并且开关电源芯片其它保护模块输出正常的情况下,在Gate为低的半周期对输出端电容C0充电,直到输出电压满足设计要求,停止充电,从而使输出电压保持恒定。本功能由上图1所示的充电控制部分和模拟充电部分来实现。充电控制部分包括:输出电压检测模块,数字逻辑控制模块。模拟充电模块包括高压JFET,MN1,MN2,电阻R0,储能电容C0。
充电控制模块是本电路设计的重点难点,其具体设计过程如下:
1.1输出电压检测模块的设计
输出电压检测模块电路如下图2所示,BP端输出电压Vout经过电阻网络分压后产生3路输出D1,D2,D3,这三路输出分别输入到COM2,COM1,COM3三路比较器中,与基准电压进行比较。COM1输出欠压信号A5,欠压为高,不欠压为低。COM2输出过压信号A6,过压为高,不过压为低。COM3的输出控制泄流支路,当Vout (BP电压)高于7V时,给电容C0提供一条泄流通路,使BP电压低于7V,对电路进行保护。
1.2数字逻辑控制模块的设计
数字逻辑控制模块电路如下图3所示,A5,A6为输出电压检测模块对BP端口电压检测后输出的欠压信号,过压信号;A7为A5,A6经过寄存器后产生的中间信号,X1为输入电压的检测信号,正常为低,当输入电压过低(X1为高)时,片内电源停止工作对开关电源芯片进行保护。
Gate为AC/DC开关电源芯片中功率管的栅控制信号,本片内供电模块仅在功率管关断的时间进行充电。Regulator为过压欠压逻辑单元模块的输出信号,它来控制模拟充电部分对储能电容充电。片内电源在从上电到系统稳定需要经过以下三种工作状态:
① 状态1:储能电容电压Vout低于4.8V。
过压欠压电路的输出A5=1,A6=0。
经过RS触发器,得出A7=1,上支路的输出为1。
于是Regulator信号输出由上支路决定,始终为0。储能电容从0充电会一直充至4.8V而不受各内部信号的影响。
② 状态2:储能电容电压Vout充至略大于4.8V。
过压欠压电路的输出A5,A6由状态1的10转换成00。此时RS触发器为保持状态,于是A7保持为1,上支路的输出由1变为0。此时Regulator由下支路决定,若X1=1(输入电压Vin过低),Regulator=1(不充电);若X1=0(输入电压Vin正常),则Regulator由Gate信号决定。所以储能电容达到4.8V后,若X1信号为1,储能电容将不再充电。若X1信号为0,储能电容在功率管关断周期充电,可充至5.8V。
③ 状态3:储能电容电压由Vout由继续升高,大于5.8V时。
当状态2最后一种情况Regulator由Gate决定,Vout充电至大于5.8V时。过压欠压电路的输出A5,A6由状态2的00转换成01。经过RS触发器A7信号要改变为0,下支路A7与X1的与非使得X1对Regulator无影响。A6经过反向器后的0信号使得Gate对Regulator也没有了影响。此时Regulator输出完全由A5,A6,A7来决定,输出为1(不充电),直到储能电容的电压回落至5.8V以下。
2仿真结果
仿真条件:本文采用CSMC 700V BCD工艺库和HSPICE进行仿真,Vin电压从0V上升到300V,然后维持稳定。
仿真结果如右图4所示:当Vin从0V上升到300V的过程中,A5,A6状态从10转换到00再转换到01,当芯片稳定工作时其在00,01之间转换从而维持输出稳定在5.8V,达到设计要求。
3结束语
本文设计了一种新型的片内电源电路,具有功耗低,输入电压范围广,电路结构简单等特点。适用于各种开关电源芯片进行片内供电。通过电路仿真,本电路设计满足设计要求。
参考文献
[1]方健 李肇基 张波等. PSoC-新一代SoC技术. 中国集成电路第50期. 2003.7
[2]张占松,蔡宣三. 开关电源的原理与设计. 北京:电子工业出版社 2000
[3]Phillip E.Allen. CMOS模拟集成电路设计(第二版). 电子工业出版社
[4]Data Sheet TNY264/266-268,Power Integration INC.
[5]张乃国. 电源技术[M]. 北京:中国电力出版社 1999
[6]“全球电源管理IC的发展趋势” 中国电源信息网
- 上一篇:初中数学教学案例反思
- 下一篇:管理学的启示