集成电路设计与应用范文

时间:2023-10-09 17:11:56

导语:如何才能写好一篇集成电路设计与应用,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

集成电路设计与应用

篇1

关键词:纳米尺度互连线 集总参数模型 电路仿真 CMOS射频集成电路设计

中图分类号:TN402 文献标识码:A 文章编号:1007-9416(2016)10-0176-02

1 引言

随着半导体技术的发展,纳米尺度的CMOS工艺射频集成电路(RFIC)在工业、科技、医药医疗的应用越来越广泛,且其工作频率已经进入微波、毫米波段,如X波段、Ku波段及60GHz应用等[1]。然而,当电路的工作频率进入到这种高频频段时,电路模型的精度是电路能否成功实现的关键所在。在电路版图设计之后,通常是利用Assura和Calibre等工具来获得互连线的寄生电阻和寄生电容。然而,由于电路的寄生电感比寄生电阻和寄生电容复杂且精度低,很难利用版图验证设计工具得到寄生电感值,因此,需要借助于电磁场仿真软件对传输线进行准确模拟。然而,在电路设计初期通常需要考虑用于互连的微带传输线对电路性能的影响,传统单纯利用电磁场仿真软件进行参数提取的方法无法准确根据设计要求进行参数调整。本文构建了基于物理特性的互连线模型,该模型的寄生参数通过传输线物理特性和电磁场仿真软件得到,易于计算和电路设计分析。同时,该模型的参数和频率无关,易于电路分析,适用于射频集成电路的设计。最后,论文详细论述了将模型用于集成电路设计中的流程。

2 互连线寄生参数仿真模型

射频集成电路设计中使用的互连线结构按照其类别可分为两类:第一类是微带线是以芯片衬底地作为其地平面,第二类是互连线是以某一金属层(通常是第一层金属M1)作为其地平面。对于这两类互连线结构而言,采用衬底地平面作为公共地平面的互连线比采用底层金属M1作为公共地的互连线更加灵活,因为在实际电路设计中受限于电路结构,其底层金属需要作为信号线进行器件之间互连,这种情况下需要采用第一种结构来实现信号互连。然而,使用底层金属M1作地线可以隔离衬底,减少衬底的损耗,因此在集成电路设计中两种传输线结构相互并存。

图1是互连线的模型图,该模型为单π集总参数模型,与常规的电感π模型相似[2]。图1中模型并联部分表示寄生电容和电阻,串联部分表示寄生电感和电阻。在设计窄带宽的电路时,尤其是进行放大器电路设计,关注的是工作频率附近的参数。所以,方框模型可以视为独立于工作频率,即模型在窄带电路设计中依旧可以使用。模型中,电感L2和电阻R2为互连线自身的分布电感和分布电阻,包含了集肤效应和邻近效应对电路的影响,而并联电容和电阻为导线和衬底之间等效电容和等效电阻。

对于该传输线模型,其离散参数的矩阵近似于模拟值和实际测量值。根据等效规则,电路的参数都可由Y参数推导得出[3]。在得到每一模块的参数后,串联电感值,电阻值和并联电容值都可以求出。

根据等效规则,工作频带的S参数应该与模拟和测试值相同。根据对Y矩阵的定义,可以推导出以下公式:

式中,为工作频率,函数real()和函数imag()分别代表着复数的实部和虚部。

以上的公式对于大多数传输线是可用的,无论传输线是否对称。在大多数情况下,传输线的Y1,Y3部分在结构上并不对称。但是,当两端口的反射系数的值相同时,将出现对称的特殊情况。此时传输线可化简为相同的部分,且可从电报方程中得出各元件的值。

在以上的分析中,电容,电感和电阻分别是频率的参数,而本模型中各部分数值处理成和频率无关的数值,这将在电路设计中产生误差。由于替换产生的误差可有下面公式得出:

是仿真实际S参数值,是模型的S参数值。

通常,当电路的频率与正常工作频率差异较大时,由于集肤效应和邻近效应,这个误差将会造成更加严重的影响。依照上述的模型,我们利用电磁场仿真软件ADS-Momentum构建了互连传输线,该传输线采用第二类结构,该传输线位于的TSMC 0.18um射频/混合信号工艺的第6层金属上,金属线宽6um,线长115um。工作频率为10GHz,根据公式(2)得到集总参数模型各个参数如下:

为比较模型和实际电磁场仿真数据之间差别,公式(4)中各个数据对应模型的S参数和电磁场仿真软件得到的S参数进行了对比,图2是采用电磁场仿真软件ADS-Momentum和模型部分参数对比,从图中可以看出,电磁场仿真软件的模型和本模型S参数的误差远离工作频率段误差越大,这是由于公式(2)中对频率进行了近似处理,远离工作频率的点采用工作频率来代替,由于这种代替,数据之间误差越大。在其偏离中心频率50%位置处(即15GHz和5GHz),模型和Momentum仿真数据的差异低于5%。在实际电路设计,通常需要电路设计师关注于传输线寄生参数对电路性能影响,此时工作频率点附近模型简易、准确是电路设计重点,而偏离工作频率点的模型误差在窄带电路设计是可以接受的。

3 模型在射频集成电路设计中应用

CMOS射频集成电路设计是利用已有的有源器件和无源器件模型进行电路设计。传统的集成电路设计首先进行电路原理图设计,然后进行电路版图设计,再进行参数提取,在参数提取中主要利用Cadence系统自身已有的仿真工具Assura来实现,在参数提取结束后再进行后仿真。当电路设计不满足要求时,需要重复上述过程,然而,在上述的传统集成电路中,由于参数提取过程的参数为分布参数,难以直接用于电路O计参数调整。同时,传统的参数提取方法只进行了电阻和电容的参数提取,而对寄生电感没有进行提取,这将导致电路设计的预期结果和实测结果出入较大。

为克服传统的射频集成电路设计的上述不足,可以将本论文的参数模型和集成电路设计相互结合。图4是本论文的模型应用于射频集成电路设计中流程图,在原理图和版图设计中依然类似于传统的集成电路设计方法,但版图设计及参数提取时将版图中的互连线单独分离出来,利用电磁场仿真软件ADS-Momentum电磁场仿真,仿真结束后利用模型将其中的各个互连线参数提取出来,由于互连线的宽度、长度和图1中模型的各个参数密切相关,故将互连线得到的各个参数代入到版图后仿真设计中,检测互连线参数是否满足电路设计要求。如果互连线参数满足设计要求,则电路设计完成;否则,根据要求适当调整互连线参数,并判断调整后参数是否满足电路设计要求,如果满足电路设计要求,则依据重新设计的要求进行版图调整,完成电路设计。如果调整后的互连线参数依然不满足电路设计要求,则依据要求进行原理图设计调整,然后依次重复上述过程。如图3所示。

从上述的电路设计流程可以看出,在射频集成电路设计中应用本模型可以及时了解电路中的各个互连线参数,根据电路设计要求调整互连线参数,满足电路设计要求。在整个设计流程中,首先根据互连线提取参数判断是否满足电路设计要求,进而根据设计要求调整互连线参数来满足电路设计要求,这将简化传统电路设计循环,减少电路设计时间,同时通过互连线参数调整将互连线作为电路设计的一部分进行综合考虑,这将有助于提高电路综合性能。

4 结语

本文提出了适用电路后仿真的纳米尺度互连线模型,该模型基于物理意义而构建,模型的各个参数皆为集总参数,各个参数都可以通过电磁场仿真软件而获得并在集成电路设计中进行调整。该集总参数的模型结构简单,易于使用,适合于CMOS射频集成电路设计分析中使用,同时文中给出了该模型应用于射频集成电路设计的流程并分析了其特点,分析表明采用文中模型可以根据电路设计要求进行调整互连线的尺寸,并可将互连线参数作为电路设计的一部分进行综合考虑,有助于提高电路综合性能。

参考文献

[1]A.Niknejad, “Siliconization of 60 GHz”, IEEE Microw. Mag., pp.78-85,Feb.2010.

[2]J.Rong, M.Copeland,“The modeling, characterization, and design of monolithic inductors for silicon RFICs”,IEEE Journal of Solid-state Circuits, Vol.32,No.3,pp.357-369,March 1997.

[3]廖承恩.微波技g基础,西安:西安电子科技大学出版社,1994.12.

收稿日期:2016-09-28

篇2

>> “射频集成电路设计”课程教学改革初探 应用于相控阵收发组件的射频微波集成电路设计探讨 纳米尺度互连线寄生参数的仿真及应用于CMOS射频集成电路设计 模拟集成电路设计教学探讨 《集成电路设计》课程教学改革与探索 集成电路设计本科教学改革探索 集成电路设计与集成系统专业人才培养模式的探究 集成电路设计与集成系统专业CDIO培养模式的研究与实践 集成电路设计专业课程体系改革与实践 《数字集成电路设计原理》课程教学探索 集成电路设计作为专业核心课程设置的探讨 集成电路设计方法及IP设计技术的探讨 集成电路设计的本科教学现状及探索 模拟集成电路设计教学方法探讨 《专用集成电路设计》教学方法初探 结合集成电路设计大赛谈创新能力的培养 同步数字集成电路设计中的时钟偏移分析 《2012中国集成电路设计业发展报告》的统计及结论 模拟集成电路设计的自动化综合流程研究 以工程需求为导向的集成电路设计闭环教育研究 常见问题解答 当前所在位置:l.

[3]http://.cn/Info/html/n14730_1.htm.

[4]http:///info/20121026/227691.shtml.

[5]冯卫东.美科学家证实电路世界第四种基本元件存在[N/OL].科技日报,2008-05-06.

[6]李九生.“微波与射频技术”课程新式教学理念应用[J].科技信息,2010,(6).

[7]李金凤,王健,刘欢.“射频集成电路设计”课程教学改革初探[J].考试周刊,2012,(15).

[8]张银蒲.基于射频方向课程群的教学改革与创新[J].唐山学院学报,2013,(1).

[9]王立华.虚拟网络分析仪在射频电路设计中的应用[J].电子测量技术,2012,(4).

收稿日期:2013-09-10

篇3

一、完善课程设置

合理设置课程体系和课程内容,是提高人才培养水平的关键。2009年,黑龙江大学集成电路设计与集成系统专业制定了该专业的课程体系,经过这几年教学工作的开展与施行,发现仍存在一些不足之处,于是在2014年黑龙江大学开展的教学计划及人才培养方案的修订工作中进行了再次的改进和完善。首先,在课程设置与课时安排上进行适当的调整。对于部分课程调整其所开设的学期及课时安排,不同课程中内容重叠的章节或相关性较大的部分可进行适当删减或融合。如:在原来的课程设置中,“数字集成电路设计”课程与“CMOS模拟集成电路设计”课程分别设置在教学第六学期和第七学期。由于“数字集成电路设计”课程中是以门级电路设计为基础,所以学生在未进行模拟集成电路课程的讲授前,对于各种元器件的基本结构、特性、工作原理、基本参数、工艺和版图等这些基础知识都是一知半解,因此对门级电路的整体设计分析难以理解和掌握,会影响学生的学习热情及教学效果;而若在“数字集成电路设计”课程中添加入相关知识,与“CMOS模拟集成电路设计”课程中本应有的器件、工艺和版图的相关内容又会出现重叠。在调整后的课程设置中,先开设了“CMOS模拟集成电路设计”课程,将器件、工艺和版图的基础知识首先进行讲授,令学生对于各器件在电路中所起的作用及特性能够熟悉了解;在随后“数字集成电路设计”课程的学习中,对于应用各器件进行电路构建时会更加得心应手,达到较好的教学效果,同时也避免了内容重复讲授的问题。此外,这样的课程设置安排,将有利于本科生在“大学生集成电路设计大赛”的参与和竞争,避免因学期课程的设置问题,导致学生还未深入地接触学习相关的理论课程及实验课程,从而出现理论知识储备不足、实践操作不熟练等种种情况,致使影响到参赛过程的发挥。调整课程安排后,本科生通过秋季学期中基础理论知识的学习以及实践操作能力的锻炼,在参与春季大赛时能够确保拥有足够的理论知识和实践经验,具有较充足的参赛准备,通过团队合作较好地完成大赛的各项环节,赢取良好赛果,为学校、学院及个人争得荣誉,收获宝贵的参赛经验。其次,适当降低理论课难度,将教学重点放在掌握集成电路设计及分析方法上,而不是让复杂烦琐的公式推导削弱了学生的学习兴趣,让学生能够较好地理解和掌握集成电路设计的方法和流程。第三,在选择优秀国内外教材进行教学的同时,从科研前沿、新兴产品及技术、行业需求等方面提取教学内容,激发学生的学习兴趣,实时了解前沿动态,使学生能够积极主动地学习。

二、变革教学理念与模式

CDIO(构思、设计、实施、运行)理念,是目前国内外各高校开始提出的新型教育理念,将工程创新教育结合课程教学模式,旨在缓解高校人才培养模式与企业人才需求的冲突。在实际教学过程中,结合黑龙江大学集成电路设计与集成系统专业的“数模混合集成电路设计”课程,基于“逐次逼近型模数转换器(SARADC)”的课题项目开展教学内容,将各个独立分散的模拟或数字电路模块的设计进行有机串联,使之成为具有连贯性的课题实践内容。在教学周期内,以学生为主体、教师为引导的教学模式,令学生“做中学”,让学生有目的地将理论切实应用于实践中,完成“构思、设计、实践和验证”的整体流程,使学生系统地掌握集成电路全定制方案的具体实施方法及设计操作流程。同时,通过以小组为单位,进行团队合作,在组内或组间的相互交流与学习中,相互促进提高,培养学生善于思考、发现问题及解决问题的能力,锻炼学生团队工作的能力及创新能力,并可以通过对新结构、新想法进行不同程度奖励加分的形式以激发学生的积极性和创新力。此外,该门课程的考核形式也不同,不是通过以往的试卷笔试形式来确定学生得分,而是以毕业论文的撰写要求,令每一组提供一份完整翔实的数据报告,锻炼学生撰写论文、数据整理的能力,为接下来学期中的毕业设计打下一定的基础。而对于教师的要求,不仅要有扎实的理论基础还应具备丰富的实践经验,因此青年教师要不断提高专业能力和素质。可通过参加研讨会、专业讲座、企业实习、项目合作等途径分享和学习实践经验,同时还应定期邀请校外专家或专业工程师进行集成电路方面的专业座谈、学术交流、技术培训等,进行教学及实践的指导。

三、加强EDA实践教学

首先,根据企业的技术需求,引进目前使用的主流EDA工具软件,让学生在就业前就可以熟练掌握应用,将工程实际和实验教学紧密联系,积累经验的同时增加学生就业及继续深造的机会,为今后竞争打下良好的基础。2009—2015年,黑龙江大学先后引进数字集成电路设计平台Xilinx和FPGA实验箱、华大九天开发的全定制集成电路EDA设计工具Aether以及Synopsys公司的EDA设计工具等,最大可能地满足在校本科生和研究生的学习和科研。而面对目前学生人数众多但实验教学资源相对不足的情况,如果可以借助黑龙江大学的校园网进行网络集成电路设计平台的搭建,实现远程登录,则在一定程度上可以满足学生在课后进行自主学习的需要。其次,根据企业岗位的需求可合理安排EDA实践教学内容,适当增加实践课程的学时。如通过运算放大器、差分放大器、采样电路、比较器电路、DAC、逻辑门电路、有限状态机、分频器、数显键盘控制等各种类型电路模块的设计和仿真分析,令学生掌握数字、模拟、数模混合集成电路的设计方法及流程,在了解企业对于数字、模拟、数模混合集成电路设计以及版图设计等岗位要求的基础上,有针对性地进行模块课程的学习与实践操作的锻炼,使学生对于相关的EDA实践内容真正融会贯通,为今后就业做好充足的准备。第三,根据集成电路设计本科理论课程的教学内容,以各应用软件为基础,结合多媒体的教学方法,选取结合于理论课程内容的实例,制定和编写相应内容的实验课件及操作流程手册,如黑龙江大学的“CMOS模拟集成电路设计”和“数字集成电路设计”课程,都已制定了比较详尽的实践手册及实验内容课件;通过网络平台,使学生能够更加方便地分享教学资源并充分利用资源随时随地地学习。

四、搭建校企合作平台

篇4

为满足集成电路方面教学和科研的需要,同济大学电子科学与技术系以985三期实验室建设、教育部修购计划两项经费所购置的设备为主体,充分整合利用本系目前已有的设备,完成了一个覆盖完整的集成电路设计平台的构建。依托同济大学第8期实验教改项目的支持,电子科学与技术系在平台的应用方面进行了有益的探索:针对本科生实验教学完成了集成电路设计系列实验课程开设;在集成电路相关科研项目中进行了实际应用,为科研工作提供了良好的支撑。

【关键词】

集成电路;设计平台;实验教学;科研

进入21世纪之后,集成电路在我国相关产业及教育领域的重要性日益凸显。2000年6月,国务院了纲领性文件《鼓励软件产业和集成电路产业发展的若干政策》(国发2000〔18号〕)[1],明确了集成电路作为国家战略性新兴产业的地位。在其后的国家中长期科技发展规划等文件中,均将集成电路列为重要的发展方向,自此我国集成电路产业进入了蓬勃发展的时期。产业的快速发展必然需要科技和教育的配合。基于此原因,国务院科教领导小组批准实施国家科技重大专项—集成电路与软件重大专项,其后教育部、科技部决定在国内有相对优势的高等院校建立国家集成电路人才培养基地,分别于2003年、2004年及2009年分3批批准和支持20所高校进行人才培养基地的建设工作。笔者所在的同济大学为第2批建设的6所高校之一。

同济大学电子科学与技术系成立于2002年,历史较短,在集成电路方面的基础较为薄弱。但自成立之初便将集成电路设计列为最重要的教学与科研方向之一,参考国际知名高校以及国内兄弟院校的先进经验[2-4],在课程设置等人才培养环节进行了积极的探索[5]。但是,集成电路设计强调工程设计实践,如果缺乏相应的设计平台,仅以理论知识为主,会导致培养出的学生与产业需求契合度不高。这也是诸多高校在集成电路设计的实验设置及实践环节进行教学改革和积极探索的原因[6-7]。我系也意识到亟须加强实践环节的相关建设。基于以上原因,我们充分利用985三期实验室建设、教育部修购计划两项经费的支持,在集成电路设计平台的构建方面进行了积极的尝试。

1建设方案与建设过程

1.1平台建设的基础依托985二期实验室建设、教育部修购计划两项经费为我系的教学改革提供了非常有力的支持,根据各个学科方向的统筹规划,分配约150万元用于集成电路及与系统设计相关的设备购置。购置的设备见表1、表2。除以上两部分设备之外,本系已经部分购置了与集成电路设计相关的设备,如Dell服务器、SUN工作站、各类测试与信号发生设备等。因此,我系已经初步具备了建设一个覆盖半导体器件制备与分析、集成电路设计与测试、系统级设计验证完整流程的专业实验与设计平台的基础条件。

1.2总体构想与平台规划基于上述基础硬件设备,我系在有限的场地资源中安排了专门的场地作为半导体器件与集成电路设计专业实验室,以支持集成电路设计平台的建设。将拟建设的半导体与集成电路设计专业实验室划分为4个功能区:服务器与中央控制区、集成电路设计区、集成电路分析与测试区、系统级设计与验证区。总体的规划如图1所示,功能与设备支撑概述如下。(1)服务器与中央控制区。主要空间用于放置3个机柜、承载两个机架式服务器(HP、Dell)、存储阵列(SAS15000RPM接口、初始配置7.2TB)、一个卧式服务器(超微)以及UPS电源、万兆交换机等供电和网络配件。需注意该部分噪声较大,故应与实验室其他功能区隔离。提供VPN、远程配置以及各类必要的服务,配置完整的EDA工具系统,覆盖集成电路设计全流程。(2)集成电路设计区。20个左右的工位,主要为HP工作站。具备两类工作方式:作为终端登录服务器系统使用;在服务器系统不能提供支持时独立使用。除工作站之外,配备2~3个文件柜、工具柜。(3)集成电路分析与测试区。主要功能为集成电路(晶圆、裸片、封装后芯片)的分析、测试。分析与测试系统以两套手动探针测试台(包括基座、卡盘、ADV显微镜)、超长焦金相显微镜(超长工作距离,2000倍放大)、4套微米级精确位移系统(包括探针、针臂、针座、线缆与接口)为主,并配备2台台式计算机以及信号发生器、稳压电源、逻辑分析仪1台、示波器1台,用作信号发生与记录、信号与图像采集功能。配备两个实验工具柜。(4)系统级设计与验证区。6个工位,配备2~3台计算机。考虑到面积有限,而该区功能较多,以多功能复用的方式设置工位的功能。该区的功能包括:①板级电路设计与测试。主要支撑设备为必要的计算机系统(软、硬件)。多台逻辑分析仪、示波器、信号发生器、万用表、稳压电源、必要的电子元器件及焊接设备等。②基于FPGA的系统设计。主要支撑设备为计算机系统(软、硬件)、4套Virtex-5FPGA系统。③嵌入式系统设计。主要支撑设备为计算机系统、3套VeriSOC-ARM9开发平台、多套PSoC开发套件、多套ARM开发套件、微控制器开发套件等。④集成电路系统级验证。与板级电路与测试共用各类设备。

1.3软硬件系统与设计流程构建基于新购买的存储阵列(NetApp)、服务器(DL380G7)、交换机(CISCO),并整合本系统原有的两台服务器(一台Dell机架式、一台超微立式),构成一个EDA开发服务系统。系统构建方面,我们进行了基于传统的EDA开发环境架构,以及基于虚拟化系统进行构建的两种尝试。存储结构上基于存储阵列,提供足够安全的冗余备份与保护。系统具备负载均衡功能。最终构建的系统可直接支持同一实验室内20台以上HP工作站的同时接入,并提供远程登录支持;以及通过同济大学校园网,提供外网的VPN接入支持。在硬件系统的基础上,我们安装配置了完善的EDA工具链,以提供覆盖全流程的集成电路设计支持。

2教学与科研应用

前述所构建的集成电路设计平台仅是基础的软硬件系统,如果要在实际的教学和科研工作中进行使用,尚需进行相关的课程大纲规划、实验方案设计以及实际的芯片设计检验。通过同济大学第8期实验教学改革项目的支持,我们在这些方面开展了一定的工作,主要包括以下两个方面。

2.1教学应用完成了实验方案内容建设,构建形成了一套覆盖集成电路设计全流程的实验方案,并兼顾半导体器件、集成电路测试;设计的系列实验应用于新开设的“集成电路设计实验”课程中,以丰富和扩展该门课程的实验内容,提高学生的学习积极性。该课程每周4学时,已经完成2013、2014两个学年的实验教学工作。具体的实验内容包括反相器实验(电路原理图输入、电路仿真、版图设计、版图设计规则检查及一致性检查、后仿真)、一位全加器系列试验、基本模拟电路单元设计实验、综合定制设计实验、硬件描述语言设计与验证实验(选做)、自动综合与布局布线设计实验(选做)。构建的软硬件平台,除用于集成电路设计实验课之外,亦用于电子系“半导体器件物理”“半导体工艺原理”等多门课程的实验环节,以及本科生毕业设计中。与现有的本科生各类创新活动相结合,为该类活动的人员选拔与培养、培训起到了一定的辅助作用。

2.2科研应用集成电路设计平台除用于相关的实验教学任务之外,亦可为相关的科研工作提供良好的支撑。在该平台所定义的开发环境及设计流程上,我们完成了两款65纳米工艺超大规模集成电路芯片的设计工作,其中一款已经返回,并进行了较为完整的测试,功能及性能均符合预期,芯片如图2、图3所示。这些设计很好地确证了该平台的完整性和可靠性。

【参考文献】

[1]国务院.国务院关于印发鼓励软件产业和集成电路产业发展若干政策的通知[EB/OL].2006-6.

[2]叶红.美国高校电子工程类专业本科培养方案浅析[J].高等理科教育,2007(6):64-67.

[3]于歆杰,王树民,陆文娟.麻省理工学院教育教学考察报告(二)—培养方案与课程设置篇[J].电气电子教学学报.2004(5):1-5.

[4]Bulletinforundergraduateeducation[EB/OL].

[5]罗胜钦,王遵彤,万国春,等.电子科学与技术专业培养方案初探[J].电气电子教学学报.2009(31):89-91.

[6]张立军,羊箭锋,孙燃.CMOS集成电路设计教学及实验改革[J].电气电子教学学报.2012,34(1):105-107.

篇5

合理设置课程体系和课程内容,是提高人才培养水平的关键。2009年,黑龙江大学集成电路设计与集成系统专业制定了该专业的课程体系,经过这几年教学工作的开展与施行,发现仍存在一些不足之处,于是在2014年黑龙江大学开展的教学计划及人才培养方案的修订工作中进行了再次的改进和完善。首先,在课程设置与课时安排上进行适当的调整。对于部分课程调整其所开设的学期及课时安排,不同课程中内容重叠的章节或相关性较大的部分可进行适当删减或融合。如:在原来的课程设置中,“数字集成电路设计”课程与“CMOS模拟集成电路设计”课程分别设置在教学第六学期和第七学期。由于“数字集成电路设计”课程中是以门级电路设计为基础,所以学生在未进行模拟集成电路课程的讲授前,对于各种元器件的基本结构、特性、工作原理、基本参数、工艺和版图等这些基础知识都是一知半解,因此对门级电路的整体设计分析难以理解和掌握,会影响学生的学习热情及教学效果;而若在“数字集成电路设计”课程中添加入相关知识,与“CMOS模拟集成电路设计”课程中本应有的器件、工艺和版图的相关内容又会出现重叠。在调整后的课程设置中,先开设了“CMOS模拟集成电路设计”课程,将器件、工艺和版图的基础知识首先进行讲授,令学生对于各器件在电路中所起的作用及特性能够熟悉了解;在随后“数字集成电路设计”课程的学习中,对于应用各器件进行电路构建时会更加得心应手,达到较好的教学效果,同时也避免了内容重复讲授的问题。此外,这样的课程设置安排,将有利于本科生在“大学生集成电路设计大赛”的参与和竞争,避免因学期课程的设置问题,导致学生还未深入地接触学习相关的理论课程及实验课程,从而出现理论知识储备不足、实践操作不熟练等种种情况,致使影响到参赛过程的发挥。调整课程安排后,本科生通过秋季学期中基础理论知识的学习以及实践操作能力的锻炼,在参与春季大赛时能够确保拥有足够的理论知识和实践经验,具有较充足的参赛准备,通过团队合作较好地完成大赛的各项环节,赢取良好赛果,为学校、学院及个人争得荣誉,收获宝贵的参赛经验。其次,适当降低理论课难度,将教学重点放在掌握集成电路设计及分析方法上,而不是让复杂烦琐的公式推导削弱了学生的学习兴趣,让学生能够较好地理解和掌握集成电路设计的方法和流程。第三,在选择优秀国内外教材进行教学的同时,从科研前沿、新兴产品及技术、行业需求等方面提取教学内容,激发学生的学习兴趣,实时了解前沿动态,使学生能够积极主动地学习。

二、变革教学理念与模式

CDIO(构思、设计、实施、运行)理念,是目前国内外各高校开始提出的新型教育理念,将工程创新教育结合课程教学模式,旨在缓解高校人才培养模式与企业人才需求的冲突[4]。在实际教学过程中,结合黑龙江大学集成电路设计与集成系统专业的“数模混合集成电路设计”课程,基于“逐次逼近型模数转换器(SARADC)”的课题项目开展教学内容,将各个独立分散的模拟或数字电路模块的设计进行有机串联,使之成为具有连贯性的课题实践内容。在教学周期内,以学生为主体、教师为引导的教学模式,令学生“做中学”,让学生有目的地将理论切实应用于实践中,完成“构思、设计、实践和验证”的整体流程,使学生系统地掌握集成电路全定制方案的具体实施方法及设计操作流程。同时,通过以小组为单位,进行团队合作,在组内或组间的相互交流与学习中,相互促进提高,培养学生善于思考、发现问题及解决问题的能力,锻炼学生团队工作的能力及创新能力,并可以通过对新结构、新想法进行不同程度奖励加分的形式以激发学生的积极性和创新力。此外,该门课程的考核形式也不同,不是通过以往的试卷笔试形式来确定学生得分,而是以毕业论文的撰写要求,令每一组提供一份完整翔实的数据报告,锻炼学生撰写论文、数据整理的能力,为接下来学期中的毕业设计打下一定的基础。而对于教师的要求,不仅要有扎实的理论基础还应具备丰富的实践经验,因此青年教师要不断提高专业能力和素质。可通过参加研讨会、专业讲座、企业实习、项目合作等途径分享和学习实践经验,同时还应定期邀请校外专家或专业工程师进行集成电路方面的专业座谈、学术交流、技术培训等,进行教学及实践的指导。

三、加强EDA实践教学

首先,根据企业的技术需求,引进目前使用的主流EDA工具软件,让学生在就业前就可以熟练掌握应用,将工程实际和实验教学紧密联系,积累经验的同时增加学生就业及继续深造的机会,为今后竞争打下良好的基础。2009—2015年,黑龙江大学先后引进数字集成电路设计平台Xilinx和FPGA实验箱、华大九天开发的全定制集成电路EDA设计工具Aether以及Synopsys公司的EDA设计工具等,最大可能地满足在校本科生和研究生的学习和科研。而面对目前学生人数众多但实验教学资源相对不足的情况,如果可以借助黑龙江大学的校园网进行网络集成电路设计平台的搭建,实现远程登录,则在一定程度上可以满足学生在课后进行自主学习的需要[5]。其次,根据企业岗位的需求可合理安排EDA实践教学内容,适当增加实践课程的学时。如通过运算放大器、差分放大器、采样电路、比较器电路、DAC、逻辑门电路、有限状态机、分频器、数显键盘控制等各种类型电路模块的设计和仿真分析,令学生掌握数字、模拟、数模混合集成电路的设计方法及流程,在了解企业对于数字、模拟、数模混合集成电路设计以及版图设计等岗位要求的基础上,有针对性地进行模块课程的学习与实践操作的锻炼,使学生对于相关的EDA实践内容真正融会贯通,为今后就业做好充足的准备。第三,根据集成电路设计本科理论课程的教学内容,以各应用软件为基础,结合多媒体的教学方法,选取结合于理论课程内容的实例,制定和编写相应内容的实验课件及操作流程手册,如黑龙江大学的“CMOS模拟集成电路设计”和“数字集成电路设计”课程,都已制定了比较详尽的实践手册及实验内容课件;通过网络平台,使学生能够更加方便地分享教学资源并充分利用资源随时随地地学习。

四、搭建校企合作平台

篇6

关键词:电子科学与技术;本科培养方案;课程设置;办学特色

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)30-0070-02

21世纪被称为信息时代,电子科学与技术在信息、能源、材料、航天、生命、环境、军事和民用等科技领域将获得更广泛的应用,必然导致电子科学与技术产业的迅猛发展。这种产业化趋势反过来对本专业的巩固、深化、提高和发展起到积极的促进作用,也对人才的培养提出了更高的要求。因此,本文从人才的社会需求出发,结合我校实际情况,进行了本科专业培养方案的改革探索,并详细介绍了培养方案的制定情况。

一、人才的社会需求情况

目前,我校电子科学与技术专业的本科毕业生主要面向长三角地区庞大的微电子、光电子、光伏和新能源行业,市场对专业人才的需求基本上是供不应求的。但是也应该注意到电子科学与技术产业的分布不均,分类较细,且发展变化较快。另外,电子科学与技术产业结构具有多样性,既有劳动密集型的大型企业、大公司,更多的是小公司和小企业;既有国有企业和私营企业,更有合资、独资的外企。因此,社会需求与本专业毕业生的供需矛盾还会继续存在。

二、专业的培养目标和定位

本专业培养具备微电子、光电子领域的宽厚专业基础知识,熟练实验技能,能掌握电子材料、电子器件、微电子和光电子系统的新工艺、新技术研究开发和设计技能,有较强的工程实践能力,能够在该领域从事各种电子材料、元器件、光电材料及器件、集成电路的设计、制造和相应的新产品、新技术、新工艺的研究、开发和管理工作工程技术人才。并且结合我校“大工程观”人才培养特色,依据“卓越工程师”教育理念下工程技术型人才培养的原则,培养适应微电子和新兴光电行业乃至区域社会经济建设需求的工程技术型人才。

三、本科培养方案制定的思路

电子科学与技术专业培养方案参照工程教育认证的要求,以及专业下设微电子、光电子材料与器件两个本科培养方向的思路制定。注重培养学生的专业基础知识和实践工程能力,使毕业生能满足长三角地区微电子、光电子和新能源行业发展的需求。微电子方向的课程设置专注于电子材料与电子器件、集成电路与系统设计方面,光电子材料与器件方向则偏向于光电信息、光电材料与光电器件方面。

四、本科培养方案的改革探索

要实现电子科学与技术专业的培养目标,适应电子信息产业的不断发展,并结合我校学科发展方向和特色,对电子科学与技术专业本科人才培养方案进行了研究,并对省内外几所高校电子科学与技术专业的培养方案进行调研,最终形成了富有特色的电子科学与技术专业人才培养方案,主要内容如下:

1.培养方案的模块化设计。在设计电子科学与技术专业本科培养方案的整体框架时,根据“加强基础、拓宽专业、培养能力”和培养工程技术型人才的办学理念下,专业培养方案分人文与社会科学、专业基础和专业课三个模块,下设微电子和光电子材料与器件两个专业方向。学生在前两年学习相同的课程,到大三时根据自己的兴趣选择专业方向,选修各自方向的专业课。由于两个方向的不同培养要求,因此在专业基础选修课、专业必修课和专业选修课方面设置限选模块,每个专业方向必须修满相应的学分才能毕业。

2.改革专业基础课程。专业基础课程是为专业课程奠定基础,因此,在保留了原有电子信息类专业通常所开设的电子类课程外,增加了与专业相关的课程,如EDA技术、通信原理、数字信号处理、物理光学、应用光学、激光原理与技术等课程,删减了原先与物理类相关的一些课程,如物理学史、原子物理、热力学与统计物理学等,并删减了一些计算机软件类课程,如C++程序设计、计算机在材料科学中的应用等。专业基础选修课程分方向限选模块,两个专业方向对应有不同的专业基础选修课程。

3.优化专业课程。专业课程是整个专业教育中的主干部分,微电子方向的课程设置紧紧围绕半导体和集成电路设计方向,开设有集成电路设计、微电子工艺原理与技术、工艺与器件可靠性分析、半导体测试技术、现代电子材料及元器件、集成电路工艺与器件模拟等课程。光电子材料与器件方向围绕光电材料和光纤通信方向,开设光电子材料与器件、光电检测原理与技术、太阳能电池原理与技术、光纤传感原理与技术、光纤通信技术等课程。另外专业课程里面还设置有专业实验,通过加强实验环节,训练学生的动手操作能力,增强学生的理论知识。

五、与省内外专业人才培养的区别

具有电子科学与技术专业的各大高校分布在不同的地区,服务于不同的区域经济,这就要求专业学生的培养具有区域化、差异化。我们分析了杭州电子科技大学、浙江工业大学、苏州大学、南京理工大学和徐州工程学院这五所不同地区、不同层次高校的电子科学与技术专业的培养方案。不仅使我们能学习到其他高校的先进办学理念、合理的课程设置体系,也可以发现与其他高校之间的差异。具体表现为以下几个方面:

1.专业定位。各个学校的电子科学与技术专业依据自身的师资力量、办学条件、区域经济要求确定专业的发展定位。杭州电子科技大学的电子科学与技术专业依托1个教育部重点实验室、2个国家级实验教学示范中心、3个省部级重点实验室,人才培养定位于能从事电子元器件、电子电路乃至电子集成系统的设计和开发等方面工作的工程技术人才。浙江工业大学的电子科学与技术专业主要培养光通信、电子电路系统、集成电路设计等方面的人才。苏州大学的电子科学与技术专业定位在培养能够在电路与系统、集成电路与系统等领域从事各类系统级、板级和芯片级研发工作的高级工程技术人才。南京理工大学的电子科学与技术专业主要是突出光电技术和微电子与信息处理学科的交叉和融合,以光电成像探测理论与技术及微电子理论与技术为专业特色。徐州工程学院的电子科学与技术专业主要定位在培养能从事光电子材料与器件开发的工程技术人才。而我校的电子科学与技术专业定位于服务长三角地区半导体和新能源行业,培养能从事集成电路设计与开发、光电子材料与器件的研发等工作的工程技术人才。

2.课程体系。杭州电子科技大学的电子科学与技术专业培养学生设计、开发电子元器件、电子电路系统、电子集成系统的能力,在课程设置上开设了通信电子电路、EDA技术、薄膜物理与技术、电子材料与电子器件、电子系统设计与实践、集成电路设计、嵌入式系统原理和应用、现代DSP技术及应用等专业课程。浙江工业大学的电子科学与技术专业培养学生设计、开发电子电路系统、集成电路系统的能力,开设了电路原理、模电数电、通信电子线路、集成电路设计、光纤通信原理、光网络技术、数字信号处理等专业课程,以及电子线路CAD实验、单片机综合实验、通信原理实验、通信电子线路大型实验、微电子基础实验、半导体器件仿真大型实验、集成电路设计大型实验等实验类课程。苏州大学的电子科学与技术专业培养学生设计与开发电路与系统、集成电路与系统,从事各类系统级、板级和芯片级研发工作的能力,开设了信号与系统、电磁场与电磁波、高频电路设计与制作、电子线路CAD、CMOS模拟集成电路设计、VLSI设计基础等专业课程,以及电子技术基础实验、信号与电路基础实验、电子线路实验、电子系统综合设计实验等实验类课程。南京理工大学培养学生从事光电子器件、光电系统和集成电路的设计、开发、应用的能力,开设了信号与系统、光学、光电信号处理、光辐射测量、光电子器件、光电成像技术、超大规模集成电路设计、光电子技术、显示技术、光电检测技术、数字图像处理、半导体集成电路、集成电路测试技术、微电子技术、光电子线路、电视原理等专业课程。徐州工程学院的电子科学与技术专业培养学生设计与开发光电子材料与器件的能力,开设有信号与系统、光电子学、光电子技术、激光原理与技术、光伏材料等专业课程,以及模拟电路课程设计、数字电路课程设计、单片机原理课程设计等实践性课程。我校的电子科学与技术专业主要培养学生集成电路设计、光电子材料与器件的设计与制备能力,开设有半导体物理学、半导体器件原理、MEMS技术、微电子工艺原理与技术、薄膜材料及制备技术、工艺与器件可靠性分析、集成电路工艺与器件模拟、EDA技术、通信原理、数字信号处理、光电子材料与器件、光电检测原理与技术、太阳能电池原理与技术、光纤通信技术等专业课程,以及近代物理实验、专业实验等实验类课程。

3.人才培养特色。杭州电子科技大学的电子科学与技术专业的人才培养特色是注重集成电路设计、系统集成方面能力的培养。浙江工业大学的人才培养注重光纤通信、集成电路设计方面能力的培养。苏州大学的人才培养注重电路与系统设计、集成电路与系统设计方面能力的培养。南京理工大学的人才培养注重光电技术和微电子与信息处理学科的交叉和融合,以光电成像探测理论与技术及微电子理论与技术为专业特色。徐州工程学院的人才培养注重光电材料与器件方面能力的培养。我校的人才培养注重电子材料与电子器件的设计与开发、集成电路设计方面能力的培养。

参考文献:

[1]陈鹤鸣,范红,施伟华,徐宁.电子科学与技术本科人才培养方案的改革与探索[A]//电子高等教育年会2005年学术年会论文集[C].17-20.

篇7

关键词:集成电路设计与集成系统;CDIO;一体化

1 CDIO一体化课程

CDIO一体化课程是一个由相互支持的专业课程和明确集成个人、人际交往能力以及产品、过程和系统的构建能力为一体的方案所设计出的课程计划[1]。即按照CDIO(构思-设计-实施-运行)理念,在不增加教学内容和时间的基础上,调整和优化原有教学的计划,以实现知识、能力和态度培养的一体化及专业技能与人文素养培养的一体化。同时,CDIO一体化课程也是“做中学”和“基于项目的教育和学习”(project based education and learning 简称PBL)的具体体现[2]。PBL区别于传统教学法实现了三个转变:以教师为中心转变为以学生为中心、以课本为中心转变为以项目为中心及以课堂为中心转变为以经验和能力为中心。强调学习的目的性和主动性。

2 集成电路设计与集成系统专业课程体系及问题分析

课程体系理论对课程计划的研究与设计起着指导意义,从一定程度上反映了对学科知识体系和学生能力培养的认知[3]。下面从课程组织上来分析集成电路设计与集成系统专业传统课程设计存在的问题。

集成电路设计与集成系统专业课程组织及问题分析。基于Grinter报告[4],现将我校集成电路设计与集成系统专业的公共课,专业基础课和专业课等进行了重新划分,如表1所示。再对比麻省理工学院(MIT)的航空航天工程专业课程[5,6],(MIT多年来被QS世界大学排名和世界大学学术排名评为世界第一,其已成为CDIO工程教育的标杆),讨论了基于CDIO一体化课程理念下我国集成电路设计与系统专业在课程设置上存在的问题:(1)工程实验课程比例低。工程分析与设计及工程实验类需要发挥学生能动性的课程仅为21%,远低于基础科学等理论课程.而麻省理工学院2014级航空航天工程专业课程体系中实践课程学分比例为45%;(2)人文社科类课程比例较低,不足10%。MIT航空航天工程专业课程体系中人文社科类课程学分比例为37%,人文社科类课程目标是培养学生作为一个公民应具有的基本素质和作为专业人士应具有的职业道德,在强调专业教育的同时不可忽视人文社科类的教育;(3)选修课比例不足。非限定性选修课程不足5%。而MIT课程体系中选修课程比例为55.8%,其中非限定性选修课程比例为24%。大量选修课的设置充分给予了学生学习的主动性,尊重学生个性发展及创新力的培养。

3 基于CDIO的集成电路设计与集成系统专业一体化课程体系模型研究

集成电路设计与集成系统作为一个典型的工科类专业,注重学生的动手能力、分析和解决问题的能力、创新能力及人文素养的培养。而课程体系的建立能从学科知识体系方向来引导学生各方面能力的培养。

集成电路设计与集成系统专业一体化课程设计。采取“自上而下”的总线型结构模式,如图1。即以项目设计为导向,先给出宏观、整体的概念,再由宏观到微观,由整体到局部,由项目所涉及的专业知识到专业知识所涉及的专业基础知识等展开整个课程。

对比传统课程体系具有明显的优势:第一,通过以职业方向为导向的规划,学生可根据自己兴趣选择适合自己的团队,达到因材施教的目的;第二,以组建团队来制定课程并完成项目,打破了传统的分班教学制,学生通过相互讨论,沟通以解决问题能培养团队合作意识。第三,实现了学科间的相互支撑及联系,学生每上一门课程都能明确该课程与先修课程和后续课程之间的联系,以及整个课程体系的学习目的。第四,经历了一到六学期的学习为最后项目的实现做好了充分准备,若以该项目为学生的毕业设计可提高论文质量,又避免了论文作假,抄袭等现象等。第五,从课程组织上看,以项目为主线展开的必修课程大大减少,除此以外的专业课程、专业基础课程和学科基础课程均作为选修课程,使学生拥有更多跨专业学习的选择机会。另外,人文社科类等公共课程贯穿于整个大学课程中,以实现专业技能与人文素养的一体化培养。

与此同时,该课程体系对当前的教学模式也提出了相应要求,比如学生学习方法和教师授课方式的改革,教师团队培养的改革,学生考核方式的改革,配套教材的改革等等。

结束语

围绕CDIO理念,重新构建了集成电路设计与集成系统专业一体化课程结构,即以专业方向指导项目,再以项目指导课程,将能力培养融入理论学习,将知识应用融入项目实践。希望借助课程体系改革,以实现集成电路设计与集成系统专业学生知识、能力和态度培养的一体化,专业技能与人文素养培养的一体化。同时,对我国高校工科类课程体系改革具有一定的指导意义。

参考文献

[1]顾佩华,包能胜,康全礼等.CDIO在中国(上)[J].高等工程教育研究,2012,3:24-40.

[2]查建中.论“做中学”战略下的CDIO模式[J].高等工程教育研究,2008,3:1-6.

[3]王伟廉.高等学校课程体系现代化研究[D].厦门:厦门大学,2004.

[4]孔寒冰.国际工程教育前沿与进展2007[M].浙江:浙江大学出版社,2009:179-192.

[5]张英.基于CDI0理念我国机械设计制造及其自动化专业本科课程体系研究[D].浙江:浙江大学,2014.

篇8

关键词:CDIO;集成电路设计;人才培养模式

中图分类号:640 文献标识码:A 文章编号:1002-4107(2013)03-0062-02

随着经济全球化的飞速发展,现代企业急需高技能人才,企业的用人标准逐渐提高,毕业生的就业形势越来越严峻。同时,又有相当一部分毕业生动手能力差,分析问题、解决问题的能力弱,难以满足社会要求。为了缓解企业人才的需求和大学人才培养模式之间的冲突,国内外各高校都开始积极调整现有的教学模式,提出工程创新教育与课程教学模式相结合的全新理念,即CDIO(构思,设计,实施,运行)理念。它是“做中学”和“以项目作为核心的教育和学习”的集中体现,以产品的生命周期为载体,让学生将理论知识和实践有机结合起来。在CDIO理念的指引下,培养学生的工程能力,通过对项目整个过程的构思、设计、实施和运行作为载体的操作来提高学生的工程实践能力,这些能力包括个人的学术知识,个人的终身学习能力,团队的沟通能力和系统的控制能力等[1]。

作为一门新兴专业,集成电路设计与集成系统专业具有门槛高、内容新、发展快、属于交叉学科、与产业联系紧密、实践性强等一系列突出特点。它还没有像其他专业一样形成完成的知识体系,也没有制定出专业的人才培养规范,导致我国各高校培养出来的集成电路专业人才无法适应现代企业的需要,造成高技能人才的紧缺[2]。因此,研究基于CDIO理念的集成电路设计与集成系统专业人才培养模式,切实做好集成电路设计与集成系统专业的工程教育,改革高校的工程教育模式,培养出能适应经济和社会发展需要的专业人才是十分必要的。

一、集成电路设计与集成系统专业人才培养模式的局限性

作为具有很强的工程性和实践性的专业,集成电路设计与集成系统专业的人才培养目标应定位于具有较高的工程素质、很强的实践和科研创新技能的高级人才。但由于我国集成电路专业人才培养模式存在局限性,导致企业需求与人才能力相脱节,具体局限性表现如下。

1.教学严重学术化,过分重视学生的理论教育,而轻视实践教育。在教育教学过程中,忽视了学生的自学能力和实际的动手能力,使得教学与实际相脱离。

2.专业课程之间存在知识的冗余,课程内容之间的相关性、相承性、互补性得不到有机整合,使得学生对项目的思路混乱,阻碍了学生构思能力的提升。

3.实验与实践环节缺乏系统的规划,导致实验内容陈旧,实验方法单一,实验模式过于呆板。而实验内容大多为针对理论教材的验证性实验,呆板的实验模式和实验内容很难使学生对学习产生兴趣,不能充分挖掘学生的创新能力。实践环节没有明确的培养目的,缺乏整体规划,实践环节是学生工程实践能力提高的重要环节。因此,实验与实践环节应与教学大纲相辅相成。

4.专业教师缺乏企业管理经验和工程训练能力。大多数教师虽然学位和学历很高,但一直从事教育教学工作,缺少实际工程背景和实践经验,带领并指导学生做实际工程项目时,学生遇到的实际问题得不到很好的解决。

二、基于CDIO理念集成专业的人才培养目标

集成电路设计与集成系统专业旨在培养具有良好的科学素养和国际竞争力,适应社会主义现代化建设需要的高级人才。通过基础与专业、理论与实践相结合的培养模式,培养既具有良好的文化修养和科学素质,又具有坚实的理论基础,同时具有丰富的集成电路开发、设计和工程管理能力的应用型高级人才[3]。通过大学四年的学习,使得集成专业学生毕业后掌握得以下几方面的知识与能力。

1.具有深厚的理论修养、扎实的专业基础知识、开阔的视野和高尚的职业素养。

2.具有良好的科学素养和较强的外语应用能力,对全世界科学和技术的发展动态有敏锐的观察力。

3.具有工程推理与判断、发现问题和解决问题的技能,能够进行科学研究和开发应用实际的项目。

4.具有良好的沟通、组织协调、团队合作的能力。

5.能够掌握集成电路的基本设计原理,熟悉制造工艺,能从事或参与集成领域产品的研究、开发、设计、制造、测试、应用、销售和管理工作。

三、CDIO理念下集成专业的人才培养模式的具体实施

(一)制定基于CDIO理念的专业教学大纲和实验大纲

将CDIO理念融入到专业教学大纲和实验大纲中,结合具体实际的项目制定集成专业课程大纲。大纲应体现以下四个方面的内容:基本技术和理论知识、个人的专职技能、人际交往能力和在现实社会环境中的CDIO能力。因此,制定专业教学大纲时,首先考虑在低年级引入导论课程,使学生对专业前景、发展方向有清晰的认识和了解。其次,要充分考虑课程导论与其他相关课程之间的内在关系。考虑课程的教学对象与教学目标、课程的内容、学时具体分配及主要的教学方法、实践环节的要求、课程与教师考核等问题。大纲制定过程中,自始至终都要充分体现CDIO理念、本专业的教学课程同企业项目之间的紧密关系。在制定实验大纲时要结合教学大纲,明确实验目的,将每门课程的实验按照基础类型、设计类型、创新类型和综合类型的比例合理划分,充分考虑实验学时、实验内容、使用的工具及具体方法等问题,培养学生的动手能力、创新能力和应用能力。

(二)制定基于CDIO理念的模块化课程体系

按照CDIO理念的教学大纲对学生能力的要求,结合集成专业培养应用型人才的定位,建立了以“基础课程、专业课程、实践课程、核心特色课程”相结合的模块化课程体系[4]。其中,基础课程主要由公共基础课程、素质课程、学科基础课程三部分组成,通过基础课程的学习,使学生具有良好的科学素养和文化修养的同时,又具有坚实的理论基础。专业课程主要包括专业平台课程、专业方向课程,由教师课堂传授专业知识。实践课程主要包括课程设计、生产实习和毕业设计。培养学生具有良好的科学与工程素养,具有较强的自学能力和分析解决问题的能力。核心特色课程主要包括专业选修课程,聘请国内外集成专业资深教授、企业高级人才以实际项目作为案例进行授课。

(三)举办基于CDIO理念的电子设计竞赛

电子设计竞赛是在教师启发引导下,学生通过竞赛来提高自己的自主学习能力、创新实践能力。围绕指定的竞赛题目,或学生以小组形式自主选择的题目,让学生进行构思,设计,实现和运作,将所选题目进行产品化。通过构思,分析客户的需求,预估产品的功能,设计技术方案,制定技术程序,并对小组成员进行分工,细化每个成员的任务。设计的任务主要包括产品的规划、原理设计、技术方案等。以构思和设计为基础,将最终的设计方案转变成实际产品,并对产品进行测试的过程即为产品的实施过程。对产品的运作主要包括对产品的前期程序调试,对系统功能进行改进。通过电子设计竞赛,将CDIO理念的构思、设计、实现和运作融为一个有机的整体,提高学生的工程实践能力,充分培养学生独立发现问题、解决实践问题的能力,培养学生团队合作能力和大系统掌控能力。

(四)基于CDIO理念的教学方法改革

改变传统的教学手段和教学方法,在教育方法上力求做到教师讲授与学生实践相结合,个人学习与团队合作学习相结合,让学生“主动学习”。将案例教学引入到课堂中,采用 “探究式”的授课方法,引导学生主动思考,并分组进行讨论,确定解决问题的方法,给学生创造实验环境去验证方法的可行性[5]。聘请校外专家、学者或企业工程管理人才为学生做专题讲座,进行辅导与授课,并定期派学生到企业去学习与实践锻炼。

(五)加强教师队伍建设,提高教师的CDIO能力

为教师提供去国外或者企业学习与交流的机会,让教师亲自参与到项目实训中,通过与企业项目工程师学习与合作提高教师自身的工程实践能力。聘请集成领域的国内外专家、学者、企业的项目经理、工程管理人员、工程设计人员,与本专业教师共同组建一支“多样性、复合型、高精端、产学研”的师资队伍,一起承担集成专业的人才培养任务。

针对我国目前集成电路设计与集成系统专业工程人才紧缺的现状,本文提出了CDIO理念下的人才培养模式,强调高校学生的专业知识技能和实践创新的工程能力,有效地解决了企业和人才能力相脱节的问题,从而为社会和企业培养更多合格的“专业型、创新型、应用型”的工程人才,更好地推进高等工程教育的改革,使我们的创新实践教育更上一个台阶。

参考文献:

[1]江帆,张春良,王一军,喻萍.CDIO开放教学模式研究[J].教学研究,2012,(2).

[2]刘胜辉,崔林海,黄海.集成电路设计与集成系统专业课程体系研究与实践[J].计算机教育,2008,(22).

[3]方卓红,曲英杰.关于集成电路设计与集成系统本科专业课程体系的研究[J].科技信息,2007,(27).

篇9

本届IC China展会呈现出 “新、特、多”等特点。

“新”,本届展会是展示十年来产业发展成果,认真总结产业发展经验,规划企业未来的一次重要的产业界聚会。

本届展会上,作为节能环保、新一代信息技术产业、新能源、新能源汽车等21世纪战略性新兴产业核心和基础的集成电路产业的企事业单位踊跃参展,半导体分立器件、半导体光电器件、半导体传感器件等“大半导体产业”相关的一些国内外企业也都在展会上一展风采,成为了一届名副其实中国国际半导体博览会。

“特”,为了成功搭建半导体技术沟通、交流的平台,展会的主办单位全力以赴做好展会的宣传组织工作,努力为参展企业提供更好的服务;各地方协会、产业基地和产业联盟也积极地参加到参展的组织工作中来。深圳、成都、无锡、西安、济南等产业基地,北京、上海、深圳、广州、浙江、苏州等半导体(集成电路)行业协会,封装测试产业联盟、沈阳装备基地等都组团参展,这样既充分展示地方的产业发展总体状况,也突出了行业中重点企业发展愿景。使与会者在企业发展、产业生态环境建设、产业链打造等各个层面上都会有收益。

“多”,参展企业多,参展企业参展产品种类多。这次参展企业包括:设计企业中的大唐微电子技术有限公司、中国华大集成电路设计集团有限公司、展讯通信(上海)有限公司等近70家左右;制造企业中的中芯国际集成电路制造有限公司、上海华虹NEC电子有限公司、和舰科技(苏州)有限公司等公司;封装测试企业中的江苏长电科技股份有限公司、南通富士通微电子股份有限公司、天水华天科技股份有限公司等企业;专用设备、材料企业中的大连佳峰电子有限公司、格兰达技术(深圳)有限公司、有研半导体材料股份有限公司、宁波江丰电子材料有限公司等;分立器件有电子科技集团13所、天津中环半导体股份有限公司、晶方半导体科技(苏州)有限公司等企业。东京精密设备(上海)有限公司、迪斯科科技咨询(上海)有限公司、苏州住友电木有限公司等外资企业也报名参展。本届展会特装展台占展览面积四分之三左右。

另外,展会将中国高校集成电路产学研成果展区与集成电路科普教育体验区相结合。中国高校集成电路产学研成果展区,不仅为高校提供了一个展示自我的舞台,同时也为企业与高校之间架起了一座沟通的桥梁。该展示区同时还设立集成电路科普教育体验区,让观众了解一粒粒沙子到一个个现代化的高科技产品的神奇复杂的演变过程,开启人们通往集成电路世界的大门,通过人机互动,增强观众对集成电路的认识。

IC China 2010高峰论坛、研讨会议题围绕“创新、整合、发展”,主题突出。

主办方将邀请工信部领导在高峰论坛对集成电路产业的“十二五”规划(发展战略)进行解读。

美国半导体行业协会总裁、中芯国际、爱德万、东京精密、南车时代电器股份有限公司、新思科技等知名半导体企业高管出席了高峰论坛,作精彩演讲。美国半导体行业协会演讲内容为美国半导体产业的创新与产业发展;企业嘉宾的演讲从全球产业发展与企业发展等方面展示他们企业的成功经验和产业的发展前景。国家集成电路设计深圳产业化基地周生明主任演讲的题目为“创新、方案整合、系统集成――深圳集成电路设计发展启示”。

精心策划和安排的7场专题研讨会,题目鲜明、热点突出、内容丰富。

一、“核高基”国家科技重大专项实施专家组承办的“成长中的中国集成电路设计业:机遇与挑战”专题研讨会,邀请了赛迪顾问、清华大学、重邮信科、杭州中天、中芯国际、山东华芯等业界知名咨询机构、著名高等学府和重点企业的专家、学者、高管就中国集成电路设计业发展前景、微电子技术发展与绿色经济、国产嵌入式CPU的发展与服务策略、TD核心芯片发展策略、存储器产业的初步实践和思考等产业界发展的前沿重大课题、共同探讨中国集成电路设计业的机遇与挑战。

二、“中国集成电路封测产业链技术创新联盟”2009年在北京成立。这个联盟涉足我国集成电路封测领域的制造、装备、材料及相关科研与教学的25家单位。该联盟以“极大规模集成电路制造装备及成套工艺”国家科技重大专项(即“02专项”)中的相关创新课题为技术驱动平台和纽带,依托其成员单位的人才、技术和市场资源,推动我国集成电路封测产业链关键技术进步与重大科技产品的创新。联盟不仅组织成员及相关单位参加了IC China 2010 的重大专项装备专区,同时将参加“中国半导体装备、材料与制造工艺研讨会暨第十三届中国半导体行业集成电路分会、支撑业分会年会、江苏省半导体行业协会年会”。国家科技重大专项“极大规模集成电路制造装备及成套工艺”总体组组长、华润微电子有限公司董事长、有研半导体材料股份有限公司董事长、南通富士通电子股份有限公司总经理及多家企业高管将在研讨会上发表精彩演讲。

三、半导体分立器件是半导体产业重要的组成部分,发挥着越来越大的作用。新型电力电子器件、模块和应用,更是业界特别关注的领域,对高效节能、绿色环保起着非常重要的作用。在中国半导体行业协会分立器件分会承办的“电力电子与低碳经济”研讨会上,江光、苏州固锝、电子科技集团第55研究所、河北普兴、深圳深爱以及成都电子科技大学等单位的高管、专家就新型电力电子器件、绿色高效电源、电源管理集成电路等领域的技术创新成果、应用开发实例、市场发展远景、产业规划建议等方面进行充分交流,共图我国电力电子技术的新发展。

四、“知识产权”状况是企业竞争力的表现,是创新型国家的重要标志。多年来我国企业在知识产权工作方面取得了很大成绩,但进一步加强知识产权管理,推动知识产权资本化运作尚有许多工作要开展。知识产权的资本运作,有利于企业盘活存量资产,实现知识产权资产的价值型管理和优化重组,进而促进资源的科学配置与有效流动,实现资源配置的优化,有力地推动了产业发展。上海硅知识产权交易中心有限公司承办的“知识产权与资本运作”研讨会邀请了国内外投资机构、律师、中介机构等专业人士,从专利交易与资本运作的模式、法律问题、资产评估等不同角度深入探讨,以期对国内业界有所帮助。

五、越来越多的IC设计企业已经认识到分销商的价值,与分销商合作,节省了产品开发成本和缩短产品入市时间,也能借助分销商的渠道提高产品知名度和市场份额,实现电路设计企业、分销商、整机系统厂家三赢局面。由深圳华强与苏州市集成电路行业协会承办的“集成电路设计企业与市场分销商研讨会”邀请了苏州周边地区的设计企业和国内众多优秀的分销商、方案商将齐聚苏州共同讨探未来集成电路市场分销状况及市场发展趋势。并采用圆桌式“一对一”的方式直接让设计企业与分销商、方案商面对面交流,有针对性的进行合作交流,有意向合作的设计企业与分销商在现场进行了意向性预签约仪式。

篇10

关键词:产学研;集成电路;人才培养机制

中图分类号:G640 文献标识码:A 文章编号:1002-4107(2016)08-0076-02

当前社会对创新型人才具有高的需求,担负着人才培养重任的高校在教育理念、教学方法、人才培养等方面面临着严峻挑战。如何克服传统教育的桎梏,在高新技术为核心、知识经济占主体地位的社会背景下,培养出适合社会需求的高技术、高素质、创新型的科技人才,是高校一直努力探索与奋斗的目标。

黑龙江大学是省部共建的综合性大学,革新传统高等教育人才培养机制与模式,致力于构建教学、科研与学科三位一体的内涵发展模式。优良的教育教学大环境,先进、科学的教育理念,为集成电路人才的培养提供了肥沃的土壤。深入、切实的人才培养机制的探索与改革是新时期发展对高等教育提出的迫切要求[1]。

一、产学研模式下集成电路人才培养机制的提出

人才培养机制是多要素间互为联系,作用的复杂培养系统,是有效进行人才培养的前提和功能。适应社会技术与经济发展进步的人才培养机制的研究是提升人才培养质量的重中之重。产学研结合的教育模式源于美国教育界[2]。教育实践成果表明,该模式是高校与社会深度有机融合、推动经济与技术发展、为社会培育创新型人才的有效培养机制。产学研模式下人才培养机制的探究是与现展要求密不可分的。也是高校全面提升素质教育,提高人才竞争力的必然要求。

产学研模式下人才培养机制是指担负高等教育任务的院校在教育教学过程中,还要与科研活动、生产劳动与技术应用相结合,有效发挥高校的教育、科研和社会服务三大职能。《国家中长期教育改革和发展规划纲要(2010―2020)》指出:“促进高校、科研院所、企业科技教育资源共享,推动高校创新组织模式,培育跨学科、跨领域的科研与教学相结合的团队。促进科研与教学互动、与创新人才培养相结合。”[3]产学研结合是培养满足社会需求与创新型人才的有效途径。

黑龙江大学集成电路专业人才培养计划的总体框架与国内高校基本相似,集成电路专业是一门对科学研究、设计与创新、EDA工具应用等能力要求较高的学科,是涉及多产业链的技术与应用相结合的高精专产业。技术更新与发展飞速,仅依靠课堂教学中所学的知识与实验、实践环节中的技能传授,来培养高质量人才,会有一定的差距。有限的经费投入与昂贵的EDA工具相制约,出现专业实验室软硬件建设滞后于重点高校与产业应用的问题,易导致人才培养中与社会人才需求存在部分脱节。

产学研模式下的人才培养是该专业与国内集成电路各产业部门、科研机构进行紧密合作,协同培养集成电路设计人才的教育教学新模式,努力实践一条适应集成电路科研与产业需求的人才培养模式之路,即教学为根本、产业与科研为支撑、产学研互促、协同共进。

二、产学研模式下集成电路人才培养机制的构建

产学研相结合、协同培养人才的教育模式在我国高等教育教学变革中形成,人才培养不再只是高校的任务,高校、产业、科研机构三位一体,三者间不同的社会功能与资源在各自优势上进行协同、互补与优化,产业与科研机构既是培养人才的有效平台,也是人才应用的终端。由此,三者协同为社会发展需求培养人才是符合科学技术创新与社会生产力发展的规律的,也是高校创新型人才培养理念实施的有效途径,有利于优化产业科学技术与工程应用行为,提高科研机构的科研创新能力。黑龙江大学集成电路专业致力于推进产学研协同的创新人才培养机制研究与实践,将专业所在领域的优势资源有效融合,推动教育教学能力与专业人才培养质量的提升。

(一)完善人才培养方案

结合集成电路产业的实际人才需求,优化人才培养目标与课程体系设置。以原有教学计划与教学大纲为基础,通过细致调研与深入剖析,根据集成电路专业对应用型、实践和创新能力的人才需求,基于产学研结合培养集成电路人才的优势,优化并修订完成新的人才培养方案。制定学生应在知识、能力、素质三方面达到培养要求的目标。培养目标与要求仅通过课堂的传统教学方式是很难达到和实现的。新版人才培养方案中加强对实践教学的要求,并通过产学研结合的方式有效开展实践教学。

(二)推行教学与科研相融合的实践教学模式

实践教学是创新型人才培养的重要手段之一[4],是在掌握专业理论知识基础上的能力的提升。黑龙江大学集成电路专业意识到实践教学对学生能力的全方位提高的重要性,注重实践教学改革与教学平台的建设,多角度地将专业的科研项目、产业与科研机构的作用进行充分发挥。在课程设计与毕业设计等实践环节,主要开展基于专业科研项目模拟的实践教学实施方式。以科研项目中所划分出的子任务为驱动,从创设问题情景出发,应用知识与技能解决实际设计问题,有效地激发学生主动探索和获取知识的创新能力。实践教学设计与实施的全过程要贯彻科学先进的人才培养理念。

(三)与集成电路产业、科研机构共建实践平台

黑龙江大学集成电路专业注重开展多渠道、多形式的人才培养形式,积极与集成电路产业及科研机构合作,谋求共同发展。通过与北京集成电路设计园合作共同开展生产实习培训工作,在集成电路行业发达的北京进行实习的过程中,加强学生对集成电路设计行业的感性认识,开拓其专业视野,使其意识到专业发展的优势,提高他们的专业兴趣与学习积极性。通过合作,也增强了与产业机构的联系和技术交流。我们以产业与科研机构的人才需求为导向,培养并推荐优秀毕业生。

充分利用实习周期,设计全流程、多方位的实习环节。从专家培训与就业指导开始,整个实习涉及集成电路设计公司、大规模集成电路测试研究所、EDA公司、集成电路制造、封装公司。借助于优质的实践平台,课堂教学中的理论学习与现实技术有机结合起来,加强了学生对课堂知识、专业技术水平、就业的深入认识。

(四)开展科技交流活动,强化教师队伍建设

高校人才培养的主体力量是教师,建设一支理论知识深厚、实践能力强的教师队伍是集成电路人才培养的保障。通过产学研合作平台,避免教师忽略行业的发展动态,他们能够更新并掌握科技发展新动态与就业风向标。在产学研模式下,提高专业教师的实践技术能力,落实到教育教学工作中,增强教学直观性,提高学生对集成电路专业学习的积极性,易于他们掌握专业知识。

院系积极组织开展与集成电路设计公司、科研院所等专家进行交流的活动,从教师队伍建设的角度充分发挥产学研合作教育的作用。将前沿性的专业技术动态与信息渗透在日常教学中,完善学生知识结构,增强其就业竞争力。产学研模式下人才培养机制的实践可以直接或间接、多角度、多层次发挥作用。

(五)健全资源共享机制

集成电路人才培养是一项系统工程,仅凭高校的财政拨款与项目经费很难购置或更新所有集成电路实现流程所需的软硬件工具与设备。以产学研模式下人才培养机制的提出为思路,积极与产业和科研机构共享优质资源,协调教学设备与科研设备的使用,建立集成电路设计资源开放共享机制,充分利用现有资源,加强对学生动手能力和创新能力的培养,实现专业建设的良性发展。

三、关于产学研模式下集成电路人才培养的思考

通过集成电路产业人才需求的背景,紧扣产业与科研机构的技术发展与资源优势,充分利用产学研的优质资源,提高学生的设计、创新与就业能力,最大可能地扩大集成电路专业学生的培养质量与受益度。为提高人才培养机制的效用,在今后的教育教学工作中如何走一条可持续发展的道路是值得深思的问题。

首先,人才培养过程中,高校作为主体环境,决定着人才培养机制的制定、实施过程,如要取得人才培养的最大化成效,高校在宏观政策制定上要给予支持。良好的合作政策是对产业与科研机构的吸引和鼓励,有利于产学研共建人才培养平台,形成人才培养与人才需求的良性循环。

其次,高校教师作为人才培养的具体实施者,在人才培养周期的往复循环过程中,如何始终秉持先进的教育理念、保持创新意识与增强创新能力是关键问题。如果高校教师的激励机制、评价体系与产学研模式下人才培养机制相违背,产学研模式下人才培养的实施就会缺乏力度。

综上,产学研相结合的人才培养模式是一种以提高学生全面素质、专业能力、社会适应力和就业竞争力为重点,把以传统课堂传授专业知识为主的高校教育与直接获取实际设计与生产经验、科研实践有机结合互补的教育模式。充分利用学校、产业与科研机构等多方面的优质教育环境和资源,以解决专业建设中的资源不足问题。产学研三位一体的集成电路人才培养机制正发挥优势,探索一条行之有效的人才培养之道是高校不懈努力的目标。

参考文献:

[1]闫鹏飞,蔡庄,王鹏等.黑龙江大学发挥科技资源优势加 快产学研结合促进地方经济发展[J].中国高校科技与 产业化,2007,(12).

[2]张海国.产学研合力培养创新型人才模式探讨――以襄 阳职院为例[J].湖北科技学院学报,2015,(10).