计算机分布式控制技术范文

时间:2023-09-28 18:09:01

导语:如何才能写好一篇计算机分布式控制技术,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

计算机分布式控制技术

篇1

【关键词】分布式先进;控制软件技术;应用

随着我国经济发展水平的逐步提高,计算机技术的应用范围逐步扩大,从我国计算机网络的管理情况来看,我国计算机软件的开发与应用,逐步实现技术应用的全面性创新发展,分布式先进控制软件技术在我国社会网络应用中的范围逐步扩大,分布式控制软件技术的应用实现了网络服务客户与服务器技术之间合理链接,使信息传输和管理的速率性提高,网络通信技术管理层次化发展。

1分布式控制软件技术

分布式控制技术采用计算机技术为基础,实现网络通信信息资源管理的系统性划分,从分布式控制技术的应用方面,对分布操作系统进行规划,主要分布操作系统、分布程序设计系统、分布文件处理系统以及文件数据库保存系统,是我国计算机网络程序综合应用的重要体现。

2分布式控制软件技术的应用

分布式控制技术在实际中的应用,合理调节网络技术应用与自动调节装置,结合软件在实际应用中的应用程序设定结构,对分布式控制技术在实际应用中的几种常见运行模式进行分析,主要包括以下几方面:

2.1OPC技术在实际中的应用

2.1.1OPC技术的应用原理OPC技术是现代工业生产的技术应用标准,OPC技术中主要包括继电器震荡保护模式,系统程序识别模式,OPC技术在传统计算机控制技术的基础上,实施技术分析与应用,进一步结合计算机数据库进行系统运行管理的自动化控制。用户直接输入管理程序,确定工业生产中工业运行的程序命令,从而实现技术管理的多元化发展,技术命令运行执行程序可以应用算法进行模式控制,从而进一步增加了工业生产的系统之间的相互联系,自动化水平增强。例如:OPC技术应用自动管理程序建立自动化处理系统,系统依据用户输入的程序验证码,执行OPC技术的数据控制管理程序,进而进一步到达优化工业生产干管理的技术应用结构逐步完善。2.1.2OPC技术的应用分析OPC技术在我国工业生产中得到广泛应用,OPC技术在实际应用中的技术模型主要构建为依据企业工业生产的基本程序,设定技术应用环境,使用OPC技术在公司工业生产环节中的自动化应用,可以大大提供技术应用的灵活性,强化工业生产的生产环节的可控制性发展;此外,OPC技术在工业生产中的应用,打破了传统工业技术应用程序数据端口的程序自动化限制,只要工业生产的技术应用水平处于统一格式的数据运行程序,技术应用则可以被应用,是我国工业生产技术应用领域逐步拓展的重要性体现。

2.2COM技术在实际中的应用

2.2.1COM技术应用原理COM技术是实现计算机分布式控制管理中各个系统实现自动化连接的自动化控制模型,依据我国技术应用与分析的组件控制对象模型,将COM技术在计算机分布式控制领域的分析技术应用分为技术系统数据转换和系统程序预测量两部分。2.2.2COM技术的实际应用COM技术在实际应用中的基本操作流程可以概括为:假设计算机分布管理程序执行生成命令,从技术应用的实际出发,运行命令经过人机接触窗口进行命令输入,opc服务器针对如输入命令进行系统命令初步处理,连接并启动与“命令”存在同步关系的相关数据处理技术,COM技术在启动的数据连接的基础上进行数据更新与保存,并不断总结命令的执行的数据应用规律,进行网络通讯分布程序的自动化管理,最后现命令通过PLC自动编程技术进行应用于控制,执行分布控制系统的最终执行命令,保障系统的科学化、层次化运行。

2.3自动安装技术

分布式先进控制软件的应用体现在系统的自动安装技术的能应用,分布控制系统将网络通信领域的运行程序实施自动化规划与划分,当分布系统并中存储扥文件和数据资源需要定期进行更新时,系统内部依据自动化管理的基本运行系统进行自动安装,保障系统运行中数据的定期更新。

2.4抗干扰自动调节技术

分布式控制软件技术在实际应用中,抗干扰技术也是主要应用技术之一。分布控制技术在实际应用,实现了网络通讯系统中系统运行的电流键控制与检测技术在实际中对网络通信的传输电流结构实现电流控制与管理,当分布式系统进行系统信息技术传输时,电流传输处于相对稳定的定值状态,从而进一步优化不同领域中信息分布管理中,数据资源的科学性管理,精确数据实现分布式传输的信息临界值的输入准确性,避免网络数据传输中,电流应用中出现继电器回流的情况发生,对网络信息传输系统造成不利的影响,实现了计算机系统的综合性应用,从而进一步提高了分布控制管理系统的资源管理与数据信息系统的管理结构的进一步完善。

2.5程序语言下自动处理技术

分布式控制软件技术在实际生活生产中的应用,也为现代计算机网络程序的应用提供了新的发展空间,从而进一步推进分布式控制软件技术自动化控制应用手段的科学性发展。例如:程序语言下自动处理技术对可以实现计算机分布控制系统进行网络系统sql语句执行运行命令,当人机接触系统接收到运行数据语句时,系统执行输入的运行程序,并结合实际运行命令存储数据,处理系统进行自动化处理,达到整体程序的协调运行,从而完善分布式控制技术的实际应用操作能力。

3结论

分布式控制软件技术是我国技术发展中技术应用科学化手段,结合分布式控制技术系统的科学性分析,对分布式控制系统进行研究,把握分布式技术应用的基本特征和实际应用技术的分析,实现我国技术应用领域和应用手段的逐步创新发展。

参考文献

[1]褚健,王德康,苏宏业.先进控制软件包AdvanTr01——HIecon及其工业应用研究[J].化工自动化及仪表,2014,24(06):23-27.

[2]董丽,李京华,王克宏.基于CORBA的Web计算机体系结构的研究[J].清华大学学报,2015,40(09):82-85.

篇2

关键词:楼宇自动化自动化控制系统

中图分类号:TN830.1文献标识码: A 文章编号:

楼宇自动化系统是智能建筑的重要组成部分,其任务是对建筑物内的电力、照明、空调、给排水、防灾、保安、车库管理等设备或系统以集中监视、控制和管理为目的,以提供一个既安全可靠,又节约能源,而且舒适宜人的工作或居住环境。

一、楼宇自动化系统的组成

楼宇建筑通常包括暖通空调、给排水、供配电、照明、电梯、消防、安全防范等子系统,楼宇自动化系统由以上系统的场控制站、数据采集站、工程师站、操作员站、监控计算机和管理计算机通过数据通信网络被有机地结合起来,组成分级分布控制系统,它是运用计算机数据处理、自动测量及控制技术,对以上子系统的机电设备进行自动控制和统一管理。

二、楼宇自动化系统的原理

楼宇自动化系统采用的是分布式控制系统,它的特征是“集中管理,分散控制”,即用分布在现场被控设备处的微型计算机控制装置完成被控设备的实时检测和控制任务,克服了计算机集中控制带来的危险性高度集中的不足和常规仪表控制功能单一的局限性。安装于中央控制室的中央管理计算机具有CRT显示、打印输出、丰富的软件管理和很强的数字通信功能,能完成集中操作、显示、报警、打印与优化控制等任务,避免了常规仪表控制分散后人机联系困难、无法统一管理的缺点,保证设备在最佳状态下运行。

2.1分布式控制系统的数据通信网络

数据通信网络是分布式控制系统的支柱。整个分布式控制系统的结构,实质上是一个网络结构,现场控制站、数据采集站、工程师站、操作员站、监控计算机等都是这个网络上的“节点”,都含有CPU和网络接口,它们都有自己特定的网络地址,可以通过网络发送和接收数据,网络中的各节点处于平等地位,既能共享资源,又不相互依赖,形成既有统一指挥,又使危险分散的功能结构,网络的架构区具有极大的伸缩性,可扩性很强,可以满足分布式控制系统扩充与升级的需要,十分灵活、方便。

2.2分布式控制系统的进一步分散化

(1)LonWorks技术,LonWorks是一种完全分布式控制的局部操作网技术。LonWorks网络节点由神经元芯片、收发器、固件和I/O接口电路组成。神经元芯片是这种智能节点的核心,它由媒体访问控制处理器、网络处理器和应用处理器组成,这就使得节点既能管理网络通信,又具有控制功能。

(2)传统的分布式控制系统在现场控制站这一级依然是一个集中式结构,而现在的分布式控制系统是在原有分布式控制系统的基础上,采用LonWorks现场总线的建筑设备自动化系统发展起来的新系统,标准LAN为原有的分布式控制系统,使用BACnet协议,以利于实现多种供应商的不同类型的子系统之间的通信信息交换,把具有控制功能的各个岛连成一个整体。新增的LonWorks现场总线使用LonTalk协议,把控制功能进一步分散到现场级仪表,标准LAN与现场总线之间的路由器相联。这样BACnet和LonMark两项标准互相补充,互为依托,构成一个完全分散的、真正开放的建筑设备自动化系统。

三、楼宇自动化系统的硬件、软件的配置

1、楼宇自动化系统的硬件主要由下列几部分组成:

(1)建筑物监视系统:提供一个以windows环境下的人机交互界面,为工程师提供应用程序的编制平台,为操作人员提供直观和快捷的操作界面。中央管理机实现对个系统的集中监测、管理与最优控制。

(2)建筑物控制系统:对所需的模拟量输入/输出和数字量输入/输出进行现场监视和控制。

(3)建筑物防火及保安系统:实现出入控制,保安监视和控制,集成摄像控制,火灾报警等功能。

2、楼宇自动化系统软件的配置有:

(1)身份鉴别软件:只有操作员身份密码,才能行使操作员职责范围内的指令。

(2)常规记录软件:负责常规记录资料的处理、显示、打印。

(3)节能控制软件:根据室外的温度相对湿度,充分发挥自然潜力,控制空调系统的运行、节约能源。

(4)运行时间累计、维修记录软件:在设备累计运行时间超过设定值时,进行报警,这是供预防性维修保养用的。

(5)故障报告软件:负责设备的故障报警,以及故障的显示和打印记录。

(6)最大负荷限制软件:当实际负荷超过额定的极限值时,发出报警信号,同时切除预定可以切断的负荷,减少电费的开支。

四、楼宇自动化系统将实现如下主要功能:

1、中央空调系统的监控管理

(1)监视控制整个大厦的空调系统(包括:风机盘管控制、冷热水泵旁通控制、冷却水塔进水控制等;

(2)通过冷冻水的供/回水温度和流量测量、自动计算出空调系统的冷负荷,并在楼宇自动化系统的CRT上显示;

(3)根据实际的冷负荷通过空调冷冻水机组带的群控装置来决定冷冻水机组的启停数,以达到最佳的节能效果;

(4)测量并自动控制冷冻水系统供/回水总管的差压,维持系统要求的差压值。

2、给排水系统的监控管理

(1)楼宇自动化系统将监控给排水系统的所有水泵的运行状态;

(2)楼宇自动化系统将对给排水系统的设备运行时间、状态、水量、压力值进行记录;

(3)当水泵出现故障时,楼宇自动化系统会通过联锁控制备用泵自动投入运行;

(4)监控给排水系统的如下设备:生活给水泵、消防给水泵、自动喷淋泵、稳压水泵、排污泵、屋顶水池、地下水池、污水池、给排水监控系统。

3、供配电监控系统

变配电系统正常运行,可靠供电是智能大厦安全使用的保证。因此,智能大厦的控制中心要控制、监视、记录供电系统的运行情况,主要包括:

(1)高压系统:进线与蹭联络断路器状态控制监测、电压、电流、频率、有功功率、无功功率、变压器温度及故障状态显示与报警;

(2)低压系统:进线与联络断路器状态控制监测、电压、电流、功率因数、重要输出支路断路状态监控、故障情况显示、报警;

(3)直流系统:交流电源主进线断路器控制、直流输出、电压、电流及故障状态显示报警;

(4)发电机系统:发电机启动、供电、主断路器状态、电压、电流、频率、转速、油箱位高低、水温等显示、故障报警、断路器状态控制;

(5)照明系统:根据大厦内的使用功能、分成不同的区域照明,如办公室照明、走廊照明、大厦立面照明、航空障碍灯照明、室外环境照明等,按照时间顺序及使用需要,由中央监控系统控制开、关状态,故障显示。

4、保安自动化系统,楼宇自动化系统将监控保安系统的如下设备:门禁系统、闭路电视系统、防盗报警系统、巡更系统。

篇3

关键词:工业自动化控制;计算机控制技术;应用路径;网络技术

中图分类号:TP273文献标识码:A文章编号:1674-098X(2015)10(a)-0132-02

作者简介:吴高杰(1991,4—),男,江苏江阴人,本科,学员,研究方向:计算机控制其他机器工作

在市场经济快速发展的今天,工业企业面临着巨大的市场竞争,因此,对于工业制造企业而言,如何在确保产品质量的基础上,最大限度提高企业生产效率,已经逐渐成为了工业制造企业所普遍面临的难题。工业自化已经成为了行业发展的趋势,而计算机控制技术则在其中发挥着重要的作用,NC、PLC等先进技术的使用成为了计算机控制系统在工业自动化控制中应用的键,其自身的发展也逐渐向着精密化、灵活化、开放化的方向发展。

1工业自动化技术概述

石油、石化、建材、冶金等都属于工业生产,它所涵盖的范围广泛,可以是指一台生产的设备或是一条生产线,也可以指一间厂或是一家企业。在工业制造行业中,工业自动化技术指的是一项综合性技术,它强调的是在综合利用计算机技术、电子设备、控制理论以及相关的仪器仪表的基础上,实现对工业生产制造全过程的动态化、智能化监测和控制。在这个过程中,实现对生产工艺的优化、生产资料的合理配置,并为决策者的决策行动提供参考,其最终目的是提高产品质量和生产效率,降低生产消耗和成本,减少对环境的污染。总体而言,工业自动化技术包含了三个部分,分别是硬件系统、软件系统和系统技术。硬件系统中包含了各项控制设备和仪器,以及执行命令的执行器等。系统技术则包含了各项集成技术,具体包括硬件集成技术、软件集成技术、软件和硬件集成技术等。而各类软件则属于软件系统,在工业自动化系统中,包括了管理软件、控制软件和测量软件等。这三个部分的内司其职,又相互配合,共同实现了工业的自动化生产和控制。将自动化技术应用于工业生产制造行业,对提高企业员工素质、提高企业生产制造能力具有重要意义,同时,这也是优化工业行业产业结构,避免“三高”的重要举措。

2计算机控制技术概述

计算机控制技术质是以计算机技术为核心的一项技术,其主要的目标是采集和控制生产过程中的各项参数,并以计算机硬件系统为依托,利用相应的控制软件,实现对工业生产过程的自动化控制。换而言之,工业自动化控制系统的实现需要以计算机控制系统为基础。计算机控制系统由软件控制算法、硬件系统和上位机操控软件三个部分构成。在这个系统中,计算机拥有高速的计算能力和数据处理能力,因此被运用于各项命令的执行,通过对被控对象的控制,达到工业自动化控制的目的。事实上,从很大程度上来说,对计算机的控制也需要借助一些辅助部件。上位机操控软件的主要作用是现人机的交互,其最大的作用在于实现程序和数据的输入和输出,同时承担数据库构建的任务,以便于实现对工业生产过程的控制,在发现异常状况时能够发出警报。在辅助工业控制系统运行过程中,计算机控制系统需要进行经常性的信息交互,通常情况下,信息交互能够采用有线通讯和无线通讯两种方式。总而言之,计算机控制系统的要目的一方面在于实现对运动过程的控制;另一方面是实现控对象的优化。

3计算机控制系统的工作原理

硬件系统和软件系统是计算机控制系统两个重要组成部分,要想实现计算机控制系统的控制功能,需要采取专门的数字、模拟转换设备。在实际工业自动化控制过程中,通常会采用实时控制方式,大多数控制过程计算机运行的可靠性要求较高,但是对其运算速度并无硬性要求,只强调其必须能够响应及时。计算机控制系统实现工业自动化控制的工作原理主要分为三个步骤:第一,数据采集。通过对被控制目标的瞬时值进行检测,实现对相关数据的收集,随后将相关数据传输至工业自动化控制计算机中。第二,实时决策。通过计算机中的特定软件,对所采集到的数据的状态进行计算和分析,根据预定的控制规则,执行下一步控制计划。第三,完成控制任务。计算机所做出的决策会发送给控制系统,控制系统以控制信号为依据,对相关任务进行分配,并执行相关的控制动作,完成自动化控制的任务。在实际控制工作中,三个控制过程不断重复循环,确保系统能够按照相应的要求进行工作,且能够处理一些设备自身和控制对象的异常情况。

4工业自动化控制中计算机控制技术的运用

工业生产过程中,计算机控制技术在自动化控制系统中的应用路径可从数字控制、可编程逻辑控制器、分布式控制系统、计算机传感器等五个方面进行分析。

4.1数字控制

数字控制(NC)是自动化方法的一种,指的是借助符号和数字等对工业生产过程进行编程控制,因此,也简称为“数控”。要实现数字控制,需借助专门的计算机设备,将操作命令以数字的状态发送给设备,使得设备能够依据原先设计好的程序运行。在数字控制系统中软件技术是核心和关键所在,对设备的自动化控制具有重要影响,良好的数字控制技术是提高设备自动化运行能力的重点。在诊断设备故障和设备维修的过程中,数字控制能够诊断出AI故障,运用计算机网络技术,还可实现远程诊断和远程监控。另外,通过已建立的数据库功能,还可对系统进行检修和维护,修复相关故障,并在漏洞扩大之前实现零件的更换,最大限度提高数控系统的安全性、可靠性和稳定性。

4.2可编程逻辑控制器

可编程逻辑控制器(PLC)从本质上而言是一台计算机,其主要是为工业生产而专门研发的。数字运算操作是其基础性工作,而编程存储器则是其核心,模型和数字是其输入或输出的主要方式,通过这种数字或模型的输入和输出实现对工业生产过程和机械设备的自动化控制。可编程逻辑控制器在被运用于工业生产制造后,其工作内容也被分为个部分,主要是数据采集和输入、命令程序的执行、结果的输出和刷新,这三部分的工作内容共同形成了一个扫描周期。可编程逻辑控制器工业自动化控制中的使用较为广泛,归根结底是因为其自身在性能方面拥有诸多优势。首先,它具有使用便捷、操作简单的特点。其次,它的功能较为强大,设施设备齐全,表现出良好的性价比。再次,它的运行可靠性高,能够适应各种不同的生产制造环境,且抗干扰能力强。最后,它具有维护和检修方便的特点,能够实现相关程序的在线修改。

4.3分布式控制系统

工业自动化控制系统中分布式控制系统从本质和功能上来讲,就是一个中型的计算机控制系统。这个分布式的控制系统,能够通过计算机技术实现对生产过程中相关数据的收集、处理和分析,进而实现对生产过程的控制。这种多级计算机控制系统的运用是以计算机运行速度的提高和微型计算机的使用为基础的,它的出现使得自动化技术中计算机控制技术的使用更加科学可靠,其出现和发展与计算机技术的发展有着密不可分的联系。集散型计算机控制系统的主要工作则是实现对自动化生产工程中相关数据的分析,并将分析所得信息反馈给计算机,在这个分析和反馈的过程中,中央计算机只负责系统的集中管理和分散控制工作,使得工业自动化控制系统工作的可靠性大大增强。场控器是分布式控制系统的基础,通常情况下场控器中包含了I/0部件,通过该部件分布式控制系统可实现对数据的采集和控制、执行,再经由人机接口,实现执行命令的,再通过网络通讯设备,实现对数据信息的传递。在现场控制器中,又包含了控制回路等,回路控制中的相关算法预先存储于运行内存中,在实际操作中,能够依据自动控制需求,进行组态。

4.4计算机传感器

在工业自动化控制中计算机控制技术的运用和实现需要依赖于网络通信技术、软件技术和传感设备的支持,在这其中传感设备发挥了至关重要的作用,它是实现工业自动化控制中自动化监测的重要条件。传感设备具有数字化、智能化、系统化和精密化的特点,其相关性能从某种程度上来说决定着工业企业自动化生产的产品的品质。计算机控制系统通过传感器的使用,实现对相关数据信息的收集和整理,进而获取设备运行的状态信息,实现对设备各项参数的动态化监测和控制,确保自动化控制设备运行状态安全,最终达到提高工业产品质量的目的。现阶段,计算机传感器的使用正处于发展阶段,在未来的发展过程中,其运行的可靠性和精确性都将得到有效的提高,最终向着更高级的智能化和更低的能源消耗方向发展,其综合性能将得到大大提升。

4.5自动化生产中的现场总线应用

现场总线指的是数字化通信的检测和控制系统,其被广泛运用于工业自动化制造行业中。现场总线拥有专门的处理器,将这个处理器与测量控制器连接后,可实现计算和通信的能力。它使用双绞线作为通信的媒介,能够实现计算机网络与测量控制器的多个对等连接,自动化生产的现场总线能够将分散的测量控制器变成网络探测的节点,实现联机式的自动控制。现场总线的使用为自动控制设备和系统之间的信息交互和数据分析提供了保障,再通过计算机网络的作用,能够第一时间发现设备运行的异常状况,并实现异常状况的及时排除,使得工业企业的自动化生产过程中信息沟通更加便捷。现场总线在信息交互、数据更新和信息显示等方面都表现出了强大的优势,因此,在自动化技术未来的发展中,现场总线技术的使用是其必然的发展趋势。

5计算机控制系统的应用特点

计算机控制技术在工业生产领域使用广泛,其运用涉及到网络通讯技术、传感技术、控制软件、自动控制技术等。近些年来,伴随着计算机技术和工业产业的发展,工业自动化控制中计算机控制技术的应用水平越来越高,其科技含量也越来越高,有效加快了企业的现代化进程,其应用的优势主要表现在以下几个方面:

(1)开放性特点。相对而言计算机自动化控制系统具有公开性和开放性的特点,其开放性特点主要表现在能够实现所有设备和系统的连接,确保各项设备正常运转。在实际操作中,工业企业可根据自身的实际需求,选择接入的系统和设备,表现出极大的灵活性和便捷性。

(2)交互性和可操作性特点。计算机控制系统中的各项设备能够相互连接,共同构成一个数据传递的系统,因此,在这个系统中各项设备是可以相互替换和代替的。

(3)智能化特点。计算机控制下的自动化系统的总线具有智能化的特点,现场总线通过传感设备,能够实现对现场各设备的分析和监控,并在此基础上,实现对设备的自动化控制,确保其能够实时监测设备运行状态,及时处理系统故障。

(4)精确性高。相对于一般调节器而言,计算机控制系统具有超强的数值运算能力,能够最大限度缩小和控制偏差,确保其控制精度不会受到元件老化、噪音等因素的影响。

6结语

总之,工业企业的自动化生产是一个复杂的过程,尤其是在这其中还掺杂了许多大型设备和先进技术的使用,大大增加了自动控制的难度。计算机技术在工业自动化控制中的使用,为其提供了强有力的技术支持,为其进步和发展奠定了基础,也为企业进一步降低生产成本,提高生产效率提供了可能。在未来的发展过程中,必须加强对计算机控制技术的研究,除了不断完善现有的技术之外,还应该加强对新技术的研发,使计算机控制技术能够更好地服务于工业自动化控制技术,促使我国工业产业健康、稳定、可持续发展。

参考文献

[1]张维东.工业自动化控制中计算机控制技术的应用路径思考[J].科技与创新,2015(16):138.

[2]杨雷忠,胡石.当代工业自动化控制中微机控制技术的应用[J].城市建设理论研究:电子版,2012(8).

[3]苗青林.计算机控制技术在智能建筑自动化应用系统中的作用分析.[J]电子世界,2013(7):9.

[4]何港玲.计算机控制在工业自动化控制中的应用[J].价值工程,2015(1):51-52.

[5]李岷,孙凤来.工业自动化控制系统中计算机技术的使用分析[J].计算机光盘软件与应用,2014(11):125-126.

[6]唐华国.工业自动化控制的现状和发展趋势分析[J].才智,2011(23):69.

[7]邓高寿,潘宏侠.PLC在工业自动化控制领域中的应用及发展[J].机械管理开发,2006(3):99-100.

[8]于文新,楚书来.计算机控制技术在自动化生产线上的应用[J].煤炭技术,2013(8):221-222.

[9]甘能.基于PLC控制技术在工业自动化中的应用研究[J].电子技术与软件工程,2015(6):159-160.

篇4

关键词:智能建筑;楼宇;自动化系统;理论

建筑设备自动化系统(简称BAS),是智能建筑的一部分,能对建筑物内的能源使用、环境、交通及安全设施进行监测、控制等发挥作用,可以提供安全可靠、节约能源、舒适宜人的工作或居住环境。建筑设备自动化系统通常包括暖通空调、给排水、供配电、照明、电梯、消防、安全防范等子系统。它的基本功能有:(1)自动监视并控制各种机电设备的起、停,显示或打印当前运转状态。(2)自动检测、显示、打印各种机电设备的运行参数及其变化趋势或历史数据。(3)根据外界条件、环境因素、负载变化情况自动调节各种设备,使之始终运行于最佳状态。(4)监测并及时处理各种意外、突发事件。(5)实现对大楼内各种机电设备的统一管理、协调控制。(6)能源管理:水、电、气等的计量收费、实现能源管理自动化。(7)设备管理:包括设备档案、设备运行报表和设备维修管理等。

一、楼宇自动化控制系统的原理

楼控系统采用的是现代控制理论的集散型计算机控制系统,也称分布式控制系统(简称DCS)。它的特征是“集中管理分散控制”,即用分布在现场被控设备处的微型计算机控制装置(DDC)完成被控设备的实时检测和控制任务,克服了计算机集中控制带来的危险性高度集中的不足和常规仪表控制功能单一的局限性。安装于中央控制室的中央管理计算机具有CRT显示、打印输出、丰富的软件管理和很强的数字通信功能,能完成集中操作、显示、报警、打印与优化控制等任务,避免了常规仪表控制分散后人机联系困难、无法统一管理的缺点,保证设备在最佳状态下运行。

二、分布式控制系统的数据通信网络

数据通信网络是分布式控制系统的支柱。整个分布式控制系统的结构,实质上是一个网络结构,现场控制站、数据采集站、工程师站、操作员站、监控计算机等都是这个网络上的“节点”,都含有CPU和网络接口,它们都有自己特定的网络地址,可以通过网络发送和接收数据,网络中的各节点处于平等地位,既能共享资源,又不相互依赖,形成既有统一指挥,又使危险分散的功能结构,网络的架构区具有极大的伸缩性,可扩性很强,可以满足分布式控制系统扩充与升级的需要,十分灵活、方便。

第一、控制网络特点 分布式控制系统的通信网络不同于通用计算机网络,与一般的通信网络比较,它有如下特殊要求:①有高可靠性和安全性,要求传递的信息绝对准确、可靠,为此常采用冗余技术、后备措施和自诊断功能。如:控制站采用双CPU板,双I/0板等。②具有良好的实时性。③对环境适应性强。

第二、网络拓扑结构 建筑设备自动化系统常用的有总线网和环网,在两种结构中任意两节点通信可直接通过网络进行,各节点处于平等地位。

第三、网络通信协议 组成建筑设备自动化系统,必须有一种大家都能接受并且共同遵守的工作语言来实现相互之间的对话,这就是数据通信协议标准。

三、现场总线技术的应用——分布式控制系统的进一步分散化

第一、现场总线概况 现场总线是连接智能现场设备和自动化系统的数字式双向传输、多分支结构的通信网络。不同的现场总线遵循的协议不同,接口标准不同,各具特色。现场总线技术具有如下一些特点:1、以数字信号取代4-20mA的模拟信号,极大地提高了信号转换的精度和可靠性,因此现场总线具有很高的性能价格比。2、现场总线把处于设备现场的智能仪表(智能传感器、智能执行器)连成网络,使控制、报警、趋势分析等功能分散到现场仪表,使控制结构进一步分散化,导致控制系统体系结构的变化。3、符合同一现场总线标准的不同厂家的仪表、装置可以联网,实现互操作,不同标准通过网关或路由器也可互联,现场总线控制系统是一个开放式系统。

第二、分布式控制系统的进一步分散化

传统的分布式控制系统在现场控制站这一级依然是一个集中式结构,而现在的分布式控制系统是在原有分布式控制系统的基础上,采用Lon Works现场总线的建筑设备自动化系统发展起来的新系统,标准LAN为原有的分布式控制系统,使用BAC net协议,以利于实现多种供应商的不同类型的子系统之间的通信信息交换,把具有控制功能的各个岛连成一个整体。新增的Lon Works现场总线使用Lon Talk协议,把控制功能进一步分散到现场级仪表,标准LAN与现场总线之间的路由器相联。这样BAC net和Lon Mark两项标准互相补充,互为依托,构成一个完全分散的、真正开放的建筑设备自动化系统。

楼宇自动化系统设备的发展历史及相关产品简介

四、楼宇设备自动化系统的四代产品

第一代:CCMS中央监控系统(20世纪70年代产品)

BAS从仪表系统发展成计算机系统,采用计算机键盘和CRT构成中央站,打印机代替了记录仪表,散设于建筑物各处的信息采集站DGP(连接着传感器和执行器等设备)通过总线与中央站连接在一起组成中央监控型自动化系统。DGP分站的功能只是上传现场设备信息,下达中央站的控制命令。一台中央计算机操纵着整个系统的工作。中央站采集各分站信息,作出决策,完成全部设备的控制,中央站根据采集的信息和能量计测数据完成节能控制和调节。

第二代:DCS集散控制系统(20世纪80年代产品)

随着微处理机技术的发展和成本降低,DGP分站安装了CPU,发展成直接数字控制器DDC。配有微处理机芯片的DDC分站,可以独立完成所有控制工作,具有完善的控制、显示功能,进行节能管理,可以连接打印机、安装人机接口等。BAS由4级组成,分别是现场、分站、中央站、管理系统。集散系统的主要特点是只有中央站和分站两类接点,中央站完成监视,分站完成控制,分站完全自治,与中央站无关,保证了系统的可靠性。

第三代:开放式集散系统(20世纪90年代产品)

随着现场总线技术的发展,DDC分站连接传感器、执行器的输人输出模块,应用LON现场总线,从分内部走向设备现场,形成分布式输入输出现场网络层,从而使系统的配置更加灵活,由于Lon Works技术的开放性,也使分站具有了一定程度的开放规模。BAS控制网络就形成了3层结构,分别是管理层(中央站)、自动化层(DDC分站)和现场网络层(LON)。

第四代:网络集成系统(21世纪产品)

随着企业网Intranet建立,建筑设备自动化系统必然采用Web技术,并力求在企业网中占据重要位置,BAS中央站嵌入Web服务器,融合Web功能,以网页形式为工作模式,使BAS与Intranet成为一体系统。

网络集成系统(EDI)是采用Web技术的建筑设备自动化系统,它有一组包含保安系统、机电设备系统和防火系统的管理软件。

EBI系统从不同层次的需要出发提供各种完善的开放技术,实现各个层次的集成,从现场层、自动化层到管理层。EBI系统完成了管理系统和控制系统的一体化。网络集成系统结构图如图7所示。

目前,规模和影响较大的楼宇设备供应公司有美国霍尼维尔公司、江森公司、KMC公司、德国西门子公司等。

总之,楼宇自动化控制技术在我国还是一个新兴的技术领域,随着更多智能建筑的出现,将有更加先进的技术补充到这一领域中,使这一技术更加成熟、完善。

参考文献:

[1]许健.计算机模拟及其应用和发展[M].青海师范大学学报(自然科学版).2002年01期.

篇5

1 机电一体化技术发展

机电一体化是机械、微电子、控制、计算机、信息处理等多学科的交叉融合,其发展和进步有赖于相关技术的进步与发展,其主要发展方向有数字化、智能化、模块化、网络化、人性化、微型化、集成化、带源化和绿色化。

1.1 数字化

微控制器及其发展奠定了机电产品数字化的基础,如不断发展的数控机床和机器人;而计算机网络的迅速崛起,为数字化设计与制造铺平了道路,如虚拟设计、计算机集成制造等。数字化要求机电一体化产品的软件具有高可靠性、易操作性、可维护性、自诊断能力以及友好人机界面。数字化的实现将便于远程操作、诊断和修复。

1.2 智能化

即要求机电产品有一定的智能,使它具有类似人的逻辑思考、判断推理、自主决策等能力。例如在CNC数控机床上增加人机对话功能,设置智能I/O接口和智能工艺数据库,会给使用、操作和维护带来极大的方便。随着模糊控制、神经网络、灰色理论、小波理论、混沌与分岔等人工智能技术的进步与发展,为机电一体化技术发展开辟了广阔天地。

1.3 模块化

由于机电一体化产品种类和生产厂家繁多,研制和开发具有标准机械接口、动力接口、环境接口的机电一体化产品单元模块是一项复杂而有前途的工作。如研制具有集减速、变频调速电机一体的动力驱动单元;具有视觉、图像处理、识别和测距等功能的电机一体控制单元等。这样,在产品开发设计时,可以利用这些标准模块化单元迅速开发出新的产品。

1.4 网络化

由于网络的普及,基于网络的各种远程控制和监视技术方兴未艾。而远程控制的终端设备本身就是机电一体化产品,现场总线和局域网技术使家用电器网络化成为可能,利用家庭网络把各种家用电器连接成以计算机为中心的计算机集成家用电器系统,使人们在家里可充分享受各种高技术带来的好处,因此,机电一体化产品无疑应朝网络化方向发展。

1.5 人性化

机电一体化产品的最终使用对象是人,如何给机电一体化产品赋予人的智能、情感和人性显得愈来愈重要,机电一体化产品除了完善的性能外,还要求在色彩、造型等方面与环境相协调,使用这些产品,对人来说还是一种艺术享受,如家用机器人的最高境界就是人机一体化。

1.6 微型化

微型化是精细加工技术发展的必然,也是提高效率的需要。微机电系统(Micro Electronic Mechanical Systems,简称MEMS)是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路,直至接口、通信和电源等于一体的微型器件或系统。自1986年美国斯坦福大学研制出第一个医用微探针,1988年美国加州大学Berkeley分校研制出第一个微电机以来,国内外在MEMS工艺、材料以及微观机理研究方面取得了很大进展,开发出各种MEMS器件和系统,如各种微型传感器(压力传感器、微加速度计、微触觉传感器),各种微构件(微膜、微粱、微探针、微连杆、微齿轮、微轴承、微泵、微弹簧以及微机器人等)。

2 机电一体化技术在钢铁企业中应用

在钢铁企业中,机电一体化系统是以微处理机为核心,把微机、工控机、数据通讯、显示装置、仪表等技术有机的结合起来,采用组装合并方式,为实现工程大系统的综合一体化创造有力条件,增强系统控制精度、质量和可靠性。机电一体化技术在钢铁企业中主要应用于以下几个方面:

2.1 智能化控制技术(IC)

由于钢铁工业具有大型化、高速化和连续化的特点,传统的控制技术遇到了难以克服的困难,因此非常有必要采用智能控制技术。智能控制技术主要包括专家系统、模糊控制和神经网络等,智能控制技术广泛应用于钢铁企业的产品设计、生产、控制、设备与产品质量诊断等各个方面,如高炉控制系统、电炉和连铸车间、轧钢系统、炼钢―――连铸―――轧钢综合调度系统、冷连轧等。

2.2 分布式控制系统(DCS)

分布式控制系统采用一台中央计算机指挥若干台面向控制的现场测控计算机和智能控制单元。分布式控制系统可以是两级的、三级的或更多级的。利用计算机对生产过程进行集中监视、操作、管理和分散控制。随着测控技术的发展,分布式控制系统的功能越来越多。不仅可以实现生产过程控制,而且还可以实现在线最优化、生产过程实时调度、生产计划统计管理功能,成为一种测、控、管一体化的综合系统。DCS具有特点控制功能多样化、操作简便、系统可以扩展、维护方便、可靠性高等特点。DCS是监视集中控制分散,故障影响面小,而且系统具有连锁保护功能,采用了系统故障人工手动控制操作措施,使系统可靠性高。分布式控制系统与集中型控制系统相比,其功能更强,具有更高的安全性。是当前大型机电一体化系统的主要潮流。

2.3 开放式控制系统(OCS)

开放控制系统(Open Control System)是目前计算机技术发展所引出的新的结构体系概念。“开放”意味着对一种标准的信息交换规程的共识和支持,按此标准设计的系统,可以实现不同厂家产品的兼容和互换,且资源共享。开放控制系统通过工业通信网络使各种控制设备、管理计算机互联,实现控制与经营、管理、决策的集成,通过现场总线使现场仪表与控制室的控制设备互联,实现测量与控制一体化。

2.4 计算机集成制造系统(CIMS)

钢铁企业的CIMS是将人与生产经营、生产管理以及过程控制连成一体,用以实现从原料进厂,生产加工到产品发货的整个生产过程全局和过程一体化控制。目前钢铁企业已基本实现了过程自动化,但这种“自动化孤岛”式的单机自动化缺乏信息资源的共享和生产过程的统一管理,难以适应现代钢铁生产的要求。未来钢铁企业竞争的焦点是多品种、小批量生产,质优价廉,及时交货。为了提高生产率、节能降耗、减少人员及现有库存,加速资金周转,实现生产、经营、管理整体优化,关键就是加强管理,获取必须的经济效益,提高了企业的竞争力。美国、日本等一些大型钢铁企业在20世纪80年代已广泛实现CIMS化。

2.5 现场总线技术(FBT)

现场总线技术(Fied Bus Technology)是连接设置在现场的仪表与设置在控制室内的控制设备之间的数字式、双向、多站通信链路。采用现场总线技术取代现行的信号传输技术(如4~20mA,DC直流传输)就能使更多的信息在智能化现场仪表装置与更高一级的控制系统之间在共同的通信媒体上进行双向传送。通过现场总线连接可省去66%或更多的现场信号连接导线。现场总线的引入导致DCS的变革和新一代围绕开放自动化系统的现场总线化仪表,如智能变送器、智能执行器、现场总线化检测仪表、现场总线化PLC(Programmable Logic Controller)和现场就地控制站等的发展。

篇6

【关键词】综采;液压支架;自动化

液压支架是煤矿综合机械化采煤工作面的支护设备,是综采的关键设备。随着近年来电子计算机和自动控制技术的发展,采煤技术设备的自动化也日趋成熟,液压支架的电液控制也随之发展起来。液压支架电液控制系统是目前液压支架最先进的控制方式,是集机械、液压、电子、计算机和通信网络等技术于一身,技术含量高、难度大,应用于煤矿井下的一项高新技术产品。液压支架电液控制系统不但可以自动控制液压支架的动作,而且可以实现邻架或远程控制液压支架,此外还可以对工作面液压支架进行监控,使液压支架与其他采煤设备相配合,实现高效采煤。

1 系统原理

计算机分布式控制系统的通信结构大多数为主从结构。如果系统中的子控机没有相互控制和相互通信的要求,采用主从通信结构是合理的。但是如果有要求,采用主从通信结构来设计系统虽然也能实现子控机之间相互控制和相互通信,但并不是子控机之间直接通信的,而是通过与主控机之间间接通信实现的,主控机起到通信“二传手”的作用。显然,与子控机之间能直接通信的控制系统相比,其响应速度至少慢了一半,势必影响到整个系统的性能。从这一观点出发,采用主从通信结构来设计要求子控机之间能够相互控制和相互通信的计算机分布式控制系统是不合理的。根据液压支架在综采工作面中的实际工况以及液压支架之间相互控制的要求,采用CAN总线结构设计了多节点互控型的液压支架计算机分布式控制系统,综采工作面液压支架电液控制系统原理见图1,每架液压支架由一台子控机进行检测和控制,构成一个电液控制子系统,主控机和所有子控机的串行通信接口均挂接在单根通信总线CAN总线上,构成刨煤机综采工作面液压支架计算机分布式控制系统。

图1 刨煤机综采工作面液压支架电液控制系统原理图

2 硬件设计

图2 子控机的硬件组成图

如图2所示,系统中所有的子控机的硬件组成都一致,由单片机扩展控制通道,信号检测通道,通讯接口,显示器,键盘以及声光报警装置构成。系统中,支架油缸的压力和位移通过传感器转换为电信号,单片机接收这些信号数据,进行编译,在通过控制通道将控制命令发送给油缸。通过操作外接的输入系统(键盘)可以向本支路的液压支架发送控制命令,也可以通过通讯接口向其他的液压支架发送控制命令。同时,在对支架控制后,若支架油缸运动不到位,声光报警装置将会发送故障警报,显示器显示故障详细信息,工作人员可以通过故障信息进行维护处理。

3 系统通信

本系统采用CAN总线通信,CAN总线技术属于现场总线的范畴,原由德国博世公司设计的一种串行通信网络,它能在强电磁干扰等环境下可靠工作。它有以下特点:

(1)多主站总线。总线上任何节点支路都可以在任何时刻向网络上其他的节点支路发送控制信号。

(2)采用了独特的非破坏性总线仲裁技术,能自动优先分配资源给优先级别高的节点,优先高的节点能先传送数据,满足了实时性的要求。

(3)在线上任何点都能点对点、一点对多点或者全局广播传送数据。

(4)总线上的每帧有效字数最多为8个,具有校检措施,使错误率降的很低。若某一节点出现严重错误,能自动的从总线上脱离,保证总线上其他支线的正常工作。

(5)CAN总线构造简单,只存在两根导线,在系统需要扩充时,只需要将新的节点挂接总线即可,具有优良的可扩充性。

(6)线路衰减低,传输速度快。CAN具有超过10kM的直接通信距离,速率最高能达到1Mb每秒。由于具有以上种种优异的性能,它是这类分布式控制系统的最佳总线。在系统中,所有分散的子控机与主控机一起连接在CAN上,所有的子控机支路均为网络节点,通过CAN总线这条纽带联系在一起,成为一个可以相互沟通通信的系统,实现了系统内节点间的相互控制。

节点为系统网络上的中间站,它能接受和发送信息,在系统的CAN线上存在2种类型的节点:一为不带微处理器的非智能节点,另一为具备智能微处理器的智能节点。如芯片P82C150能够成一个非智能节点,它只具备数字和模拟信号采集功能。智能节点由微处理器和可编程的CAN控制芯片组成。一般智能节点分为2类:一种是将芯片P8Xc591的这种节点与CAN控制器集成在微处理器中;另一种是通过独立的通信控制芯片和单片机接口组成。第一种芯片的可靠性高,功能也较为强大,可是成本较高,需要使用专门的开发工具进行设计。第二种则能通过通用的单片机仿真器实现设计,具有成本低,实现容易,使用操作灵活的特点。所以,文中所述系统采用的是第二种节点方案。CAN总线的节点硬件原理图如下图3所示。

图3 CAN 总线节点硬件原理图

从图中可以看出,整个系统电路由微控制器单片机、独立CAN通信控制器SJA1000、CAN总线驱动器PCA82C250、高速光电耦合器6N137四部分构成。节点的核心为单片机,它不仅完成节点前段的控制,还负责CAN通信控制器SJA1000的设置和报文的收发。独立CAN通信控制器SJA1000负责完成CAN协议的物理层及数据层的主要功能。考虑到工作环境,系统中SJA1000和PCA82C250并不是直接相连,而是采用高速光耦6N137与PCA82C250相连,这样隔离了SJA1000和PCA82C250,实现了各个节点之间的电器隔离,增强了CAN总线节点的抗干扰能力。

4 系统的主要功能

子控机与液压支架是一一对应的,它的主要工作是:接受支架的压力、动作和开关位置的监测数据,并编译数据,进而向支架发送控制命令。它实现了:①对应支架的升、降、移动动作和推进量的控制;②自动控制左右各5台相邻的支架的动作;③能将支架编组移动和推进;④能紧急停车;⑤能显示立柱压力数据集推移行程数据等;⑥能由人工控制邻架自动排序。

5 结论

本文主要介绍了综采工作面液压支架电液控制系统的设计,设计完成了系统原理结构图、子控机的硬件结构及其子控机和主控机的主要功能,最后对系统通信和功能进行了简单介绍,下一步将进一步完善本系统,为我国的煤炭事业作出贡献。

参考文献:

篇7

【关键词】工业;自动化;技术

一、工业自动化技术简介

工业自动化技术是一种运用控制理论、仪器仪表、计算机和其他信息技术,对工业生产过程实现检测、控制、优化、调度、管理和决策,达到增加产量、提高质量、降低消耗、确保安全等目的综合性高技术,包括工业自动化软件、硬件和系统三大部分。

工业自动化技术作为20世纪现代制造领域中最重要的技术之一,不管是高速大批量制造企业,还是追求灵活、柔性和定制化企业,都依靠应用自动化技术。该技术本身并不直接创造效益,但它对企业生产过程起着明显的提升作用是:

1、提高生产过程的安全性;

2、提高生产效率;

3、提高产品质量;

4、减少生产过程的原材料、能源损耗。

据国际权威咨询机构统计,对自动化系统投入和企业效益方面提升产出比约1:4至1:6之间。特别在资金密集型企业中,自动化系统占设备总投资10%以下,就能起到“四两拨千金”的作用。

工业自动化系统产品种类有:

1、可编程序控制器(PLC):按功能及规模可分为大型PLC(输入输出点数>1024),中型PLC(输入输出点数256~1024)及小型PLC(输入输出点数

2、分布式控制系统(DCS):又称集散控制系统,按功能及规模亦可分为多级分层分布式控制系统、中小型分布式控制系统、两级分布式控制系统。

3、工业PC机:能适合工业恶劣环境的PC机,配有各种过程输入输出接口板组成工控机。近年又出现了PCI总线工控机。

4、嵌入式计算机及OEM产品,包括PID调节器及控制器

5、机电设备数控系统(CNC,FMS,CAM)

6、现场总线控制系统(FCS)

近年来,随着控制技术、计算机、通信、网络等技术的发展,信息交互沟通的领域正迅速覆盖从工厂的现场设备层到控制、管理各个层次。工业自控系统和仪表仪器技术进步很快呈微型化、数字化、智能化、网络化、集成化等特点。

二、工业自动化市场现状

从产品市场来看:DCS、软件类、仪器仪表类产品市场总体表现出同比稳中有升,增幅均小于8%。项目型市场需求平稳,受市场波动影响相对滞后等因素导致项目型自动化市场相对较为平稳。其它自动化产品均出现不同程度同比萎缩或持平,直接原因是源自OEM市场的需求萎缩。其中小型自动化产品(例如小型PLC)萎缩较为严重,渠道商端资金流压力依然严峻。全国机床工具行业发展出现大幅下滑的态势。全国工程机械行业同比,环比均有所下降。其中风电行业萎缩严重,自动化整体需求影响较大。在这样的市场背景下。预计,中国自动化市场增幅将放缓。中国自动化市场除了受经济过热、银根紧缩、产能过剩、投资放缓、出口萎靡和内需乏力等主要因素影响外,还由于我国的工业自动化产业还多处于基础自动化或过程自动化阶段,其最显著的特点就是功能比较单一、对人依赖性也较强。而且,我国的自动化产品仍多以国外产品为主,如德国西门子公司、日本欧姆龙、三菱、美国通用电气、罗克韦尔等公司的产品,由于我国自动化行业没有一个统一标准,各公司产品标准不统一,不同品牌自动化系统之间的数据整合问题成为行业的一大难题。并且,传统仪器仪表,技术陈旧,跟不上时代步伐。传统自动化技术已无法跟上计算机技术发展步伐。急需我们对这些自动化系统进行更新改造,使其得到飞速发展。

三、国内工业自动化技术的转变

自上世纪70年代初,在自动化刚刚开始被人们接受的时候,控制系统、仪器和企业系统整合逐渐成为一种必然选择。控制系统整合的趋势和需求在80年代不断发展,在90年代出现了爆发式增长。今天,随着欧美自动化服务市场的扩展,对整个中国制造业也带来了革命性的改变。

1、提高工业体系结构的合理化,应用计算机先进技术。改革工业体系结构,务必以适应市场的需求为导向。由模仿向自主创新、由中国制造向中国创造的转变。

2、基于现场总线的网络逐渐向以太网过渡。近几年,工业实时以太网技术已被工业自动化计算机应用产业广泛接受。现场总线到工业以太网可以进行平滑过渡,保护制造商与用户自动化产品和解决方案问题。以PROFINET工业以太网协议为例,该协议可以实现制造过程最佳化,直接访问控制和生产级自动化数据,提供生产计划管理系统,满足不同的应用技术需求。通过设备描述和控制器逻辑分配,使用指定的PC工程工具实现集成,支持将自动化功能分散于各个智能子系统,从而进一步提高了系统的可用性,这种能够不受限制的转移现场总线为工业以太网通信,能发挥高动态性能、本地化诊断、无需设置设备系统自动组态等功能。

3、工业有线自动化网络向无线通信技术转变。工业无线技术通过无线数据链路和灵活的网络拓扑结构实现工厂内部设备与外部设备之间的数据通信。无线通信技术具有数据传输速率高性价比优良、区域广泛、抗干扰性强、系统维护成本较低等优点。是有线通信系统发展的重要补充,将成为工业自动化领域的又一热潮技术。

4、工业自动化产品集成化、智能化、开放性的转变。西门子在自动化领域率先提出“全集成概念”,西门子全集成自动化(TIA)产品能够帮助所有行业的客户在其工厂的全生命周期内高效地利用自动化系统。自2011年以来机器人“大热”是业界不可否认的事实。此外,随着生活水平的提高,不仅工业机器人市场巨大,服务机器人市场也是不容小觑,未来市场需求和应用前景十分广阔。加强国际交流合作更是发展我国工业自动化技术必不可少的手段。

5、自动控制和优化软件可以创造巨大的经济效益。国际上已经有几十家公司,推出了上百种先进控制和优化软件产品,在世界范围内形成了一个强大的流程工业应用软件产业。因此,开发我国具有自主知识产权的先进控制和优化软件,打破外国产品的垄断,替代进口,具有十分重要的意义。在未来,工业控制软件将继续向标准化、网络化、智能化和开放性发展方向。

四、结语

我国的工业自动化技术目前还处于相对落后的水平,已逐渐无法满足现代工业自动化智能控制的需求。随着世界高新技术的蓬勃发展,工业自动化迎来了新的机遇与挑战。我们要紧抓机遇,勇于迎接挑战,积极进取,开拓创新,使我国工业自动化产业达到国际一流水平。

【参考文献】

[1]马志平.机械自动化的未来与现状[M].北京:中国机械工业出版社,2003.

篇8

自动控制(automatic control)是指在没有人直接参与的情况下,利用外加的设备或装置,使机器、设备或生产过程的某个工作状态或参数自动地按照预定的规律运行。

自动控制是相对人工控制概念而言的。指的是在没人参与的情况下,利用控制装置使被控对象或过程自动地按预定规律运行。自动控制技术的研究有利于将人类从复杂、危险、繁琐的劳动环境中解放出来并大大提高控制效率。

自动控制是工程科学的一个分支。它涉及利用反馈原理的对动态系统的自动影响,以使得输出值接近我们想要的值。从方法的角度看,它以数学的系统理论为基础。我们今天称作自动控制的是二十世纪中叶产生的控制论的一个分支。基础的结论是由诺伯特・维纳,鲁道夫・卡尔曼提出的。

举例:室内温度的调节是一个简明易懂的例子。目的是把室内温度保持在一个定值θ,尽管开窗等因素使得室内热量散发出室外(干扰d)。为了达到这个目的,加热必须被适当的影响。通过阀门的调节,温度就会保持恒定。

自动控制领域的发展过程

150多年前第一代过程控制体系是基于5-13psi的气动信号标准(气动控制系统PCS,Pneumatic Control System)。简单的就地操作模式,控制理论初步形成,尚未有控制室的概念。

第二代过程控制体系(模拟式或ACS,Analog Control System)是基于0-10mA或4-20mA的电流模拟信号,这一明显的进步,在整整25年内牢牢地统治了整个自动控制领域。它表征了电气自动控制时代的到来。控制理论有了重大发展,三大控制论的确立奠定了现代控制的基础;控制室的设立,控制功能分离的模式一直沿用至今。

第三代过程控制体系(CCS,Computer Control System).70年代开始了数字计算机的应用,产生了巨大的技术优势,人们在测量,模拟和逻辑控制领域率先使用,从而产生了第三代过程控制体系(CCS,Computer Control System)。这个被称为第三代过程控制体系是自动控制领域的一次革命,它充分发挥了计算机的特长,于是人们普遍认为计算机能做好一切事情,自然而然地产生了被称为“集中控制”的中央控制计算机系统,需要指出的是系统的信号传输系统依然是大部分沿用4-20mA的模拟信号,但是时隔不久人们发现,随着控制的集中和可靠性方面的问题,失控的危险也集中了,稍有不慎就会使整个系统瘫痪。所以它很快被发展成分布式控制系统(DCS)。

篇9

[关键词]电气工程;自动控制技术;环境监控

1.电气自动化的系统处理

系统在电气方面主要通过设备接地信号处理、传输信号屏蔽、选择合适的抗干扰措施实现。为了确保系统运行可靠,故障少,操作维护方便,在设备选择时,选择经过长期检验证明性能稳定可靠的设备来适应工业现场恶劣环境,保证系统的可靠运行。系统组态采用软件2次开发功能,除动态显示工作流程外,包括趋势图、棒图、历史数据等数据显示、报表、打印等功能。易于扩充系统保留必要的接口,为厂级管理、全部过程实现自动控制设计必要的接口与界面。实用性强系统具有自动、仪表室内手动、现场手动三类控制方法。为了保证一次设备运行的可靠与安全,需要有许多辅助电气设备为之服务,能够实现某项控制功能的若干个电器组件的组合,称为控制回路或二次回路。

2.自动控制技术优势

2.1快速高效自动控制技术

通过数字信息对相应的设备发出操作指令,指令即时到达且因为不同的设备有不同的地址代码,因而十分精准,发生误操作的概率极低(远远低于传统人工操作)。而自动控制技术还具有良好的交互性能,可以与控制中心进行信息数据的反馈,进一步保障控制的高速和精确。

2.2便于实现全过程全时段监控

城市电气工程24小时全天运行,根据以往的经验来看,电气故障的多发时段和多发地点恰好是管理疏忽或难以到达的深夜和管理的盲区,而这些时段或区域,传统管理模式难以实现有效监控。数字化自动控制技术通过精密的“采集―处理―反馈”系统,对系统的运行进行实时监控,同时将控制中心的指令及时地传递到系统,并将系统信息及时反馈给控制中心。自动控制技术通过监控系统和指令系统,实现了对整个系统的实时高效调配和控制。

2.3安全性大大提高

电气工程自身具有一定的危险性,其自身的机械故障、外部环境以及操作人员的误操作等诸多情况都可能引发电气系统的故障、瘫痪乃至发生重大事故导致人员伤亡。而自动控制技术凭借良好的远程控制功能,可以随时对整个电气系统进行监控,对于异常情况即时反应,指挥控制中心便可做出反应,而在高压、强电流或变电场所等危险区域,自动控制技术可以大大降低传统控制模式对人员的伤害及潜在威胁。

3.电气自动化控制系统的发展现状

3.1电气自动化工程DCS系统

DCS,即分布式控制系统,它是(Total Distrbuted Micropro-cessor Contral System)的缩写,是相对于集中式控制系统而言的一种新型计算机控制系统,它是在集中式控制系统的基础上发展、演变而来的,具有实时性、可靠性和扩充性等优良特点,在生产、生活自动控制领域得到广泛运用。但随着DCS逐渐的运用,我们也越来越感受到分布式控制系统所存在的缺点。比如受DCS系统模拟混合体系所限制,其仍然采用的是模拟的传统型仪表,因此,大大地降低了系统的可靠性能,维修起来也显得比较困难;分布式控制系统的生产厂家之间缺乏一种统一的标准,降低了维修的互换性;此外,就是价格非常的昂贵。因此,在现代科技革命之下,必须进行技术上的创新。

3.2集中监控方式下的自动控制系统

集中控制下的自动控制系统有一个缺点,就是处理速度非常的缓慢,因为其控制方式是要把所有的功能都集中在一个处理器中,这也导致了整机运行速度的缓慢。另一个方面,把系统的所有设备都放入监控之中,就会导致监控数量过于庞大,主机空间的不断下降,从而大大的增加了电缆的数量,造成了费用的增加,同样因为过长的传输距离降低了控制系统的可靠性能。因为集中进行监控的联锁与隔离器件中的闭锁使用的都是硬接线,因此导致设备很难进行功能扩容操作。另外,因为系统接线的反复,增加了故障查找工作的困难度,也会增加由此而产生的错误指令,使得整个电气自动化工程控制系统可靠性降低。

3.3信息集成化的电气自动化控制系统

电气自动化控制系统所包含的主要信息技术主要体现在如下的方面:①管理层面上纵深方向的延伸。企业当中的人力资源、财务核算等数据信息的存取需要使用特定的浏览器进行操作,而且对于生产过程中的动态形式画面能够进行有效的监督控制,对于企业生产活动当中的第一手信息资料能够进行及时的掌握。②信息技术会在电气自动化设施、系统和机器中进行横向的扩展比较。而且随着微电子技术的不断投入应用,对于原来明确规定的设备也慢慢的变得模糊了,而结构软件、通讯的能力和统一,运用在组态环境之下逐渐的显得越来越重要。

4.电气系统自动化控制的发展趋势

OPC技术的出现,IEC61131的颁布,以及Microsoft的Windows平台的广泛应用,使得未来的电气技术的结合,计算机日益发挥着不可替代的作用。Pc客户机/服务器体系结构、以太网和Internet技术引发了电气自动化的一次又一次革命。正是市场的需求驱动着自动化和IT平台的融和,电子商务的普及将加速着这一过程。Internet/Intranet技术和多媒体技术在自动化领域有着广泛的应用前景。企业的管理层利用标准的浏览器可以存取企业的财务、人事等管理数据,也可以对当前生产过程的动态画面进行监控,在第一时间了解最全面和准确的生产信息。虚拟现实技术和视频处理技术的应用,将对未来的自动化产品,如人机界面和设备维护系统的设计产生直接的影响。相对应的软件结构、通讯能力及易于使用和统一的组态环境变得重要了。软件的重要性在不断提高。这种趋势正从单一的设备转向集成的系统。

5.结语

电气工程系统自动化控制是一个国家工业发展水平的重要标志。电气自动化类是现代工业的支撑,是所有工业的基础与原动力,可以说没有电气自动化的支持,就没有现代工业。现代电力系统是一个巨大的统一的整体,系统中的装置以及所接的用电设备都是开放性设备,受到周围环境的影响,因此实现电气工程的系统自动化控制是必要的。

参考文献

[1]李修伟,陈广文.浅析电气自动化控制系统的应用及发展趋势[J].民营科技,2011(1).

[2]王术贺,李广东.浅析电气自动化控制系统的应用及发展趋势[J].黑龙江科技信息,2011(20).

篇10

关键词:制造系统;智能主体;数据采集

随着社会经济的高速发展,先进制造技术已经成为全球经济竞争的主战场。数据采集技术是在不同学科之间交叉渗透的基础上出现的,对于制造企业而言,传统的信息采集方式已经难以满足制造业信息化的实时需求,所以迅速及时地将相关学科领域的最新研究成果应用到数据采集技术中,研究新型的数据采集技术方法,方便企业及时引进生产技术实现制造自动化,对产品质量的提高以及企业的竞争力增强是不可或缺的。

1制造系统数据采集方式

制造企业外部环境与自身环境复杂多变,要实现生产制造的安全高效,在注重环保效益的前提下生产出高品质的产品,需要制造系统安置大量的传感器与数据采集系统。对生产中设备运行状况、工艺水平、产品品质以及内外部环境变化数据实时监控反馈,为生产提供技术保障。制造系统数据采集技术主要有以下三种:

1.1集中式采集方式

集中式采集方式适用于小规模与相对简单的系统,这种方式系统全部传感器与数据采集系统直接相连,用一台工控机可以实现所有的数据采集与处理,具有结构简单、易于操作、维护方便、价格低廉的特点。

1.2分布式采集集中控制方式

这一方式适合规模适中且生产线较为简单的系统,可以实现生产线上分散的单体设备集中管理,被各大中型制造系统广泛采用。该方式将系统需要采集的数据依据一定的条件进行分组,由各组独立采集所辖区域的数据信息,各组协同完成整个生产过程的数据采集任务。通过各数据采集点设有独立的数据采集服务器,对站点进行维护管理,形成相对独立的局域网络。具有结构复杂、成本相对较高、使用维护简单以及具备网络功能的特点。

1.3集中式与分布式相结合方式

这种数据采集方式是前两种方式的高效组合,适用于大规模且承担复杂制造的系统,兼具前两种采集方式的优势。

2基于智能主体的制造系统数据采集技术

2.1智能主体与分布式人工智能

智能主体(Agent)涉及人工智能(Artificial Intelligent)技术的深层次问题,为人工智能技术以及计算机科学发展提供了新的计算求解范例和方法,也为CIMS(Computer Integrated Manu-facturing Systems,计算机集成制造系统)提供了更加高效便利的解决方案。应用智能主体思想与方法构建基于智能主体的数据采集系统,进一步推进数据采集智能化发展。智能主体属于分布式人工智能(DAI, Dis-tributed Artificial Intelligent)研究范围。分布式人工智能是相对于集中控制技术而言的,分布式问题求解的思想在工程领域应用始于分布式控制系统的研究。控制系统规模的扩大以及结构复杂化、功能增多等一系列影响系统性能的因素增加,需求一种基于整体优化的控制策略,亦即整体的总目标函数最优化控制方式。该函数包括质量产量技术指标,以及能源、成本与环保等经济社会指标,实现综合自动化生产。将大系统分解为若干相关小系统,控制小系统的目标对象,同时要考虑小系统之间的相互影响与作用,以小系统的最优化促进大系统的最优。

2.2基于智能主体的数据采集技术

该智能主体技术以主体感知外部环境信息以及对信息分析、推理、评估,为下一步采取应对措施为基本思想。制造系统之所以要设置数据采集系统,是为了通过传感器监控制造过程中的各种信息,并对其处理、分析,对系统的运行状况以及运行趋势做出判断预测,对故障指出处理措施。基于这一思想,构造依托于多智能体的数据采集系统可以对当下的数据采集方法给予加强改进,一种适用于先进制造系统的数据采集系统模式应运而生。该模式由若干传感器与一个数据采集平台组成,数据采集平台由一个数据采集服务器与多个数据采集点组成。传感器用以监控生产过程中的各种内部外部信息,数据采集平台负责数据的采集、处理、存储与输出,在形式上依然是分布式与集中式采集集中管理模式。

3结语

计算机技术与信息技术的飞速发展为制造系统数据采集技术提供了更多的可能性,基于智能主体的制造系统数据采集技术,对于制造企业运用现代化的制造技术,在制造自动化、提高生产力与生产制造高品质的产品、增强企业的综合竞争能力,实现经济效益与社会效益有重要意义。

参考文献:

[1]王聪,纪志成.基于智慧车间的生产执行系统的研究及应用[J].计算机时代,2012(08)