电子封装的技术范文

时间:2023-09-25 18:23:15

导语:如何才能写好一篇电子封装的技术,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

电子封装的技术

篇1

随着计算机技术的普及,到1975年世界上第一只晶体管的诞生,特别是近年来封装技术的发展,微电子封装技术在国民经济中的作用越来越突出,甚至,微电子封装技术越来越成为衡量国民经济发展的一项重要指标,在这样的时代背景之下,对于微电子封装技术的研究变得尤为重要。

1微电子封装技术的世纪回顾

微电子封装技术有着悠久的历史渊源,其起源、发展、革新都是伴随着IC产业的发展而不断变化的。可以说,有一种IC的出现,就会伴随着一代微电子封装技术的发展。最早的微电子封装技术出现在60年代、70年代,这一时期是比较小规模的微电子封装技术。随后,在80时年代,出现了SMT,这一技术的发展极大的推动了计算机封装技术的发展。基于微电子封装技术的不断革新,经过微电子技术行业专业人员历时多年的研究,开发出了QFP、PQFP等,不但解决了较高I/OLSI的技术封装问题,而且与其他的技术合作,使得QFP、PQFP成为微电子封装的主导型技术。近年来,微电子封装技术又有了新的发展,新的微电子封装技术,不仅仅具有传统裸芯片的全部优良性能,而且这种新型的微电子封装技术,突破了传统的微电子封装技术的阻碍,使得IC达到了“最终封装”的境界,是微电子封装领域的一大发展。

随着科学技术的不断发展,微电子封装行业也在进行着前所未有的变革,为了增加微电子产品的功能,达到提高电子产品的性能和可靠性以及降低成本的需求,现正在各类先进封装技术的基础上,进一步向3D封装技术发展,特别是近年来,微电子封装领域的专家学者们,正在研究由原来的三层封装模式向一层封装的简洁模式过渡。在不久的将来,随着科学技术的进一步发展,微电子封装技术还将继续在新的领域并借助高科技的助力向更加多元与开阔的方向发展。

2IC的进展及对微电子封装技术提出的新要求

随着时代的进步和科学技术的发展,各行各业对于电子产品的技术要求更高,在目前的领域之中,无论是信息技术产业,还是汽车行业及交通运输行业,以及关系到国家安全的军事、航空航天行业,都对微电子封装技术提出了更高水平的要求。特别是当下PC机以及通讯信息产业的高速发展,对于微电子封装技术的要求越来越高。为了满足这些关系国计民生的行业的要求,微电子封装技术领域的革新变得刻不容缓。因此,基于以上的时代背景,美国半导体工业协会于1997年制定并且发表了帮奥体技术未来发展的宏伟蓝图,为我们探索半导体行业指明了方向,铺垫了新的里程。

微电子封装技术的发展是伴随着IC技术的发展而不断革新的,这就要求在微电子封装领域的技术革新时要考虑芯片的问题,因为一块芯片的质量、体积、直接关乎微电子封装技术的成败。因此,对于芯片的特征尺寸问题要格外留心,努力增加芯片的晶体管数以及集成度,保证芯片的性能达到最优化。在设计开发微电子封装技术的时候,要将芯片的开发与微电子封装技术的研究作为一个整体的有机系统去考量,只有这样,我们才能在开发芯片的过程中充分考虑到微电子封装技术,又能够在研究微电子封装技术的同时,对于芯片的要求提出更加准确细致的描述,从而能够提升工作效率。同时,也要注重对于新的技术的应用,比如现在较为流行的3D技术,就可以应用于芯片的制作和微电子封装技术的开发之中,从而能够更加灵活的安排各个零件的功能单元,优化连线布局,使得芯片的性能更加优良,使得微电子封装技术的发展迈上一个新的台阶。

3微电子封装技术几个值得注意的发展方向

回顾微电子封装技术的发展,我们可以看到微电子封装技术在历史的潮流之中随着时代的发展不断革新,并对当下国民经济的发展产生了越来越重要的影响。在裸芯片以及FC正成为IC封装产业的发展方向的当下情景之中,大力发展FC的工艺技术以及相关的材料,促进微电子封装技术从二维向三维方向发展,是当下微电子封装技术应该值得注意的发展方向。

3.1裸芯片及FC正成为IC封装产业的发展方向

裸芯片以及FC在未来的十年内将成为一个工业标准,微电子封装技术在这种科技的助力之下,将从有封装、少封装向无封装的方向发展。并且,在当下的科技环境之中,利用SMT技术,可以将裸芯片以及FC直接复制到多层基板上,这样不但芯片的基板面积小,而且制作成本也很小,对于微电子封装技术来说,在科技领域无疑是一大进步。但是,在目前的科技领域之中,裸芯片以及FC仍然有很多的缺陷,比如FC裸芯片在很大的程度上还没有解决测试以及老化筛选等问题,在目前的科技方面,还难以解决一些技术上的疑难问题,还难以达到真正KGD芯片的标准。但是,随着科学技术的发展,一些新的技术应运而生,比如CSP芯片,不仅仅具有封装芯片的一切优点,而且又具有FC裸芯片的所有长处,所以,CSP芯片可以较为全面的进行优化与筛选,能够成为真正意义上的KGD芯片。

3.2大力发展FC的工艺技术及相关材料

微电子封装技术要想能够在未来的科技发展领域之中占有一席之地,大力发展FC芯片的工艺技术变得刻不容缓。在当下的科技领域之中,FC的工艺技术主要包括了芯片凸点的形成技术以及FCB互联焊接技术和芯片下的填充技术等等。芯片凸点技术主要是在原有芯片的基础上形成的,形成这一芯片的技术需要重新在焊接区域内进行布局,形成一个又一个的凸点。其中,形成凸点的方法主要有物理和化学两种。物理方法包括电镀法、模板焊接法以及热力注射焊接法,而化学的凸点形成法相对来说就比较单一,在當下的微电子封装领域的应用还不是那么广泛。FC互联焊接法也是在当下的微电子封装领域应用比较广泛的一种方法,具体的操作方法较为复杂,一般来说,是将Au通过打球而形成的钉头凸点涂抹到基层金属焊接区域之中,这种金属焊接区域之中,往往会涂油导电胶状物,我们再通过加热的办法对这些胶状物进行凝固处理,从未能够使得这些凸点和基板金属焊接区域能够粘贴紧密,形成牢固的连接。这种方法制作成本比较低廉,在熟悉了制作流程之中,制作的过程也比较简单,因此,这一工艺在微电子封装领域的应用较为广泛。此外,芯片下填充技术作为微电子封装产业的一大组成部分,在技术的研发层面也面临着巨大的挑战。

3.3微电子封装从二维向三维立体封装发展

3D技术的发展与普及,带给了微电子封装技术以极大的革新,在3D技术的助力之中,微电子封装技术从二维空间向三维空间迈进,使得微电子封装技术产品的密度更高、性能更加优良,信号的传输更加方便快捷,可靠性更高,但是,微电子封装技术从二维走向三维,却使得微电子封装技术的成本节省了不少。在当下的微电子封装技术领域之中,实现3D微电子封装的途径大体上来说,主要有以下几种类型:埋置型3D结构、源基板型3D结构,叠装型3D结构。这三种3D微电子封装技术在当下的科技微电子封装领域之中已经开始广泛应用并且作用于经济领域之中,相信,在不久的将来,3D微电子封装技术将成为封装领域的一大趋势。

4结语

IC的发展促进了微电子封装技术的不断革新,同时,微电子封装技术领域的创新性研究也作用于IC产业,促进了它的变革与发展。相信,在不久的将来,微电子封装技术在新的技术的推动下,还会取得一系列的更加显著的成绩,但是如何将新型技术与微电子封装技术实现完美融合,以及微电子封装技术在应用的过程当中出现的问题如何解决,这一些都需要微电子封装领域的专家和学者做出不懈的努力和艰苦卓绝的探索。

参考文献

[1]张泽霖.RoHS2.0指令对微电子封装材料的要求及对策[J].新材料产业,2016(11).

[2]孙道恒,高俊川,杜江,江毅文,陶巍,王凌云.微电子封装点胶技术的研究进展[J].中国机械工程,2011(20).

篇2

【关键词】密封型继电器 封装技术 自动化设备

随着我国综合国力的不断提升,自动化技术也越来越被社会各界普遍重视,继电器这种设备也逐渐在很多领域中得以运用,继电器作为一种比较精密的自动控制元件,在其生产与制造过程中的要求非常高,而继电器透气孔的密封便是其生产过程中不可或缺的重要步骤。运用传统方式进行继电器封透气孔的过程中,存在一些问题,在一定程度上影响继电器的密封效果,因此,本文提出一种新的方法,用于密封型继电器的透气孔密封,以提升继电器产品的可靠性。

1 自动控制元件的密封

继电器作为一种相对比较精密的自动控制元件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”,因此,能够在电路运行过程中起到自动调节、安全保护、转换电路等作用。

在当前社会很多领域的自动化设备中都有使用,我国在工业、农业、国防等诸多领域,都能够见到继电器的身影。而随着科学技术的不断发展与社会需求的日益变化,继电器的生产与制造业面临着很多挑战。由于继电器设备具有很高的精密性与复杂性,因此,在对其生产与制造的过程中,无论从生产材料方面看、从工艺技术方面看,还是从制造环境方面看,都有很高的要求。

一般情况下,为了提升继电器在运行过程中的可靠性,延长设备的使用寿命,需要对继电器进行密封处理,密封型继电器也由此应运而生。在对普通民用继电器进行密封处理的过程中,经常运用的密封方法是胶封法,这种方法比较传统,在具体操作过程中,也存在很多实际的操作问题。

现阶段,在密封型继电器生产与制造过程中,密封已经成为必不可少的一个关键工序,在密封过程中,继电器的外壳上需要留有透气孔,用于沟通继电器壳体的内部空间与外部空间。透气孔的作用是在完成继电器生产与制造过程中的所有工序以后,还可以通过透气孔,对继电器内部进行焙烘,一部分制造原材料中可能会含有有机蒸汽,也需要通过透气孔排出,另外,向继电器内部填充惰性气体,也需要通过透气孔。在完成这些工序以后,还需要对透气孔进行良好的密封,只有完成这项工序,才算真正意义上完成了继电器设备的生产。因此,继电器的透气孔在其生产与制造过程中,所扮演的角色非常重要,对透气孔的密封也是设备制造过程中的重要工序。

2 传统继电器的封装方法

由上文可知,一般情况下,密封型继电器会在外壳上留有透气孔,在设备生产与制造过程中,需要对其内部进行真空焙烘,焙烘时继电器内部的空气会通过透气孔排出。如果运用传统的封透气孔方法,需要在继电器冷却以后,运用UV胶来堵住透气孔,在通过紫外灯,是其瞬间固化,从而隔绝继电器外壳内部与外部的空间。

2.1 传统封透气孔设备的结构

传统的封透气孔设备的结构主要由四个主要部分组成:

(1)取料与定位装置,这一部分的主要作用是实现对继电器的分离,并将其定位到操作台上,从而便于点胶机的针孔,可以在运行过程中对继电器透气孔部位进行准确的密封。

(2)点胶装置,这一部分的主要作用是通过针筒点胶机,对继电器壳体上的透气口进行点胶密封。

(3)传送与紫外灯照射装置,这一部分的主要作用是传送未进行封透气孔操作的继电器和已经完成封透气孔操作的继电器,对于已经完成封透气孔操作的继电器,需要通过传送装置,第一时间传送到紫外灯下,使胶体瞬间固化,以完成密封操作。

(4)机架部分。

2.2 传统封装方法的弊端

传统的封透气孔方法虽然在操作上相对方便,但在长期以来的运用过程中,也表现出了很多弊端,具体表现在以下三个方面:

(1)在封透气孔的过程中,需要胶体快速固化,如若不然,便很容易在封透气孔时发生炸气事故,因此,需要UV胶与紫外灯的密切配合。但UV胶的成本相对较高,且在进行点胶时,容易出现点胶针头的粘连,需要定期对点胶针头进行清洗。

(2)想要UV胶固化,就必须借助紫外灯,但紫外灯的功率普遍相对较大,所耗费的电能较多,且相关的工作人员需要长期在紫外灯的照射下进行工作,可能会对工作人员的身体健康造成影响。

(3)UV胶的继电器外壳的材质有很大差异,固化之后的UV胶表面缺乏弹性,如果受到外力冲击,就很容易脱胶,从而导致继电器透气孔密封不彻底。

3 继电器封装技术的方法

本文提出的密封型继电器封透气孔方法,克服了传统继电器封透气孔技术中存在的一些列问题,提供一种密封型继电器的透气孔结构及其封透气孔方法,通过这种方法,让密封型继电器能够在满足国际标准对继电器密封要求的同时,还具有结构简单、易于生产、节省材料成本、减少装配工时、提高产品可靠性等优势,具有非常广阔的发展前景。

3.1 改良后的方法

改良后的透气孔结构,主要是在壳体的外表面设有向内凹入的沉陷部,在沉陷部中设有向外凸出的圆形凸柱,凸柱的高度尺寸与沉陷部的深度尺寸相一致,在凸柱的中间设有能够使壳体内外的空气相通的透气孔。

改良后的封透气孔方法主要包括以下四个步骤:

(1)在继电器壳体的外表面设置沉陷部,形状为向内凹入,并在其中设置凸柱,形状为向外突出,需要注意的是,两者的尺寸要相同,之后将透气孔设置在凸柱的中心位置,使其能够连接壳体内部空间与外部空间。

(2)在进行封透气孔工作的过程中,需要装置一个聚光灯,位置在透气孔上方,两者之间还需要设置一个遮光板,其上设置一个透光孔,确保聚光灯能够透过透光孔,照射在透气孔上,但继电器的其他部位不会受到聚光加热。

(3)将聚光灯通过透光孔,对继电器壳体的凸柱进行照射,让凸柱部位融化。

(4)运用铆接工装,对凸柱的融化部位进行施压,使透气孔周边的凸柱的塑料形成自身粘接,从而实现对透气孔封闭。

该封透气孔方法相当于在继电器外壳表面设置一个凹陷的空间,在这个空间的中心位置,设置一个类似烟囱的透气孔,下凹深度与“烟囱”高度相一致,是这一设计中需要注意的主要问题。当需要封透气孔时,使用聚光灯融化“烟囱”上部的塑料材料,在这个过程中,确保继电器壳体表面的其他材料不会受热融化,之后通过铆接工装对融化部位进行施压,最后利用壳体材料的自粘接性,实现对透气孔的密封。

3.2 该方法的注意事项

在使用这一方法对密封型继电器进行封透气孔操作的过程中,需要注意以下几方面问题:

(1)在设计透气孔结构时,一定要注意继电器壳体表面的沉陷部高度,与其中心部位的凸柱高度相一致。

(2)在利用聚光灯融化继电器壳体的凸柱部位时,遮光板上透光孔的大小一定要适当,如果过大,会造成继电器壳体的其他部位受热融化;如果过小,则可能照射不到透气孔周围的凸柱材料,或造成材料融化不均匀,无法完成密封操作。而其遮光板与继电器的距离不宜过远,以保证聚光灯光源能够准确照射在透气孔周围的凸柱上。

(3)在运用铆接工装对凸柱融化部位施压的过程中,其施压时间与压力大小一定要严格控制,从而确保对继电器透气孔的封闭质量,保证继电器壳体的外表美观。

3.3 该方法的应用优势

与传统封透气孔方法相比,本文所提出的方法具有几下几方面优势:

(1)该方法不使用胶水对透气孔进行密封,利用的是自身材料的融化与粘结,这便在很大程度上节省了材料成本,也不用在操作过程中定期清洗设备,降低了人工操作强度。

(2)不采用传统的紫外灯,而运用聚光灯来加热继电器壳体表面的透气孔,在运行过程中的功率相对较小,且加热的范围不大,节约了封透气孔工作过程中的能源。

(3)这种方式无毒无害,不必担心相关工作人员在长期工作过程中的身体健康。

(4)不利用其它材料对继电器透气孔进行粘结,完全利用壳体自身材料,因此不必担心脱胶现象,粘接效果较好。

4 继电器封装技术的具体方法

图1中所示的便是本文所提出的密封型继电器透气孔结构,其中,1表示的是继电器外壳;2表示的是凸柱;3表示的是透气孔;4表示的是沉陷部。由图1可以看出,继电器壳体表面存在一个向内的凹陷部位,在凹陷部位的中心位置,有一个向外的凸柱,凹陷深度与突出高度是相同的,也就是说,凸柱边缘需要与继电器壳体齐平,在凸柱的中间位置,设有透气孔,用于连接继电器壳体内部与外部空间。

在实际封透气孔的过程中,首先要保证透气孔结构与本文所述的透气孔结构相一致,之后准备本文所述封透气孔方法的相关装置与材料,包括聚光灯、遮光板、铆接工装等。将继电器的透气孔朝上,放置在聚光灯的正下方,之后在透气孔上方的1-2mm的地方,放置遮光板(已经预先打好透光孔,透光孔的直径与继电器壳体的凸柱直径相一致,也可以略大),然后调整遮光板的位置,使透气孔与透光孔相对应,确保聚光灯刚好照射在继电器透气孔的位置。这个过程中,需要确保继电器壳体的其他部位不会受到聚光灯的照射,避免其他部位出现融化情况。

装置运用功率为150W的聚光灯就可以实现操作,聚光灯的聚焦点一般为28-32mm之间,操作过程中,需要以聚光灯的实际聚焦点为基础,有针对性的将继电器放在其能够照射到的最佳位置。

通过聚光灯,对继电器壳体的凸柱部位进行照射,在照射过程中,要严格控制照射时间,一般情况下,不超过1s(白壳时间要加长些),不宜照射时间过长,只要继电器壳体凸柱部位融化即可,否则封住的透气孔不美观,也容易因为融化材料过多而导致透气孔位置材料的厚度不均衡,容易产生其他漏气部位。

在继电器壳体凸柱融化以后,尽快运用铆接工装,对融化部位施加向下的压力,压力的大小需要控制在39-50N之间,施压时间需要控制在0.3-1.0s之间,其原因在于,这个压力范围与时间范围可以很好的实现实现透气孔周围凸柱塑料运用自身的粘接性实现良好的粘结,并保持粘结完成之后的形状美观。

5 结论

综上所述,本文主要从密封型继电器透气孔的概述入手,分析了传统继电器封透气孔方法的机械结构与使用过程中存在的弊端,重点介绍了一种新的密封型继电器的透气孔结构及其封透气孔方法,分析了其使用过程中的注意事项与优势,最后讨论了方案的具体实施方式。该方法具有结构简单、易于生产、节省材料成本、减少装配工时、提高产品可靠性等优势,有非常广阔的发展前景。

参考文献

[1]梁慧敏,由佳欣,叶雪荣等.基于三维磁场仿真分析的含永磁继电器等效磁路模型的建立[J].电工技术学报,2011,01:46-50.

[2]徐乐,王淑娟,翟国富等.基于电磁拓扑和有限元理论的固体继电器辐射敏感性分析[J].中国电机工程学报,2011,09:113-119.

[3]贺元康,赵鑫,樊江涛等.变压器相间短路后备保护中负序阻抗继电器应用探讨[J].电力系统自动化,2011,15:84-87.

[4]崔柳,董新洲.具有抗过渡电阻能力的多相补偿距离继电器[J].中国电机工程学报,2014,19:3220-3225.

[5]翟国富,王其亚,程贤科等.电磁继电器动态特性快速算法及其在优化中的应用[J].中国电机工程学报,2010,12:106-110.

[6]柳焕章,李银红.大电流接地系统线路高阻接地距离继电器[J].中国电机工程学报,2010,34:93-98.

[7]董新洲,施慎行,DOMINIK Bak等.多相补偿距离继电器在振荡且伴随单相接地故障下的动作性能分析[J].中国电机工程学报,2013,34:214-222+31.

[8]孙东旺,贺鹏举,李玲玲等.基于超程时间回归模型的继电器寿命预测方法[J].电工技术学报,2013,S2:414-417+423.

[9]朱先启,徐振栋,刘连光等.适应直流偏磁抑制装置接入的零序电抗继电器动作特性分析[J].电网技术,2013,10:2926-2931.

[10]董新洲,施慎行,Dominik BAK等.极化电流行波方向继电器在带并联电抗器输电线上的特性[J].电力系统自动化,2013,21:169-175.

篇3

[关键词]芯片封装技术技术特点

我们经常听说某某芯片采用什么什么的封装方式,在我们的电脑中,存在着各种各样不同处理芯片,那么,它们又是采用何种封装形式呢?并且这些封装形式又有什么样的技术特点以及优越性呢?在本文中,作者将为你介绍几个芯片封装形式的特点和优点。

一、DIP双列直插式封装

DIP是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。

DIP封装具有以下特点:(1)适合在PCB(印刷电路板)上穿孔焊接,操作方便。(2)芯片面积与封装面积之间的比值较大,故体积也较大。Intel系列CPU中8088就采用这种封装形式,缓存和早期的内存芯片也是这种封装形式。

二、QFP塑料方型扁平式封装和PFP塑料扁平组件式封装

QFP封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在100个以上。用这种形式封装的芯片必须采用SMD将芯片与主板焊接起来。采用SMD安装的芯片不必在主板上打孔,一般在主板表面上有设计好的相应管脚的焊点。将芯片各脚对准相应的焊点,即可实现与主板的焊接。用这种方法焊上去的芯片,如果不用专用工具是很难拆卸下来的。PFP方式封装的芯片与QFP方式基本相同。唯一的区别是QFP一般为正方形,而PFP既可以是正方形,也可以是长方形。

QFP/PFP封装具有以下特点:(1)适用于SMD表面安装技术在PCB电路板上安装布线。(2)适合高频使用。(3)操作方便,可靠性高。(4)芯片面积与封装面积之间的比值较小。Intel系列CPU中80286、80386和某些486主板采用这种封装形式。

三、PGA插针网格阵列封装

PGA芯片封装形式在芯片的内外有多个方阵形的插针,每个方阵形插针沿芯片的四周间隔一定距离排列。根据引脚数目的多少,可以围成2~5圈。安装时,将芯片插入专门的PGA插座。为使CPU能够更方便地安装和拆卸,从486芯片开始,出现一种名为ZIF的CPU插座,专门用来满足PGA封装的CPU在安装和拆卸上的要求。

ZIF是指零插拔力的插座。把这种插座上的扳手轻轻抬起,CPU就可很容易、轻松地插入插座中。然后将扳手压回原处,利用插座本身的特殊结构生成的挤压力,将CPU的引脚与插座牢牢地接触,绝对不存在接触不良的问题。而拆卸CPU芯片只需将插座的扳手轻轻抬起,则压力解除,CPU芯片即可轻松取出。PGA封装具有以下特点:(1)插拔操作更方便,可靠性高。(2)可适应更高的频率。Intel系列CPU中,80486和Pentium、PentiumPro均采用这种封装形式。

四、BGA球栅阵列封装

随着集成电路技术的发展,对集成电路的封装要求更加严格。这是因为封装技术关系到产品的功能性,当IC的频率超过100MHz时,传统封装方式可能会产生所谓的“CrossTalk”现象,而且当IC的管脚数大于208Pin时,传统的封装方式有其困难度。因此,除使用QFP封装方式外,现今大多数的高脚数芯片(如图形芯片与芯片组等)皆转而使用BGA封装技术。BGA一出现便成为CPU、主板上南/北桥芯片等高密度、高性能、多引脚封装的最佳选择。BGA封装技术又可详分为五大类:(1)PBGA基板:一般为2~4层有机材料构成的多层板。Intel系列CPU中,PentiumII、III、IV处理器均采用这种封装形式。(2)CBGA基板:即陶瓷基板,芯片与基板间的电气连接通常采用倒装芯片的安装方式。Intel系列CPU中,PentiumI、II、PentiumPro处理器均采用过这种封装形式。(3)FCBGA基板:硬质多层基板。(4)TBGA基板:基板为带状软质的1~2层PCB电路板。(5)CDPBGA基板:指封装中央有方型低陷的芯片区。

BGA封装具有以下特点:(1)I/O引脚数虽然增多,但引脚之间的距离远大于QFP封装方式,提高了成品率。(2)虽然BGA的功耗增加,但由于采用的是可控塌陷芯片法焊接,从而可以改善电热性能。(3)信号传输延迟小,适应频率大大提高。(4)组装可用共面焊接,可靠性大大提高。

BGA封装方式经过十多年的发展已经进入实用化阶段。1987年,日本西铁城公司开始着手研制塑封球栅面阵列封装的芯片。而后,摩托罗拉、康柏等公司也随即加入到开发BGA的行列。1993年,摩托罗拉率先将BGA应用于移动电话。同年,康柏公司也在工作站、PC电脑上加以应用。直到五六年前,Intel公司在电脑CPU中(即奔腾II、奔腾III、奔腾IV等),以及芯片组中开始使用BGA,这对BGA应用领域扩展发挥了推波助澜的作用。目前,BGA已成为极其热门的IC封装技术,其全球市场规模在2000年为12亿块,预计2005年市场需求将比2000年有70%以上幅度的增长。

五、CSP芯片尺寸封装

随着全球电子产品个性化、轻巧化的需求蔚为风潮,封装技术已进步到CSP。它减小了芯片封装外形的尺寸,做到裸芯片尺寸有多大,封装尺寸就有多大。即封装后的IC尺寸边长不大于芯片的1.2倍,IC面积只比晶粒大不超过1.4倍。

CSP封装又可分为四类:(1)传统导线架形式,代表厂商有富士通、日立、Rohm、高士达等等。(2)硬质内插板型,代表厂商有摩托罗拉、索尼、东芝、松下等等。(3)软质内插板型,其中最有名的是Tessera公司的microBGA,CTS的sim-BGA也采用相同的原理。其他代表厂商包括通用电气(GE)和NEC。(4)晶圆尺寸封装:有别于传统的单一芯片封装方式,WLCSP是将整片晶圆切割为一颗颗的单一芯片,它号称是封装技术的未来主流,已投入研发的厂商包括FCT、Aptos、卡西欧、EPIC、富士通、三菱电子等。

CSP封装具有以下特点:(1)满足了芯片I/O引脚不断增加的需要。(2)芯片面积与封装面积之间的比值很小。(3)极大地缩短延迟时间。CSP封装适用于脚数少的IC,如内存条和便携电子产品。未来则将大量应用在信息家电、数字电视、电子书、无线网络WLAN/GigabitEthemet、ADSL/手机芯片、蓝芽等新兴产品中。

六、MCM多芯片模块

篇4

一、DIP双列直插式封装

DIP是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。

DIP封装具有以下特点:(1)适合在PCB(印刷电路板)上穿孔焊接,操作方便。(2)芯片面积与封装面积之间的比值较大,故体积也较大。Intel系列CPU中8088就采用这种封装形式,缓存和早期的内存芯片也是这种封装形式。

二、QFP塑料方型扁平式封装和PFP塑料扁平组件式封装

QFP封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在100个以上。用这种形式封装的芯片必须采用SMD将芯片与主板焊接起来。采用SMD安装的芯片不必在主板上打孔,一般在主板表面上有设计好的相应管脚的焊点。将芯片各脚对准相应的焊点,即可实现与主板的焊接。用这种方法焊上去的芯片,如果不用专用工具是很难拆卸下来的。PFP方式封装的芯片与QFP方式基本相同。唯一的区别是QFP一般为正方形,而PFP既可以是正方形,也可以是长方形。

QFP/PFP封装具有以下特点:(1)适用于SMD表面安装技术在PCB电路板上安装布线。(2)适合高频使用。(3)操作方便,可靠性高。(4)芯片面积与封装面积之间的比值较小。Intel系列CPU中80286、80386和某些486主板采用这种封装形式。

三、PGA插针网格阵列封装

PGA芯片封装形式在芯片的内外有多个方阵形的插针,每个方阵形插针沿芯片的四周间隔一定距离排列。根据引脚数目的多少,可以围成2~5圈。安装时,将芯片插入专门的PGA插座。为使CPU能够更方便地安装和拆卸,从486芯片开始,出现一种名为ZIF的CPU插座,专门用来满足PGA封装的CPU在安装和拆卸上的要求。

ZIF是指零插拔力的插座。把这种插座上的扳手轻轻抬起,CPU就可很容易、轻松地插入插座中。然后将扳手压回原处,利用插座本身的特殊结构生成的挤压力,将CPU的引脚与插座牢牢地接触,绝对不存在接触不良的问题。而拆卸CPU芯片只需将插座的扳手轻轻抬起,则压力解除,CPU芯片即可轻松取出。PGA封装具有以下特点:(1)插拔操作更方便,可靠性高。(2)可适应更高的频率。Intel系列CPU中,80486和Pentium、PentiumPro均采用这种封装形式。

四、BGA球栅阵列封装

随着集成电路技术的发展,对集成电路的封装要求更加严格。这是因为封装技术关系到产品的功能性,当IC的频率超过100MHz时,传统封装方式可能会产生所谓的“CrossTalk”现象,而且当IC的管脚数大于208Pin时,传统的封装方式有其困难度。因此,除使用QFP封装方式外,现今大多数的高脚数芯片(如图形芯片与芯片组等)皆转而使用BGA封装技术。BGA一出现便成为CPU、主板上南/北桥芯片等高密度、高性能、多引脚封装的最佳选择。

BGA封装技术又可详分为五大类:(1)PBGA基板:一般为2~4层有机材料构成的多层板。Intel系列CPU中,PentiumII、III、IV处理器均采用这种封装形式。(2)CBGA基板:即陶瓷基板,芯片与基板间的电气连接通常采用倒装芯片的安装方式。

Intel系列CPU中,PentiumI、II、PentiumPro处理器均采用过这种封装形式。(3)FCBGA基板:硬质多层基板。(4)TBGA基板:基板为带状软质的1~2层PCB电路板。(5)CDPBGA基板:指封装中央有方型低陷的芯片区。

BGA封装具有以下特点:(1)I/O引脚数虽然增多,但引脚之间的距离远大于QFP封装方式,提高了成品率。(2)虽然BGA的功耗增加,但由于采用的是可控塌陷芯片法焊接,从而可以改善电热性能。(3)信号传输延迟小,适应频率大大提高。(4)组装可用共面焊接,可靠性大大提高。

BGA封装方式经过十多年的发展已经进入实用化阶段。1987年,日本西铁城公司开始着手研制塑封球栅面阵列封装的芯片。而后,摩托罗拉、康柏等公司也随即加入到开发BGA的行列。1993年,摩托罗拉率先将BGA应用于移动电话。同年,康柏公司也在工作站、PC电脑上加以应用。直到五六年前,Intel公司在电脑CPU中(即奔腾II、奔腾III、奔腾IV等),以及芯片组中开始使用BGA,这对BGA应用领域扩展发挥了推波助澜的作用。目前,BGA已成为极其热门的IC封装技术,其全球市场规模在2000年为12亿块,预计2005年市场需求将比2000年有70%以上幅度的增长。

五、CSP芯片尺寸封装

随着全球电子产品个性化、轻巧化的需求蔚为风潮,封装技术已进步到CSP。它减小了芯片封装外形的尺寸,做到裸芯片尺寸有多大,封装尺寸就有多大。即封装后的IC尺寸边长不大于芯片的1.2倍,IC面积只比晶粒大不超过1.4倍。

CSP封装又可分为四类:(1)传统导线架形式,代表厂商有富士通、日立、Rohm、高士达等等。(2)硬质内插板型,代表厂商有摩托罗拉、索尼、东芝、松下等等。(3)软质内插板型,其中最有名的是Tessera公司的microBGA,CTS的sim-BGA也采用相同的原理。其他代表厂商包括通用电气(GE)和NEC。(4)晶圆尺寸封装:有别于传统的单一芯片封装方式,WLCSP是将整片晶圆切割为一颗颗的单一芯片,它号称是封装技术的未来主流,已投入研发的厂商包括FCT、Aptos、卡西欧、EPIC、富士通、三菱电子等。

CSP封装具有以下特点:(1)满足了芯片I/O引脚不断增加的需要。(2)芯片面积与封装面积之间的比值很小。(3)极大地缩短延迟时间。CSP封装适用于脚数少的IC,如内存条和便携电子产品。未来则将大量应用在信息家电、数字电视、电子书、无线网络WLAN/GigabitEthemet、ADSL/手机芯片、蓝芽等新兴产品中。

篇5

 

微电子封装主要是将数十万乃至数百万个半导体元件(即集成电路芯片)组装成一个紧凑的封装体,并由外界提供电源,且与外界进行信息交流。微电子封装所包含的范围应包括单芯片封装(SCP)设计和制造,多芯片封装(MCM)设计和制造,芯片后封装工艺,各种封装基板设计和制造,芯片互连与组装,封装总体电性能、力学性能、热性能和可靠性设计、封装材料等多项内容。微电子封装不但直接影响着集成电路本身的电性能、力学性能、光性能和热性能,影响其可靠性和成本,还在很大程度上决定着电子整机系统的小型化、多功能化、可靠性和成本,微电子封装越来越受到人们的重视。目前,表面贴装技术(SMT)是微电子连接技术发展的主流,而表面贴装器件、设备及生产工艺技术是SMT的三大要素。因而在微电子封装技术发展过程中,微电子连接技术也随之发展,自动化程度越来越高,加工过程也越来越精细。

 

2微电子封装的发展历程及其连接技术的应用

 

2.1发展历程

 

回顾集成电路封装的历史,其发展主要划分为3个阶段:

 

第一阶段,在20世纪70年代之前,以插装型封装为主。包括最初的金属圆形(TO型)封装、后来的陶瓷双列直插封装(CDIP)、陶瓷一玻璃双列直插封装(CerDIP)和塑料双列直插封装(PDIP)。尤其是PDIP,由于性能优良、成本低廉又能批量生产而成为主流产品。插装型器件分别通过波峰焊接和机械接触实现器件的机械和电学连接。由于需要较高的对准精度,因而组装效率较低,器件的封装密度也较低,不能满足高效自动化生产的需求。

 

第二阶段,在20世纪80年代以后,以表面安装类型的四边引线封装为主的表面安装技术迅速发展。它改变了传统的插装形式,器件通过再流技术进行焊接,由于再流焊接过程中焊锡熔化时的表面张力产生自对准效应,降低了对贴片精度的要求,同时再流焊接代替了波峰焊,也提高了组装良品率。此阶段的封装类型如塑料有引线片式裁体(PLCC)、塑料四边引线扁平封装(PQFP)、塑料小外形封装(PSOP)以及无引线四边扁平封装等。由于采用了四面引脚,引线短,引线细,间距小,因此,在很大程度上提高了封装和组装的密度,封装体的电性能也大大提高,体积减小、质量减轻、厚度减小,满足了自动化生产的需求。表面安装技术被称为电子封装技术的一大突破。

 

第三阶段,在20世纪90年代中前期,集成电路发展到了超大规模阶段,要求集成电路封装向更高密度和更高速度发展,因此集成电路封装从四边引线型向平面阵列型发展,发明了球栅阵列封装(BGA),堪称封装技术领域的第二次重大突破,并很快成为主流产品。到了90年代后期,电子封装进入超高速发展时期,新的封装形式不断涌现并获得应用,相继又开发出了各种封装体积更小的芯片尺寸封装。也就是在同一时期,多芯片组件(MCM)蓬勃发展起来。MCM将多个集成电路芯片和其他片式元器件组装在一块高密度多层互连基板上,然后封装在外壳内,是电路组件功能实现系统级的基础。可见,由于封装技术的发展越来越趋向于小型化、低功耗、高密度方向发展,目前典型的就是BGA技术和CSP技术。

 

2.2球栅阵列封装

 

20世纪90年代,随着集成技术的进步、设备的改进和深亚微米技术的使用,硅单芯片集成度不断提高,对集成电路封装要求更加严格,I/O引脚数急剧增加,功耗也随之增大。为满足发展的需要,在原有封装品种基础上,又增添了新的品种一一球栅阵列封装,简称BGA。其采用小的焊球作为元件和基板之间的引线连接。这种BGA突出的优点包括[3]:①电性能更好:BGA用焊球代替引线,引出路径短,减少了引脚寄生效应;②封装密度更高:由于焊球是整个平面排列,因此对于同样面积,引脚数更高。③BGA的节距与现有的表面安装工艺和设备完全相容,安装更可靠;④由于奸料熔化时的表面张力具有‘自对准”效应,避免了传统封装引线变形的损失,大大提高了组装成品率;⑤BGA引脚牢固;⑥焊球引出形式同样适用2.3芯片尺寸封装

 

1994年9月,日本三菱电气公司研宄出一种芯片面积/封装面积=1:1.1的封装结构,其封装外形尺寸只比裸芯片大一点点。也就是说,单个IC芯片有多大,封装尺寸就有多大,从而诞生了一种新的封装形式,命名为芯片尺寸封装,简称CSP。CSP是整机小型化、便携化的结果。它定义为封装后尺寸不超过原芯片的1.2倍或封装后面积不超过裸片面积的1.5倍。倒装焊和引线键合技术都可以用来对CSP封装器件进行引线。它具有更突出的优点:①近似芯片尺寸的超小型封装;②保护裸芯片;③便于焊接、安装和修整更换;④便于测试和老化;⑤电、热性能优良。

 

3微电子焊接及微连接技术3.1微电子焊接研宄的重要性

 

在微电子元器件制造和电子设备组装中,焊接(或称连接)技术是决定产品最终质量的关键一环。在一个大规模集成电路中,少则有几十个焊点,多则达到几百个焊点,而在巨型计算机的印刷线路板上焊点数目达到上万。这些焊点中只要有一个焊点失效就有可能导致整个元器件或整机停止工作。有统计数字表明[4],在电子元器件或电子整机的所有故障原因中,60%以上为焊点失效所造成的。可见焊接(连接)技术是电子工业生产技术中较为薄弱的环节。

 

3.2芯片焊接技术

 

3.2.1引线键合技术

 

引线键合(WB)技术是将芯片I/O焊盘和对应的封装体上的焊盘用细金属丝一一连接起来,一次连接一根。引线键合时,采用超声波焊将一根细引线——一般是直径25m的金属丝的两端分别键合到IC键合区和对应的封装或基板键合区上[5]。这种点到点工艺的一大优点是具有很强的灵活性。该技术通常采用热压、热超声和超声方法进行。热压键合和热超声键合都是先用高压电火花使金属丝端部形成球形,然后在IC芯片上球焊,再在管壳基板上楔焊,故又称球楔键合。其原理是:对金属丝和压焊点同时加热加超声波,接触面便产生塑性变形,并破坏了界面的氧化膜,使其活性化,通过接触面两金属之间的相互扩散而完成连接。球焊条件一般为:毛细管键合力小于0.98N,温度150300°C,毛细管和引线上施加的超声波频率在60420kHz。球楔键合在IC封装中是应用最广泛的键合方法。

 

超声键合是利用超声波的能量,使金属丝与铝电极在常温下直接键合。由于键合工具头呈楔形,故又称楔压焊。其原理是:当劈刀加超声功率时,劈刀产生机械运动,在负载的作用下,超声波能量被金属丝吸收,使金属丝发生流变,并破坏工件表面氧化层,暴露出洁净的表面,在压力作用下丝。在高密度封装中,焊盘的中心间距缩小,当中心间距小于120um时,球焊难以实现,需要采用超声波楔焊。目前,!25um金属丝、!90um焊盘中心间距的超声波楔焊机已成功地进入应用领域。

 

3.2.2载带自动键合技术

 

载带自动焊(TAB)是一种将IC安装和互连到柔性金属化聚合物载带上的IC组装技术。载带内引线键合到IC上,外引线键合到常规封装或PWB上,整个过程均自动完成。为适应超窄引线间距、多引脚和薄外形封装要求,载带自动键合(TAB)技术应用越来越普遍。虽然载带价格较贵,但引线间距最小可达到150um,而且TAB技术比较成熟,自动化程度相对较高,是一种高生产效率的内引线键合技术。

 

3.2.3倒装芯片键合技术

 

倒装芯片键合技术是目前半导体封装的主流技术,是将芯片的有源区面对基板键合。在芯片和基板上分别制备了焊盘,然后面对面键合,键合材料可以是金属引线或载带,也可以是合金奸料或有机导电聚合物制作的凸焊点。倒装芯片键合引线短,焊凸点直接与印刷线路板或其它基板焊接,引线电感小,信号间窜扰小,信号传输延时短,电性能好,是互连中延时最短、寄生效应最小的一种互连方法。

 

倒装芯片技术一般有2个较为关键的工艺。一是芯片的凸焊点的制作,另一个是凸焊点UBM的制作。凸焊点的制作方法有多种,较为常用的有:电镀法、模板印刷法、蒸发法、化学镀法和钉头法。其中化学镀法的成本最低,蒸发法成本最高。但是,化学镀法制作的凸焊点存在一个很大的问题:镀层的均匀性比较差。特别是对于Au凸焊点,化学镀镀层均匀性有可能不能满足凸焊点高度容差的要求。而钉头法制作Au凸焊点时,凸焊点下不需要有一多层金属薄膜——焊点下金属,即UBM,因而可以大大降低成本,但是,由于钉头法是逐个制作凸点,而且凸点尺寸较大,它仅适用于较少I/O端数的IC的封装(目前只占市场的0.3%)。因此,目前凸焊点的大批量制作普遍采用电镀法,占70%以上,其次是蒸发法和模板印刷法,除了部分钉头法和化学镀法制作的凸焊点外,凸焊点下都需要有UBM。UBM处于凸焊点与铝压焊块之间,主要起粘附和扩散阻挡的作用。它通常由粘附层、扩散阻挡层和漫润层等多层金属膜组成。UBM的制作是凸焊点制作的一个关键工艺,其质量的好坏将直接影响到凸焊点质量、倒装焊接的成功率和封装后凸焊点的可靠性。UBM通常采用电子束蒸发或溅射工艺,布满整个圆片。需要制作厚金属膜时,则采用电镀或化学镀工艺。

 

3.3微电子封装与组装中的焊接技术

 

微电子焊接一般用锡基奸料的奸焊技术,锡奸焊方法有多种,但适合自动化、大批量生产的主要是波峰焊和再流焊技术。

 

3.3.1波峰焊

 

波峰焊是通孔插装最常用的焊接方法[6]。组装板一般被放在一夹具上,该夹具夹着组装板通过波峰焊接机,要经历助焊剂的供给、预热区域、焊峰焊接以及与助焊剂类型有关的清洗工艺。在进行波峰焊接时,板的底部刚好碰到奸料,所有元件的引脚同时被焊接。波峰焊有时采用氮气等惰性气体来提高奸料的润湿性能。奸料和板的整个底面接触,但只是没有阻焊剂的板上金属表面才被奸料润湿。

 

波峰焊技术适合于插装型电子线路的规模化生产,在当前的电子工业中仍具有重要地位,但随着IC电路高密度、小型化的发展,体积更小的表面贴装型电路占的比例越来越大。在焊接形状变化多样、管脚间距极小的元件时,波峰焊技术有一定局限性。与此相应的再流焊技术越来越显示出其重要性。目前波峰焊技术的主要发展方向是适应无铅焊接的耐高温波峰焊。

 

3.3.2再流焊

 

所谓的再流焊(reflowsoldering)就是通过加热使预置的奸料膏或奸料凸点重新熔化即再次流动,润湿金属焊盘表面形成牢固连接的过程[7]。常用的再流焊热源有红外辐射、热风、热板传导和激光等。

 

再流焊温度曲线的建立是再流焊技术中一个非常关键的环节。按照焊接过程各区段的作用,一般将其分为预热区、保温区、再流区和冷却区等4段。预热过程的目的是为了用一个可控制的速度来提高温度,以减少元件和板的任何热损坏。保温主要是为了平衡所有焊接表面温度,使SMA上所有元件在这一段结束时具有相同的温度。再流区域里加热器的温度设置得最高,使组件的温度快速上升至峰值温度,一般推荐为焊膏的熔点温度加20-40°C。而冷却过程使得奸料在退出加热炉前固化,从而得到明亮的焊点并有好的外形和低的接触角度。

 

目前再流焊工艺中比较成熟的是热风再流焊和红外再流焊。随着免清洗和无铅焊接的要求,出现了氮气焊接技术。适应无铅焊接的耐高温再流焊成为该技术重要的发展方向。

 

4无铅奸料的发展

 

长期以来,锡铅(Sn37Pb)奸料以其较低的熔点、良好的性价比以及易获得而成为低温奸料中最主要的奸料系列,研宄结果表明,铅在Sn-Pb奸料中起着重要作用:①有效降低合金的表面张力,进而促进润湿和铺展;②能阻止锡瘟”发生;③促进奸料与被焊件之间快速形成键合。但是铅是一种具害。随着人类环保意识的日益增强,大范围内禁止使用含铅物质的呼声越来越高。

 

目前,国际上公认的无铅奸料定义为:以Sn为基体,添加了Ag,Cu,Sb,In其它合金元素,而Pb的质量分数在0.2%以下的主要用于电子组装的软奸料合金。

 

选择Sn-Pb奸料的替代合金应满足以下要求[8_10]:①其全球储量足够满足市场需求;②无毒性;③能被加工成需要的所有形式;④相变温度(固/液相线温度)与Sn-Pb奸料相近;⑤合适的物理性能,特别是电导率、热导率、热膨胀系数;⑥与现有元件基板/引线及PCB材料在金属学性能上兼容;⑦足够的力学性能:抗剪强度、蠕变抗力、等温疲劳抗力、热机疲劳抗力、金属学组织的稳定性;⑧良好的润湿性;⑨可接受的成本价格。

 

5结语

 

在微电子封装技术方面经历了双列直插、四方扁平等阶段。目前球栅阵列封装已经成为主流产品,现在芯片尺寸封装和多芯片组件也在蓬勃发展。今后微电子封装将继续向高性能、高可靠性、多功能、小型化、薄型化、便携式及低成本方向发展,相关的连接技术也必须符合这种发展趋势。在所使用的封装材料方面有金属、陶瓷、塑料,而低成本的塑料是应用的主要方向。

 

对奸料而言,锡铅共晶奸料虽有许多优点,但鉴于Sb及其化合物的剧毒性对人类健康和生活环境的危害,要求生产各种无铅奸料。目前最吸引人的是Sn-Ag-Cu系列,另外还有Sn-0.7Cu,Sn-3.5Ag,Sn-Zn和Sn-Ag-Bi等无铅奸料。从世界发展趋势看,新型无铅奸料的成分设计趋向于合金的多元化,因多种合金元素的加入可提高其力学性能和可靠性。随着现代工业的发展,人们也更注重免清洗无铅奸料的开发和应用,这是降低生产成本和能耗、提高产品性能的有效途径。

 

参考文献:

 

[1]范琳,袁桐,杨士勇.微电子封装技术与聚合物封装材料的发展趋势[J].新材料产业,2005,7(8):88-97.

 

[2]李枚.微电子封装技术的发展与展望[J].半导体杂志,2000,25(2):32-36.

 

[3]刘劲松,郭俭.BGA/CSP封装技术的研宄[J].哈尔滨工业大学学报,2003,50(5):602-604.

 

[4]王春青.微电子焊接及微连接[J].电子科技导报,1995,2(4):30-31.

 

[5]王春青,李明雨,田艳红.电子封装中的微连接技术[A].第十次全国焊接会议论文集[C].黑龙江哈尔滨:黑龙江人民出版社,2001.107-118.

 

[6]贾永平.波峰焊接技术的应用[J].航天制造技术,2003,22(3):6-8.

 

[7]吴念租,蔡均达.锡焊技术与可靠性[M].北京:人民邮电出版社,1993.69-89.

 

[8]WilliamB,Hampshire.T^esearchforlead-freesolders[J].Soldering&SurfaceMountTechnology,1993,14:49.

篇6

布局在印制线路板教学中应如何讲解

一个印制线路板的布线是否能够顺利完成主要取决于布局,而且,布线的密度越高,布局就越重要。所有制作印制线路板的人都遇到过这样的情况:布线仅剩下几条时却发现无论如何都布不通了,而又不想飞线,于是不得不删除大量或全部的已布线,再重新调整布局。所以,合理的布局是布线成功的前提。每次在讲布局内容之前,我都要让学生牢牢地记住这样一个概念。

教材中关于线路板的合理布局有十二点要求,非常详细。可是,学生把这些要求背下来就一定能把电路图布好了吗?很多学生看完后仍然不知道该如何操作。

笔者认为一个印制线路板的布局是否合理没有绝对的判断标准。印制线路板的设计,首先从确定板的大小开始。印制线路板的尺寸因受机箱外壳的大小限制,以能恰好安放入外箱内为宜。其次,应该考虑印制电路板与外接元器件(主要是电位器、按键、插口或其他印制电路板)的连接方式。因为只有对外接元器件的规格、尺寸、面积等有完全了解,才能对附件固定,以提高耐震、耐冲击性能等(这些就要求学生需要具有一定的元器件常识)。

在布线方向上要掌握好,尽可能保持与原理图走线方向相一致,以便于生产中的检查、调试及检修。要使各元件排列和分布合理、均匀,力求整齐、美观,并且结构严谨,按一定顺序方向进行布线。

对于具体的元器件,主要是注意电位器的安放位置,它应尽可能放在板的边缘,旋转柄朝外。在电路板尺寸有限的情况下,电阻、二极管的放置还可以采用竖放的放置方式,这样比常规的平放要节约很多空间。IC座上定位槽放置的方位要正确,并注意各个IC脚位是否正确。例如,1脚只能位于IC座的右下角线或者左上角,而且紧靠定位槽(从焊接面看)。进出接线端布置时其相关联的两引线端不要距离太大,并且尽可能集中在1至2个侧面,不要太过离散,元件脚间距要合理。把学生比较熟悉的电子元器件作为引子讲解好,学生就很好理解了。课后我在征求学生意见时,多数学生反映都容易理解,这为学习后续内容奠定了良好的基础。

不要忽视飞线在布局中的作用

当印制线路板上元器件的位置已经基本确定后,学生就开始进行布线操作了。可问题是,学生放置的元器件图形是一样的,但布线后,他们的元件布线图有的好,有的却极为复杂。

这是为什么呢?原因是,当一个封装的位置发生变化时,其飞线的起始点和终止点一般也会发生变化,元件最终位置的确定,还需要通过移动、旋转、整体对齐等操作。这就要让学生学会依靠观察屏幕显示的飞线是否简捷、有序和长度是否最短来进行元器件的调整。

在整板范围内快速移动一个封装,如果与这个封装连接的飞线不发生大的变化,说明与这个封装引脚连接的网络中结点数少,近于一一对应的连接,这个封装的位置不能任意放置。如果与这个封装连接的飞线变化比较大,说明与这个封装引脚连接的网络中结点数多,这个封装不一定非固定放置在某个位置,可以按照其他一些判别准则(如布局是否合理、美观等)找到该封装的相对最佳放置位置。

如果一个封装不论怎样移动位置与某几个封装间的飞线连接关系都始终不变,就说明这个封装与这几个封装之间具有较强的约束关系,应该优先放置在这几个封装的重心或相对接近重心的位置。如果一个封装移动位置时飞线可以不断变化,即总能就近找到连接结点,说明这个封装与其他所有封装之间具有较弱的约束关系,这个封装的位置就可以比较灵活。这些很实用的判别方法,教材上却没有指出。在课堂中我给学生指出这一关系后,他们都感到易于理解,做出来的布线图也比较合理了。

印制线路板中常用的手工―自动―手工的布线方法

在完成了线路板上元器件的布局之后,学生就可以开始进行线路板的布线了。为了省事,绝大部分学生都采用直接自动布线的方法,在电路布局好后自动布线的布通率都能达到100%。但是,笔者认为常用的布线步骤还是按照手工预布线―自动布线―手工布线的顺序最好。

在自动布线之前,先预先用手工布一些重要的网络,比如高频时钟、主电源等,这些网络往往对走线距离、线宽、线间距、屏蔽等有特殊的要求。还有输入端与输出端的边线应避免相邻平行,以免产生反射干扰等,这些就需要学生们具备较多的电路设计知识了。

当手工预布好线并进行自动布线后,学生们会发现自动布线依然存在缺陷,如连线拐弯多、走线过长、不美观等,使布线显得很凌乱。笔者认为自动布线结束后还需要进一步使用手工调整布线,才能获得一块较完美的、满足电磁兼容性要求的印制线路板。手工调整布线的目的就是重新调整走线方向,使布线尽可能合理(如满足电磁兼容性要求、连接长度短)。手工调整布线是电路设计中较难掌握的技巧之一,它是线路板设计技术和经验的集中体现,即使经过了多次调整,依然可能会存在不尽合理的走线。而作为初学者的学生,一般手工布线时应注意地线处理,避免交叉和简单走线。

对于地线必须严格按高频中频低频、一级级地按弱电到强电的顺序排列原则,切不可随便乱接,级与级间宁可接线长点儿,也必须遵守这一原则。同一级电路的接地点应尽量靠近,本级电路的电源滤波电容也应接在该级接地点上,以防止产生自激。而印制导线的公共地线,应尽量布置在印制线路板的边缘部分,接地和电源的图形应尽可能与数据的流动方向平行,这是提高抑制噪声能力的秘诀。

对可能交叉的线条,可以用“钻”、“绕”两种办法解决,即让某引线从别的电阻、电容、三极管脚下的空隙处“钻”过去,或者从可能交叉的某条引线的一端“绕”过去。在特殊情况下如果线路很复杂,为简化设计也允许使用少量导线跨接。

篇7

【关键词】肖特基;芯片级封装;漏印;漏印模版;烧结

由于越来越多的产品设计需要不断减小体积,提高速度,目前芯片级封装技术是微电子封装技术研究中的重要课题,该封装互连线长度极大缩短,封装后延迟时间缩小,易于实现组件高速化。 由于凸点工艺制作难度大,国内还没有成熟的产品量产,产品全部依赖进口。目前凸点的制作方法大多采用金属球殖入、真空镀膜、电镀及光刻的方法。上述方法由于投资强度大、工艺制作有较大的难度。本文介绍了一种凸点制作的新型工艺方法:在丝网印刷技术工艺的基础上,用模版漏印技术,将混合导体浆料按要求施加适当的压力,使导体浆料从复合模版通孔穿过而成球状体,经过烧结工艺形成金属球状凸点,从而实现了肖特基二极管凸点的工艺制作。

1.工艺装置

我公司是芯片制造厂,拥有4英寸和5英寸芯片生产线,实现芯片级封装有得天独厚的优势,只要在4英寸或5英寸的晶圆硅片上完成凸点的制作,就可以实现芯片级封装。采用的装置主要有高精密丝网印刷机、漏印模版、烧结炉及配套设施。

2.漏印模版的设计及制作

由于凸点是在硅片表面制作,一般要在4英寸的圆片上,制作10000多个凸点,要保证高度、直径的一致性,而且凸点之间不能相互粘连,在模版的设计中要充分考虑凸点的高密度排列及硅片易碎等特点,完成模版的设计。

2.1 按照圆片的尺寸及肖特基二极管芯片的尺寸设计掩膜版,并将设计掩膜版转换为铬版,以备光刻使用。

2.2 选取厚度0.1mm~0.3mm的不锈钢板,进行双面涂胶并烘干,以备光刻使用。

2.3 光刻:在双面光刻机上,将不锈钢板放在两块铬版的中间,位置对准后进行曝光,曝光时间30-40秒。

2.4 腐蚀:将光刻完成的不锈钢板装入腐蚀片盒,将腐蚀时间设定为60-180秒,温度设定为30℃,腐蚀片盒进入装有腐蚀液的腐蚀缸,腐蚀后形成漏印孔。

2.5 乳胶层再固化:模版上保留乳胶层主要对芯片表面起保护作用,避免表面划伤而使产品漏电增大,同时可保证凸点形状的一致。将腐蚀液清洗干净并干燥后,将乳胶面进行二次曝光,形成坚固耐磨的乳胶层,这样就完成了复合模版的制作。图1所示是不同型号的两个产品漏印模版局部放大图。

图1

3.凸点工艺制作

3.1 凸点漏印工艺

要实现膏状锡浆料漏印到晶圆硅片表面,浆料的流动特性与漏印模版相匹配是关键。浆料的选取必须遵循浆料浸润性能的要求,同时考虑圆片表明的特殊性。熔融态焊料合金在固态金属表面的浸润与铺展是形成有效连接的必要条件,浸润角度越小、浸润性能越好,但这会使凸点的高度降低,凸点成型不理想,反之则焊接不良。一般无铅锡浆料的浸润角均大于含铅的锡浆料,如果选取适当就可以满足凸点制作的要求,经反复试验,无铅免清洗锡浆料,合金成分(WT%):Sn96.5/Ag3/Cu0.5很好地满足了制作凸点的要求。

锡浆料粘度的调配:在试验中,粘度太大,模版漏印孔容易堵塞,会出现圆片上局部没有浆料或浆料不足;粘度太小,会造成凸点之间相互连接,严重时会连成一片。当粘度调整为900 KCPS时,印刷工艺稳定,重复性好,在高精密丝网印刷机上,将锡浆料漏印到晶圆硅片上。

3.2 烧结工艺

在烧结炉中设计最佳炉温曲线,及最高烧结温度和停留时间非常重要,温度太低或时间太短会造成浸润不够造成凸点开路,温度太高或时间太长则会产生凸点成型不规则,凸点相互粘连。本实验测定的烧结炉温度曲线范围如图2所示,选最高烧结温度为235℃,恒温时间为2分钟。烧结完成后,凸点大小一致、光洁度好、满足凸点设计的技术要求。与漏印模版相对应的产品局部如图3所示。

图2

图3

4.结果分析

在试制的产品中,随机抽取TW140(1安40伏)的肖特基产品5个圆片,进行外观和电参数测试,测试结果如表1所示。

通过试制样片分析,用印刷工艺在肖特晶圆硅片上制作的凸点经镜检,其表明光洁度、外观形态及凸点一致性都比较理想。凸点高度:0.24~0.26mm,凸点直径0.3~0.32mm;电参数VBR、IR、VF都满足肖特基二极管性能指标技术要求。样品经用户上机使用,产品性能稳定、可靠。

参考文献

[1]胡强.BGA组装技术与工艺[J].电子元件与材料,2006 (06).

[2]杨斌,刘颍.BGA封装技术[J].电子与封装,2003(04).

[3]罗伟承,刘大全.BGA/CSP和倒装焊芯片面积阵列封装技术[J].中国集成电路,2009(02).

篇8

【关键词】电子装联;SMT;发展

一、电子装联目前的发展水平

传统采用基板和电子元器件分别制作,再利用SMT技术将其组装在一起的安装方式,在实现更高性能,微型化、薄型化等方面,显得有些无能为力。电子安装正从SMT向后SMT(post-SMT)转变。通讯终端产品是加速开发3D封装及组装的主动力,例如手机已从低端(通话和收发短消息)向高端(可拍照、电视、广播、MP3、彩屏、和弦振声、蓝牙和游戏等)发展,要求体积小、重量轻、功能多。专家预测:2008年以后手机用存储器将超过PC用存储器。芯片堆叠封装(SDP),多芯片封装(MCP)和堆叠芯片尺寸封装(SCSP)等,将大量应用,装联工艺必须加快自身的技术进步,以适用其发展。为适应微型元器件组装定位的要求,新的精准定位工艺方法不断推出,例如日本松下公司针对0201的安装推出的“APC(Advanced Process Control)”系统,可以有效地减少工序中由于焊盘位置偏差和焊膏印刷位置偏差而引起的再流焊接的不良,作为继SMT技术之后(post-SMT)的下一代安装技术,将促使电子元器件、封装、安装等产业发生重大变革。驱使原来由芯片封装安装再到整机的由前决定后的垂直生产链体系,转变为前后彼此制约的平行生产链体系,工艺技术路线也必将作出重大调整,以适应生产链的变革,PCB基板加工和安装相结合的技术是未来瞩目的重大发展方向。

二、高密度组装中的“微焊接”技术加速发展

高密度电子产品组装中的微焊接技术,是随着高密度面阵列封装器件(如CSP、FCOB等)在工业中的大量应用而出现的。其特点是:

芯片级封装具有封装密度高,例如:在一片5mm×5mm的面积上集成了5000个以上的接点数;

焊点大小愈来愈微细化,例如:间距为0.4mm的CSP其焊球的直径将小于0.15mm。在SMT组装各工序焊接缺陷大幅上升。像上述这样的凸形接合部的出现,加速了“微焊接”技术的快速发展。“微焊接”技术就意味着接合部(焊点)的微细化,密间距的焊点数急剧增加,接合的可靠性要求更高。归纳起来,“微焊接”技术正面临着下述两个基本课题:①“微焊接”工艺,由于人手不可能直接接近,基本上属于一种“无检查工艺”。为了实现上述要求的无检查工艺的目的,必须要建立确保焊点接触可靠性的保证系统(对制造系统的要求)。②由于焊点的微细化,焊接接合部自身的接续可靠性必须要确保。为此,要求有最完全的接合,焊点内任何空洞、异物等都会成为影响接续可靠性的因素(对接合部构造的要求)。

基于上述分析,为了实现上述的要求,故必须导入“微焊接工艺设计”的思维方法。所谓“微焊接工艺设计”,就是用计算机模拟焊接接合部的可靠性设计,从而获得实际生产线的可靠性管理措施和控制项目;对生产线可能发生的不良现象进行预测,从而求得预防不良现象发生的手段,这就是进行“工艺设计”的目的。通过“工艺设计”,就预先构筑了实际的生产线和生产管理系统。这样,就可以获得高的生产效率和焊接质量。对焊接接合部的可靠性管理也就变得容易和可能了。

三、电子装联技术未来走向

以现有的电子装联工艺技术模式和工艺装备能力来说间距为0.3mm的CSPs等芯片的应用已近极限。未来比上述元器件更小的超微级元器件及分子电路板的应用,从穿孔安装(THT)到表面安装(SMT)已流行数十年来的组装概念及其工艺技术装备(如印刷机、贴片机、各类焊接设备及检测设奋等)都将无法胜任而退出历史舞台。

随着半导体和微机械元器件尺寸小到毫微级时,基于机械组装系统和焊接技术的传统组装和连接技术,将会遇到严重的挑战。D.OPopa在2004年SME制造月刊中发表的“微型和中间规模的组装”提出了“封装差距”,若按摩尔定律继续进行的话,就会在2010年以后的十年中发生“组装危机”。因此,串行处理这些小元器件已是不再可行的。在大量组装毫微米级元器件时,己不再使用机械工具方法来精确定位元器件了。主要影响这些元器件精确定位和贴装的因素是极小分子间的相互作用力。由此可见基于机械方式的串行处理技术将会完全失效。A.Singh等人在1999年IEEE微机械系统期刊发表的“使用倒装焊键合进行微晶的移动”一文中所提出的方法是:使用移动的方式将预先搭建整个系统的薄膜图形转移到基板上,使用“印刷”的方式可以并行地制造整个电路图形。从效果上讲与喷墨或印刷到基板的思维是相似的:首先试图在并行处理时将大量的中型级元器件放置于临时的基板上,再将它们互连后移离临时基板(作为贴装工作台的临时基板是可以反复使用的)。在液体中或喷射印刷推进的方式下,应用扩散原理可以将元器件放置于该平台上,这样可以使元器件接近其最终的位置。另一种将元器件置于其位置的方法是:美国专家Adalytix所做的,即应用微流体力学进行的一种高速初步定位的技术,由于此法具有较高的并行度,所以会达到较高的生产量。并行定位元器件的其他原理包括:静电学和磁学。总之,将元器件定位到所要求的位置及最终的对准过程是比较复杂的,而且这些过程还需要复杂的工艺技术。通过克服弱的小范围力-键合力就可以达到所希望的标准。以上过程可以在润湿性或流动性环境中形成。从上述分析中可知,未来电子装联技术工程师所要求掌握的知识结构,将向复合化方向扩展。

参考文献

[1]余国兴.现代电子装联工艺基础[M].西安电子科技大学出版社,2007.

篇9

关键词:集成电路封装;QFP;寄生效应

Crosstalk Analysis based on 64-Lead Quad Flat Package

WANG Honghui 1,2,SUN Haiyan1

(1. Southeast University, Nanjing 210096, China;

2. Nantong Fujitsu Microelectronics Co., Ltd., Nantong 226006, China)

Abstract:Signal integrity issues are becoming more and more important in the package design of electronic systems.?Based on a standard 64-Lead Quad Flat Package, commercial electromagnetic analysis software Q3D was used to create package model and extract parasitic parameters. The simulation results showed that the pin near to the active received higher crosstalk.

Key words: integrated circuit package;QFP;parasitic effects

1引言

近年来,集成电路设计和制造技术的进步以及无线网络的兴起,使得电路系统朝着高速度、高密度、低工作电压的方向发展,时钟频率达到GHz,甚至更高。芯片工作速度的增加,使得封装结构中电容与电感寄生耦合效应迅速增加,一些原本被忽略的电气效应已经开始影响电路的正常工作,因此需要对封装结构进行建模、仿真,来保证信号的传输质量[1-2]。

QFP(Quad Flat Pack)引线框架封装形式采用低成本的塑料封装技术,引脚之间距离很小,引脚很细,数量通常在32-304左右,适用于大规模或超大规模高频/高速集成电路封装。图1为某一标准的QFP64引线框架结构示意图,理想情况下,框架引脚能够将信号完整地从印刷电路板(PCB)传输到集成电路芯片上,但高频信号在通道上传输时,会发生传输延迟(Propagation Delay)、反射(Reflect)、串扰(Crosstalk)等信号完整性问题,引脚的寄生效应会随着芯片工作频率的提高而越来越大,从而恶化器件的性能,严重者导致封装失效。

本文针对一种标准的QFP64封装结构,采用商用电磁场软件Q3D进行封装建模,并提取封装引脚的寄生参数,最后利用HSPICE工具完成串扰仿真的过程,为电路设计人员提供了参考[3-5]。

2封装建模与参数提取

在高频/高速集成电路封装中,信号传输的实质是电磁场能量的传输过程,一般情况下,若信号通道的物理长度小于输入信号波长的十分之一,封装模型可以表示为集总参数模型;反之,需要建立传输线模型。图2为QFP64的3D封装模型示意图(取整个封装模型的四分之一),芯片焊盘通过绑定线与引线框架的内引脚相连,封装信号通道由框架引脚及绑定线组成。其中引脚外侧宽度为0.2 mm,外侧间距为0.3 mm,绑定线直径为0.025 mm,引线框架和绑定线的材料分别定义为铜和金。本文假设图2中S1信号通道的工作频率为1 GHz,通道总长为12 mm,小于工作波长的十分之一,因此可利用Q3D软件完成QFP64封装的RLC集总参数的提取。选取S1作为高频信号通道,且在S1周围另取S2、S3、S4 三条信号通道一起进行仿真,每个信号通道定义为一个net,设置信号的输入、输出端口,定义net的两个端面为source和sink,设置网格和1 GHz求解频率,最终完成Q3D封装模型的建立。表1为Q3D仿真后提取的S1 ~ S4信号通道的RLC寄生参数值。

3QFP64封装串扰分析

串扰产生的主要原因是信号在一条通道上传输时,由于通道之间存在耦合电感及耦合电容,使得邻近信号线上出现电压波动现象。为了对图2所示的封装模型进行串扰分析,将表2提取出的电学参数转化成SPICE等效电路。下面是转化的SPICE等效电路网表:

.subckt QFP64 1 2 3 4 5 6 7 8

XZhalf1 1 2 3 4 9 10 11 12 QFP64_half

XY1 9 10 11 12 QFP64_parlel

XZhalf2 9 10 11 12 5 6 7 8 QFP64_half

.subckt QFP64_half 1 2 3 4 5 6 7 8

V1 1 9 dc 0.0

V2 2 10 dc 0.0

V3 3 11 dc 0.0

V4 4 12 dc 0.0

R1 9 13 0.13751305

R2 10 14 0.13774097

R3 11 15 0.14145661

R4 12 16 0.14011357

F1_2 13 9 V2 0.0550716

F1_3 13 9 V3 0.00773066

F1_4 13 9 V4 -0.00391029

F2_1 14 10 V1 0.0549805

F2_3 14 10 V3 0.052904

F2_4 14 10 V4 0.00982513

F3_1 15 11 V1 0.00751515

F3_2 15 11 V2 0.0515144

F3_4 15 11 V4 0.0431618

F4_1 16 12 V1 -0.00383771

F4_2 16 12 V2 0.00965875

F4_3 16 12 V3 0.0435755

L1 13 5 3.6263985e-009

L2 14 6 3.3562496e-009

L3 15 7 3.1569579e-009

L4 16 8 2.975746e-009

K1_2 L1 L2 0.582365

K1_3 L1 L3 0.422938

K1_4 L1 L4 0.327607

K2_3 L2 L3 0.556648

K2_4 L2 L4 0.401825

K3_4 L3 L4 0.534619

.ends QFP64_half

.subckt QFP64_parlel 1 2 3 4

C1_0 1 0 6.7986871e-013

C1_2 1 2 4.3579739e-013

C1_3 1 3 5.6077684e-014

C1_4 1 4 2.1526511e-014

C2_0 2 0 2.0838791e-013

C2_3 2 3 3.7178628e-013

C2_4 2 4 4.9829859e-014

C3_0 3 0 1.9767049e-013

C3_4 3 4 3.3955766e-013

C4_0 4 0 4.8372433e-013

.ends QFP64_parlel

.ends QFP64

影响串扰大小的因素主要有两个方面:1)不同的信号上升时间对串扰的影响;2):不同的信号通道间距对串扰的影响,本文主要针对后者来分析QFP64封装的串扰特性。仿真时,S1端接输入信号,采用5 V的pulse信号,频率为1 GHz,上升时间为0.2 ns,S1输出端接50Ω的电阻,做瞬态分析。图3、4分别为S1对S2、S4的串扰仿真结果,其中S2信号通道的近端串扰和远端串扰的峰值分别为0.502 V和0.266 V,S4信号通道的近端串扰和远端串扰的峰值分别为0.151 V和0.185 V。分析可得,S2比S4收到S1的干扰大,即离干扰源越近,所受到的信号干扰就越大,两种情况下,原本扰的信号线上的电压为0 V,因受到串扰电压的干扰已不在维持0 V电压的状态,当干扰电压超过临界电压,即会造成高速数字电路信号的误判。

经过上面的分析,框架引脚之间的互容、互感以及间距是影响QFP封装串扰的主要因素,而引线框架的固定结构决定了高频信号在传输过程中,通道之间存在的较高的耦合效应,因此QFP封装实际使用时,可根据芯片的特点,采用GSGSG(地-信号-地-信号-地)模式,这种模式中部分引脚作为地线,起到屏蔽的作用,能够有效地降低信号通道的耦合效应,降低串扰噪声。

4结论

随着集成电路工作频率的提高,高频/高速封装的信号完整性问题越来越突出,尽管封装引入的寄生效应非常小,但对于高频电路来说,这些寄生效应足以使信号严重失真。本文分析了一种QFP64封装技术的串扰特性,采用Q3D工具进行电磁仿真,参数提取,最后利用HSPICE工具进行串扰仿真的过程。仿真结果表明,离干扰源越近,所受到的串扰影响就越大。实际使用时为了有效地降低串扰,可采用GSGSG模式进行QFP封装设计。

参考文献

[1] Hongyu Zheng; Ling Gao; Zhiping Liu. Progress in development of advanced package for semiconductor device[J],Solid-State and Integrated-Circuit Technology, 2001. Proceedings. 6th International Conference on , Volume: 1 , 22-25 Oct. 2001 Pages:83 - 87 vol.1

[2] Hirose, T. High-Frequency IC Packaging Technologies [C]. IEEE Indium Phosphide and Related Materials, 2003, 227 - 230.

[3] Tzyy-Sheng Horng, Sung-Mao Wu, Hui-Hsiang Huang, etal. Modeling of Lead-Frame Plastic CSPs for Accurate Prediction of Their Low-Pass Filter Effects on RFICs [C]. IEEE Radio Frequency Integrated Circuits Symposium, 2001, 133-136

篇10

【关键词】电子封装;课程设置;实习基地;实验平台

随着电子技术的迅速发展,越来越多的电子器件应用到许多领域中,也带动了相关行业的飞速发展。尤其是随着物联网技术的进步,各式各样的传感器构成了智能网络的基础。封装技术作为电子产品领域中的关键技术之一,具有举足轻重的作用。电子封装是将利用半导体加工方法制备出的微元件、电路等用特定的封装材料保护起来,形成机械保护并进行电学信号传输,从而构成微系统及工作环境的制造技术。由于电子封装专业在半导体制程中属于后道工序,其前道和半导体制备芯片相关联,后道和器件的使用息息相关,所以其涵盖的内容非常多,牵涉到材料、化学、电子、机械等学科,尤其许多新型传感器的出现,对电子封装专业提出了更高的要求。近些年来,电子封装对器件的可靠性评价、性能测试等领域也开始有所扩展和延伸。作为一门较新的专业,电子封装专业建设和本科生培养处于探索性阶段。目前国内高校的电子封装专业大多起源于材料学院,尤以焊接技术、金属材料专业居多。如哈尔滨工业大学、上海交通大学、南京航空航天大学等。但是电子封装专业作为一门全新的学科和专业,在信息技术飞速发展的今天,其本科生教育培养模式需要与时俱进,才能够跟上当今时代的发展。江苏科技大学电子与封装专业借鉴了国内其他高校在电子封装专业方面的建设,同时根据自身的特点,结合长三角地区半导体行业蓬勃发展的优势,对电子封装专业本科生培养及专业建设进行一些有益的探索。因此,本文从电子封装专业的多学科交叉及工程化应用较强等方面的特点出发,通过课程设置、实习基地建设和实验平台搭建,从封装专业的理论学习,到实际专业封装生产线的感性认知,再到封装设备的实践操作,构建电子封装专业的本科教学理论-认知-实践的系统性模式。

一、课程设置

由于电子封装专业是一门典型的交叉学科,牵涉到的基础学科较多,因此在课程设置方面既要考虑到其知识专业性,又要考虑到其知识综合性。江苏科技大学立足于长三角区域,针对目前电子封装技术专业存在较大的人才供需矛盾(据统计我国每年对电子封装专业本科层次的人才需求超过7万人),以半导体材料和器件制备为基础,结合电子元器件的设计与模拟,对电子元件的封装材料、封装工艺、封装设计等方面进行基础教育,培养电子封装及其相关领域中工艺开发、材料改进、仪器研制等方面的专业工程技术人员。在专业课设置上,涵盖从器件的原理、封装的工艺和可靠性测试方面等,具体有以下7门专业必修课。半导体器件物理、微连接原理、电子封装材料、封装结构与工艺、电子封装可靠性、封装热管理。在选修课程的设置上重视电子封装专业中的基础理论、实际应用、动手能力、思维开拓方面的培养,对目前迅速发展的封装领域中的知识进行了综合性的构建,从理论到实际,从工艺到应用,设置了10门专业选修课,包括微加工工艺、MEMS器件与封装技术、电子设计自动化、集成电路设计、微电子制造及封装设备、表面组装技术、微波与射频电路、电磁兼容技术、先进封装技术、有限元技术及在封装中的应用。江苏科技大学电子封装专业的课程体系设置,一方面体现了电子封装专业的综合化、专业化的特点,另一方面突出了实践性和理论性结合的特色。尤其在现代化的教育体系下,既要突出学生的专业性特点,又要兼顾学生的知识综合性,同时还需对目前学生的动手能力和实践能力进行专业化培养。尤其对于半导体及信息技术专业方面日新月异的发展,开设了“先进封装技术”课程,对目前晶圆级封装、三维封装等目前较为新颖的封装模式进行关注,及时反映封装领域的最新动态。

二、实习基地

电子封装专业不仅对理论知识有深入的了解,对实践能力也有更高的要求。尤其是电子信息工业的迅速发展,对人才掌握的知识综合性要求越来越高。目前,电子封装专业不仅仅是对其本身所涉及的封装设计、封装工艺、封装材料等方面,而且随着封装工业方面的发展,尤其是晶圆级封装技术的发展,很多封装工艺和微加工工艺高度融合在一起。所以对于从事电子封装领域的工程技术人员、研究人员,不仅要掌握封装相关的理论基础,还要求对加工工艺实践的掌握。从工科院校的人才培养角度出发,目前国际教育界公认实践才是工科专业教育的根本,必须在理论教育的基础上,让学生到相关专业工程实践中去实践学习,在实际解决问题的过程中掌握相关的专业知识。江苏科技大学目前积极建立与电子封装企业的合作,通过到企业的见习与实践,让学生对课堂讲授的基础知识有更深层次的认识,同时通过企业技术人员直接参与实践教学环节,加深学生对封装领域中的工艺、设备等方面的认知。并且,江苏科技大学与江阴长电、苏州捷研芯、苏州纳米城等单位建立长期稳定的实训和见习基地,采取与这些企业单位实际生产接轨的流水线式实习安排,在实习期间让每个学生负责生产制造过程中某一项工序,并定期进行轮换工作,如前道工艺中的光刻、溅射、刻蚀等微加工工艺,同时对后续的封装工艺如切片、邦定、贴装和封装等具体工艺的实训,保证学生在学校学习理论知识的同时,也能掌握一定的实际封装方面的技能。江苏科技大学地处长三角地区,长三角地区(上海、江苏、浙江)以上海为核心,半导体及信息产业在长三角地区中占有重要地位,是国内集成电路、传感器制造和封测技术最先进产能集中地区。其中,中芯国际在上海拥有8吋及12吋晶圆厂;台积电在上海松江拥有8吋厂,并已决定在南京兴建12吋厂;联电则以收购方式取得苏州和舰8吋厂经营权;力晶与合肥市政府合资兴建12吋厂。学校与相关的企业联合建立实习、实训和见习基地,一方面可以使理论教学与实践相结合,提高学生的知识实际应用能力;另一方面,可以让企业的一些研发型设备可以充分利用,实习资源共享,提高设备的利用率。此外,通过学生在企业中的实习,让学生掌握更多实践知识的同时,也让企业在学生实习期间考察他们的能力,为企业在未来招聘人才提供更多的选择。

三、实验平台

江苏科技大学电子封装专业针对目前国内半导体及信息产业的迅速发展情况,为了能较好较快地培养电子封装领域比较紧缺的人才,在理论教学的同时,也非常注重实验教学。目前电子封装系在新校区规划了用于实验教学的净化间,主要包括两个部分:一是包括黄光区内的光刻、显影、溅射等半导体器件的前道加工工序;二是包括划片、邦定、回流、键合等封装工艺。前道工序主要包括光刻机、溅射设备和刻蚀设备等,通过实验教学,使学生在操作过程中更能深入了解光刻、溅射等工艺的具体原理和实现步骤,能让学生更好地了解电子器件的制备过程,从而拓宽学生的视野,为学生走向工作岗位奠定良好的理论和实验基础。后道工序主要指封装工艺,设备主要涵盖划片机、金线键合机、金属植球机和回流炉等。通过这些设备的实际操作,可以使学生对封装领域中的零级封装、一级封装有比较深入的认识,可以根据设备的相应功能实现所设计的需求。同时,江苏科技大学根据目前封装领域的高速发展趋势,购置了包括3D打印机、晶圆键合机等较为新型的设备,通过这些设备的具体操作和实际应用,让学生在关注目前封装领域中发展的主要趋势,尤其是目前业界比较关注的晶圆级封装和三维封装,做好这些方面的知识储备,为以后走向工作岗位或者深造奠定良好的基础。

四、结语

电子封装专业作为一个新兴的交叉型专业,近些年来在国内外都有迅速的发展。尤其随着消费电子、汽车电子和物联网等领域的高速增长,作为电子器件中关键技术之一的电子封装技术备受关注,而且专业的电子封装领域人才培养还滞后于封装技术的发展需求。因此,高校的电子封装专业人才培养需要满足市场发展的需求,不仅要关注电子封装专业的多学科交叉及工程化应用较强等方面的特点,而且在教学过程中需要多元化的课程设置,包括器件设计、加工工艺、应用材料、测试方法等方面的理论教学,结合实习基地的实际参观认识和学习,到实验平台整体流程的操作,培养学生的综合性能力,能为电子封装专业输送更多更好的专业人才.

【参考文献】

[1]胡庆贤,董再胜,王凤江等.电子封装技术专业人才培养体系的构建[J].产业与科技论坛,2011,11(10):173~174

[2]简刚,汪蕾,胡庆贤等.微电子封装专业《薄膜材料与工艺》教学探索[J].产业与科技论坛,2014,14(13):154~155

[3]廖秋慧,刘淑梅.微电子封装专业的课程建设与教学实践[J].产业与科技论坛,2013,10(12):178~179