高中高二数学知识范文

时间:2023-09-20 16:58:02

导语:如何才能写好一篇高中高二数学知识,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

高中高二数学知识

篇1

述职,顾名思义,就是陈述自己的工作。陈述的方式可以是口头的,也可以是书面的。下面就让小编带你去看看中学二级教师个人工作述职报告范文5篇,希望能帮助到大家!

二级教师述职报告1理学家马斯洛认为:一个学生如果失去爱和尊重,那么他将很难健康地发展。因此教师务必在明白、尊重、爱护学生的情感基础上,为他们创设一个信任、接纳、明白、尊重的情感氛围,这样才能有利于学生的身心发展,有利于德育工作的实施。为什么要加强师德建设,恐怕每个人都有自己的认识。我认为:

一、师德是教育工作者的灵魂

国家的兴衰,取决于教育;教育的兴衰,取决于教师。

教师是立校之本,而师德则是教育之魂。从古至今,在人们心目中,似乎很难找出比教师更受敬重的职业。只要用真诚的心去感化学生,用真诚的爱去引导学生,只有真的爱学生才能当之无愧地说爱教育事业。著名教育家斯霞以前说过:“要使学生的品德高尚,教师自己首先就应是一个品德高尚的人。”教师是学生的一面镜子,言谈举止,为人处世,衣着穿戴……都是学生私下议论的话题。为人师表不能说一套做一套,应严以律己,言行一致,表里如一,成为学生的表率。孔子说得好:“其身正,不令而行,其身不正,虽令不从。”

任何教育的结果,都是伴随着必须的师生关联产生的,其结果的好坏有时受师生关联好坏的影响,不一样的师生关联往往导致不一样的教育结果。这天的学生需要有一个安静、和谐、健康的学习环境。在教育过程中,教师与学生之间要进行多方面的互动,会产生种种矛盾。倘若教师没有尊重,关心和热爱学生,即没有与学生沟通关联的法宝“博爱之心”。热爱学生是建立民主、平等、和谐的师生关联的基础。在建立和谐社会的时代背景下,教师在课堂教学中也就应发奋营造“民主、和谐”的课堂教学氛围,生动活泼与严肃守纪的辨证统一,因材施教与面向全体相结合。从某种好处上来说,这种师生关联是教师正确的学生观和良好素质的反映。

二、教书育人是师德的关键

在知识的海洋里,宇宙间的任何事物都只有其中的一朵浪花,一粒泥沙,而教师如同一叶扁舟,常年累月航行于其中,将一批又一批渴望成才的求知者送达理想的彼岸,风雨无阻,无怨无悔。浪头上行舟,难免惊心动魄,但也有欣慰与欢畅,谁说不是呢?选取了教师职业就选取了艰辛和挑战。胸无点墨,混迹社会,腰缠万贯者大有人在,但我们无法想象,更不能容忍一个滥竽充数的教师堂而皇之立于那些求知若渴者目光聚焦的神圣讲坛。教书育人是教师的天职。教师在任何时候都不能忘记,自己不单单是为教书而教书的“教书匠”,而应是透过教学活动在学生心灵上精心施工的工程师。

三、热爱学生是师德教育的核心。

教师的职业道德品质是否高尚,主要从以下方面看:看他否忠诚于人民的教育事业,能否坚定不移地全面贯彻执行党的教育方针;看他是否热爱学生,能不能做到既教书又育人。随着社会的发展,党和国家对教育的深切关注,真诚地热爱学生已被视为当代教师的师德之魂。

老师对学生的爱,会被学生内化为对教师的爱,进而把这种爱迁移到教师所教的学科上,正所谓“亲其师,信其道”而“乐其道”,因此爱的教育是我们教学上的巨大推动力。在教育中,我们对学生的爱就应是正直、公正、坦荡、无私的,不是偏狭、庸俗的。因权势而爱,因门第而爱,因金钱而爱,这种爱只会败坏社会风气,污染学生纯洁的心灵。如果我们期望学生成为有热爱完美事物而仇恨丑恶等行为的真正公民,我们就应当真诚地对待他。

在我的课堂教学上,我带给我的学生是一种愉快简单的学习,我的感受是:明朗而高效的节奏感,严肃而活泼的氛围,重积累与联系,重学法指导,重语言运用,重合作意识的培养,重情感交流。在新课标下,我觉得教师的教学要放在激发学生学习语文的内趋力,引导学生主动探求语言知识;指导学生学习语文的方法,使学生由“学会”到“会学”,变“被动学习”为“自主学习”。我坚信,兴趣是学习任何知识最好的老师。正正因如此,学生们在适应了我的授课模式以后,渐渐地从对我的课堂发生兴趣转向对语文学习感兴趣。我是发自内心地感动于这种良性的循环。同时,在语文课堂教学中我能够适时适当地利用多媒体教学设备充分调动学生的非智力因素,消除学习紧张感和焦虑感,激发学生探索未知的本能和强烈的好奇心、求知欲,这样既充实丰富了课堂,又提高了学生学习语文的兴趣。

爱是教师美丽的语言,我们教师应有那颗与学生沟通的法宝——博爱之心,用爱去对待学生,影响学生,关心他们的成长。我们就应用先进的理念、恰当的方法带给学生鲜活的知识与技能,发奋培养出具有世界胸怀、中国灵魂、适应现代社会的有用之才。教学,是一曲爱的奉献,我们的生命会因奉献而精彩,因开拓而闪亮,因耕耘而芬芳,因奋斗而更美丽。

二级教师述职报告2从执教的第一天起,我就要求自己的举止行为要更加规范,正因从今以后我将为人师表,一言一行都影响着下一代,我要对他们负责。基于以上认识,我在工作上兢兢业业,不敢有丝毫马虎,备好每一节课,上好每一堂课,批好每一份作业,教育好每一个学生,发奋去做一个深受学生尊重和信赖的老师。

一、做一个思想进步的教师。

要想做一个合格的人民教师,首先就应有一个健康进步的思想。与时俱进,爱岗敬业,为人师表,热爱学生,尊重学生。我用心参加各种学习培训,为了提高自己的思想觉悟,每周五我认真进行政治学习,并做好学习笔记。我还深知要教育好学生,教师务必先以身作则,时时做到教书育人,言传身教,以自己的人格、行为去感染学生。作为一名教师,自身的师表形象要时刻注意,在工作中我用心、主动、勤恳、职责心强,乐于理解学校布置的各项工作;任劳任怨。在不断地学习中,发奋使自己的思想觉悟、理论水平、业务潜质都得到较快的提高。爱情感言

二、做一个有爱心的教师。

我把热爱学生放在第一位,有了这种心境,师生之间就能处于一种和谐的状态,许多事情便迎刃而解。正因爱是无声的语言,是沟通与孩子们之间距离的有效手段。我报着一颗爱孩子、爱工作的心精心的呵护着我的班级,与孩子们平等相处,做他们的好朋友,尊重他们、信任他们、明白他们,用心主动与他们相处。在课上只要是对学生有好处的,我都会尊重。在课下,与学生共同解决难题,只要学生提出的问题,我总会不厌其烦的回答他们。学生的成绩总会有好坏之分,无论成绩好坏,我都一视同仁。对性格孤僻的学生,更多的给以热情的帮忙。意图使出他们恢复自信,走出自我评价的误区。人的感觉是相互的,教师的真诚学生是能感受到的。我坚信:只有当学生理解了你这个人,才可能以主动的态度理解你的教育。

三、做一个理念新的教师。

目前,新一轮的基础教育改革已经在全国全面推开,我在认真学习新课程理念的基础上,结合自己所教的学科,用心探索有效的教学方法。开成自已的教学风格。我把课本知识与学生的生活相结合,为学生创设一个富有生活气息的学习情境,同时注重学生的探究发现,引导学生在学习中学会合作交流,提高学习潜质。在教学上,我一改以往教师演示、学生模仿的传统教学方式,在学生中开展探究式学习,使学生的知识来源不只是老师,更多的是来自对书本的明白和与同伴的交流。促使学生在简单的环境中学会学习。

二级教师述职报告320__年起兼任数学教研组组长,主要从事数学学科的教学。根据职务晋升,我已符合申报中学一级教师资格的条件。现将本人任现职以来的工作总结如下:

一、思想政治表现:

作为一名农村学校的教育工作者,我深知农村孩子的企盼,农村父母的期望,自己肩上的责任,于是倍加珍惜作为人民教师的荣誉。从教以来,我无限忠诚党的教育事业,积极负责地完成教学任务,努力进取,特别注重加强自己的思想品德修养,有强烈的责任感和事业心,以“爱岗敬业,教书育人”为己任,勇于迎接新挑战,具有创新意识,积极探索课程改革,有吃苦耐劳的精神。适应能力强,不断上进。为人师表,积极引导学生开阔眼界,关心身边事、国家事和天下事,增长知识,练好本领,取得了良好的`教育效果。尊敬领导,与同事团结协作,服从安排,与人为善。我坚信:只要自己付出了青春和热情,农村的孩子同样也可以变成金凤凰。

二、教学方面:

本人从教8年来,始终积极探索和学习,教学相长,与时俱进,努力攻关,把成为学者型的教师作为自己的目标,在自身素质方面进行坚持不懈的强化提高。

在教学工作中,刻苦钻研业务,准确把握教学大纲和教材,制定合理的教学目标,把各种教学方法有机地结合起来,充分发挥教师的主导作用,以学生为主体,力求教学由简到繁、由易到难、深入浅出、通俗易懂。我注重提高教学技巧,讲究教学艺术,努力摸索出“自学—总结学习”模式的做法和规律。为备好课、上好课,我自费订阅或购买并阅读各种教学参考书、杂志,提高自己的业务水平和理论知识水平。我还充分利用自身的优势,制作多媒体课件辅助教学,以此来提高课堂效率,充分调动学生的学习积极性,激发学生学习数学的热情,帮助学生解决学习难点,发挥学生的主体作用,培养学生的创造性思维,促进个性特长的发展,在教学中取得了较好的成绩

任现职以来,我积极承担区、校级公开课,20__年为市“初中数学教师、骨干教师教研沙龙”上了题为“圆”的研讨课。在20__年11月承担“青蓝工程”设在我校的市级公开课《阅读理解题》,20__年承担设在外国语学校的市级公开课《全等三角形》,均受到好评。在教学中我积极阅读理论知识,撰写论文。近两年来有三篇数学论文分别在省级刊物上发表。

我能积极关心新老师,与新老师结对子。任职以来培养的新教师有蔡文婷,我经常和她一起研究教材与大纲,共同面对教学中出现的疑难问题,交流教学体会,研究教学各环节的自然衔接,设计课堂提问形式等等。通过结对子活动使新毕业的老师能较好的完成教学任务,课堂教学效果好。

三、班主任工作方面:

8年来我担任过5年的班主任,工作富有特色,成效显著。教育的核心是“育人”,科教兴国的战略意义就是提高国民素质。在班主任工作中,面向全体同学,注重培养学生良好的思想品德。在班级管理方面,我注重对学生进行自理、自立能力的培养,注意培养班干部并发挥他们的积极作用。教育学生,我采取“动之以情”为主,“晓之以理”为辅的方式,力求让学生“心服口服”,并多次获得“优秀班主任”的称号。

四、晋升后的工作设想:

在教学方面,不断提高专业知识水平,进一步学习现代数学教学理论,研究教与学规律,不断总结教学经验,大力推行教学改革,提高教学效率。

“捧着一颗心来,不带半根草去”,陶行知先生的真知灼言,言犹在耳,我深感一位人民教师的责任,也深感一位人民教师的光荣,成绩属于过去,未来才属于自己,作为一个青年教师,我知道我的工作才刚刚开始,党在新时期下的素质教育的方针政策己经确定,我惟有勇于进取,不断创新,才能取得更大的成绩。

五、扬长避短,更上一层楼。

回顾自己担任中学语文二级教师职务以来四年的工作,为教书育人所付出的心血和汗水得到了党和人民的丰厚回报。展望未来,我深深地感受到教书育人的担子之重,但我有决心、信心努力克服工作上的困难,扬长避短、戒骄戒躁,更加勤奋的工作,力争把教书育人的工作做到更上一层楼。

二级教师述职报告4本人自被评聘为中学二级教师职务以来,各方面工作情况作如下的述职:

一、爱岗敬业,乐于无私贡献。

本人一贯以来思想上积极上进,政治上立场坚定。坚持党的四项基本原则,拥护改革开放,拥护党的各项路线方针政策,自觉遵守国家的各项政策法令,忠诚党和人民的教育事业,注意加强师德修养,事事处处为人师表。做学生的表率,有强烈的事业心和高度的工作责任感,爱岗敬业,乐于为山区教育事业做出自己无私的奉献。

二、加强学习,提高业务水平。

为了更快的提高自己教育教学工作的能力水平,以适应于当前教育形式飞速发展的要求,自己不满足于现状,坚持不懈的加强专业知识技能的学习。20__年7又参加了四川大学汉语言文学专业本科函授的学习,20__年取得本科文凭并获得了学士学位证书。自己还积极参加各级各类的继续教育,如“计算机初级”、“普通话”、“专业技术人员权益保护”等的培训,以不断的充实自己的知识中职教师述职职称教师述职报告。

在积极参加各项继续教育学习的同时,我还以勇于开拓、大胆进取的精神,积极潜心钻研教学业务。主动、积极地承担学校及县、市组织的语文科公开课、示范观摩课,我写的论文和教学设计都获得了市、州及省里的不同奖项。正是通过潜心钻研教学业务及积极参加继续教育“充电”,使自己的工作能力和业务水平得以不断提高,因此自己不但能完全胜任中学语文科的教学工作,而且在工作中能做到得心应手、应付自如,成为我校语文科教学骨干之一,同时也使自己的教学工作能有从量到质的飞跃。

三、勤奋工作,夺取双丰收。

我自参加教育工作以来,至今一直担任中学语文科教学工作任务。当班主任时,自己积极抓好班风建设,努力地教育转变后进生,牢记“教书育人”之宗旨。作为一名班主任,我深深懂得:班主任是一个教学班的组织者和领导者,班主任的工作直接影响着学生在德、智、体、美、劳等各方面的健康成长,影响着他们一生的道路。每当新学年接过一个新班,我都根据本班学生的实际情况及学校对班级管理的要求,组织学生学习《中学生日常行为规范》和《中学生守则》,从思想上、行为上规范和约束每一位学生,做到防范于未然。自己还坚持“勤”字开头,做到早操勤跟班,早读勤巡班,平时勤下班,使班风建设得到加强。自己在任班主任的工作中,除了注意抓好班风建设外,还十分注意加强后进生的教育转化工作,对那些思想纪律、学习较差的后进生从不歧视,而更加关心爱护他们,积极想方设法转变他们,经常找他们拉家常,谈人生、叙理想、讲前途,和风细雨地动之以情、晓之以理,以满腔热情去温暖他们的心田。因此,自己多年来所带的班班风正、学风浓,良好的班风形成,并不断的得到巩固和发展。

多年来,自己不但努力做好班主任工作,而且还努力搞好教学工作,积极实施素质教育,重视培养学生创新意识和动手能力。每一个学年的开始,自己都愉快地服从学校领导的工作安排,从不讲半点价钱,而是一心扑在教学工作上。在教学中,我潜心研究教材教法,虚心学习,取长补短,精心备课、上课,向四十分钟要质量。勤下班辅导学生,细心批改作业,发现问题及时解决。同时充分调动学生的学习积极性,激发学生的学习兴趣,减轻学生过重的课业负担。正由于自己一直以来都能勤教、乐教、善教。因此,任职以来,自己所担任的班语文科教学都取得娇人的成绩,年年都位于全县前列。

四、扬长避短,更上一层楼。

回顾自己担任中学语文二级教师职务以来的工作,为教书育人所付出的心血和汗水得到了党和人民的丰厚回报。展望未来,我深深地感受到教书育人的担子之重,但我有决心、信心努力克服工作上的困难,扬长避短、戒骄戒躁,更加勤奋的工作,力争把教书育人的工作做到更上一层楼。

综上所述,本人自认为完全符合申请中学语文一级教师职务的条件和资格,请上级有关部门给予评审。

二级教师述职报告5尊敬的各位领导老师:

上午好!

花开花谢,岁月如歌。在学校领导各个处室以及同仁们的关心、帮助、理解、支持与配合下,我们已经顺利地完成了一学年的教育教学工作,在此,我向大家表示衷心的感谢。下面我就这一年来的工作向各位领导及老师们做一简单汇报:

一、不断端正自己的工作态度

一是带头实干。一年来我始终坚持早来晚走,周六周日没休息过,坚持做到有学生在就有我在,教室中、操场上、宿舍里时常都会出现我的身影,自去年秋季开学以来,鼻炎老毛病持续不断侵袭着我,无论有多么难挨,我都坚持着,甘苦自知。

二是严以律已。要求别人做到的自己首先做到,要求别人不做的自己首先不做。脚踏实地,认真履行职责,勤勤恳恳为大家服务。在平时的工作生活学习中,严格遵守各项规章制度,自觉维护学校、部门的形象。多说有利于学校发展的话,多做有利于学校发展的事,尽心尽职做好自己的本职工作。

三是真诚待人。在组里与大家和睦相处,团结协作,做到大事讲原则,小事讲风格,以大局为重,以学校利益为最高准则,不计较个人得失,较好地处理了个人利益与集体利益的关系、个人与老师们的关系、个人与领导的关系。我的真诚换来了老师们的信任,那就是凝聚力、向心力的增强。

二、齐心协力,众志成城,构建和谐年级组

篇2

【摘要】 对218例新生儿高胆红素血症给予蓝光照射并配合药物治疗、精心的护理措施。结果本组218例患儿光疗1~3d,血清胆红素降至正常范围,全身皮肤黄染消退。认为新生儿高胆红素血症采取光疗降低血清未结合胆红素,效果明显,临床应用舒适护理,降低新生儿光疗时的不愉,使其安静、舒适地配合光疗,效果满意。

【关键词】 舒适护理 高胆红素血症 蓝光治疗 应用

舒适是人类的基本需求,舒适护理是使人在生理、心理、社会、灵魂上达到最愉快的状态或缩短、降低不愉快的程度。蓝光照射是治疗新生儿高胆红素血症的一种简便、疗效好、见效快的方法[1] 。我院从2008年7月至2010年7月,将舒适护理应用于蓝光照射患儿,效果满意,现总结如下。

1 临床资料

本组病例218例,年龄1 d~28 d,男136例,女82例,均符合光照疗法的标准。足月儿血清胆红素>221μmol/L,早产儿血清胆红素>257μmol/L,以血清间接胆红素升高为主,全身皮肤黏膜、巩膜黄染、无尖叫、激惹、惊厥、嗜睡。住院期间均采用温箱加双面蓝光治疗,蓝光照射12 h~72 h不等,平均住院4 d,均顺利出院。

2 舒适护理

2.1 环境舒适 保持病室整洁、安静、空气清新、光线适宜,配备中央空调,保持室温24℃~26℃,湿度55%~65%。光疗箱清洁、完好, 蓝光箱温湿度适宜:调节箱温至患儿适中温度,足月儿28℃~32℃,早产儿32℃~34℃,并以软棉布覆盖、固定于箱内准备放置新生儿头部的一侧,防止新生儿活动后撞伤前卤及耳、面部。

2.1.2 新生儿的舒适准备 ①光疗前行温水浴1次,禁止给新生儿皮肤上涂搽爽身粉及油类,以免影响照射效果。②修剪指甲,并戴上棉制小手套及脚套,防止脸部、前胸皮肤划伤及外踝、足跟皮肤擦伤。③更换大小合适的尿不湿,松紧适宜,将会阴全部遮盖。④护士以轻柔的动作给新生儿戴上眼罩,防止感染及保护眼睛,将患儿喂饱后放入光疗箱。

2.2 蓝光治疗时的舒适护理

2.2.1 卧位舒适 新生儿皮肤娇嫩,长期单一卧位易致皮肤压伤的发生,可增加新生儿的不适。新生儿不可能自行变换卧位,光疗时,应协助患儿改变,每1小时给患儿翻身一次,左、右侧卧位、俯卧、仰卧等相互交替换位,以利于身体各部位均匀照射,提高疗效。

2.2.2 身心舒适 患儿初次接触光疗,由于身体裸露,戴眼罩,并躺在硬质玻璃板上,舒适改变,而且环境陌生,无依无靠,缺乏安全感[2] 。

护士应以轻柔的语调多与患儿说话,给予抚触,通过对皮肤的刺激给患儿母亲般的情感,包括躯体抚触和腹部按摩,通过听觉和触觉的,来消除恐惧感,让患儿在安静和舒适的状态下实施蓝光治疗。相反,当感到不足时,新生儿就会处在一种欲望得不到满足的不安状态。有文献报道,通过温柔的抚触刺激及抚触时亲切的语言、温和的微笑、关爱的眼神,不仅可满足患儿爱的需要并获得安全感和舒适感;而且抚触还能促进患儿摄奶量,刺激胃肠液的分泌,从而促进食物的消化吸收,利于胎粪的排泄,减少胆红素的重吸收从而减少高胆红素血症及核黄疸的发生[3-4] 。

2.2.3 喂养舒适 新生儿尚未形成规律的饮食习惯,多数情况下实行按需喂奶,每次以新生儿自觉饱感为宜。宜少量多次,并喂适量温水。食管较短,胃呈水平位,光疗时不能抱起拍背,促进胃内空气的排出,易出现吐奶,因此,喂奶时应取侧卧位,头部略抬高,使奶水充盈奶瓶前部,避免空气吸入胃内,引起呃逆,呕吐。喂奶后协助取右侧卧位,减少吐奶的次数和窒息的危险。在患儿胃纳量饱和仍有哭吵的情况下,可给予安慰奶嘴。因为资料表明,安慰奶嘴能减轻患儿对疼痛的反应[5] ,也能减轻患儿对不适的反应,它可以转移患儿的注意力,使患儿感觉舒适。所以,合理的喂养方法可起到辅助治疗的作用。

2.2.4 皮肤的舒适护理 新生儿初次接触光疗箱这一陌生环境,容易哭闹,出汗较多,护士及时给予擦干汗液,保持皮肤清洁干燥,避免受凉。定时更换尿布,防止尿液浸湿脐部而引起感染。光疗时新生儿的大便呈墨绿色稀糊状,注意清洁臀部,防红臀。

2.2.5 蓝光治疗时静脉输液的舒适护理 我科均采用小儿留置针穿刺头皮浅静脉输液,减少反复穿刺给新生儿带来的痛苦,并用微量泵控制液体速度,使药物均衡输入,输液过程中严密观察有无液体外渗、胶布脱落等, 护士经常巡视,观察仪器工作状态,保证患儿安全舒适。

2.3 蓝光治疗后的舒适护理 出箱前将衣服预热,光疗结束后, 应再行沐浴或温水擦浴,并检查全身皮肤有无破损,注意保暖,及时为新生儿穿上衣服。观察新生儿黄疸的消退情况及有无发热等,及时向医生汇报病情动态并做好记录。

3 小结

高胆红素血症是新生儿期常见病,而蓝光照射疗法是治疗新生儿高胆红素血症有效的治疗方法,在临床上广泛应用,但蓝光照射时间比较长,且在光疗时需要裸露身体,新生儿常因缺乏安全感而出现烦躁、哭闹等影响了光疗照射的顺利进行, 将舒适护理贯穿于蓝光治疗的始终,使患儿安静、愉快的接受治疗, 明显提高了蓝光治疗的疗效。

参 考 文 献

[1]姚泰.生理学[M].第5版.北京:人民卫生出版社,2000: 405-406.

[2]吴序华,沈和平,张先红,等.新生儿高未结合疸红素血症的光疗研究护理进展[J].国际护理学杂志,2006, 25(8):577.

[3]汤丽娟.抚触对新生儿黄疸影响的临床观察与分析[J].护理研究,2003,17(1):280.

篇3

立体几何

第二十三讲

空间中点、直线、平面之间的位置关系

2019年

1.(2019全国III文8)如图,点N为正方形ABCD的中心,ECD为正三角形,平面ECD平面ABCD,M是线段ED的中点,则

A.BM=EN,且直线BM、EN

是相交直线

B.BM≠EN,且直线BM,EN

是相交直线

C.BM=EN,且直线BM、EN

是异面直线

D.BM≠EN,且直线BM,EN

是异面直线

2.(2019全国1文19)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.

(1)证明:MN∥平面C1DE;

(2)求点C到平面C1DE的距离.

3.(2019全国II文7)设α,β为两个平面,则α∥β的充要条件是

A.α内有无数条直线与β平行

B.α内有两条相交直线与β平行

C.α,β平行于同一条直线

D.α,β垂直于同一平面

4.(2019北京文13)已知l,m是平面外的两条不同直线.给出下列三个论断:

①lm;②m∥;③l.

以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.

5.(2019江苏16)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.

求证:(1)A1B1∥平面DEC1;

(2)BEC1E.

6.(2019全国II文17)如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC1.

(1)证明:BE平面EB1C1;

(2)若AE=A1E,AB=3,求四棱锥的体积.

7.(2019全国III文19)图1是由矩形ADEB、ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.

(1)证明图2中的A,C,G,D四点共面,且平面ABC平面BCGE;

(2)求图2中的四边形ACGD的面积.

8.(2019北京文18)如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.

(Ⅰ)求证:BD平面PAC;

(Ⅱ)若∠ABC=60°,求证:平面PAB平面PAE;

(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.

9.(2019天津文17)如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,,,,

(Ⅰ)设分别为的中点,求证:平面;

(Ⅱ)求证:平面;

(Ⅲ)求直线与平面所成角的正弦值.

10.(2019江苏16)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.

求证:(1)A1B1∥平面DEC1;

(2)BEC1E.

11.(2019浙江19)如图,已知三棱柱,平面平面,,分别是AC,A1B1的中点.

(1)证明:;

(2)求直线EF与平面A1BC所成角的余弦值.

12.(2019北京文18)如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.

(Ⅰ)求证:BD平面PAC;

(Ⅱ)若∠ABC=60°,求证:平面PAB平面PAE;

(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.

13.(2019全国1文16)已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为,那么P到平面ABC的距离为___________.

14.(2019全国1文19)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.

(1)证明:MN∥平面C1DE;

(2)求点C到平面C1DE的距离.

15.(2019天津文17)如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,,,,

(Ⅰ)设分别为的中点,求证:平面;

(Ⅱ)求证:平面;

(Ⅲ)求直线与平面所成角的正弦值.

16.(2019浙江8)设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点),记直线PB与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P-AC-B的平面角为γ,则

A.β

B.β

C.β

D.α

17.(2019浙江19)如图,已知三棱柱,平面平面,,分别是AC,A1B1的中点.

(1)证明:;

(2)求直线EF与平面A1BC所成角的余弦值.

2010-2018年

一、选择题

1.(2018全国卷Ⅱ)在正方体中,为棱的中点,则异面直线与所成角的正切值为

A.

B.

C.

D.

2.(2018浙江)已知平面,直线,满足,,则“∥”是“∥”的

A.充分不必要条件

B.必要不充分条件

C.充分必要条件

D.既不充分也不必要条件

3.(2017新课标Ⅰ)如图,在下列四个正方体中,,为正方体的两个顶点,,,为所在棱的中点,则在这四个正方体中,直接与平面不平行的是

4.(2017新课标Ⅲ)在正方体中,为棱的中点,则

A.

B.

C.

D.

5.(2016年全国I卷)平面过正方体ABCDA1B1C1D1的顶点A,∥平面CB1D1,平面ABCD=m,平面ABB1

A1=n,则m,n所成角的正弦值为

A.

B.

C.

D.

6.(2016年浙江)已知互相垂直的平面

交于直线l.若直线m,n满足m∥α,nβ,则

A.m∥l

B.m∥n

C.nl

D.mn

7.(2015新课标1)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有

A.斛

B.斛

C.斛

D.斛

8.(2015新课标2)已知、是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为

A.

B.

C.

D.

9.(2015广东)若直线和是异面直线,在平面内,在平面内,是平面与平面的交线,则下列命题正确的是

A.与,都不相交

B.与,都相交

C.至多与,中的一条相交

D.至少与,中的一条相交

10.(2015浙江)如图,已知,是的中点,沿直线将翻折成,所成二面角的平面角为,则

11.(2014广东)若空间中四条两两不同的直线,满足,则下面结论一定正确的是

A.

B.

C.既不垂直也不平行

D.的位置关系不确定

12.(2014浙江)设是两条不同的直线,是两个不同的平面

A.若,,则

B.若,则

C.若则

D.若,,,则

13.(2014辽宁)已知,表示两条不同直线,表示平面,下列说法正确的是

A.若则

B.若,,则

C.若,,则

D.若,,则

14.(2014浙江)如图,某人在垂直于水平地面的墙面前的点处进行射击训练,已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小(仰角为直线与平面所成角)。若,,则的最大值

A.

B.

C.

D.

15.(2014四川)如图,在正方体中,点为线段的中点。设点在线段上,直线

与平面所成的角为,则的取值范围是

A.

B.

C.

D.

16.(2013新课标2)已知为异面直线,平面,平面.直线满足,,则

A.且

B.且

C.与相交,且交线垂直于

D.与相交,且交线平行于

17.(2013广东)设是两条不同的直线,是两个不同的平面,下列命题中正确的是

A.若,,,则

B.若,,,则

C.若,,,则

D.若,,,则

18.(2012浙江)设是直线,是两个不同的平面

A.若∥,∥,则∥

B.若∥,,则

C.若,,则

D.若,

∥,则

19.(2012浙江)已知矩形,,.将沿矩形的对角线所在的直线进行翻折,在翻折过程中,

A.存在某个位置,使得直线与直线垂直

B.存在某个位置,使得直线与直线垂直

C.存在某个位置,使得直线与直线垂直

D.对任意位置,三对直线“与”,“与”,“与”均不垂直

20.(2011浙江)下列命题中错误的是

A.如果平面,那么平面内一定存在直线平行于平面

B.如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面

C.如果平面,平面,,那么

D.如果平面,那么平面内所有直线都垂直于平面

21.(2010山东)在空间,下列命题正确的是

A.平行直线的平行投影重合

B.平行于同一直线的两个平面平行

C.垂直于同一平面的两个平面平行

D.垂直于同一平面的两条直线平行

二、填空题

22.(2018全国卷Ⅱ)已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为_____.

三、解答题

23.(2018全国卷Ⅱ)如图,在三棱锥中,,

,为的中点.

(1)证明:平面;

(2)若点在棱上,且,求点到平面的距离.

24.(2018全国卷Ⅲ)如图,矩形所在平面与半圆弧所在平面垂直,是上异于,的点.

(1)证明:平面平面;

(2)在线段上是否存在点,使得平面?说明理由.

25.(2018北京)如图,在四棱锥中,底面为矩形,平面平面,,=,,分别为,的中点.

(1)求证:;

(2)求证:平面平面;

(3)求证:∥平面.

26.(2018天津)如图,在四面体中,是等边三角形,平面平面,点为棱的中点,,,.

(1)求证:;

(2)求异面直线与所成角的余弦值;

(3)求直线与平面所成角的正弦值.

27.(2018江苏)在平行六面体中,,.

求证:(1)平面;

(2)平面平面.

28.(2018浙江)如图,已知多面体,,,均垂直于平面,,,,.

(1)证明:平面;

(2)求直线与平面所成的角的正弦值.

29.(2017新课标Ⅱ)如图,四棱锥中,侧面为等边三角形且垂直于底面,,.

(1)证明:直线∥平面;

(2)若的面积为,求四棱锥的体积。

30.(2017新课标Ⅲ)如图,四面体中,是正三角形,.

(1)证明:;

(2)已知是直角三角形,.若为棱上与不重合的点,且,求四面体与四面体的体积比.

31.(2017天津)如图,在四棱锥中,平面,,,,,,.

(Ⅰ)求异面直线与所成角的余弦值;

(Ⅱ)求证:平面;

(Ⅲ)求直线与平面所成角的正弦值.

32.(2017山东)由四棱柱截去三棱锥后得到的几何体如图所示,四边形为正方形,为与的交点,为的中点,平面,

(Ⅰ)证明:∥平面;

(Ⅱ)设是的中点,证明:平面平面.

33.(2017北京)如图,在三棱锥中,,,,,为线段的中点,为线段上一点.

(Ⅰ)求证:;

(Ⅱ)求证:平面平面;

(Ⅲ)当∥平面时,求三棱锥的体积.

34.(2017浙江)如图,已知四棱锥,是以为斜边的等腰直角三角形,,,,为的中点.

(Ⅰ)证明:∥平面;

(Ⅱ)求直线与平面所成角的正弦值.

35.(2017江苏)如图,在三棱锥中,ABAD,BCBD,平面ABD平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EFAD.

求证:(1)EF∥平面ABC;

(2)ADAC.

36.(2017江苏)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线的长为10cm,容器Ⅱ的两底面对角线,的长分别为14cm和62cm.

分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.

现有一根玻璃棒,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)

(1)将放在容器Ⅰ中,的一端置于点处,另一端置于侧棱上,求没入水中部分的长度;

(2)将放在容器Ⅱ中,的一端置于点处,另一端置于侧棱上,求没入水中部分的长度.

37.(2016年山东)在如图所示的几何体中,D是AC的中点,EF∥DB.

(I)已知AB=BC,AE=EC.求证:ACFB;

(II)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.

38.(2016年天津)如图,四边形ABCD是平行四边形,平面AED平面ABCD,EFAB,AB=2,BC=EF=1,AE=,DE=3,∠BAD=60º,G为BC的中点.

(Ⅰ)求证:FG平面BED;

(Ⅱ)求证:平面BED平面AED;

(Ⅲ)求直线EF与平面BED所成角的正弦值.

39.(2016年全国I卷)如图,已知正三棱锥的侧面是直角三角形,,顶点在平面内的正投影为点,在平面内的正投影为点,连结并延长交于点.

(I)证明:是的中点;

(II)在图中作出点在平面内的正投影(说明作法及理由),并求四面体的体积.

40.(2016年全国II卷)如图,菱形的对角线与交于点,点、分别在,上,,交于点,将沿折到的位置.

(Ⅰ)证明:;

(Ⅱ)若,求五棱锥体积.

41.(2016年全国III卷)如图,四棱锥中,底面,,,,为线段上一点,,为的中点.

(Ⅰ)证明平面;

(Ⅱ)求四面体的体积.

42.(2015新课标1)如图四边形为菱形,为与交点,平面.

(Ⅰ)证明:平面平面;

(Ⅱ)若,,三棱锥的体积为,求该三棱锥的侧面积.

43.(2015新课标2)如图,长方体中,,,,点,分别在,上,.过点,的平面与此长方体的面相交,交线围成一个正方形.

(Ⅰ)在图中画出这个正方形(不必说明画法和理由);

(Ⅱ)求平面把该长方体分成的两部分体积的比值.

44.(2014山东)如图,四棱锥中,,,

分别为线段的中点.

(Ⅰ)求证:;

(Ⅱ)求证:.

45.(2014江苏)如图,在三棱锥中,,E,F分别为棱的中点.已知,

求证:(Ⅰ)直线平面;

(Ⅱ)平面平面.

46.(2014新课标2)如图,四棱锥中,底面为矩形,平面,为的中点.

(Ⅰ)证明:∥平面;

(Ⅱ)设二面角为60°,=1,=,求三棱锥的体积.

47.(2014天津)如图,四棱锥的底面是平行四边形,,,,,分别是棱,的中点.

(Ⅰ)证明:

平面;

(Ⅱ)若二面角为,

(ⅰ)证明:平面平面;

(ⅱ)求直线与平面所成角的正弦值.

48.(2013浙江)如图,在四棱锥PABCD中,PA面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.

(Ⅰ)证明:BD面APC

(Ⅱ)若G是PC的中点,求DG与APC所成的角的正切值;

(Ⅲ)若G满足PC面BGD,求

的值.

49.(2013辽宁)如图,是圆的直径,垂直圆所在的平面,是圆上的点.

(Ⅰ)求证:;

(Ⅱ)设为的中点,为的重心,求证:平面.

50.(2012江苏)如图,在直三棱柱中,,分别是棱上的点(点D不同于点C),且为的中点.

求证:(Ⅰ)平面平面;

(Ⅱ)直线平面.

51.(2012广东)如图所示,在四棱锥中,平面,,是中点,是上的点,且,为中边上的高.

(Ⅰ)证明:平面;

(Ⅱ)若,求三棱锥的体积;

(Ⅲ)证明:平面.

52.(2011江苏)如图,在四棱锥中,平面PAD平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点.

求证:(Ⅰ)直线EF∥平面PCD;

(Ⅱ)平面BEF平面PAD.

53.(2011广东)如图,在椎体P-ABCD中,ABCD是边长为1的棱形,且∠DAB=60,,PB=2,E,F分别是BC,PC的中点.

(Ⅰ)证明:AD平面DEF;

(Ⅱ)求二面角P-AD-B的余弦值.

54.(2010天津)如图,在五面体中,四边形是正方形,平面,∥,=1,=,∠=∠=45°.

(Ⅰ)求异面直线与所成角的余弦值;

(Ⅱ)证明平面;

(Ⅲ)求二面角的正切值.

55.(2010浙江)如图,在平行四边形中,=2,∠=120°.为线段的中点,将沿直线翻折成,使平面平面,为线段的中点.

(Ⅰ)求证:∥平面;

(Ⅱ)设为线段的中点,求直线与平面所成角的余弦值.

专题八

立体几何

第二十三讲

空间中点、直线、平面之间的位置关系

答案部分

2019年

2019年

1.解析

如图所示,联结,.

因为点为正方形的中心,为正三角形,平面平面,是线段的中点,所以平面,平面,因为是中边上的中线,是中边上的中线,直线,是相交直线,设,则,,

所以,,

所以.故选B.

2.解析

(1)连结.因为M,E分别为的中点,所以,且.又因为N为的中点,所以.

由题设知,可得,故,因此四边形MNDE为平行四边形,.又平面,所以MN∥平面.

(2)过C作C1E的垂线,垂足为H.

由已知可得,,所以DE平面,故DECH.

从而CH平面,故CH的长即为C到平面的距离,

由已知可得CE=1,C1C=4,所以,故.

从而点C到平面的距离为.

3.解析:对于A,内有无数条直线与平行,则与相交或,排除;

对于B,内有两条相交直线与平行,则;

对于C,,平行于同一条直线,则与相交或,排除;

对于D,,垂直于同一平面,则与相交或,排除.

故选B.

4.解析

若②,过作平面,则,又③,则,又,同在内,所以①,即.

5.证明:(1)因为D,E分别为BC,AC的中点,

所以ED∥AB.

在直三棱柱ABC-A1B1C1中,AB∥A1B1,

所以A1B1∥ED.

又因为ED⊂平面DEC1,A1B1平面DEC1,

所以A1B1∥平面DEC1.

(2)因为AB=BC,E为AC的中点,所以BEAC.

因为三棱柱ABC-A1B1C1是直棱柱,所以CC1平面ABC.

又因为BE⊂平面ABC,所以CC1BE.

因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,

所以BE平面A1ACC1.

因为C1E⊂平面A1ACC1,所以BEC1E.

6.解:(1)由已知得B1C1平面ABB1A1,BE平面ABB1A1,

故.

又,所以BE平面.

(2)由(1)知∠BEB1=90°.由题设知RtABE≌RtA1B1E,所以,故AE=AB=3,.

作,垂足为F,则EF平面,且.

所以,四棱锥的体积.

7.解析(1)由已知得ADBE,CGBE,所以ADCG,故AD,CG确定一个平面,从而A,C,G,D四点共面.

由已知得ABBE,ABBC,故AB平面BCGE.

又因为AB平面ABC,所以平面ABC平面BCGE.

(2)取的中点,联结,.

因为,平面,所以平面,故.

由已知,四边形是菱形,且得,故平面.

因此.

在中,,,故.

所以四边形的面积为4.

8.解析(Ⅰ)因为平面ABCD,且平面,

所以.

又因为底面ABCD为菱形,所以.

又平面,平面,,

所以平面PAC.

(Ⅱ)因为PA平面ABCD,平面ABCD,

所以PAAE.

因为底面ABCD为菱形,∠ABC=60°,且E为CD的中点,

所以AECD.

又,所以ABAE.

又平面,平面,,所以AE平面PAB.

又平面,所以平面PAB平面.

(Ⅲ)棱PB上存在点F,且为的中点,使得CF∥平面PAE.

取F为PB的中点,取G为PA的中点,连结CF,FG,EG.

因为,分别为,的中点,则FG∥AB,且FG=AB.

因为底面ABCD为菱形,且E为CD的中点,

所以CE∥AB,且CE=AB.

所以FG∥CE,且FG=CE.

所以四边形CEGF为平行四边形,

所以CF∥EG.

因为CF平面PAE,EG平面PAE,

所以CF∥平面PAE.

9.解析

(Ⅰ)连接,易知,.又由,故,又因为平面,平面,所以平面.

(Ⅱ)取棱的中点,连接.依题意,得,又因为平面平面,平面平面,所以平面,又平面,故.又已知,,所以平面.

(Ⅲ)连接,由(Ⅱ)中平面,可知为直线与平面所成的角,

因为为等边三角形,且为的中点,所以.又,

故在中,.

所以,直线与平面所成角的正弦值为.

10..证明:(1)因为D,E分别为BC,AC的中点,

所以ED∥AB.

在直三棱柱ABC-A1B1C1中,AB∥A1B1,

所以A1B1∥ED.

又因为ED⊂平面DEC1,A1B1平面DEC1,

所以A1B1∥平面DEC1.

(2)因为AB=BC,E为AC的中点,所以BEAC.

因为三棱柱ABC-A1B1C1是直棱柱,所以CC1平面ABC.

又因为BE⊂平面ABC,所以CC1BE.

因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,

所以BE平面A1ACC1.

因为C1E⊂平面A1ACC1,所以BEC1E.

11.(I)连接A1E,因为A1A=A1C,E是AC的中点,所以A1EAC.

又平面A1ACC1平面ABC,A1E平面A1ACC1,

平面A1ACC1∩平面ABC=AC,

所以,A1E平面ABC,则A1EBC.

又因为A1F∥AB,∠ABC=90°,故BCA1F.

所以BC平面A1EF.

因此EFBC.

(Ⅱ)取BC中点G,连接EG,GF,则EGFA1是平行四边形.

由于A1E平面ABC,故AE1EG,所以平行四边形EGFA1为矩形.

由(I)得BC平面EGFA1,则平面A1BC平面EGFA1,

所以EF在平面A1BC上的射影在直线A1G上.

连接A1G交EF于O,则∠EOG是直线EF与平面A1BC所成的角(或其补角).

不妨设AC=4,则在RtA1EG中,A1E=2,EG=.

由于O为A1G的中点,故,

所以.

因此,直线EF与平面A1BC所成角的余弦值是.

12.解析(Ⅰ)因为平面ABCD,且平面,

所以.

又因为底面ABCD为菱形,所以.

又平面,平面,,

所以平面PAC.

(Ⅱ)因为PA平面ABCD,平面ABCD,

所以PAAE.

因为底面ABCD为菱形,∠ABC=60°,且E为CD的中点,

所以AECD.

又,所以ABAE.

又平面,平面,,所以AE平面PAB.

又平面,所以平面PAB平面.

(Ⅲ)棱PB上存在点F,且为的中点,使得CF∥平面PAE.

取F为PB的中点,取G为PA的中点,连结CF,FG,EG.

因为,分别为,的中点,则FG∥AB,且FG=AB.

因为底面ABCD为菱形,且E为CD的中点,

所以CE∥AB,且CE=AB.

所以FG∥CE,且FG=CE.

所以四边形CEGF为平行四边形,

所以CF∥EG.

因为CF平面PAE,EG平面PAE,

所以CF∥平面PAE.

13.

过点P作PO平面ABC交平面ABC于点O,

过点P作PDAC交AC于点D,作PEBC交BC于点E,联结OD,OC,OE,

所以又,

故四边形为矩形.

有所做辅助线可知,

所以,

所以矩形为边长是1的正方形,则.

在中,,所以.

即为点P到平面ABC的距离,即所求距离为.

14.解析

(1)连结.因为M,E分别为的中点,所以,且.又因为N为的中点,所以.

由题设知,可得,故,因此四边形MNDE为平行四边形,.又平面,所以MN∥平面.

(2)过C作C1E的垂线,垂足为H.

由已知可得,,所以DE平面,故DECH.

从而CH平面,故CH的长即为C到平面的距离,

由已知可得CE=1,C1C=4,所以,故.

从而点C到平面的距离为.

15.解析

(Ⅰ)连接,易知,.又由,故,又因为平面,平面,所以平面.

(Ⅱ)取棱的中点,连接.依题意,得,又因为平面平面,平面平面,所以平面,又平面,故.又已知,,所以平面.

(Ⅲ)连接,由(Ⅱ)中平面,可知为直线与平面所成的角,

因为为等边三角形,且为的中点,所以.又,

故在中,.

所以,直线与平面所成角的正弦值为.

16.解析:解法一:如图G为AC的中点,V在底面的射影为O,则P在底面上的射影D在线段AO上,

作于E,易得,过P作于F,

过D作,交BG于H,

则,,,

则,可得;

,可得.

解法二:由最小值定理可得,记的平面角为(显然),

由最大角定理可得;

解法三特殊图形法:设三棱锥为棱长为2的正四面体,P为VA的中点,

易得,可得,,,

故选B.

17.(I)连接A1E,因为A1A=A1C,E是AC的中点,所以A1EAC.

又平面A1ACC1平面ABC,A1E平面A1ACC1,

平面A1ACC1∩平面ABC=AC,

所以,A1E平面ABC,则A1EBC.

又因为A1F∥AB,∠ABC=90°,故BCA1F.

所以BC平面A1EF.

因此EFBC.

(Ⅱ)取BC中点G,连接EG,GF,则EGFA1是平行四边形.

由于A1E平面ABC,故AE1EG,所以平行四边形EGFA1为矩形.

由(I)得BC平面EGFA1,则平面A1BC平面EGFA1,

所以EF在平面A1BC上的射影在直线A1G上.

连接A1G交EF于O,则∠EOG是直线EF与平面A1BC所成的角(或其补角).

不妨设AC=4,则在RtA1EG中,A1E=2,EG=.

由于O为A1G的中点,故,

所以.

因此,直线EF与平面A1BC所成角的余弦值是.

2010-2018年

1.C【解析】如图,连接,因为,所以异面直线与所成角等于相交直线与所成的角,即.不妨设正方体的棱长为2,则,,由勾股定理得,又由平面,可得,

所以,故选C.

2.A【解析】若,,∥,由线面平行的判定定理知∥.若∥,,,不一定推出∥,直线与可能异面,故“∥”是“∥”的充分不必要条件.故选A.

3.A【解析】由正方体的线线关系,易知B、C、D中,所以平面,

只有A不满足.选A.

4.C【解析】如图,连结,易知平面,所以,又,所以平面,故,选C.

5.A【解析】因为过点的平面与平面平行,平面∥平面,所以∥∥,又∥平面,所以∥,则与所成的角为所求角,所以,所成角的正弦值为,选A.

6.C【解析】选项A,只有当或时,;选项B,只有当时;选项C,由于,所以;选项D,只有当或时,,故选C.

7.B【解析】由得圆锥底面的半径,所以米堆的体积,所以堆放的米有斛.

8.C【解析】三棱锥,其中为点到平面的距离,而底面三角形时直角三角形,顶点到平面的最大距离是球的半径,

故=,其中为球的半径,

所以,所以球的表面积.

9.D【解析】若直线和是异面直线,在平面内,在平面内,是平面与平面的交线,则至少与,中的一条相交,故选A.

10.B【解析】解法一

设,,则由题意知.

在空间图形中,连结,设=.

在中,.

过作,过作,垂足分别为.

过作,使四边形为平行四边形,则,

连结,则就是二面角的平面角,所以.

在中,,.

同理,,,故.

显然平面,故.

在中,.

在中,

=

所以

所以(当时取等号),

因为,,而在上为递减函数,

所以,故选B.

解法二

若,则当时,,排除D;当时,,,排除A、C,故选B.

11.D【解析】利用正方体模型可以看出,与的位置关系不确定.选D.

12.C【解析】选项中均可能与平面平行、垂直、斜交或在平面内,故选.

13.B【解析】对于选项A,若,则与可能相交、平行或异面,A错误;显然选项B正确;对于选项C,若,,则或,C错误;对于选项D,若,,则或或与相交,D错误.故选B.

14.D【解析】作,垂足为,设,则,

由余弦定理,

故当时,取得最大值,最大值为.

15.B【解析】直线与平面所成的角为的取值范围是,

由于,,

所以的取值范围是

16.D【解析】作正方形模型,为后平面,为左侧面

可知D正确.

17.D【解析】A中可能平行、垂直、也可能为异面;B中还可能为异面;C中

应与中两条相交直线垂直时结论才成立,选D.

18.B【解析】利用排除法可得选项B是正确的,∥,,则.如选项A:∥,∥时,或∥;选项C:若,,∥或;选项D:若,

,∥或.

19.B【解析】过点作,若存在某个位置,使得,则面,从而有,计算可得与不垂直,则A不正确;当翻折到时,因为,所以面,从而可得;若,因为,所以面,从而可得,而,所以这样的位置不存在,故C不正确;同理,D也不正确,故选B.

20.D【解析】对于D,若平面平面,则平面内的某些直线可能不垂直于平面,即与平面的关系还可以是斜交、平行或在平面内,其余选项易知均是正确的.

21.D【解析】两平行直线的平行投影不一定重合,故A错;由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可知、均错误,故选D.

22.【解析】由题意画出图形,如图,

设是底面圆的直径,连接,则是圆锥的高,设圆锥的母线长为,

则由,的面积为8,得,得,在中,

由题意知,所以,.

故该圆锥的体积.

23.【解析】(1)因为,为的中点,所以,且.

连结.因为,所以为等腰直角三角形,

且,.

由知,.

由,知平面.

(2)作,垂足为.又由(1)可得,所以平面.

故的长为点到平面的距离.

由题设可知,,.

所以,.

所以点到平面的距离为.

24.【解析】(1)由题设知,平面平面,交线为.

因为,平面,所以平面,故.

因为为上异于,的点,且为直径,所以

又=,所以平面.

而平面,故平面平面.

(2)当为的中点时,∥平面.

证明如下:连结交于.因为为矩形,所以为中点.

连结,因为为

中点,所以∥.

平面,平面,所以∥平面.

25.【解析】(1),且为的中点,.

底面为矩形,,

(2)底面为矩形,.

平面平面,平面.

.又,

平面,平面平面.

(3)如图,取中点,连接.

分别为和的中点,,且.

四边形为矩形,且为的中点,

,且,四边形为平行四边形,

又平面,平面,

平面.

26.【解析】(1)由平面平面,平面∩平面=,,可得平面,故.

(2)取棱的中点,连接,.又因为为棱的中点,故∥.所以(或其补角)为异面直线与所成的角.

在中,,故.

因为平面,故.

在中,,故.

在等腰三角形中,,可得.

所以,异面直线与所成角的余弦值为.

(3)连接.因为为等边三角形,为边的中点,故,

.又因为平面平面,而平面,

故平面.所以,为直线与平面所成的角.

在中,.

在中,.

所以,直线与平面所成角的正弦值为.

27.【证明】(1)在平行六面体中,.

因为平面,平面,

所以∥平面.

(2)在平行六面体中,四边形为平行四边形.

又因为,所以四边形为菱形,

因此.

又因为,∥,

所以.

又因为=,平面,平面,

所以平面.

因为平面,

所以平面平面.

28.【解析】(1)由,,,,得

所以.

故.

由,,,,得,

由,得,

由,得,所以,故.

因此平面.

(2)如图,过点作,交直线于点,连结.

由平面得平面平面,

由得平面,

所以是与平面所成的角.

由,,

得,,

所以,故.

因此,直线与平面所成的角的正弦值是.

29.【解析】(1)在平面内,因为,所以∥,

又平面,平面,故∥平面.

(2)取的中点,连结,.由及∥,

得四边形正方形,则.

因为侧面为等边三角形且垂直于底面,平面平面=,所以,底面.因为底面,所以.

设,则,,,.取的中点,连结,则,所以.

因为的面积为,所以,解得(舍去),.于是,,.

所以四棱锥的体积.

30.【解析】(1)取的中点连结,.因为,所以.

又由于是正三角形,所以.从而平面,故BD.

(2)连结.

由(1)及题设知,所以.

在中,.

又,所以

,故.

由题设知为直角三角形,所以.

又是正三角形,且,所以.

故为BD的中点,从而到平面的距离为到平面的距离的,四面体的体积为四面体的体积的,即四面体与四面体的体积之比为1:1.

31.【解析】(Ⅰ)如图,由已知AD//BC,故或其补角即为异面直线AP与BC所成的角.因为AD平面PDC,所以ADPD.在RtPDA中,由已知,得,故.

所以,异面直线AP与BC所成角的余弦值为.

(Ⅱ)证明:因为AD平面PDC,直线PD平面PDC,所以ADPD.又因为BC//AD,所以PDBC,又PDPB,所以PD平面PBC.

(Ⅲ)过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.

因为PD平面PBC,故PF为DF在平面PBC上的射影,所以为直线DF和平面PBC所成的角.

由于AD//BC,DF//AB,故BF=AD=1,由已知,得CF=BC–BF=2.又ADDC,故BCDC,在RtDCF中,可得,在RtDPF中,可得.

所以,直线AB与平面PBC所成角的正弦值为.

32.【解析】(Ⅰ)取中点,连接,,

由于为四棱柱,

所以,,

因此四边形为平行四边形,

所以,

又面,平面,

所以∥平面,

(Ⅱ).,分别为和的中点,

又平面,平面,

所以,

,所以,,

又,平面,

所以平面

又平面,

所以平面平面.

33.【解析】(Ⅰ)因为,,所以平面,

又因为平面,所以.

(Ⅱ)因为,为中点,所以,

由(Ⅰ)知,,所以平面.

所以平面平面.

(Ⅲ)因为平面,平面平面,

所以.

因为为的中点,所以,.

由(Ⅰ)知,平面,所以平面.

所以三棱锥的体积.

34.【解析】(Ⅰ)如图,设PA中点为F,连结EF,FB.

因为E,F分别为PD,PA中点,所以EF∥AD且,

又因为BC∥AD,,所以

EF∥BC且EF=BC,

即四边形BCEF为平行四边形,所以CE∥BF,

因此CE∥平面PAB.

(Ⅱ)分别取BC,AD的中点为M,N.连结PN交EF于点Q,连结MQ.

因为E,F,N分别是PD,PA,AD的中点,所以Q为EF中点,

在平行四边形BCEF中,MQ∥CE.

由为等腰直角三角形得

PNAD.

由DCAD,N是AD的中点得

BNAD.

所以

AD平面PBN,

由BC∥AD得

BC平面PBN,

那么,平面PBC平面PBN.

过点Q作PB的垂线,垂足为H,连结MH.

MH是MQ在平面PBC上的射影,所以∠QMH是直线CE与平面PBC所成的角.

设CD=1.

在中,由PC=2,CD=1,PD=得CE=,

在PBN中,由PN=BN=1,PB=得,

在中,,MQ=,

所以

所以,直线CE与平面PBC所成角的正弦值是.

35.【解析】证明:(1)在平面内,因为,,所以.

又因为平面,平面,所以∥平面.

(2)因为平面平面,

平面平面=,

平面,,

所以平面.

因为平面,所以.

又,,平面,平面,

所以平面,

又因为平面,

所以.

36.【解析】(1)由正棱柱的定义,平面,

所以平面平面,.

记玻璃棒的另一端落在上点处.

因为,.

所以,从而.

记与水平的交点为,过作,为垂足,

则平面,故,

从而.

答:玻璃棒没入水中部分的长度为16cm.

(

如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm)

(2)如图,,是正棱台的两底面中心.

由正棱台的定义,平面

所以平面平面,.

同理,平面平面,.

记玻璃棒的另一端落在上点处.

过作,为垂足,

则==32.

因为=

14,=

62,

所以=

,从而.

设则.

因为,所以.

在中,由正弦定理可得,解得.

因为,所以.

于是

.

记与水面的交点为,过作,为垂足,则

平面,故=12,从而

=.

答:玻璃棒没入水中部分的长度为20cm.

(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm)

37.【解析】(Ⅰ)证明:因,所以与确定一个平面,连接,因为

为的中点,所以;同理可得,又因为,所以平面,因为平面,.

(Ⅱ)设的中点为,连,在中,是的中点,所以,又,所以;在中,是的中点,所以,又,所以平面平面,因为平面,所以平面.

38.【解析】(Ⅰ)证明:取的中点为,连接,在中,因为是的中点,所以且,又因为,所以且,即四边形是平行四边形,所以,又平面,平面,所以平面.

(Ⅱ)证明:在中,,由余弦定理可,进而可得,即,又因为平面平面平面;平面平面,所以平面.又因为平面,所以平面平面.

(Ⅲ)解:因为,所以直线与平面所成角即为直线与平面所成角.过点作于点,连接,又因为平面平面,由(Ⅱ)知平面,所以直线与平面所成角即为.在中,,由余弦定理可得,所以,因此,在中,,所以直线与平面所成角的正弦值为.

39.【解析】(Ⅰ)因为在平面内的正投影为,所以

因为在平面内的正投影为,所以

所以平面,故

又由已知可得,,从而是的中点.

(Ⅱ)在平面内,过点作的平行线交于点,即为在平面内的正投影.

理由如下:由已知可得,,又,所以,,因此平面,即点为在平面内的正投影.

连接,因为在平面内的正投影为,所以是正三角形的中心.

由(Ⅰ)知,是的中点,所以在上,故

由题设可得平面,平面,所以,因此

由已知,正三棱锥的侧面是直角三角形且,可得

在等腰直角三角形中,可得

所以四面体的体积

40.【解析】(Ⅰ)由已知得,,

又由得,故

由此得,所以

(Ⅱ)由得

由得

所以

于是故

由(Ⅰ)知,又,

所以平面于是

又由,所以,平面

又由得

五边形的面积

所以五棱锥体积

41.【解析】(Ⅰ)由已知得,取的中点,连接,由为中点知,.

又,故平行且等于,四边形为平行四边形,于是.

因为平面,平面,所以平面.

(Ⅱ)因为平面,为的中点,所以到平面的距离为.取的中点,连结.由得,

.

由得到的距离为,故.

所以四面体的体积.

42.【解析】(Ⅰ)因为四边形为菱形,所以,

因为平面,所以,故平面.

又平面,所以平面平面.

(Ⅱ)设=,在菱形中,由=120°,

可得=,=.

因为,所以在中,可得.

由平面,知为直角三角形,可得.

由已知得,三棱锥的体积.

故.

从而可得.

所以的面积为3,的面积与的面积均为.

故三棱锥的侧面积为.

43.【解析】(Ⅰ)交线围成的正方形如图

(Ⅱ)作,垂足为,则,,.因为为正方形,所以.

于是,,.

因为长方形被平面分成两个高为10的直棱柱,所以其体积的比值为(也正确).

44.【解析】(Ⅰ)设,连结OF,EC,

由于E为AD的中点,,

所以,

因此四边形ABCE为菱形,所以O为AC的中点,又F为PC的中点,

因此在中,可得.

又平面BEF,平面BEF,所以平面.

(Ⅱ)由题意知,,所以四边形为平行四边形,

因此.又平面PCD,所以,因此.

因为四边形ABCE为菱形,所以.

又,AP,AC平面PAC,所以平面.

45.【解析】(Ⅰ)为中点,DE∥PA,

平面DEF,DE平面DEF,PA∥平面DEF,

(Ⅱ)为中点,,

为中点,,

,,DEEF,

,,

,DE平面ABC,

DE平面BDE,平面BDE平面ABC.

46.【解析】(Ⅰ)连接BD交AC于点O,连结EO.

因为ABCD为矩形,所以O为BD的中点。

又E为PD的中点,所以EO∥PB。

EO平面AEC,PB平面AEC,所以PB∥平面AEC.

(Ⅱ)因为PA平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直.

如图,以A为坐标原点,的方向为轴的正方向,为单位长,建立空间直角坐标系,

则.

设,则。

设为平面ACE的法向量,

则即,

可取.

又为平面DAE的法向量,

由题设,即,解得.

因为E为PD的中点,所以三棱锥的高为.

三棱锥的体积.

47.【解析】(Ⅰ)证明:如图取PB中点M,连接MF,AM.因为F为PC中点,

故MF//BC且MF=BC.由已知有BC//AD,BC=AD.又由于E为AD中点,

因而MF//AE且MF=AE,故四边形AMFE为平行四边形,

所以EF//AM,又AM平面PAB,而EF平面PAB,

所以EF//平面PAB.

(Ⅱ)(i)证明:连接PE,BE.因为PA=PD,BA=BD,而E为AD中点,

故PEAD,BEAD,所以PEB为二面角P-AD-B的平面角.在三角形PAD中,

由,可解得PE=2.

在三角形ABD中,由,可解得BE=1.

在三角形PEB中,PE=2,BE=1,,

由余弦定理,可解得PB=,从而,即BEPB,

又BC//AD,BEAD,从而BEBC,因此BE平面PBC.又BE平面ABCD,

所以平面PBC平面ABCD.

(ii)连接BF,由(i)知BE平面PBC.所以EFB为直线EF与平面PBC所成的角,

由PB=,PA=,AB=得ABP为直角,而MB=PB=,可得AM=,

故EF=,又BE=1,故在直角三角形EBF中,

所以直线EF与平面PBC所成角的正弦值为.

48.【解析】(Ⅰ)设点O为AC,BD的交点,

由AB=BC,AD=CD,得BD是线段AC的中垂线.

所以O为AC的中点,BDAC.

又因为PA平面ABCD,BD平面ABCD,

所以PABD.所以BD平面APC.

(Ⅱ)连结OG.由(1)可知OD平面APC,则DG在平面APC内的射影为OG,所以∠OGD是DG与平面APC所成的角.

由题意得OG=PA=.

在ABC中,AC==,

所以OC=AC=.

在直角OCD中,OD==2.

在直角OGD中,tan∠OGD=.

所以DG与平面APC所成的角的正切值为.

(Ⅲ)连结OG.因为PC平面BGD,OG平面BGD,所以PCOG.

在直角PAC中,得PC=.

所以GC=.

从而PG=,

所以.

49.【解析】(Ⅰ)由AB是圆O的直径,得ACBC.

由PA平面ABC,BC平面ABC,得PABC,

又PA∩AC=A,PA平面PAC,AC平面PAC,

所以BC平面PAC.

(Ⅱ)连OG并延长交AC与M,链接QM,QO.

由G为∆AOC的重心,得M为AC中点,

由G为PA中点,得QMPC.

又O为AB中点,得OMBC.

因为QM∩MO=M,QM平面QMO.

所以QG//平面PBC.

50.【解析】(Ⅰ)因为是直三棱柱,所以平面ABC,又平面,所以,又因为平面,所以平面,又AD平面ADE,所以平面ADE平面.

(Ⅱ)因为,为的中点,所以.因为平面,且平面,所以又因为,平面,

,所以平面,所以AD.又AD平面,平面,所以平面.

51.【解析】(Ⅰ)平面,面

又面

(Ⅱ)是中点点到面的距离,

三棱锥的体积

(Ⅲ)取的中点为,连接,,

又平面面面面,

点是棱的中点

得:平面.

52.【证明】:(Ⅰ)在PAD中,因为E、F分别为AP,AD的中点,所以EF//PD.

又因为EF平面PCD,PD平面PCD,

所以直线EF//平面PCD.

(Ⅱ)连结DB,因为AB=AD,∠BAD=60°,

所以ABD为正三角形,因为F是AD的中点,所以BFAD.

因为平面PAD平面ABCD,BF平面ABCD,平面PAD平面ABCD=AD,

所以BF平面PAD.又因为BF平面BEF,所以平面BEF平面PAD.

53.【解析】法一:(Ⅰ)证明:取AD中点G,连接PG,BG,BD.因PA=PD,有,在中,,有为等边三角形,因此,所以平面PBG

又PB//EF,得,而DE//GB得AD

DE,又,所以AD

平面DEF。

(Ⅱ),为二面角P—AD—B的平面角,

在,

在,

法二:(Ⅰ)取AD中点为G,因为

又为等边三角形,因此,,

从而平面PBG.

延长BG到O且使得PO

OB,又平面PBG,PO

AD,

所以PO

平面ABCD.

以O为坐标原点,菱形的边长为单位长度,直线OB,OP分别为轴,z轴,平行于AD的直线为轴,建立如图所示空间直角坐标系.

由于

平面DEF.

(Ⅱ)

取平面ABD的法向量

设平面PAD的法向量

54.【解析】(Ⅰ)因为四边形是正方形,所以//.故为异面直线与所成的角.因为平面,所以.故.

在中,=1,=,==3,

故==.

所以异面直线和所成角的余弦值为.

(Ⅱ)证明:过点作//,交于点,则.由,可得,从而,又,=,所以平面.

(Ⅲ)解:由(Ⅱ)及已知,可得=,即为的中点.取的中点,连接,则,因为//,所以//.过点作,交于,则为二面角--的平面角。

连接,可得平面,故.从而.由已知,可得=.由//,,得.

在中,,

所以二面角--的正切值为.

55.【解析】

(Ⅰ)取的中点G,连结GF,CE,由条件易知

FG∥CD,FG=CD.BE∥CD,BE=CD.所以FG∥BE,FG=BE.

故四边形BEGF为平行四边形,所以BF∥EG.

因为平面,BF平面,所以

BF//平面.

(Ⅱ)解:在平行四边形,ABCD中,设BC=,则AB=CD=2,AD=AE=EB=,

连CE,因为.

在BCE中,可得CE=,

在ADE中,可得DE=,

在CDE中,因为CD2=CE2+DE2,所以CEDE,

在正三角形中,M为DE中点,所以DE.

由平面平面BCD,

可知平面BCD,

CE.

取的中点N,连线NM、NF,

所以NFDE,NF.

因为DE交于M,

所以NF平面,

则∠FMN为直线FM与平面新成角.

在RtFMN中,NF=,

MN=,

FM=,

篇4

数学是高考科目之一,故从初一开始就要认真地学习数学。亲爱的读者,小编为您准备了一些高中数学教学总结,请笑纳!

高中数学教学总结1这个学期,我继续担任理科班高二11、12班的数学学科老师。高二11班是理科普通班,12班是理科b班。

在这个学期里,我又有什么地方进步与不足之处呢?

由于这个学期数学要参加学业水平考试,所以大多数为复习课。我们数学组经过谈论后,是进行模块复习,到最后阶段进行模拟练习。而他们基础薄弱,我是对每个模块的每个知识点进行复习应用。课后及时布置作业巩固,然后每周进行测试。测试还有要求。否则要进行补考。这样做对巩固基础确实不错。但是也是存在些问题:这效果可能是题海战术堆积出来的效果,而不是对数学本质的理解产生的。所以我的任务任重而道远。需要我继续努力。

(一)学生方面

1、学生不能屈服于数学。

很多同学很怕数学而不学数学。要引导学生,及时数学再难也不要放弃,要了解它,发现它的美,并热爱它。

2、学生要提高数学阅读能力。

要教于学生学会去读题目,学会分析题目,学会根据条件架桥得到结论。最重要的是,对数学实质的理解。

3、学生要有专注的精神和良好的学习习惯。

很多学生只是为了得到题目的答案而做题。而不会提炼总结题型方法。这点也要引导学生学会。接下来,要引导学生养成错题集的习惯。还有就是做作业的习惯。批改后一定要进行纠正与反思。

(二)教师自身方面

1、学校组织的公开课有去听,但是没有好好的评过课;

自己也很少开公开课。以后要多开公开课,暴露自己的问题然后及时纠正。

2、课前有备课,但是没有进行课后备课。

所以,对自己在教材理解与处理上,或者问题的引导上处理上存在不足之处。有待加强。

3、自己的做题能力要继续提高。

我有段时间采取过每天做一道高考题,然后去分析并看能否用多种方法去做,或者对某个知识点进行深层次的理解。很可惜,毅力不够,只支持了一小段时间。接下来要再接再厉。

以上是我这个学期的教学总结。需要实际行动的事情很多,有时我也可能会出现倦怠、懒散期,希望我自己是螺旋式上升的。

高中数学教学总结2这个学期我很荣幸地参加了高中数学教师研修,研修的内容丰富多彩,研修的方式多种多样,既有专家的报告,又有学科带头人的核心理念,还有实体课的观摩研讨。为期五天的培训,我感觉每天都是充实的,因为每天都能面对不同风格的讲师,每天都能感受到思想火花的冲击。在研修中,我进一步认识了新课程的发展方向和目标,反思了自己以往在工作中的不足。作为一名青年教师,我深知自己在教学上有待改进,但是,经过一段时间的学习,我感觉自己受益匪浅。一些对教育教学工作很有见解的专家以鲜活的案例和丰富的知识内涵,给了我具体的操作指导,使我的教育观念进一步得到了更新。

首先,在研修过程中,我深刻认识到以往“满堂灌”的教学方式固然错误,但随着不断提倡教学改革的今天,教师似乎又走入了让学生“过度”研讨的误区。有的教师在大多数课中,将大部分时间或全部时间让学生探究或做题或上台讲演,这样的做法并不正确。课堂不应该拘泥于一种形式,“纯讲授”或“纯探究”,而应该因“课”制宜,该以讲授为主的就讲授,以探究为主的就探究,还可以多种教学手段同时使用。所以在不断推行教育改革的今天,总是探究的教育理念也片面化了。

其次,在鲜活的教学案例中,我学到了不少的教学经验。关于选修1-2和2-2中一些课的教学素材的选取,我有了进一步的理解。对于不同层次的学生,有不同的教授方法,书上的素材不一定非讲不可,总之适合学生的素材才是最好的,而非“教材”上的是必选的。

最后,在教学中要努力实现三个转变:(1)教师“学生观”的转变。做到用学生的心看待一切,不歧视学生,多赏识学生,达到班上“没有差生,只有差异”。(2)教师角色的转变。教学过程中,老师是学生的朋友,是学习活动的组织者、引导者,而不是统治者、长官。教学过程是师生平等对话的过程,是师生双方交往共同发展的互动过程。(3)教学方式的转变。教师课堂上教学过程是师生互动过程,学生学习过程不仅要用脑子想而且要用眼睛看,用耳朵听,用嘴说,用手操作。即用自己的亲身经历、用自己的心灵去感悟,教师要积极参与学生的学习过程。学生才能无拘无束的置身于其中,尝试学习,享受学习的乐趣。课堂才能焕发无限的生命力,学生思维活跃,热情高涨,真正成为了学习的主人、课堂的主角。(4)在教学过程中做到:给学生一些权利,让他们自己去选择。给学生一些机会,让他们自己去体验。给学生一点困难,让他们自己去解决。给学生一个问题,让他们自己去找答案。给学生一片空间,让他们自己向前走。

总之,这次研修我学到了很多实践知识。今后我在面对新课程中,会确定更高层次的教学目标。对于教学课而言,不能光是知识的传授,而是包括知识与技能、思考、解决问题、情感与态度等几个方面。那种追求“能够教好一节课”或“教出了几个能考高分的学生”为目的的教学已经不符合课改精神了。教会学生知识,教给学生方法,教给学生独立和生存的能力将会成为我的职业追求。

高中数学教学总结3经过这次的阶段性培训和聆听专家的讲解,我对新课改教学有了一个较系统和认识。基本适应了新课改的要求,以后教学中要进一步完善实现新课改的教学理念和教学方式,继续积极探索新形势下新的、更适合学生的教学模式,为今后我校的发展奠定好的基础。

一、转变教学理念。

理念的转变,是适应数学新课改的根本前提。新课程体系要求建立平等和谐的新型师生关系。“重结果轻过程”是传统数学课堂教学中的弊端。重结果就是教师在教学中只重视教学的结果,甚至让学生去背诵“标准答案”。重过程就是教师在教学中把教学的重点放在过程上,放在揭示知识形成的规律上,让学生通过感知——概括——应用的思维过程去掌握知识,掌握规律。地理课程均以学生为本,以促进学生的发展为总目标。重视学习生活中的终生发展有用的知识,满足学生学习与发展的需要,重视培养学生形成正确的数学观念。

新课程改革要求教师以人为本,它突出培养学生的创新和实践能力、收集处理信息的能力、获取新知识的能力、分析解决问题的能力,以及交流协作的能力,发展学生对自然和社会的责任感。另外还要求让每个学生拥有健康的身心,优良的品质和终身学习的愿望与能力,科学和人文素养。养成健康的审美情趣和生活方式。从而实现全体学生的发展,以及学生个体的全面发展。

二、高中数学课程重视探究,注重过程与结果评价的结合

高中数学课程又提出并且倡导自主学习、合作学习和探究学习,重视学生的探究活动,不仅是数学课程而且是这次新一轮课程总体改革的重要理念。还要让学生自己观察、操作、练习、验证、搜寻、思索、判断、分析……。这样既可提高学习对学生的吸引力,还能培养学生的实践能力,更能在实践过程中发现问题,进而在解决问题的过程中激发学生的潜能和创造力,有利于学生素质的全面提高。重视反映学生发展状况的过程性评价,实现评价目标多元化、评价手段多样化,强调形成性评价与终结性评价相结合、定性评价与定量评价相结合、反思性评价与鼓励性评价相结合”。

三、改变学生的学习方式。

新课程积极倡导“自主、合作、探究”的学习方式。通过近几年的教学实践,学生的学习方式有了很大的转变,学生的主动学习意识不断增强。

1、培养学生学习的兴趣和自学能力。

数学学科的综合性、应用性和实践性为学生自主学习提供了广阔的发展空间。课堂上教师应留给学生一定的时间和空间,将主动权交给学生,让学生主动探究、自主学习。

2、不要让“自主”变成了放任。

只要走进课堂,就会发现:老师把一节课的问题引领呈现出来后,学习通过自主学习,小组合作以及组内、全班展示后,大多问题都可以学习明白,教师再重点进行点拨。这种学习方式,确实有利于提高学生学习数学的积极性和主动性,特别是有利于调动学生的学习兴趣和张扬学生的个性,弥补了传统教学的不足。让学生的自主与教师的引导合而为一,高度统一,相互促进。关键是我们在教学过程中要寻找衡点,做到“导”“放”有度。

3、不要让“合作”停留于形式。

我们经常看到课堂上在学生没有充分思考的情况下就进行合作学习的情况,由于学生对教材的理解还不深入,对客观事物的认识也不深刻,这样的合作只能流于形式,只能是为个别优生提供展示的机会,小组合作加工整理的结果与所得也是肤浅的、片面的。指导合作学习时要注意:一是做好合作准备。对每组的学生要教给他们学习方法。另外在小组合作学习之前,教师一定要留给学生充足的独立思考的时间,学生必须对所需要研究的问题有初步的认识和了解,然后再进行小组合作学习。二是明确合作目标。在小组合作之前教师要让学生明确小组合作的目的是什么通过合作要达到什么目标,各小组在合作中担任什么角色、需要完成什么任务,从而有的放矢的让学生进行小组合作学习。

四、教学中利用现代化教学手段提高兴趣。

利用现代化教学手段培养学生创新思维。现代教学手段大大提高了课堂教学效率,激发学生学习地理的兴趣。教师应据一定的教学目标、教学内容和学生的实际、对多媒体素材进行筛选,再进行教学,如可用计算机将静止、枯燥的知识转化成图文并茂的动态知识。

总之,新课标的学习过程也是一个理性和创造的过程,需要每个教育工作者在把握学生学习心理的基础上,对它进行深入的研究到“导”与“放”的切入点,真真落实到实践中来。

高中数学教学总结420__年10月24—11月1日,我有幸在省教育厅国培办的推荐和我们学校大力支持下和来自福建的另外三名教师一起参加了由__师范大学承办的“国培计划(20__)”高中数学一线优秀教师示范培训,本次培训有来自12个省份的50位一线教师。本次培训紧紧围绕“一线优秀教师技能培训”这一基本任务,以“数学教师课堂教学能力提升”为主线,以“参与式”为主要培训方式,提升数学教师的“课堂教学设计能力,课堂教学创新能力,课堂教学实践能力”,短暂紧凑的10天培训,领略了高校专家的朴实、严谨、丰厚的数学底蕴、欣赏了国内特级名优教师的灵动丰满的数学报告、折服于同班同学踏实上进的学习特质、陶醉于和谐融洽的同学关系。短短的培训,深深的缘分,远远的发展在路上,甚有一种踏花归来马蹄香的意味!现将培训学习情况汇报如下:

一、专家讲座精彩朴实

本次培训以学科专业技能提升为主旨,听取了11位国培专家的专题讲座,既有中学数学泰斗级的《数学教育学报》副主编、天津师范大学王光明教授,有来人民教育出版社中学数学室主任、课程教材研究所研究员、《普通高中课程标准实验教科书数学》副主编章建跃教授,数学教学科研专家张生春教授,也有中学教研型专家知名特级教师连春兴、刘贵老师,有教学一线的衡水中学数学教科室主任褚艳春主任,还有学校教育管理方面的引领者石家庄一中校长、全国知名的课改专家娄延国博士、衡水中学分管德育的郗会所副校长、邯郸一中高三年级主任秦喆特级教师。

章建跃教授作了题为《数学学习与智慧发展》的专题报告,既有高屋建瓴的顶层设计和理论指导,又有对具体典型案例的剖析和设计,让全体学员经历了一次头脑风暴的冲击,深深感受到了高中数学课程改革的必要性以及对高中教师专业能力提高的迫切性;张生春教授从传统的听评课与基于证据的听评课的案例、基于证据的听评课、如何开发工具三个方面具体阐述,并结合我们高中教学实际给出了具体真正意义上的其于证据的听评课做法;刘贵老师对数学高考、数学竞赛的独到见解、精辟领悟让人折服,也让我们感受了他对数学编题、解题的巧妙与灵动;秦喆老师作为一个年级部主任从如何关爱学生开设了题为《成就学生,做最优秀的自己!》专题讲座,他认为好父母都是学出来的,好孩子都是教出来的,好习惯都是养出来的,好成绩都是帮出来的,好沟通都是听出来的,好成绩是夸出来的,让我启发很大。当然,本次培训汇聚着各地优秀的学员,其出彩的课堂教学,丰满的数学讲座,娴熟的教学技术让学员们深受启发。

二、研讨交流充分有效

为了让全国各地学员有充分的交流和借鉴,本次培训还开展了以高中数学有效教学策略研讨和校本研修的组织与实施为主题的两次主题研讨,并分别到石家庄一中和衡水中学进行了两节课同课异构教学交流。两次主题研讨中各小组讨论充分,能围绕主题主动交流自己学校的做法,提出各自的见解,在“校本研修的组织与实施”主题研讨中,华师大附中周珂老师作为国内一流学校代表做了《兼收并蓄百花齐放》的主题发言,为了衬托他们的高、大、上,我作为山区县级学校代表做了《名师引领联动研修》的主题发言,主要介绍了我们学校成立名师工作室的做法和主要职责及职能,也引起了有类似情况学校教师的共鸣。另外为横向比较应试教育和素质教育的不同课堂表现,我们选派了素质教育贯彻得比较好的上海青浦中学一位女教师与我们认为应试教育重灾区衡水中学进行同课异构,发挥了全班同学的智慧打造了一节公开课和衡水中学的刘志云老师PK,总体而言,我们并没有感受到这两种课堂的明显差异,没有看到到我们原来想象中应试教育的课堂场景,整个课堂气氛活跃,学生回答问题和思考都积极主动,不做作,不作秀,课堂朴实但高效。

三、实地考察收获满满

为近距离感受名校的教改与校本研修的实施,国培办特别安排了我们在石家庄一中和衡水中学进行了为期两天的学习考察,其中石家庄一中呆了半天,衡水中学足足呆了一天半。两天的实地考察,让我们近距离感受到了__省两所名校的校园文化和学校的精细管理,特别值得一提的是在衡水中学所见所闻给我的震撼:

1.视觉震撼

清北街。还不到校门,就看到道路两旁墙壁上的宣传榜,一张张学生的照片,全是20__年的清华北大录取的学生,几乎占了老校区旁边的整条街,被当地人称为清北街。今年有119名学生被清华北大录取,17名考入香港大学等港校,72名学生被英国帝国理工学院,加拿大多伦多大学等国外名校录取。这种街道也许只有衡水才有,这种成绩着实让人震撼。

不可思议的跑操。衡水中学的早操和课间操真的是用语言无法言表。早晨5点30分学生起床后,只见宿舍楼里面开始蜂拥走出学生,出楼之后学生马上开始跑步前进。我看到他们的手里都还拿着一些东西,走近了一看,原来学生拿着卷子、书本以及各种手抄的资料。只见他们走到跑道上站好了就开始背书,一会儿跑道上的人越来越多,无一例外,都是到了操场就开始背书----原来他们是利用跑操前的一点时间在背书,真的是点滴时间都不浪费。队伍站好了,一声哨令,开始跑操,所有人紧贴着,间距很小,后面的人跑得脚正好插在前面同学的抬起的脚跟下面,步调完全一致,没有任何人跑错脚步。实际上只要一个人跑错了,这一排人都会倒下,但是跑得并不慢。班级之间的间距不变,绝对没有停下的现象。学生的口号震耳欲聋,而且都是励志的口号,并不是简单的1234,努力奋斗、拼搏进取、永争第一、舍我其谁等等的口号比比皆是。

自习、午休静悄悄。衡水中学老校区的校舍呈回字形,晚自习上课铃响10秒钟不到,整幢大楼没有任何的吵闹声,我们当时在场的50多位参观老师都觉得不可思议,但却真实展现在我们面前。自习课更是听不到、也看不到有学生在讨论、闲聊、打闹现象,所有学生都专心的做自己的事情。中午12点45分午休时间一到,整个宿舍区也如无人一般。

校园行人急。在校园里走的学生老师大都快步如飞,没人慢腾腾的走路,不像我们的学生天天在校园里像逛街一样。而且学生的手里要么拿着各种学习资料,要么空着手,可是我们的学生手里拿着的是饮料瓶、雪糕、点心……。

2.制度震撼

衡中的管理制度非常严厉:学生全部寄宿学校,所有学生回家只准带牛奶、香蕉、苹果、桔子和饼干类点心,其他的不准带,否则回家一个周接受家长再教育;不准在食堂和宿舍以外的任何地方吃东西,否则回家一个周;不准带手机入校,否则回家一个月;男女同学非正常接触,回家一个月;学生打架,立即开除;学生谈恋爱,立即开除;学生不能跑操要有县级以上医院的证明经过班主任、年级主任、学校教育处干事、教育处主任等人的审核,最后由分管教育处的副校长批准,即便如此也还得到操场读书。若学生要返校,必须学生真正反思好,填写好反思表后,由家长领着学生过四关:一是到班主任处由班主任签字认可反思情况,二是到级部主任处签字,三是到分管校长处签字,四是到教育处盖章。如此严格繁琐的管理程序,肯定让违纪学生望而生畏,也许正是因为这样的管理制度,学生几乎没有违纪的,更不要说各种严重违纪的发生了,在衡中谁要是被处罚接受家长再教育那是很没有面子而且损失很大(七天以上不能听课)的事情,而且在衡中由于任何一个决定不是哪一个人说了算,所以没有情分面子会起到什么作用。据他们的副校长介绍,衡水市的市委书记在公开场合表态,如果介绍一两个学生进衡中没有问题,但如果在衡中因违纪要去说情,门儿都没有。在晚自习参观回来的路上还有一个小插曲,我们离开校园时,但门卫就是不让我们走,说是没有学校安保处的许可,虽然有一个衡中本校的带队老师与门卫交涉也不行。二十几分钟以后,有了安保出的通知,我们才得以离开。管中窥豹,可见一斑。

3.细节震撼

学生常规管理精细。据了解学校实行全封闭管理,所有学生(三个年段,每个年段60个班,每个班级80到100人不等)全部住校,上课时宿舍区和教学区隔绝(上锁)。学校制度、活动非常之多,且都有严格的规范要求。常规检查非常细致。仅从张贴的各种检查表就可看出:有“讲科学、行规范、上水平”教育实践活动公开栏,内容包括:风采展示台、不良行为曝光台;有男生楼、女生楼检查量化表,检查项目包括卫生、安全、物品排放等40余项,每天检查,每天公布;有学生会联查表、跑操检查公布表、自习和作业检查情况公布表;有《班执勤所查不文明行为汇总单》,记载的内容:跑步就餐、男女共餐、就餐插队、走廊长明灯等。

调研考试安排精细。据了解本学期高三安排了四次调研考试,一次期中考试,高一高二也至少三次调研考试。考试的组织非常严密细致。仅从宣传栏、走廊张贴物等就可略见一斑。调研考试前,对命题范围、题型与分值、考察内容都有明确的命题规定。学校专门制订了《衡水中学试题评价方案》,对试题比例、试题区分度、试题科学性、严密性及试题打印质量等都进行严格的评价。调研考试期间,有一张高三第二次调研考试活动安排表,何时上课、何时就餐、何时自习,精确到某一分钟;还发现有一张调研考试期间临时课程表,安排到每节课、每节自习。每次调研考试结束后工作做得更细,至少做好以下几点:一是评出优秀师徒(实际相当于师生成长共同体,教师评选先进时,学生都帮着给拉票);二是评出红旗备课组、学科第一(教学业务系列分析评价);三是评出双优班集体、优秀班主任(管理系列分析评价);四是评出清华北大希望之星,评出理科状元、文科状元希望之星(尖子生情况分析);五是对新老校区各段人数进行对比;六是对各学科系列排名变化进行对比;七是对各班成绩变化情况进行对比(以上内容全部在显眼位置张榜公布).

教学细致。教师讲课非常细致,就是实验班的学生,进行一轮复习也是讲的极其细致,完全不因学生的基础较好而糊弄了事,真的做到了每一个知识点都不漏;教师给学生布置作业,更是分的很细,必做、选作、自助餐,怎么收、怎么批、怎么改、怎么讲都规定的详细的很;课程表安排的细,比如英语课,规定了哪一节是上新授课、听力课、自习课、讲评课,其他学科也是按照学科特点进行了相应的设置……。

4.德育震撼

培养学生坚强的意志。衡水中学从1984年至今,每年对高一学生进行军训,而且每次时间都长达__天。除此之外,学校还要对高一新生进行一次80华里的远足活动,他们把这项活动称为“砥砺意志的”。80华里,对于很多孩子来说是一个极大的挑战,但没有人会退缩,也不允许请假。不难想象,有了这样的经历,这样的感悟的学生,对待困难、对待学习、对待未来会是怎样一种态度。

说实话在去衡水中学之前,培训班的大多教师(包括我自已)对衡水中学都是带着抵触和偏见情绪,但学习考察完后,对衡水中学的管理和教学都重新定位,它一定是有过人之处,才能引领全国的高考,造成这么大的轰动!

总之,本次学习培训,不仅拓宽了我的视野,还丰富了我的实践经验,更让我的思想得到了升华,使我对数学教学有了更新的认识。“刀不磨要生锈,人不学要落后”,在今后的教学工作中,我会继续努力学习,钻研教学业务,我也相信在倾听、反思、实践中,我的教学之路会愈趋成熟,相信会做得更好。

高中数学教学总结5数学是高考科目之一,故从初一开始就要认真地学习数学。进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。但主要是由于同学们不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。在此结合高中数学教学内容的特点和高中教学经验,谈一谈高中数学学习方法,供同学参考。

一:先注意以下三点。

一)、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二)、适当多做题,养成良好的解题习惯。

要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三)、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

二:初中数学与高中数学的比较。

一)、初中数学与高中数学的差异。

1、知识差异。

初中数学知识少、浅、难度容易、知识面笮。高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。如:初中学习的角的概念只是“00—1800”范围内的,但实际当中也有7200和“--3000”等角,为此,高中将把角的概念推广到任意角,可表示包括正、负在内的所有大小角。又如:高中要学习《立体几何》,将在三维空间中求一些几何实体的体积和表面积;还将学习“排列组合”知识,以便解决排队方法种数等问题。如:①三个人排成一行,有几种排队方法,(=6种);②四人进行乒乓球双打比赛,有几种比赛场次?(答: =3种)高中将学习统计这些排列的数学方法。初中中对一个负数开平方无意义,但在高中规定了i2=-1,就使-1的平方根为±i.即可把数的概念进行推广,使数的概念扩大到复数范围等。这些知识同学们在以后的学习中将逐渐学习到。

2、学习方法的差异。

(1)初中课堂教学量小、知识简单,通过教师课堂教慢的速度,争取让全面同学理解知识点和解题方法,课后老师布置作业,然后通过大量的课堂内、外练习、课外指导达到对知识的反反复复理解,直到学生掌握。而高中数学的学习随着课程开设多(如:高一有八门课同时学习),每天至少上八节课,自习时间四节课,这样各科学习时间将大大减少,而教师布置课外题量相对初中减少,这样集中数学学习的时间相对比初中少,高中数学教师将不能向初中那样监督每个学生的作业和课外练习,就不能向初中那样把知识让每个学生掌握后再进行新课。

(2)模仿与创新的区别。

初中学生模仿做题,他们模仿老师思维推理较多,而高中模仿做题、思维学生有,但随着知识的难度大和知识面广泛,学生不能全部模仿,即使就是学生全部模仿训练做题,也不能开拓学生自我思维能力,学生的数学成绩也只能是一般程度。现在高考数学考察,旨在考察学生能力,避免学生高分低能,避免定势思维,提倡创新思维和培养学生的创造能力培养。初中学生大量地模仿使学生带来了不利的思维定势,对高中学生带来了保守的、僵化的思想,封闭了学生的丰富反对创造精神。如学生在解决:比较a与2a的大小时要不就错、要不就答不全面。大多数学生不会分类讨论。

3、学生自学能力的差异

初中学生自学能力低,大凡考试中所用的解题方法和数学思想,在初中教师基本上已反复训练,老师把要学生自己高度深刻理解的问题,都集中表现在他的耐心的讲解和大量的训练中,而且学生的听课只需要熟记结论就可以做题(不全是),学生不需自学。但高中的知识面广,知识全部要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,如果不自学、不靠大量的阅读理解,将会使学生失去一类型习题的解法。另外,科学在不断的发展,考试在不断的改革,高考也随着全面的改革不断的深入,数学题型的开发在不断的多样化,近年来提出了应用型题、探索型题和开放型题,只有靠学生的自学去深刻理解和创新才能适应现代科学的发展。

其实,自学能力的提高也是一个人生活的需要,他从一个方面也代表了一个人的素养,人的一生只有18---24年时间是有导师的学习,其后半生,最精彩的人生是人在一生学习,靠的自学最终达到了自强。

4、思维习惯上的差异

初中学生由于学习数学知识的范围小,知识层次低,知识面笮,对实际问题的思维受到了局限,就几何来说,我们都接触的是现实生活中三维空间,但初中只学了平面几何,那么就不能对三维空间进行严格的逻辑思维和判断。代数中数的范围只限定在实数中思维,就不能深刻的解决方程根的类型等。高中数学知识的多元化和广泛性,将会使学生全面、细致、深刻、严密的分析和解决问题。也将培养学生高素质思维。提高学生的思维递进性。

5、定量与变量的差异

初中数学中,题目、已知和结论用常数给出的较多,一般地,答案是常数和定量。学生在分析问题时,大多是按定量来分析问题,这样的思维和问题的解决过程,只能片面地、局限地解决问题,在高中数学学习中我们将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性。如:求解一元二次方程时我们采用对方程ax2+bx+c=0(a≠0)的求解,讨论它是否有根和有根时的所有根的情形,使学生很快的掌握了对所有一元二次方程的解法。另外,在高中学习中我们还会通过对变量的分析,探索出分析、解决问题的思路和解题所用的数学思想。

二)高中数学与初中数学特点的变化。

1、数学语言在抽象程度上突变

初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及非常抽象的集合语言、逻辑运算语言、函数语言、图象语言等。

2、思维方法向理性层次跃迁

高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么等。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。

3、知识内容的整体数量剧增

高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。

4、知识的独立性大

初中知识的系统性是较严谨的,给我们学习带来了很大的方便。因为它便于记忆,又适合于知识的提取和使用。但高中的数学却不同了,它是由几块相对独立的知识拼合而成(如高一有集合,命题、不等式、函数的性质、指数和对数函数、指数和对数方程、三角比、三角函数、数列等),经常是一个知识点刚学得有点入门,马上又有新的知识出现。因此,注意它们内部的小系统和各系统之间的联系成了学习时必须花力气的着力点。

三、如何学好高中数学。

一)、培养良好的学习兴趣。

两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。“好”和“乐”就是愿意学,喜欢学,这就是兴趣。兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢?

1、课前预习,对所学知识产生疑问,产生好奇心。

2、听课中要配合老师讲课,满足感官的兴奋性。

听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。

3、思考问题注意归纳,挖掘你学习的潜力。

4、听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?

5、把概念回归自然。

所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能对概念的理解切实可靠,在应用概念判断、推理时会准确。

二)、建立良好的学习数学习惯。

习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。良好的学习数学习惯还包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。

三)、有意识培养自己的各方面能力。

数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。

四)、及时了解、掌握常用的数学思想和方法。

学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。

解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。

五)、逐步形成 “以我为主”的学习模式。

数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。

六)、针对自己的学习情况,采取一些具体的措施。

记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中扩展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。

经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。

阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。

及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。

经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。

无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。

七)、认真听好每一节棵。

在新学期要上好每一节课,数学课有知识的发生和形成的概念课,有解题思路探索和规律总结的习题课,有数学思想方法提炼和联系实际的复习课。要上好这些课来学会数学知识,掌握学习数学的方法。

概念课

要重视教学过程,要积极体验知识产生、发展的过程,要把知识的来龙去脉搞清楚,认识知识发生的过程,理解公式、定理、法则的推导过程,改变死记硬背的方法,这样我们就能从知识形成、发展过程当中,理解到学会它的乐趣;在解决问题的过程中,体会到成功的喜悦。

习题课

要掌握“听一遍不如看一遍,看一遍不如做一遍,做一遍不如讲一遍,讲一遍不如辩一辩”的诀窍。除了听老师讲,看老师做以外,要自己多做习题,而且要把自己的体会主动、大胆地讲给大家听,遇到问题要和同学、老师辩一辩,坚持真理,改正错误。在听课时要注意老师展示的解题思维过程,要多思考、多探究、多尝试,发现创造性的证法及解法,学会“小题大做”和“大题小做”的解题方法,即对选择题、填空题一类的客观题要认真对待绝不粗心大意,就像对待大题目一样,做到下笔如有神;对综合题这样的大题目不妨把“大”拆“小”,以“退”为“进”,也就是把一个比较复杂的问题,拆成或退为最简单、最原始的问题,把这些小题、简单问题想通、想透,找出规律,然后再来一个飞跃,进一步升华,就能凑成一个大题,即退中求进了。如果有了这种分解、综合的能力,加上有扎实的基本功还有什么题目难得倒我们。

复习课

在数学学习过程中,要有一个清醒的复习意识,逐渐养成良好的复习习惯,从而逐步学会学习。数学复习应是一个反思性学习过程。要反思对所学习的知识、技能有没有达到课程所要求的程度;要反思学习中涉及到了哪些数学思想方法,这些数学思想方法是如何运用的,运用过程中有什么特点;要反思基本问题(包括基本图形、图像等),典型问题有没有真正弄懂弄通了,平时碰到的问题中有哪些问题可归结为这些基本问题;要反思自己的错误,找出产生错误的原因,订出改正的措施。在新学期大家准备一本数学学习“病例卡”,把平时犯的错误记下来,找出“病因”开出“处方”,并且经常拿出来看看、想想错在哪里,为什么会错,怎么改正,通过你的努力,到高考时你的数学就没有什么“病例”了。并且数学复习应在数学知识的运用过程中进行,通过运用,达到深化理解、发展能力的目的,因此在新的一年要在教师的指导下做一定数量的数学习题,做到举一反三、熟练应用,避免以“练”代“复”的题海战术。

四、其它注意事项

1.注意化归转化思想学习。

人们学习过程就是用掌握的知识去理解、解决未知知识。数学学习过程都是用旧知识引出和解决新问题,当新的知识掌握后再利用它去解决更新知识。初中知识是基础,如果能把新知识用旧知识解答,你就有了化归转化思想了。可见,学习就是不断地化归转化,不断地继承和发展更新旧知识。

2.学会数学教材的数学思想方法。

数学教材是采用蕴含披露的方式将数学思想溶于数学知识体系中,因此,适时对数学思想作出归纳、概括是十分必要的。概括数学思想一般可分为两步进行:一是揭示数学思想内容规律,即将数学对象其具有的属性或关系抽取出来,二是明确数学思想方法知识的联系,抽取解决全体的框架。实施这两步的措施可在课堂的听讲和课外的自学中进行。

课堂学习是数学学习的主战场。课堂中教师通过讲解、分解教材中的数学思想和进行数学技能地训练,使高中学生学习所得到丰富的数学知识,教师组织的科研活动,使教材中的数学概念、定理、原理得到最大程度的理解、挖掘。如初中学习的相反数概念教学中,教师的课堂教学往往有以下理解:①从定义角度求3、-5的相反数,相反数是_____(符号相反的数)。.②从数轴角度理解:什么样的两点表示数是互为相反数的。(关于原点对称的点)③从绝对值角度理解:绝对值_______的两个数是互为相反数的(相等)。④相加为零的两个数互为相反数吗?这些不同角度的教学会开阔学生思维,提高思维品质。望同学们把握好课堂这个学习的主战场。

五、学好数学的几个建议。

1.记数学笔记,特别是对概念理解的不同侧面和数学规律,教师为备战高考而加的课外知识。

如:我在讲课时的注解。

2.建立数学纠错本。

把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

3.记忆数学规律和数学小结论。

4.与同学建立好关系,争做“小老师”,形成数学学习“互助组”。

5.争做数学课外题,加大自学力度。

6.反复巩固,消灭前学后忘。

7.学会总结归类。

①从数学思想分类②从解题方法归类③从知识应用上分类。

总之,对高一新生来说,学好数学,首先要抱着浓厚的兴趣去学习数学,积极展开思维的翅膀,主动地参与教育全过程,充分发挥自己的主观能动性,愉快有效地学数学。

其次要掌握正确的学习方法。锻炼自己学数学的能力,转变学习方式,要改变单纯接受的学习方式,要学会采用接受学习与探究学习、合作学习、体验学习等多样化的方式进行学习,要在教师的指导下逐步学会“提出问题—实验探究—开展讨论—形成新知—应用反思”的学习方法。这样,通过学习方式由单一到多样的转变,我们在学习活动中的自主性、探索性、合作性就能够得到加强,成为学习的主人。

篇5

摘 要:众所周知,语数英三门学科一直以来都是中学阶段的重点学科。然而,自从13年北京出台的新高考方案中涉及到降低英语科目的分数以来,取消英语高考的建议就开始被各大省提出来并得到了全社会广泛的关注,在教育界也引起了广泛关注。本文拟对英语高考改革的背景、影响及其传达的文化信号进行分析。

关键词:英语改革;高考;分析

在我国,常常有“黑色六月”、“人间最忙六月天”的说法,因为中考、高考都是在每年的六月份,人们围绕高考的争议与讨论似乎从未平息过。近日,北京新出台的高考方案将语文升至180分,英语则从150分降到100分,并实行社会化考试,一年两次考试,学生可多次参加,按最好成绩计人高考总分,成绩3年内有效。山东、江苏、上海也陆续出台了相应的高考英语改革的各种方案。有关高考英语的讨论又以足够的优势吸引了广泛的社会关注。

一、改革的背景

教育部前发言人、语文出版社社长王旭明呼吁中高考取消英语科目的考试,他的原因是现在全国娃娃学英语的现象太严重了;事实上,现在的学生从小学就开始参加各种英语学习培训机构疯狂的学习英语,英语说的相当标准,普通话却磕磕巴巴;国家语委的一项调查显示:65%以上的大学生将超过四分之一的时间用在了外语的学习上,学习效果却不尽人意;而我国是世界上少有的将英语规定为升学、升职、评职称的必考科目的国家;不得不承认,研究生入学考试也靠英语拉分。可见,英语的地位似乎远远高过了我们的中文。作为语文出版社社长,王旭明也承认,与英语师资力量和教学教材水平相比,现在的语文师资力量和语文教材水平都不高,明显的存在“一重一轻”的问题,因此,又增加国学教育的必要。当前形势下,让英语回归“本位”,已经刻不容缓。

二、改革的影响

1、对学生的影响

1.1好的影响:英语高考“一年两考”的这种做法将有效改变“一考定终生”的局面,实行一年多考会督促学生学习英语,抓住机会,第一次考不好还有第二次机会,择优计入总分也更加公平。因为一次考试不能完全体现出学生的英语水平,特别是重大考试,往往都会特别紧张,有压力,可能会影响考试的正常发挥,而多考几次则会降低这种失误。

1.2坏的影响:首先,高考改革对于学生来讲有点太突然了,例如,有些省份拟取消高考英语听力的通知只提前一年甚至几个月,给学生的感觉就是高考随时都可以改,如若高考不考,意味着学生在三年的奋斗中有些努力就是白费的,影响考生的备考。因此,政策的出台至少应提前三年通知学生,让他们在入学前就对自己的学习有好的规划。其次,不得不承认,由于英语教学质量的不尽人意,使学生走了种种弯路,也使很多人痛恨英语学习,一旦“取消英语高考”的政策下放,大部分学生将认为英语不那么重要了而懈怠英语学习,到时候的结果就不是“改革”而是是学生“放弃”英语学习,当然,这并不是改革想要的效果。第三,一年考几次的方案可能会增加学生的压力,中学阶段本来科目也比较多,学习任务比较繁重,如果一年考几次会增加考试频率、增加学生的备考压力。最后,一年考几次对于家庭条件比较差的学生来说有点不太公平,因为考试没有限制的话,家庭条件好的学生可以花钱参加社会上的各种辅导培训机构,提前达到标准,而偏远山区没条件的学生则只能一步一步来。

2、对老师的影响

随着英语高考改革的讨论日益激烈,众多在职的和潜在的英语教师也表示出了各种担忧。比如:有些学生英语能力强、分数高的,可能高一考取了高分,到了高二高三就不想学英语了,所以英语课学生规模会逐渐缩小,英语老师可能就会富余,大家就要面临转岗、下岗,接受再培训等问题;英语教学方式将迎来变革,哑巴英语将不复存在,这对英语老师的要求将会有所提高,只会讲语法做题的老师将面临淘汰;英语专业大学生面临也将面临就业困难。不得不承认,改革虽然并不意味着英语不重要了,但这次改革之后,英语教师将有可能面临着一次教学方式和教学岗位的“大洗牌”,这对英语老师来说,是一个挑战。

三、改革传达的文化信号

中国社科院国际问题学者张国庆认为:英语高考改革使得英语在高考中的地位下降,相应的提高了汉语和传统文化在教育中的位置,这其实是传统文化复兴和大国自信的征兆。他认为,降低英语在各项考试中的权重是一种必然趋势。当今的中国人对英语国家的了解远远大于英语国家的人对我们中国的了解,欧美文化也在一点一点的侵蚀着我们的传统文化,就拿节日来讲,大多数人可能对圣诞节的热情高过于端午节、清明节。而且中国是世界上唯一一个组织全民学外语、并纳入各项重要考试科目的国家。随着中国的综合国力日益增强,大国自信日益突出,为了体现这种大国自信,母语及传统文化必将走上高于英语及其文化的地位。

四、总结

抛开英语高考改革对学生、对老师等的具体影响,我们单从英语这个学习科目的学习出发谈谈我的感想,在当今教育国际化的背景下,我们知道国家综合实力的竞争,归根到底是人才的竞争,谁拥有数量多、素质高的人才,谁就能把握社会经济发展的主动权,在激烈的竞争中立于不败之地。我们知道,留学生对于几乎每个国家来说都是宝贵的人才,而根据联合国教科文组织统计,2006年各国接受外国留学生的数量:美国58万,英国33万,德国26万,法国25万,澳大利亚20万,日本13万,而中国只有1万,因为欧美国家大都开设有以英语作为教学语言的国际化学位课程,尽量以英语作为教学语言,以吸引国际留学生。因此可以想象英语在国际化教育背景下的重要性。这个世界上的绝大部分学术论文都是用英文写的,所有的科学著作原版都是英文,所有的先进科技产品都用英文进行产品说明,精通英文是领会人类文明的精华的必须途径。无法想象一个工程师看不懂本行业的英文论文,无法想象我们因为不懂英文,而把别国先进的科技产品和理念拒之门外,把科学的管理制度拒之门外。

部分赞成取消英语高考的人觉得英语学习不重要,高考完了如果不从事相关行业英语就没用了,那么请问数学知识里面的圆周率、几元几次方程在现实生活中有用到吗?如果没用,是不是下一次改革就要取消数学高考?事实上,改革不等于它就不重要了,北京新东方学校国内部总监周雷认为:“英语考试改革主要在改变当前以及很长一段时间以来的学生英语学习耗时且低效的现状。学生在英语上往往花费时间很长,却收获不大”。不管是出于体现大国自信还是为了学好英语而实施改革,改革一方面体现了,在我国英语学习给学生、老师、甚至家长带来了很大的烦恼,另一方面,改革本身也给他们带来了很多新的思考与顾虑。这些烦恼、顾虑真的能够通过一次又一次的考试改革来解决?还是我们的教育体制存在问题?这些问题都是值得我们深思的。不管怎么改,始终要记住学好英语是时代的要求,极其重要。(作者单位:西华师范大学)

参考文献

[1] 曾颖.教育国际化背景下2013年高考自主招生取消英语笔试的措施及其影响,高等教育