现代电力电子技术范文

时间:2023-09-19 17:42:11

导语:如何才能写好一篇现代电力电子技术,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

现代电力电子技术

篇1

1.电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2.电力电子技术的应用

2.1一般工业

工业中大量应用各种交直流电动机。直流电动机有良好的调速性能,给其供电的可控整流电源或直流斩波电源都是电力电子装置。近年来,由于电力电子变频技术的迅速发展,使得交流电机的调速性能可与直流电机相媲美,交流调速技术大量应用并占据主导地位。大至数千kW的各种轧钢机,小到几百W的数控机床的伺服电机,以及矿山牵引等场合都广泛采用电力电子交直流调速技术。一些对调速性能要求不高的大型鼓风机等近年来也采用了变频装置,以达到节能的目的。还有些不调速的电机为了避免起动时的电流冲击而采用了软起动装置,这种软起动装置也是电力电子装置。电化学工业大量使用直流电源,电解铝、电解食盐水等都需要大容量整流电源。电镀装置也需要整流电源。电力电子技术还大量用于冶金工业中的高频、中频感应加热电源、淬火电源及直流电弧炉电源等场合。

2.2交通运输

电气化铁道中广泛采用电力电子技术。电气机车中的直流机车中采用整流装置,交流机车采用变频装置。直流斩波器也广泛用于铁道车辆。在未来的磁悬浮列车中,电力电子技术更是一项关键技术。除牵引电机传动外,车辆中的各种辅助电源也都离不开电力电子技术。电动汽车的电机靠电力电子装置进行电力变换和驱动控制,其蓄电池的充电也离不开电力电子装置。一台高级汽车中需要许多控制电机,它们也要靠变频器和斩波器驱动并控制。飞机、船舶需要很多不同要求的电源,因此航空和航海都离不开电力电子技术。如果把电梯也算做交通运输,那么它也需要电力电子技术。以前的电梯大都采用直流调速系统,而近年来交流变频调速已成为主流。

2.3电子装置用电源

各种电子装置一般都需要不同电压等级的直流电源供电。通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。大型计算机所需的工作电源、微型计算机内部的电源现在也都采用高频开关电源。在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。因为各种信息技术装置都需要电力电子装置提供电源,所以可以说信息电子技术离不开电力电子技术。

2.4家用电器

篇2

关键词:软开关 谐振现象 变换器

一、引言

电力电子技术利用无源功率器件和半导体功率器件、大规模集成电路和微处理器、传感与信息处理技术、现代控制理论、计算机仿真与辅助设计技术,以功率变化电路为对象,研究对电能进行变换和控制的规律,以其独特的、不可取代的特殊功能,广泛应用于国民经济的各个领域。

开关电源的高频化是实现电源装置的高性能、高效率、高可靠性,减小体积和重量的重要途径。开关电源的高频化增大了变换器的功率密度和性能价格比,而且极大地提高了瞬时响应速度,抑制了电源所产生的音频噪声。

软开关(softswitching)技术是近年来电力电子学领域中的一个主要研究方向。对软开关理论的深入研究,使软开关技术成为电力电子变换技术的核心内容尤其是能有效地减小电能变换装置引起的环境污染(噪声等)和电磁污染(EMI),为发展无公害电力电子产品提供了有效的方法和途径。

二、谐振软开关的工作原理,种类及特点

谐振软开关是八十年代提出并用于DC-DC变换器中[2]。它利用电路发生谐振时,电流或电压形成周期性地过零点,并使开关器件在在零电流或零电压条件下接通或切断,因此理论上它的开关损耗为零,避免了硬开关由于电压电流波形交叠而产生开通及关断损耗。

软开关包括软关断和软开通。按驱动信号的时序来分又可以分为零电压开通、零电压关断与零电流开通、零电流关断。各种软开关与硬开关的波形比较如下:

图1 软开关和硬开关的波形比较

图中零电流关断信号在t2或t2以后发出,零电压关断信号在t1发出。零电流开通信号在t2或t2以后发出,零电压开通信号在t1发出。

谐振软开关电路中的零电流和零电压条件是由辅助的谐振电路提供的,辅助电路一般由辅助谐振元件L和C和电力电子开关器件S构成。辅助谐振电路中的开关器件S也是在零电流或零电压条件下实现通断。

对于软开关逆变器来说,有两种拓朴结构:一是谐振发生在直流母线上,通过谐振使直流母线上的电流或电压过零点,提供给逆变桥一个零电流开关(ZCS)或零电压开关(ZVS)条件。二是谐振发生在逆变桥桥臂的每一个有源开关两端,通过谐振使得在每个开关需要切换的时候它两端的电压或电流过零点。

软开关技术实际应用中需要解决的主要关键问题:

谐振电路在谐振时所产生高电流应力和高电压应力;

(2)如果谐振电感处于主功率传输通道上时引起感性损耗;

(3)辅助谐振环节及其辅助器件的引入使得电路变得复杂,增加了电路控制的难度;

(4)将PWM技术和谐振软开关技术结合是一个关键问题。采用谐振过渡技术,即把谐振电感移出主功率通道,通过辅助开关控制谐振的发生和终止,使得逆变主开关在过渡的瞬间由谐振产生一个ZVS或ZCS[2]。

三、几种典型的谐振软开关变换器

利用谐振现象,使电子开关器件上电压或电流按正弦规律变化,以产生零电压关断或零电流开通的条件,采用这种技术以实现开关器件之间的转换的变换器称为谐振变换器。它有三种类型:

1、全谐振变换器:即谐振变换器(Resonant converters),实际上是负载谐振型变换器,按照谐振元件的谐振方式,分为串联谐振变换器(Series resonant converters, SRCs)和并联谐振变换器(Parallel resonant converters,PrcS)两类。

2、准谐振变换器(Quasi-reonant converters,QRCs):谐振元件参与能量变换的某一个阶段,而不是全程参与。由于正向和反向等电路参数不同,谐振振荡频率和电流幅值也不同,因此振荡不对称。一般情况下正向正弦半波大过负向正弦半波,所以称为准谐振。具有此特点的变换器称为准谐振变换器。准谐振变换器分为零电压开关准谐振变换器(Zero-voltage-switching Quasi-resonant converters,ZVS QRCs)和零电流开关准谐振变换器(Zero-current-switching Quasi-resonant converters,ZCS QRCs)。

3、多谐振变换器(Multi-resonant converters,MRCs):它和准谐振变换器一样,谐振元件参与能量变换的某一个阶段,而不是全程参与。不同之处是多谐振变换器的谐振回路和参数要均多于两个,因此称为多谐振变换器。

谐振变换器是一个调频系统,这是为了保持输出电压不随输入电压变化而变化,或者不随负载变化而变化,依靠调整谐振变换器开关器件的开关频率来实现。作为一个调频系统,不如PWM开关变换器那样容易控制,导电损耗增加,功率器件所受的电流与电压的应力较大,且随电路的Q值和负载变化而变化。此外变换器的输出靠改变开关器件的开关频率来实现,开关频率大范围变化使得干扰难以抑制,滤波器、变压器设计难以优化,而且当负载变化大时,变换电路不能达到零电压或零电流开关条件。

为了克服调频系统的缺点和充分发挥PWM的优点,出现了零开关—PWM变换器和零转换—PWM变换器等一批新颖的谐振变换器。

四、几种典型的谐振软开关变换器

1、零开关PWM变换器(Zero switching PWM converter)

零开关PWM变换器是在准谐振变换器的基础上,加入一个辅助开关管,来控制谐振元件的谐振过程,实现恒定频率控制,即实现PWM控制。这样,变换器已有电压过零(或电流过零)控制的软开关特点,又有PWM恒频调宽的特点。谐振网络中的电感是与主开关串联的。与准谐振变换器不同的是,谐振元件的谐振工作时间与开关周期相比很短,一般为开关周期的1/10~1/5。

零开关PWM变换器可分为零电压开关PWM变换器(Zero-voltage-switching PWM converters)和零电流开关PWM变换器(Zero-current-switching PWM converters)。

文献[3]提出了一种新颖的混合式全桥PWM变换器,它不但能在不增加导通损耗的情况下实现空载下ZVS条件,而且能使输入输出的滤波波形几乎为理想的,从而减少了输入输出的滤波装置。

2、 零转换PWM变换器(Zero transition converters)

零转换PWM变换器与零开关PWM变换器并无本质差别,不同之处是谐振网络与主电子开关并联。在开关转换期间,并联的谐振网络产生谐振以获得零开关条件。开关转换结束后,电路又恢复到正常的PWM工作方式。因此,零转换PWM变换器综合了硬开关PWM和谐振技术的优点,又克服了它们的缺点:

①采用PWM控制方式,实现恒定频率控制;

②辅助电路与主功率回路相并联,仅在开关管开关时工作,其他时候不工作,不需要处理很大的环流能量,从而减小了辅助电路的损耗;

③辅助电路的工作不会增加主开关管的电压和电流应力。

该类变换器可分为ZVT PWM变换器和ZCT PWM变换器,在中大功率的场合得到广泛应用。

参考文献

1.《软性开关逆变电路及其应用》。王聪 机械工业出版社 1993.

2. 明正锋,钟彦儒,宁耀斌。极谐振开关过渡三相PWM逆变器研究新进展。电源技术应用,2000(4):145-148

篇3

【关键词】电子技术 电力系统 应用发展

1 前言

随着人们生活水平的不断提高,整体经济水平的不断发展,电子设备与电力电子在现代电力系统中应用越来越广泛。但是电力等能源需求也越来越大,随着引起了能源危机与生活需求的矛盾。电力电子技术在整个能源开发中扮演着十分重要的角色,新型电力能源的研究与开发都离不开电力电子作为基础。因此,电子技术于电力系统的相互结合,不仅关系到电力能源的革新发展,对于社会的长足未来也都起到了关键作用。国内对于电力系统网络较早就展开了建设研究,至今也取得了斐然的成果与成熟的电力网络构架。

2 电子技术在现代电力系统中的应用

电力系统本身具有复杂性、专业性与各领域技术结合的综合性。经过多年的发展与融合,电子技术在各行各业都得到了广泛运用,也推动了电力能源的快速发展。对电力系统的性能与效率都起到了极大的促进作用。在电力系统中包含发电、配电、输电等各个关键环节,电子技术的深度结合都必不可少。随着电网的规模性能逐渐壮大高效,对电力电子技术也要求越来越高。通过优化完成电网变网的运行管理,在效率、精度、性能、质量等各方面指标都得到了更好的控制管理,对于电力系统的运营成本与难度都有效降低了。安全稳定的运行,使整个系统容错性增加,运行更趋于完善。

2.1 发电环节应用

现代电力系统作为一个复杂的综合系统,其发电环节技术成分含量较高,多个发电组与设备相结合,并且设备本身结构十分复杂。因此,相关的操作技术人员需要有过硬的专业技能知识,这样才能更好的完成电力设备中相关设计管理,运行维护等系列工作。发电环节中与电子技术的相互结合,对于发电系统整体的效率都能有很大的提升。励磁控制作为目前发电机控制的主流控制方法,主要通过品闸管整流电路完成设备的连接。具有较高的可靠性,并且系统整体控制结构简单,性价比较高,造价与系统性能均较为合理。静止励磁控制在对原有励磁机完成优化后,消除了惯性环节,系统稳定性与高效性能变得更为完备。对于系统的运行规律变换,一般结合电子变频设备,控制调节发电中机组的运用速度。使得电力功效得到提高,自身变化率也完成自动化控制,结合励磁控制,整体变得更加稳定高效,而且自身系统功率耗费也降低到了最低。其他电力领域也均有广泛参考,如风力水力发展等。由于发电设备电量使用不可转移改变,并耗电比较大,例如在风力发电中,为了消除不同风速变化导致的频差,其功率消耗高达整个用电的65%,电子变频器的出现很好的缓解了这一问题,通过有效地控制调节,能源消耗更低,大大降低了成本输入。

2.2 输电环节应用

电子电力技术的不断发展与提高,在电力系统中应用越来越广泛。电子元件的大量生产与应用,为现展提供更多的技术硬件支持与广阔的平台。在系统中的输电环节,电子器件的结合运用,一方面电力电网运用的可靠性得到了保证,电网稳定性也得到了相应提高,安全可靠的发展都展现电子技术在电力系统中的关键作用。在当前输电环节中,一般采用直流与轻型直流这两种较为常见输电模式,不仅能够增加输电的容量大小,并且能够更加灵活方便的控制调整。整个输出过程稳定可靠。这对于远距离的传输电力实现了较好的支持供应。其中,直流输电最大的优势还在于能够满足不同的电力输出要求,采取针对性的不同输电方式。随着技术的不断发展,柔流输电技术被研发并最近应用。这种融合了微电子、未处理、电力电子技术、自动化控制、通信交互等多种融合的技术平台,能够完成交流输电的适时控制,使整个电网达到长时的稳定状态,同时输电环节的输出成本也相应降低。柔流输电技术为电力系统提供了无功功率和感应,提高了输电质量与传输效率。

2.3 配电环节应用

在输电环节中,保证电能质量有效控制调节十分重要。在配电过程中,对频率、谐波、电压等指标有效控制,以此到达电能质量的标准,并且还需要考虑到干扰与瞬态波动的影响。在目前的电子应用中,一般是基于DFACTS电能质量调节装置进行控制。完成对电能质量的约束规范。由于柔流输出系统日趋成熟。作为简约版本的FACTS设备技术,DFACTS自身的工作原理、性能结构、功能指标均大同小异。由于电力电子期间的飞速发展,目前电气设备出现了供过于求的市场状态。DFACTS自身应用前景广阔,市场需求大,并且自身技术并不复杂,造价成本较低,更加容易被市场所接纳,整个设备产品将进入高速发展地势态。

目前一般采用电力通信技术为微波、无线扩频、电力载波、光纤通信等。除了数据语音、电信业务、自动化控制等,还有相应的业务保护,安全控制数据等。而电力通信的自动化与电力系统自动化相照应。现在大多已经满足了稳定、可靠、高效的优化通信。目前一般光纤采用OPGW与ADSS类型技术,能够与电力系统本身的线路资源相结合,避免产生频率资源、路由协调、兼容性之间的矛盾与冲突,自身具有较强的主动权,控制灵活。

3 结束语

由于技术的不断发展进步,对应的电子技术、电子设备、电子材料等,都在飞速发展。在电力系统建设中,作为主要组成的电力电子器件,也得到了相应的完善与优化。不断满足高要求的新型电子技术也不断呈现研发。同时,现代电力系统构建态势也呈现多元化,综合性。可以预测,基于目前的发展,未来较长一段时间中,电子技术在电力系统中依然扮演着重要作用,满足大规模电网改进建设。不断研究新技术,并加以改进应用。完善促进现代电力系统的健康发展育稳定高效建设,争取取得更大的科技进步。

参考文献

[1]张娜.电力电子技术的发展及应用探究[J].电子技术与软件工程 ,2015(03).

[2]于闯.浅析电力电子技术在电力系统中的应用[J].科技经济市场 ,2015(07).

[3]张文亮,汤广福,查鲲鹏,贺之渊.先进电力电子技术在智能电网中的应用[J].中国电机工程学报,2010(04).

作者简介

马妍红(1981-),女,山东省青岛市人。研究生学历。现青岛市技师学院讲师。研究方向为电子技术。

篇4

关键词:现代电厂 自动化技术 电力系统

中图分类号:TP29 文献标识码:A 文章编号:1007-9416(2013)11-0210-01

现代化的科技的高速发展让电力系统自动化技术拓宽了应用领域,它凭借了现代化的科学信息技术与网络电子技术对供电系统进行了监督控制,还能够将数据记录号,把记录好的数据运用网络传达到电力的控制监督部门的电脑上,让监控部门的工作员工能对供电系统的运转状况进行技术的分析,找到故障的原因,根据数据进行调整。自动化技术是一项非常复杂且综合性比较强的技术,它与信息技术、控制技术、电子技术、网络技术等多种理论技术有着不可分割的联系。现代电厂电力系统自动化技术的快速发展,为电力系统和电力行业提供了能源管理与环境质量问题的解决方案,并且还消除了现代化信息与自动化技术两者的矛盾。

1 现代电厂电力自动化系统概述

电厂电力系统的自动化通常是指电工进行的二次系统,也就是指电力系统的自动化采用了多种具有自动的控制、检测以及决策的功能装置,并且通过数据传输系统和信号系统对电力系统的全系统或者是局部系统以及各个元件进行远方或者是就地的自动的协调控制和监视调节,以此来确保电力系统能够安全的稳定的健康的运行。

2 现代电厂电力系统自动化技术的实际应用

2.1 电厂电网系统的自动化技术应用

电网系统的自动化技术的起源很早,它的应用同时也是现代化电网技术自动化的开端。电网系统的自动化技术主要有:电网的主要系统与运行的装置。它的最重要的作用就是能够对现代电网的运转进行调整、对现代电网的正常运转进行监控与对现代电网出现的事故进行分析和解决。

2.2 发电厂的自动化技术应用

发电厂的自动化技术的应用主要有:自动发电系统、自动电量的控制体系与动力设备的自动化系统。中国通常的发电厂是分为两种发电厂,一种是水电力发电厂;另一种是火电力发电厂。不管是水电力的发电方式还是火电火烧其他的别的发电手段,在自动化的技术系统中都能找到相同的地方,相比较来说,一般的水电厂的自动化系统的技术要高于火电厂。

2.3 变电站的系统自动化技术应用

变电站的系统自动化是包括现代化的信息技术、网络技术等,并通过监控、检测和保护等措施对变电站内的重要机械设备实行自动化。现在,随着计算机的监控技术融入到变电站的运行中,中国的变电站系统正向着自动化的方向发展着,并且要继续实行无人监控的工作方式。真正地实现机械设备自动化、自动监控、自动记录。

2.4 配电网自动化技术股应用

新型配电网综合受控端基于高速SCADA系统,可以实现电网信息的快速采集和信号的综合处理,并且大大减少了受控端的数量,从而使系统的规模得到简化。这种受控端不仅具有以往终端所具有的功能,还可以实时监测系统的潮流分布、电压情况、系统是否产生震荡、频率是否满足要求等,将这些信息传递给主控方,供进一步分析使用。同时,这些受控端之间还可以进行相互通信,进一步提高数据的精确程度。

3 现代电厂电力系统自动化技术的发展前景

3.1 现代电厂电力系统的综合自动化

现代电力系统的综合自动化就是通过对整体系统的优化方式作为基础,实现信息的资源共享,使自动化技术水平不断地提高,从而实现现代化电力系统的集成分布。并且今后的现代电力系统的自动化技术会这样继续发展,把传统的分散型等一些系统进行集成化,应用世界前沿的高端化的科学技术实现一个统一的信息综合系统。

3.2 现代电厂电力新型FA系统

新型的FA系统主要的思路是实现分布式电源,即根据不同的负荷就地提供合适的电源,减小线路传输的损耗,提高能量利用率。根据国家电网制订的未来发展方案,未来我国将把输配电系统分离,并在用户端设立电网提供者的信息,用户可以根据实时电价选择供电方。新型FA系统应用于配网自动化中也存在许多困难,主要有:分布式电源位置不确定,配网的运行方式多变,从而导致二次设备难以满足要求。

3.3 现代电厂电力信息一体化的配电网络

信息一体化是未来社会的发展趋势,配电网不是一个单独的部分,而是电力系统的一个重要的组成部分。在未来的发展中,配电网络要更多的考虑电力系统这个整体的重要信息,而不是单单关注配电网区域的信息。

4 结语

总之,智能技术在电力系统中的广泛应用大大的推动了现代电厂电力系统自动化的进程。我们相信随着人们不断的对各种智能控制的理论的研究,它们之间会更加的紧密联系,对今后电厂电力系统的发展起到更加重要的作用。

参考文献

篇5

关键词:电力 系统 自动化 技术 控制

中图分类号:F407文献标识码: A

自动化技术直接关系到电力系统的运行效率,电力自动化技术在电力调度系统、配电网系统和变电监控系统等方面发挥了很大的作用,不仅保证了系统运行的安全性、可靠性和稳定性,而且还增加了电力生产过程中的社会、经济效益,所以,在电力系统建设中,电力企业要不断应用和推广先进的计算机、网络和无线通信技术等先进的自动化设备,不断优化电网结构,增强电力系统各方面的运行能力,改善电网质量,满足人们的用电需求。

1 电力系统及其自动化的概述

(1)电力系统

电力系统是指在科学技术的推动下,将计算机网络技术融入到电力系统中,实现电脑自动化检测、远程控制、信息共享管理,把电力数据传输与电力系统的每个元件、局部系统或全部实行监控,保证电力系统的安全稳定运行,提高供电的可靠性。

(2)电力自动化的概述

电力自动化是一种将电子力学、信息、控制和互联网等技术融于一体的综合性技术。科学技术的进步,我国的电力自动化技术也有了很大程度的提高,在电力系统中有了广泛的应用。电力自动化系统的应用,不仅能够完善电力系统,还能够实现电力系统的自动化管理,提高生产效率,降低生产成本,对国民经济的快速发展起到积极的意义。

(3)电力自动化的发展进程

①电网调度技术的自动化

电网自动化技术的实现,是基于计算机控制技术和信息技术高速发展的基础上,有效的实现了电网运行过程中信息的收集、整理、显示等一系列过程,减轻了工作人员的工作量,保证了工作人员可以准确的掌握电网的数据信息,从而进行有效的指挥,提高了对突发事故的应急能力,对电力系统正常提供了重要的技术支持。

②变电站技术的自动化

变电站技术的自动化主要是将计算机技术与通信技术相结合,将电力系统中正常运行的数据信息通过有效处理,再将整合后的信息利用,实现了变电站技术的智能信息功能,加强了电力系统内部的优化配置,达到对电力系统的有效控制,对发生的问题进行及时处理。

③配电网技术的自动化

城乡配电网改造是实现我国城市化进程的重要手段之一。配电网技术的应用,很大程度上加快了城乡配电网的改造,实现了电网的发展,从而推动了电力行业的快速健康发展。

(4)电力自动化技术的作用

电力自动化技术通过有效的技术手段将众多领域的先进技术相结合,有效的实现了对电力系统的实时监控和远程,实现了电力工作人员对电力设备运行过程的有效控制,对提高电力系统工作人员的工作效率,降低企业的运营和维护成本有着积极的意义。

2 电力自动化技术的应用现状

电力自动化技术在电力系统的应用主要体现在电力调度的自动化、配电网的自动化和变电站的自动化这几方面。其中,电力自动化技术在变电站应用的基本原理是充分利用先进的计算机技术、通信技术和通讯技术,结合变电站的实际情况进行技术创新和改进,利用整个变电站资源,采用先进的自动化设备不断完善变电站自动化系统,增加变电站通信系统实时通信数据的收集、处理和传输速率,提高变电站系统和设备的运行效率,从而更好地监控变电站电力系统的运行状态,确保变电站电力系统运行的安全性和可靠性,不断促进变电站系统向数字化、集约化、自动化和智能化的方向发展。而配电网自动化是指充分利用先进的计算机技术、网络技术和通信技术等,实现配电网系统的自动化,提高配电网系统数据的传输速率;同时,结合变电站的功能、特点,采用自动化技术和自动化设备完成变电站系统资源的整合和技术创新。这不仅可以降低人工劳动强度,增加变电站通信系统实时通信数据的容量和传输速率,还可以实现对变电站电力自动化系统和自动化设备的全面监控,以促进变电站系统运行的稳定性、安全性和可靠性。

3 电力系统中电力自动化技术的应用分析

3.1 在电力调度系统中的应用

随着生活水平的提高,电力需求也在不断增加,对电力调度系统的实时监控和数据采集的及时性要求也越来越高。在改进和完善电力调度系统时,采用先进的信息技术、无线通信技术和传动技术以及自动化设备等,可以极大地提高电力调度系统运行的效率。通过电力调度自动化系统,可以使电力系统在遥测功能、遥信功能的基础上转化为无人值班监控系统,以便电力调度工作人员运用计算机、网络和先进的软件系统清晰、准确地了解电力系统和设备运行过程中电压、电流、功率和频率的变化情况,从而可以有针对性采取保护措施和预防措施,有效防止安全事故的发生,保证电力调度系统运行的安全性和可靠性,推进电力调度系统数字化、智能化和集约化发展,不断提高电力管理水平。

3.2 在配电网系统中的应用

配电网自动化发展是我国电网建设的重要方向,也是我国电力市场发展和社会进步的需要。在电网改造与规划中大力推广电力自动化技术是实现配电网自动化的重要基础。利用先进的计算机技术、网络技术和无线通信技术以及电力自动化设备,可以实现对配电网系统运行状态的自动、全面监控和有效控制,在配电网系统监控工作中达到人机合一的状态。这些技术和设备的使用不仅降低了工作人员的劳动强度,节约了系统运行管理和维护的成本,还极大地提高了电网的运行效率和社会经济效益。例如,可以采用输电线材料减少输电线路的损耗,同时,工作人员可以通过计算机系统、网络技术和自动化设备迅速找出故障发生的准确位置,及时进行检修,以确保电网系统的正常运行。另外,为了有效降低配电网电能的消耗,采取无功补偿技术增加电网功率因素,促进配电网结构的优化和智能化,不断促进配电网系统自动化、智能化和数字化的发展。

3.3 在变电监控系统中的应用

变电站供电系统是电力系统运行的重要组成部分,也是保证电力系统连续供电的关键环节。随着电力需求的不断增加,变电站系统自动化也越来越重要。采用先进的电力自动化技术实现变电站系统的自动化,尤其是基于 IEC61850 的变电站自动化系统投入使用,可以大大提高变电站系统、一次设备和二次设备的运行效率。采用无功自动化补偿装置和无功补偿技术,可以确保变电站系统、设备的电压、电流、功率和频率的稳定性。另外,电力自动化技术被广泛应用在变电站电气系统建设中,其中,采用远程监控技术可以提升电力系统安全、稳定运行的能力,可以有效节约电气监控系统建设和应用的成本,从而促进电力系统运行的安全性、可靠性和稳定性,提高电力系统供电的连续性和电网的质量。另外,还可以采用现场监控技术提高变电站电气监控系统在实际工作中监控的灵活性,以保证电力系统安全、可靠、稳定运行。

3.4电气自动化补偿技术

电力系统工程中用的传统抵低压补偿技术存在一定的缺陷,在应用单相负荷的时候,会导致三相负荷发生不平衡现象。在严重的情况下,甚至会造成补偿不足或者补偿过多的问题,影响电力设备的正常运行。一些电力系统工程应用传统的补偿技术,不重视电压的平衡关系,甚至不具备配电监测的功能。但是,电气自动化补偿技术属于一种新的补偿技术,结合了固定补偿和动态补偿、三种共补和分相补偿。从根本上改善了传统补偿技术中的不足,可以适应电力系统中的负载变化。

4 结语

随着计算机、网络和无线通信技术的发展和广泛应用,电力系统自动化水平不断提高,采用电力自动化技术是电力市场发展和增加电力企业经济效益的必经之路。我们需要不断地进行技术创新,结合数字化技术和智能化技术,不断提升电力系统的运行效率和社会经济效益,进一步推动社会经济的发展。

参考文献

篇6

[关键词]事业单位;档案管理;电子信息

[中图分类号]G27

[文献标识码]A

[文章编号]1672-5158(2013)05-0020-01

一、我国事业单位档案管理电子信息技术化的现状

事业单位档案这一概念是随着市场经济的发展,事业单位信息资源的多元化而产生的,事业单位档案的提出有着重要的意义。事业单位档案在现代事业单位制度下不应该仅仅被看作死气沉沉的历史记录,也不应该仅仅看作是科技档案的集合,而应给予事业单位档案一种合理的定位。事业单位档案与各种经济信息、情报资源一起,形成的信息资源在事业单位的项目选择、运营模式选择、市场定位、营销策略的制订上都起着参考和决策作用。

我国经济正由计划经济向市场经济转变的过程。目前,事业单位的档案管理工作正处于一个由改革、创新、转型的重要时期,既面临着机遇也同时充满着挑战。我国事业单位的档案管理管理工作由计划经济时代建立的肖案制度向现代社会档案制度转变,随着改革开放以后各项事业开始蓬勃发展,我国事业单位的档案工作也发生了变化,由以前计划经济时的档案管理制度向新的经济条件下档案管理制度转变。

目前我国的综合性档案馆大多是馆藏,内容庞杂案卷数量繁多且时间跨度长,多年来一直处于封闭式的管理之中,档案管理仅以案卷不丢失为原则并以保管为目的。再加上每个历史时期档案的整理质量要求以及不同整理的规格不统一等情况的出现,由此便形成了档案基础普遍较差的局面。目前大部分案卷缺少卷内目录以至于部分未被案卷标题涵盖的内容永远无法检索而难以利用,案卷厚薄不一有的一、二页纸一文一卷有的五六百页纸一类一卷,档号不规范没有目录号一卷多册的现象较多,许多案卷未标页码如果使用中掉页很难发现,案卷中标题不规范,虽有标题但不能反映主题内容或标题缺少基本要素,有些案卷甚至没有标题。总之综合性档案馆建馆时间越长馆藏量越大的存在的类似问题就越严重。随着政府和事业单位管理体制的改革,事业单位不再是政府的附属物,而成为自主经营、自负盈亏、自我发展的独立经济实体。事业单位集团和二级事业单位的关系中原来的上下级关系,逐步改变成了以资产为纽带的新型关系,一些主管事业单位的行政管理部门已经撤销或转换职能并入国家宏观管理经济部门之中,这就动摇了政府管理事业单位档案工作的管理体制。从以上情况来看我国综合性档案馆目前还未具备实现计算机管理的充分条件需要尽快地、科学地解决这些问题。

从目前档案管理电子信息化的情况来看,我国的档案软件没有信息管理功能且缺乏通用性,各自开发的软件不能互用,并且没有一个既适用于文件检索又可用于档案信息管理的计算机管理软件系统,档案部门使用的计算机型号不一、规格各异。由于不能互调,就不能快捷地出版信息编辑成果,不能利用电脑完成信息管理工作,这大大制约了档案信息电子化的进程。档案信息管理电子化的前提是基础工作的规范化和标准化,但目前档案自动化工作尚无统一标准,仅着眼于某一个馆或某个专业系统,无法全面实施、推广统一标准,案卷质量不高,特别是各类档案的著录细则相容性不强,系统软件移植性差。另外,要实现档案信息电子化,首先要有现代化的人,管理人员要有较高的知识层次和先进技术水平,不能仅仅满足于一般的计算机操作。由于许多档案部门缺乏现代高技术人才,所以尽管引进了现代化设备,但是仍不能充分发挥作用。最重要的是在我国至今还没有建立一个达到数据交换的机读目录档案系统,档案信息系统和网络建设形式层次不一、各行其是,规范性、开发性、服务性、共享性较差,不能适应档案信息资源共享的要求。

二、现代事业单位档案管理电子信息技术化问题的解决对策

国家档案行政管理部门作为政府管理事业单位档案工作的职能部门,首先应打破固有的直接管理事业单位档案工作的思想观念和规章制度束缚。与纸质文件比较,电子文件需要借助现代办公设备才能被阅读利用起来,已经不再具有纸质文件的直观性特点,是可共享的,也不再受时间和距离的影响,可以直接由计算机等现代办公设备迅速地处理和传递。

为了将事业单位档案管理电子信息技术化存在的问题彻底解决,首先应实行标准化、规范化的工作程序和方法,提高档案管理基础工作水平。其中,全面普查案卷,去糟取精是实现档案管理标准化、规范化的第一步工作,首先要剔除无用的文件才能避免今后实行计算机管理时出现重复与低效率的情况。著录是实行计算机管理的一项重要基础工作也是直接影响输入计算机数据与信息的准确性的一项重要的前期工作,所以就应结合事业单位本身的图书馆实行实际的规范著录工作。

其次,在信息社会之中,电子文件是信息记录的主要形式。网络之中的电子文件数量十分巨大,需要人们加以科学地管理,才能便于人们的利用。电子文件的检索应所遵循的是方便利用和便于文件保密的原则,只有做到科学分类,电子文件才能实现查找便捷的功能。

最后,要加快数据准备推进事业单位档案现代化管理进程。在事业单位档案管理基础工作的各个环节中计算机数据的准备工作是+大工程,档案管理的一个重要目的就是要使档案为社会所用,而实现计算机管理档案的目的是为了提高档案的利用率。应分清轻重缓急,循序渐进,在推进计算机管理的过程中应先根据各全宗的重要程度、利用率高低、是否开放和价值大小对所有全宗进行排队,将社会利用率较高的档案进行优先加工整理。对于那些案卷基础较好又具备全引目录的案卷在著录时可以直接在全引目录上面分类标引,这样分门别类地充分利用档案目录的原有基础可以减少著录环节大大地提高著录速度。

三、结束语

作为事业单位信息化工程一部分的档案电子信息化建设绝对不能脱离实际盲目推进,必须与事业单位的信息化建设和经济基础协调,与信息技术相协调,与事业单位的信息需求相协调,与全国信息化工程相协调。随着社会信息化时代的到来,实现事业单位的信息化是事业单位发展所面临的一个巨大挑战,而这一切最终的源头都是原自于完整的档案资料。事业单位要发展,要进步,要生存离不开档案,事业单位也只有管好,理好本单位的档案资源,才能更好的为事业单位的建设服务,才能使得事业单位在激烈的市场竞争中表现不凡的魅力。

近年来我国在推进档案管理现代化的进程中通过实行标准化、规范化的工作提高了档案管理基础工作水平,已初步建成了计算机检索体系为实行计算机管理打下了扎实的基础。总之,事业单位档案行政管理部门应综合考虑各方面的因素统筹协调,积极联合其他政府部门、行业协会、工商联、商会等各个方面的力量加强论证和宣传,培育事业单位档案信息化建设的氖围,把阻力转化为开拓创新的能力和动力。事业单位档案管理电子信息技术化是一个长期而又复杂的工程,不可能―蹴而就、一劳永逸,必须在充分论证与准备的基础上缓步推进。

参考文献

篇7

作为传统电力行业与信息产业结合桥梁的现代电子技术随着电力技术的发展、信息技术的进步,能极大地推动电力系统向现代化、自动化发展的转变,意义重大,为此,文章主要分析现代电子技术在电力系统中的应用。

关键词:

现代电子技术;电力系统;应用

1现代电子技术概述

作为用于电力领域内的新兴电子技术的现代电力电子技术,经过多年的发展,已经广泛应用于电能质量控制、新能源开发、民用及传统设备发行等领域内,该技术以功率半导体器件、电路技术、计算机技术、现代控制技术为技术平台,呈现出全控化、集成化、高频化和高效率化等特点及优势,为电力系统的自动化、智能化、机电一体化的实现奠定了基础,并发挥着重要作用。一方面,提高电能适用效率。根据相关研究表明,利用现代电子技术能优化10%~40%的电能[1],且不影响电力系统的正常工作,进一步促进了电能资源的优化及结构的合理,并在成为节能减排等政策及项目主要推广的一项技术。另一方面,推动电力系统及行业的转型发展。随着电力行业的发展,现代技术的进步,传统的电力系统及行业只有积极应用现代技术,转变发展方式,才能促进其持续健康发展,而现代电力技术的应用能促进其转型发展的实现:(1)促进电力系统及产业的升级改造。为了更好地利用计算机等技术保障电力系统的安全稳定性,通过采用现代电子技术处理和改造机电设备,建立信息技术与机电设备结合的桥梁,进而为电力系统的自动化、机电一体化等的发展奠定基础。(2)丰富电力系统的机电设备的功能。利用现代电子技术的高频化和变频化技术,打破传统电力系统机电设备的工频率的不足,缩小机电设备体积的同时,提高其高频化和变频化技术,降低甚至避免噪音,提高响应速度和电力系统运行效率。同时,推动电力系统的职能化发展。自动化、智能化、机电一体化是电力系统及行业在知识经济时展的必然要求,而现代电子技术的应用,通过将微电子技术、电力电子技术、信息处理等有机的结合并应用到包括机电设备、电网等电力系统各环节工作的运行中,不仅是电力系统及行业创新的发展模式,也极大的推动了其向智能化、自动化等的过渡发展。(3)完善管理,提高效益。现代电子技术推动电力系统及行业的转型发展,提高机电设备及系统整体工作效益,降低能源浪费,在很大程度上控制了成本,提高了运行的安全性,有利于经济和社会等效益的实现。

2现代电子技术在电力系统中的应用分析

现代电子技术凭借着技术优势,进而能促进电力系统的能源利用效率,完善运营及管理,降低成本,增加经济效益,已经广泛的应用到电力系统的各个环节,现主要根据电力系统的运行结构进行如下介绍。

2.1现代电子技术在电力系统发电环节的应用

电力系统的发电主要依靠各种发电机组及设备,而此环节对现代电子技术的运用主要是为了进一步检测和保证发电机组及设备的功能及质量,适当的完善,改善发电机组及设备的工作效率,其应用主要体现在静止励磁技术和变速恒频励磁技术的运用上:(1)静止励磁控制技术。励磁机、静止励磁技术和变速恒频励磁技术是励磁技术发展的3个阶段,目前静止励磁技术在各大型发电机组中的运用最广,并过渡到微机励磁和数字技术自动化调节励磁电流等发展上,主要利用晶闸管整流自并励方式,采用可控硅整流元件代替直流励磁机及其换向器等来实现,能在保障输出频率的同时,代替和省略励磁机在励磁控制的操作,优化流程和结构,减少了外界干扰和工作量,提高了调节的速率,降低了成本,而且效果更稳定,操作更便捷,发电机组及设备的质量控制更容易掌握和调整。(2)变速恒频励磁。电厂发电机组对变速恒频励磁的应用需要根据不同类型的发电形式来分析,对于水力发电机组及设备而言,其水头压力和流量直接决定发电功率,并有水头的变化幅度较大,机组的最佳转速变随之发生变化的关系,而风力发电机组的有效功率与风速的三次方成正比,风车捕捉最大风能的转速随风速而变化。鉴于此,为了可以利用变速恒频励磁技术调整转子励磁电流的频率和输出频率恒定,确保电流频率与转速的一致,进而获得发电机组及设备的最大有效功率。(3)变频调速器。随着现代电子技术的进步和完善,变频调速不仅技术日趋完善且应用更为广泛,尤其是风机水泵上。根据相关数据显示现阶段,发电厂的厂用电率平均为8%,风机水泵耗电量约占火电设备总耗电量的65%,严重影响了发电机组及系统的效率,且增加了成本,而利用变频调速技术,例如最为常用的低压变频器(主要用于中小容量风机水泵及压缩机)、高压变频器(主要用于中大容量风机水泵及压缩机),利用自动变频降低风机水泵的能量损耗,减少能量耗损,提高节能,控制成本,发挥发电机组及系统的最大效率。需要注意的是目前低压变频器及其技术相对成熟,而高压大容量变频器发展相对缓慢,需要投入更多的精力加以研发。

2.2现代电子技术在电力系统输电环节的应用

现代电子技术在电力系统输电环节的运用,尤其是高压输电系统,极大地推动了电力系统输电的变革,具体如下:(1)直流输电技术。随着现代电子技术的发展进步,晶闸管的被发明和应用,利用晶闸管换流阀进行直流电的输送在很大程度上减少了交直转换变压器的应用,并降低了成本,提高了电能效率,随后,GTO,IGBT等可操作电力输送控制器等层出不穷,轻型直流输电(主要利用脉宽调制技术)和高压直流输电等技术不断完善,进一步实现无交流电源的负荷点送电,并表现出输电容量大、稳定性好、易于控制与调节、更加灵活等特点,且能很好的适用于海底电缆输电等复杂地质及自然环境条件下的输电工程,另外,还能满足远距离及大容量输电系统的要求。(2)柔流输电技术。柔流输电技术是指电力电子技术与现代控制技术结合来改造传统交流电力系统,并通过将电力电子控制装置安置在输电线路的重要部位来加强对发电-输电系统的电压和相位以及对电力系统电压、参数(如线路阻抗)、相位角、功率潮流等的连续、快速、精确、有效地控制和调节,进而实现稳定电压、控制电流、抑制故障、抑制谐波、暂态稳定、无功补偿等功能,从而大幅度提高输电线路输送能力和提高电力系统稳定水平,降低输电损耗,是目前交流电研究的重点。其中,采用的柔流输电控制器包括有静止无功补偿器、静止调相机、静止快速励磁器、串联补偿器等。均能进一步增强交流输电或电网的运行性能,提高电力系统整体运行的安全及稳定。

2.3现代电子技术在电力系统配电环节的应用

现代电子电力技术用于电力系统的配电环节中主要致力于解决电能质量和供电可靠性的如何提高的难题,且确保能降低各种瞬态的波动及干扰,并很好的满足电能波动对谐波、电压和频率的要求,现阶段,主要依靠用户电力技术(DFACTS技术)的抑制负荷所产生的无功、谐波、不对称、闪变、不平衡等功能的发挥来实现。同时,可以利用DFACTS技术设备产品,尤其是价格较低廉的电力电子变压器等电力电子器件代替传统的工频配电系统变压器,在保障电能质量控制的同时,避免因传统变压器大而笨重、维护困难、副方电压不能恒定维持、波形畸变而导致谐波的出现以及负载波动对网侧产生不利影响消极因素,并在配电网的控制、电能质量和可靠性的改善等方面有更好的表现。

2.4现代电子技术在电力系统绿色节能中的应用

一方面,现代电力电子技术在电力系统绿色节能中的应用主要体现在变负荷电动机的调速技术和电动机本身技术的应用,在其运用中,保证电力系统生产更大有用功效电能的同时极大的促进了电力系统的节能减耗,且已在冶金、矿山、风机以及社会生活中得到应用。以国外常用的风机、水泵等发电机组及设备利用变频调速技术来改善和控制风、水等流量,提高有效电能的生产,降低消耗,节能,且表现出较高的有效率和精度、调速范围广、可以连续无级调速的优势,有研究证明其省电量高达30%,但需要加强在其应用中产生的高次谐波对电网有污染及投入成本较高的不足。另一方面,还能很好的减少无功损耗,提高功率因数。在电气设备中,作为感性负载的变压器和交流通渠道异步电动机等设备运行过程中既要消耗有功功率,又要消耗无功功率,且这种无功电源与其他有功电源同样是维持电力系统,保障电能质量的重要因素,不可或缺,而利用现代电力电子技术和适时增加无功补偿电气设备等措施的实施能很好的维持电力系统的平衡,降低和避免因电压降低或电压崩溃等导致的损坏设备、降低功率因数,甚至大范围停电及电力系统盘崩溃等严重后果。

3结语

作为发展前景广阔的现代电力电子技术,能提高发电供电和配电的可靠性,并促进电力系统的节能减排,意义重大。随着新技术和新工艺的不断发展,电力电子技术在电力系统中应用必将越来越广泛,最终迎来发展的黄金阶段。

作者:任大新 张静安 单位:河南机电高等专科学校

[参考文献]

[1]万鑫.电力电子技术在电力系统中的应用及发展[J].电子世界,2012(3):69-71.

[2]韦林,廖慧昕,易干洪.电力电子技术在电力系统中的应用研究[J].数字技术与应用,2012(10):97-98.

[3]周永朝,李梦华.现代电力电子技术在电力系统中的应用分析[J].科技致富向导,2011(36):413,357.

[4]张铭.电力电子技术在电力系统中的应用浅析[J].内蒙古石油化工,2010(8):176-177.

篇8

随着现代社会的不断发展,现代电力系统技术也取得了不断地突破与革新。其中电力电子技术发挥了重要的作用,也在电力系统中得到的更加深入而又广泛的应用。通过将创新的电子技术、电子设备与研发的电子材料相结合,大大加快了现代电力建设事业的发展。本文主要针对电子技术子在现代电力系统中的应用与发展进行了相关探讨,并对未来应用作出展望。

关键词:

电子技术;电力系统;应用发展

1前言

随着人们生活水平的不断提高,整体经济水平的不断发展,电子设备与电力电子在现代电力系统中应用越来越广泛。但是电力等能源需求也越来越大,随着引起了能源危机与生活需求的矛盾。电力电子技术在整个能源开发中扮演着十分重要的角色,新型电力能源的研究与开发都离不开电力电子作为基础。因此,电子技术于电力系统的相互结合,不仅关系到电力能源的革新发展,对于社会的长足未来也都起到了关键作用。国内对于电力系统网络较早就展开了建设研究,至今也取得了斐然的成果与成熟的电力网络构架。

2电子技术在现代电力系统中的应用

电力系统本身具有复杂性、专业性与各领域技术结合的综合性。经过多年的发展与融合,电子技术在各行各业都得到了广泛运用,也推动了电力能源的快速发展。对电力系统的性能与效率都起到了极大的促进作用。在电力系统中包含发电、配电、输电等各个关键环节,电子技术的深度结合都必不可少。随着电网的规模性能逐渐壮大高效,对电力电子技术也要求越来越高。通过优化完成电网变网的运行管理,在效率、精度、性能、质量等各方面指标都得到了更好的控制管理,对于电力系统的运营成本与难度都有效降低了。安全稳定的运行,使整个系统容错性增加,运行更趋于完善。

2.1发电环节应用现代电力系统作为一个复杂的综合系统,其发电环节技术成分含量较高,多个发电组与设备相结合,并且设备本身结构十分复杂。因此,相关的操作技术人员需要有过硬的专业技能知识,这样才能更好的完成电力设备中相关设计管理,运行维护等系列工作。发电环节中与电子技术的相互结合,对于发电系统整体的效率都能有很大的提升。励磁控制作为目前发电机控制的主流控制方法,主要通过品闸管整流电路完成设备的连接。具有较高的可靠性,并且系统整体控制结构简单,性价比较高,造价与系统性能均较为合理。静止励磁控制在对原有励磁机完成优化后,消除了惯性环节,系统稳定性与高效性能变得更为完备。对于系统的运行规律变换,一般结合电子变频设备,控制调节发电中机组的运用速度。使得电力功效得到提高,自身变化率也完成自动化控制,结合励磁控制,整体变得更加稳定高效,而且自身系统功率耗费也降低到了最低。其他电力领域也均有广泛参考,如风力水力发展等。由于发电设备电量使用不可转移改变,并耗电比较大,例如在风力发电中,为了消除不同风速变化导致的频差,其功率消耗高达整个用电的65%,电子变频器的出现很好的缓解了这一问题,通过有效地控制调节,能源消耗更低,大大降低了成本输入。

2.2输电环节应用电子电力技术的不断发展与提高,在电力系统中应用越来越广泛。电子元件的大量生产与应用,为现展提供更多的技术硬件支持与广阔的平台。在系统中的输电环节,电子器件的结合运用,一方面电力电网运用的可靠性得到了保证,电网稳定性也得到了相应提高,安全可靠的发展都展现电子技术在电力系统中的关键作用。在当前输电环节中,一般采用直流与轻型直流这两种较为常见输电模式,不仅能够增加输电的容量大小,并且能够更加灵活方便的控制调整。整个输出过程稳定可靠。这对于远距离的传输电力实现了较好的支持供应。其中,直流输电最大的优势还在于能够满足不同的电力输出要求,采取针对性的不同输电方式。随着技术的不断发展,柔流输电技术被研发并最近应用。这种融合了微电子、未处理、电力电子技术、自动化控制、通信交互等多种融合的技术平台,能够完成交流输电的适时控制,使整个电网达到长时的稳定状态,同时输电环节的输出成本也相应降低。柔流输电技术为电力系统提供了无功功率和感应,提高了输电质量与传输效率。

2.3配电环节应用在输电环节中,保证电能质量有效控制调节十分重要。在配电过程中,对频率、谐波、电压等指标有效控制,以此到达电能质量的标准,并且还需要考虑到干扰与瞬态波动的影响。在目前的电子应用中,一般是基于DFACTS电能质量调节装置进行控制。完成对电能质量的约束规范。由于柔流输出系统日趋成熟。作为简约版本的FACTS设备技术,DFACTS自身的工作原理、性能结构、功能指标均大同小异。由于电力电子期间的飞速发展,目前电气设备出现了供过于求的市场状态。DFACTS自身应用前景广阔,市场需求大,并且自身技术并不复杂,造价成本较低,更加容易被市场所接纳,整个设备产品将进入高速发展地势态。目前一般采用电力通信技术为微波、无线扩频、电力载波、光纤通信等。除了数据语音、电信业务、自动化控制等,还有相应的业务保护,安全控制数据等。而电力通信的自动化与电力系统自动化相照应。现在大多已经满足了稳定、可靠、高效的优化通信。目前一般光纤采用OPGW与ADSS类型技术,能够与电力系统本身的线路资源相结合,避免产生频率资源、路由协调、兼容性之间的矛盾与冲突,自身具有较强的主动权,控制灵活。

3结束语

由于技术的不断发展进步,对应的电子技术、电子设备、电子材料等,都在飞速发展。在电力系统建设中,作为主要组成的电力电子器件,也得到了相应的完善与优化。不断满足高要求的新型电子技术也不断呈现研发。同时,现代电力系统构建态势也呈现多元化,综合性。可以预测,基于目前的发展,未来较长一段时间中,电子技术在电力系统中依然扮演着重要作用,满足大规模电网改进建设。不断研究新技术,并加以改进应用。完善促进现代电力系统的健康发展育稳定高效建设,争取取得更大的科技进步。

参考文献:

[1]张娜.电力电子技术的发展及应用探究[J].电子技术与软件工程,2015(03).

[2]于闯.浅析电力电子技术在电力系统中的应用[J].科技经济市场,2015(07).

篇9

自本世纪50年代末第一只晶闸管问世以来,电力电子技术开始登上现代电气传动的舞台,以此为基础开发的可控硅整流装置,是电气传动领域的一次革命,使电能的变换和控制成为现实,这标志着电力电子的诞生。70年代出现了第一代电力电子器件,随着电力电子技术理论研究和制造工艺水平的不断提高,先后研制出GTR、GTO,功率MOSFET等自关断全控型第二代电力电子器件,而以绝缘栅双极晶体管(IGBT)为代表的第三代电力电子器件,开始向高电压高频率、响应快、低损耗方向发展。而进入90年代电力电子器件正朝着复合化、标准模块化、智能化、功率集成的方向发展。各种电力电子新器件不断涌现,为我们带来了极大的便利。它的应用范围已从传统的工业、交通、电力等部门,扩大到信息通信、家用电器以至宇宙开发等领域。事实上,电力电子技术的发展已不局限于高电压大电流的工业范畴,当你开车、乘电梯、使用计算机、打开空调、用微波炉、使用电冰箱、用手机、看电视、听音乐时,都离不开电力电子技术,为适应21世纪科技发展对人才培养的要求,培养出“宽口径、厚基础、强能力、高素质”的人才,教学改革势在必行。

二、教学内容与教学体系的改革

我院教学选用上海理工大学莫正康教授编著的《电力电子应用技术》,它包括电力电子器件制造技术与应用电力电子器件组成电路、装置和系统的技术,是以功率半导体开关器件为基础,对电能进行控制、变换与处理,成为弱电控制强电的纽带,是电气工程与自动化专业不可缺少的一门专业基础课。参考教材采用西安交通大学王兆安和黄俊两位教授主编的《电力电子技术》,结合教育技术发展的新形式与新要求,选用华中科技大学陈坚教授编著的《电力电子学———电力电子变换和控制技术》,上述三部著作的作者都是电力电子领域的知名学者和专家,在各自擅长的专业方向上有着深厚的知识积累,其著作各有所长,互有偏重。

1.教学内容的精选。本教材紧紧围绕电力电子器件的工程应用,重点讲授了IG-BT、电力MOSFET等全控型电力电子器件,AC/DC、DC/DC、DC/AC和AC/AC四大类基本变流电路,以及PWM控制技术,有利于学生把握学科概貌。参考教材在软件开关技术的基本知识DC/AC变换器以及电力补偿与控制等方面各有侧重,有利于教师针对不同的专业方向组织教学内容,为学生打下宽厚的专业基础。

2.基本设计方法与工程实际相结合。电力电子技术是一门实用性很强的技术。教材结合工程实际介绍了许多电力电子电路与电力电子装置,在讲解基本原理和设计方法时,反映出作者丰富的工程实践经历、科学研究水平和教学经验。

3.加强对学生的自学和思维能力的培养。几部教材都是电力电子领域的经典之作,教材中安排了许多具有工程背景的例题和习题,对学生今后的工作具有现实指导意义。在讲授本教材的基础上,指导学生阅读和使用参考教材,对提高教学质量、增强学生主动学习性、培养学生思考问题和解决问题的能力有作积极作用。

三、教学方法的改革

《电力电子应用技术》涉及高等数学、电工基础、电力技术、电力拖动等知识。它具有电路图与电路分析多、波形图与波形分析多的特点。是电气工程专业中的主干教材。我们采用:

1.抓住教学重点、互动教学。传统教学中教师的讲课往往追求讲得细,讲得透,面面俱到,滴水不漏,可以说教师将几乎所有问题都讲到了,精讲才是问题的关键。教师在讲授典型电路时应抓住电力电子器件在电路中导通与截止的变化过程,从波形分析中让学生理解电路的工作情况,同时应注意培养读图与分析问题的培养。要把学生作为教育的中心,使学生在学习的整个过程中保持主动性,启发式教育的核心,就是要培养学生独立思考和创新思维,因此除了精讲以外,选则部分内容留给学生自学然后开展课堂讨论,这种教学互动式的课堂讨论教学方法是积极有效和切实可行的,它有利于帮助学生克服依赖性,培养和发展自学能力和思维能力,要给学生以恰到好处、画龙点睛般的点拨和启迪,这就要求教师必须具备渊博的知识,在深度和广度上远比课本多得多,才能让学生接受到更多的新知识,才能不断激发学生的学习兴趣,从而提高教学质量。

2.采用多媒体技术实现教学现代化。传统的教学是单一黑板、粉笔的课堂教学模式,画电路图、波形图和书写推导公式实在太浪费时间。随着科学技术的发展,教学手段现代化是教育发展的必然结果。我院先后自行开发出可控整流电路工作原理与仿真CAI教学软件,以及电力电子电路辅助教学课件。多媒体教学手段的应用,把教学内容直观、形象、生动地呈现在学生面前,使得学生更易于理解、接受和掌握课程的重点内容,提高课堂教学效果,激发了学生学习的兴趣,提高了学生分析问题与解决问题的能力。

篇10

【关键词】 电力电子;应用;趋势

一、电力电子技术应用概况

1.用电领域中的电力电子技术。(1)电动机的优化运行。全世界的用电量中约有60%左右是通过电动机来消耗的。采用计算机―电力电子技术结合的智能变频控制技术,使电动机经常处于高效状态,可以节约大量电能,具有巨大的效益。(2)高能量密度的电源应用。电化学电源广泛应用在作为国民经济的铜、铝、锌、镍等有色金属以及氯碱等电解产业中;体积小、重量轻、效率高的各种开关电源应用也是十分广泛;新世纪中,随着电力电子技术的发展,变频电源应用也日益广泛;还有不间断电源(UPS)、稳压稳流电源、高精度洁净电源等特种电源,采用电力电子技术后,各方面指标均大大改善。

2.信息领域中的电力电子技术。电力电子技术为信息技术提供先进的电源和运动控制系统,日益成为信息产品中不可缺少的一部分。在信息产品的主电路中,正在用MOS场效应管取代双极晶体管来完成各种变换,其用量越来越多。FAX机、计算机、VCD、DVD等许多整机中都装备着多种电动机。尤其在各种打印机中,离开对电动机运动的高精度控制,其打印效果是不可想象。信息产品和其他产品中用VDMOS、IGBT做无触点开关的市场更大,程控交换机的每条线都至少用1个VDMOS管。为此,我国目前每年要进口几千万只。

3.发电领域中的电力电子技术。(1)发电机的直流励磁。常规发电机中励磁的建立已经由传统的直流磁励机转变为由中频交流励磁机加电力电子整流的方法,并已取得良好的经济效益,可靠性较高。(2)水轮发电机的变频励磁。发电频率取决于发电机的转速,采用了电力电子技术后,将水轮发电机直流励磁转变为低频交流变频励磁。当水流量减少时,提高励磁频率,可以把发电频率补偿到额定,延长水轮发电机的发电周期,解决了水力发电中发电机工作时间受季节性水流量影响而导致的频率无法调节、浪费较多水能的问题。这对大型水力发电设施来说,可带来巨大的经济效益。(3)环保型能源发电。利用太阳能、风能、潮汐能、地热能等新能源发电,是解决一次能源危机(煤、石油、天然气等石化类能源日趋匮乏)的重要途径,它们是可再生的绿色能源。这些能源转换的电能,其电压、频率难免波动,无法并网应用,只有通过电力电子变换装置,才能使这些波动的电能以恒压恒频方式输出,实现这些新能源的实用化。

4.储能领域中的电力电子技术。(1)蓄电池与电容器组储能。把夜间电网提供的多余交流电整流成直流电,储存在建筑物地下室内的“蓄电池―电容器组”;白天,再把这些储存的电能逆变成交流电供给整个建筑物内的用电,已经成为某些地方的时尚。(2)抽水储能发电。白天,水库泄水发电;晚间,利用多余的电网电能使发电机转变成电动机运行,驱动水泵把下游水库的水抽进上游水库,增加上游水库蓄水,使白天可以更多地发电,这种电能量变换过程效率较低。(3)超导线圈的磁场储能。在超导体线圈中,数十万安培的直流电流在其中流动是不会损耗的,这种储能器体积小,转换效率高。当前还没有妥善解决如何实现交流电能同该低电压超大电流的直流电能的互相转换的问题。

二、电力电子器件发展趋势

纵观几十年的发展历史,半导体器件起到了推动电子技术发展的作用,晶闸管等电力半导体器件扮演了电力电子发展中的主要角色。进入70年代,半控型晶闸管开始形成由低电压小电流到高电压大电流的系列产品,被称为第一代电力电子器件,随着电力电子技术理论研究和半导体制造工艺水平的不断提高,先后研制出GTR、GTO、功率MOSFET等自关断全控型第二代电力电子器件。近期研制的以绝缘栅双极晶体管(IGBT)为代表的第三代电力电子器件,开始向大容量高频率、响应快、低损耗方向发展,这又是一个飞跃。步入90年代后,电力电子器件正朝着复杂化、模块化、智能化、功率集成的方向发展,以此形成了电力电子技术的理论研究、器件开发研制、应用的高新技术领域等,在国际上形成了新的技术热门。目前世界上许多大公司已开发出IPM智能化功率模块,日本三菱、东芝及美国的国际整流器公司已有成熟的产品推出。国产电力半导体器件研发生产能力还落后于世界电力电子器件的发展水平,在新世纪国际电力电子崛起之时,中国电力半导体器件的落后状态将会影响中国经济的发展,国产电力半导体器件产业任重而道远。

电力电子技术是智力、信息、知识密集型技术,也是我国经济与社会可持续发展项目之一,对促进国民经济发展,特别是电子工业发展极具价值。从发展前景看,以电力半导体器件及“变频技术”为核心的电力电子行业,在国家政策的强持下将会走向更加辉煌的明天。

参考文献