初高中数学公式定理范文

时间:2023-09-19 16:52:20

导语:如何才能写好一篇初高中数学公式定理,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

初高中数学公式定理

篇1

【关键词】新课程;初高中;数学;教学衔接

一、问题的提出

随着新课改的实施,全国各地的学校都开始进行改革,增加了学校间的竞争力,改变了传统的教学模式,可以让学生在轻松愉快的教学环境下学习数学知识。而且改革节省了大量的课堂时间,可以让学生形成良好的学习习惯。但是进入高中后,很多同学的数学成绩大幅度的滑坡,针对此类现象所以我们必须及时对其进行分析。

二、问题的分析探索

初高中教学内容存在的差异较大,与初中教材相比,高中教学的知识深度、广度和难度等均得到了提升。初中数学主要是数量关系作具体分析,侧重于运算和求解,具有很强的趣味性。学生只要认真听讲,认真完成作业就可以考高分。而高中数学则不然,教材内容多,题型太灵活,字母多,非常抽象,还有立体几何对学生的空间现象能力要求较高。高中数学还重视数学思维、数学思想,数学方法的教学,增加了教材的难度,让高一学生感到很吃力。

针对同一模块高中数学比初中数学要求较高。现以初高中课程标准中《函数》部分作比较:初中课程标准中《函数》部分具体要求①通过简单实例,了解常量、变量的意义。②能结合实例,了解函数的概念和三种表示方法,能举出函数的实例③能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值。高中课程标准中《函数》部分具体要求:了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念②在实际情境中,会根据不同的需要选择恰当的方法表示函数。③通过具体实例,了解简单的分段函数,并能简单应用④通过已学过的函数特别是二次函数,理解函数的单调性最大(小)值及其几何意义,结合具体函数了解奇偶性,周期性的定义。⑤学会运用函数图像理解和研究函数的性质。

初高中教学内容在部分知识衔接上脱节也是数学难学的重要原因之一。由于实行九年制义务教育和倡导全面提高学生素质,现行初中数学在内容上进行了较大幅度的调整。一些在高中常用的公式定理被删掉。如果高中教师在教学中不加以注意,适时补充与深化,必会导致教学过程艰涩,学生茫然不知所措如:立方和公式、立方差公式、三个数的和的平方公式,推导及应用(正用和逆用),熟练掌握十字相乘法、简单的分组分解法,还有分子(母)有理化,高次多项式分解(竖式除法) 一元二次方程根的判别式与韦达定理,平行线等分线段定理,梯形中位线,合比定理……还有二次函数在初中只要求记住公式,会套用即可,但高中提高了要求,不仅记住公式,还必须会配方,这就要求高中老师必须补充此知识点。

三、解决问题的方案探索

(1)知识对比,断点衔接,弥补初高中教材编排上的不连续问题。随着初高中新课程的顺利合成,很多知识已经得到有机的结合,但初、高中的教材内容安排存在裂痕或断层也是显而易见的。为此在高中的教学过程中,适当地补充初中的教材,并使这些高中阶段的初中复习课更具高中的特色。在高中《数学必修1》的“集合”教学中补充一元二次不等式、分式不等式的求解,使之在集合与集合的关系及相关运算中更具有灵活性。在讲《函数》部分时,可以先专门复习初中的二次函数,并由此引申向“三个二次”的转化,“三个二次”中有关参数的讨论等,不仅回顾了初中这一重要函数的内容,同时也深化了高中对“三个二次”的要求。

(2)以旧导新,以旧带新,新旧对比,注意揭示新旧知识的内在联系,使新知识顺利的同化于原有的知识结构之上。在引入新知识、新概念时注意旧知识的复习,用学生已熟悉的知识进行铺垫和引入。以“函数的概念”教学为例,在教学这一章节时,可将初、高中“函数的概念。这一相关知识点进行比较:从中可以看到,初中以“运动”为出发点定义函数,而高中以“集合”为出发点研究函数。这一差异导致初中只需求函数表达式和自变量的取值范围,而高中研究的范围更加广泛:形式多样的函数表达式、定义域、值域、对应法则及抽象函数等。函数的概念已发生了质的变化,而学生仍然停留在初中的基础上,出现了知识的断层现象。因此补充“甲、乙两地相距S公里,一辆汽车从甲地匀速地开往乙地,速度为V公里/d,时,所需时间为T小时,回答下列问题:①已知V=45公里厂小时,写出S关于t的表达式,并求出当t=4时甲乙的距离S;②已知S=100公里,写出V关t的表达式,并求出当V=30时所需时间t;③用集合表示自变量的取值范围。”供师生共同研究,学生能在初中已有知识的基础上,在教师的引导下较好完成。

(3)多用比喻,数形结合等手段使抽象数学通俗化,形象化,想方设法增强数学的趣味性。比如,在教学函数时。很多同学对y=f (x)中的f (x)不理解,然后我就把f比喻成一台机器,其中x是输进机器的东西。如f (x)=x2,f (4)=42即把4输进去后,进行了平方的操作。g(x)=x+1,g(2)=2+1,也就是说g是对输进去的东西进行加1的操作。它只不过比初中数学中y=x+1更加详细了一些而已。这样一来,学生立马感觉函数y=f (x)并不那么抽象了。再比如讲立体几何中“平面”的概念时,我们可以拿一本书,让同学们感受这就是一个平面的一部分,然后稍微一旋转,它就变成另一个平面的一部分,这样就可以加深学生对“平面没有大小之分,只有位置不同之分”的理解。还可以创设情境增强数学的趣味性,如在“概率”教学中,利用“三个臭皮匠与诸葛亮的智力对决”导入相对独立事件。讲“等比数列求前n项和”的公式时,讲国王与象棋大师的故事等等。

(4)培养自学能力,提高学生继续学习的潜能

进入高中以后,课堂密度增大,教学进度加快,知识信息广泛,题目难度加大。只靠教师讲、学生听已很难使学生掌握所学知识。这时尤其需要调动学生的积极性,让他们由被动地学变为主动地学,由学会变为会学。在日常的教学中,教师应有意识地从讲述法向其他教学法衔接,如引导学生怎样学好数学语言,阅读数学课本,如何掌握概念,用活数学公式、以及怎样掌握数学解题基本技巧等,都需要教师在学法指导的过程中不断渗透给学生。例如在概念学习中,可以通过对重要的字词添加记号,对易混淆的概念(定理)进行对比,对公式、定理各字母的含义、适用范围、特例等作补充说明来帮助学习,这些学习方法必须在教师的指导和帮助下,由学生亲身实践后,才能成为学生自身的学习方法和习惯,通过各种不同的教学方法,使学生逐步体会到只有提高自己的学习能力,才能适应高中的学习。

结束语

本文主要对新课程下初高中数学教学衔接问题进行分析,为了促进初高中数学的衔接,必须充分发挥学生的主体性,教师引导学生独立学习知识。同时还要认真做好家长与教师的沟通,充分发挥学生思维力,提高数学教学质量。

【参考文献】

篇2

关键词:数列求和;教学方案;学习心理;建议

数列求和问题在高中数学中占有很高的比重,尤其是新课标版本使用后,比重又有了提升。但是新课标在初高中的衔接上有漏洞,如何填补这个漏洞是我们现在必须要考虑的。

一、数列求和问题的重要性

数列作为一种特殊的函数,是反映自然规律的基本数学模型.学生将通过对日常生活中大量实际问题的分析,建立等差数列和等比数列这两种数列模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题.

在前言中,我们已经陈述了新课标对数列内容的要求,对于数列的综合问题课标没有具体的陈述,但是从历年高考的情况我们可以发现,高考数列综合试题往往呈现以下特点:以知识和方法立意考查等差、等比数列的有关知识,以求数列的通项公式和前n项和公式为主线,考查数列中的重要方法。

二、课题引入

数列求和问题的前提是对数列的掌握。数学作为一门抽象思维学科,对概念的理解也就显得很重要,学生需要在探究中掌握数列概念。一个好的课题引入,即对概念的解释,是开展后续教学活动的基础。

在张艳和焦鸣的“数学概念课(第一课时)怎么上”中,通过对优秀教师教学实录进行分析,提出自己的见解,并且做出自己的教学方案。在此方案中,首先呈现数列具体形式,用抽象思维提出数列的概念,再将其与函数作比较,从而使学生以函数为切入点来理解数列。所以一个好的切入点可以让学生恍然大悟,能够把抽象问题具体化,更容易接受。

三、教学过程

数列求和问题是枯燥乏味的,如何在教学过程中吸引学生是教育者们考虑的问题。以下是提出的几个方案:

1.数学史法。在课堂教学过程中融入一些数学史,引入的过程可以引发学生的思考,有助于课堂的活跃度。学生积极性高,知识掌握的就好,可以说是学生学得轻松,老师教的也轻松。

在数学领域,李以数列教学为例,通过理论与实践的结合分析了数学史在数列教学中的作用,包括增长学生数学知识,拓宽思路,激发思维,增强学生学习数学的内在驱动力等。

我们都知道数列求和问题中有一个经典的故事:在一次数学课上,老师出了一道题,就是让学生把1到100求和,即1+2+3+…+100.同学们都埋头苦算起来,但高斯没有动笔,他在思考,他发现1+100=101,2+99=101,总共就有50个101,50个101相加就是5050,不到几分钟就算出了结果,于是高斯定理就产生了。如果在课堂中引入这样一个小故事,学生就会产生好奇心,对数列求和问题产生兴趣。当然,老师们还可以将其他的一些有意思的故事讲给同学们,相信会有不一样的效果。

2.体验式教学。在一些教学设计中,已经包含了体验式教学模式。叶丹就曾尝试着以高中数列为研究对象来进行体验式教学的探讨与研究,最后的结论是:“师生在教学中的共同参与、互动、体验、感悟,使数学教学体现民主性、开放性和互惠性,学生在学习过程中获得了积极地情感体验,提高了自主探究的数学实践的能力,同时也在一定程度上丰富体验式教学,为体验式教学理论与实践进一步发展提供了理论依据。”

要把控课堂,首先要了解学生学习过程中的心里路程。学生学习概念的心理过程是:概念意向-知觉水平上的应用-概念表征-思维水平上的应用。学生原理学习的心理过程:增生、重建、融会贯通阶段。形成自己的数学思维,能够做到知识的迁移,总的来说需要三个阶段:认知阶段、联系阶段和自动化阶段。

3.贴近生活。学生在学习的时候,如果太脱离生活就会觉得枯燥无聊,如果以生活中的问题为例来展开教学就会更吸引学生。举个例子:

在一次聚会中,来了50位客人,有以下两个问题11如果客人们互换名片,共发出多少名片?22如果客人们互相握手,共握几次?

对于问题一,学生很快就可以做出回答,共为50*49张名片;对于问题二,给同学们时间思考,讨论,直至给出正确答案。握手次数用加法可以表示为49+48+…+2+1,这是一个等差数列求和问题。这一生活问题作为上课前的引导,可以激活学生思维,将知识从初中迁移到高中。

四、高中数列求和教学建议

1.把握概念本质。“概念是反映对象的本质属性的思维形式。人类在认识过程中,从感性认识上升到理性认识,把所感知的事物的共同本质特点抽象出来,加以概括,就成为概念。”,概念是认知的高级产物,是思维最基本的组成单位,对数学概念的清晰理解是进行后续教学活动的关键。弗赖登塔尔曾说:“教学源于现实,也必须寓于现实,并用于现实。”在教学中,要尽可能的让学生去经历观察、分析、猜想、概括、归纳、类比等发现和探索的过程,以此来锻炼学生的数学素养。

2.注重原理推导。数列的求和公式是数列问题的核心,不仅要记住它,还要理解他。引入一些实际问题来让学生自己动手来计算推导,会留下深刻的印象。

等差数列求和公式Sn=n(a1+an)2=na1+n(n-1)2d

等比数列求和公式Sn=na1(q=1)a1(1-qn)1-q=a1-anq1-q(q≠1)

在数学公式证明中,类比是常用的方法,因此在数列求和公式的证明时,要善于运用类比的策略。

3.老师根据学生期望来授课。在数列求和教学过程中,老师需要和学生多多交流,因为这一部分的知识较难,老师一定要时刻关注学生的状态,学生需要老师再黑板上板书,老师就应该将解题过程详细的书写在黑板上,并和学生沟通,及时发现他们的问题。在一些较难的题目上,学生如果要求老师放慢速度,老师需要配合学生,毕竟真正的教学是以学生为主体,不能为了赶教学进度而不顾学生的想法。学生自己会比较清楚需要什么,老师需要参考学生的期望来授课。

参考文献:

[1]中华人民共和国教育部.普通高中数学课程标准(实验)[M],人民教育出版社,2003.p11

[2]田伟芳.将数学史融入数列课堂教学的实践[J],数学教学,2009(8)3-7

[3]叶丹.体验式教学在高中《数列》一章的实践研究[D],华中师范大学,2008