机械原理机构的定义范文
时间:2023-09-17 15:15:43
导语:如何才能写好一篇机械原理机构的定义,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
1.1在教学中应用的理论依据
虚拟仿真技术可将学习对象、学习资源、学习情境和学习工具进行有机结合,将一些看得见表面但摸不着实际的学习对象,通过某些技术和工具,使学习者能看得清其实质,还能感觉到其实际,为学习者创设良好的学习情境,有效促进了学习者的体验学习。关于体验学习,美国心理学家库伯(DavidKolb)用4个元素建立起了4阶段理论模型:具体的经验、观察与反思、形成抽象的概念和普遍的原理以及在新情境中检验概念的意义。对学习者而言,其学习过程应遵循“学习圈”(learningcycle)。学习的起点或知识的获取首先是来自人们的经验或者感性的认知,有了“经验”,学习者的下一步逻辑过程便是对已获经验进行“观察”与“反思”(reflection),把“有限的经验”形成抽象的概念和普遍的原理。在教学过程中,特别是高等教育中的机械类课程,学习者即学生很难在有限的时间对其学习对象如一些机械装备进行感性认识,虚拟仿真技术在教学中的应用恰恰满足了学生在学习中感性体验的需求,在情景中体验概念的意义,使得知识外延扩大。
1.2在机械类课程中教学的效果
机械基础类课程通常由《机械制图》、《机械原理》和《数控机床》等课程组成。在这些课程的教学中,既需要演示大量的实物、机械运动过程、加工、制造、检验方法和过程等,又需要将工程实际中提出的理论问题用虚拟仿真手段演示。采用虚拟仿真技术的CAI课件可以为教学提供很好的资源。如《机械制图》课程中,除了强调学生的识图绘图能力之外,空间想象与空间思考能力尤为重要。作为教学重点与难点,传统的文字讲解与配图很难让学生在脑中具体地构造模型,而虚拟仿真技术的应用可以直接将三维立体图展现在课堂之上,化抽象为具体。学生可从内部、外部以及各角度观察立体模型,再与平面绘图相结合,利于学生的理解。在《机械原理》课程中,运动机构的认知与理解为教学的核心,如何将教材中静止的机构配图的运动情景理解为真实的场景成为学习《机械原理》的关键。如在机构自由度的分析和计算过程中,复合铰链很难讲解透彻,若用设计出复合铰链实际的装配,学生会一目了然看到在3个杆件的结合点有2个铰链,而避免因平面图形看上去只有1个铰链的错误感觉。采用虚拟仿真技术,将机构运动做成虚拟动画,即可达到更好的教学效果,还可节省成本,符合教学改革发展的趋势。在《数控机床》课程中,机床加工过程用纯文本加图片的教学方式不易被学生理解,最佳的学习方式就是实际操作,但很多学校办学规模有限,缺少相应的实习基地,且实际操作具有一定风险。采用虚拟仿真技术进行设计加工的模拟,既可以避免真实教学给人带来的危险,又可以减少相应投资的成本,同时可以系统、完整地为学生呈现出整个工艺过程,极大地帮助学生的理解和记忆。
2棉花制钵机的仿真动画制作
教学过程中向学生展示农业棉花制钵机,实物成本高,体积大,不适合作为课堂教具,虚拟仿真技术在教学中的应用,可以利用Pro?E软件对棉花制钵机进行实体建模,并以其机构部件的实际连接为基础,对其进行装配。在设置了机构连接方式和运动方式的前提下,利用Pro?E的“机构”模块对制钵机工作过程进行了仿真,进而分析了制钵机构工作过程中的运动特点,使得学生更加直观地了解其工作原理。
2.1制钵机主要结构的三维建模
制钵机由传动机构、填料机构、压料机构和输出机构等部分组成。
(1)传动机构:制钵机传动机构由单相异步电动机、离合器、减速器和链条等机构组成。实现了速度的调速以及运动的配合,使压料机构和送料机构的动作能够匹配。
(2)填料机构:由进料斗、间歇齿轮和钵模盘组成。
(3)压料机构:由偏心轮顶压结构和曲柄滑块结构组成。偏心轮顶压结构和曲柄滑块结构的两冲头做直线往复运动,在模孔中将土壤挤压成型和冲出钵体。
(4)输出结构:主要由链轮组成,将成形的营养钵输出。
2.2制钵机装配模型的建立
装配时,用应用程序的“标准”界面操作。点击“插入”中“元件”后的“装配”,选择保存路径中元件,根据实际情况选择连接方式。如减速箱内轴与减速箱体,齿轮与轴之间连接类型为销钉连接、制钵机机架与填料箱顶杆为刚性连接。制钵机的动态虚拟仿真除标准装配模式外,还需要采用Pro?E“应用程序”中的“机构”功能,可选择齿轮间的连接以及添加伺服电机。制钵机装配过程应按如下顺序进行。
(1)插入机架,连接方式设置为缺省,即为完全约束。
(2)电机支架、轮胎杆,以及各个顶杆与机架间连接方式为刚性连接。
(3)轮胎与轮胎杆之间连接方式为销钉连接,需设置旋转轴与连接平面。
(4)制动杆与电机轴间为圆柱连接。
(5)减速箱内轴与减速箱壳体为刚性连接,轴上齿轮与轴为销钉连接,而相互啮合的齿轮间为“机构”功能中的“齿轮连接”。
(6)料斗与机架之间采用平面连接,制钵机构通过连杆的滑动杆连接与机架相连。
2.3制钵机虚拟仿真运动模型的建立
制钵机的工作原理:电动机为动力输出源,通过胶带与减速箱相连。减速箱中装有锥齿轮,动力分水平与竖直两方向输出。水平方向通过链轮与冲压装置相连,构成曲柄滑块机构,竖直方向通过不完全齿轮机构带动料斗间歇运动。同时通过另一链轮与滚轮相连,带动输出胶带的传动。料斗中的营养土在刮板带动下进入钵体,压料机构杆向下运动压实钵体中的营养土,再转一个角度,钵体下方设有托盘,接着另一个压料机构杆轻压落入胶带后被胶带传输至储存处。根据机构装配所建的仿真装配文件,选择“应用程序”中的“机构”进入Pro?E的机构模块,仿真设置过程如下。
(1)检测装配模型,进入系统机构设计环境,然后点击“拖动模型”工具,并拖动各运动机构看是否按预期的运动方式运动。
(2)添加伺服电动机,在工具栏中选择“定义伺服电机”,根据需要在电动机类型中选择“运动轴”或者“几何”,再选择“轮廓”中的参数,通过位置、速度和加速度3个参数与时间的函数关系来定义电机。同时可根据设定“模”来实现精准的电机控制。“图形”功能可以直观地显示电动机的运动模型。
(3)电机运行,使用工具栏中的“机构分析”功能,在分析定义中的“电动机”中设置各电机的起始与终止时间,仿真过程中电机数量较多,需根据需要一一设定。
(4)创建动画。简单动画制作可使用机构树中的“回放”功能,可选择“捕获”按钮将动画输出。或根据“应用程序”中的“动画”模块进行更为生动的运动动画。通过“定时视图”与“定时透明”功能实现多角度、全方位的观察视角的变化,从而更具体细致地观察制钵机的工作过程。
3结束语
篇2
关键词:机构组合;机械原理;实验;机械系统
中图分类号:G642.0 文献标识码:A 文章编号:1674-9324(2014)22-0175-02
随着我国由“制造大国”向“制造强国”转变的历史性跨越,高校的实践教学愈加受到广泛的重视[1,2]。而对于培养目标为“培养具有社会责任感、基础扎实、知识面宽、富有创新精神与实践能力的应用型高级专门人才”和“以工为主,以轨道交通为特色”的大学来说,逐步将演示性、验证性实验改变为综合性、设计性实验,以强化对学生的机械综合设计能力、实践动手能力及工程意识、创新意识与创新能力的培养,更是迫在眉睫。
一、问题的提出
《机械原理》课程是工科机械类各专业的一门承上启下的重要技术基础课,在学生从理论学习到实际设计的转化过程中起到重要的桥梁作用。该课程的任务是使学生掌握机构学和机器动力学的基本理论、基本知识和基本技能,学会常用机构的分析和综合方法,并具有进行机械系统设计的初步能力。由此可见,实验教学在整个机械原理课程的教学体系中,具有十分重要的地位,除了能使学生巩固和加深对理论知识的认识与理解外,更是理论结合实际、提高学生的动手能力、启迪学生的创新思维的必要手段。以往传统的机械原理实验项目多为《机构运动简图测绘》、《渐开线齿廓范成原理》和《回转件的动平衡》等验证性实验。经过近几年的努力,实验室研发了《平面连杆机构设计实验》,为开创设计性实验探索了道路。为了进一步深入开展综合性、设计性实验的设计、开发与实践,课题组研发了此项机构组合设计与搭接实验。
二、实验的目的及任务
设计性、综合性实验――《机构组合设计实验》的训练内容涉及常用机构、组合机构设计与分析、机械系统方案设计等,该实验的目的为:
1.培养学生机构运动方案的构思与设计,提高其综合利用所学知识解决实际问题的能力和动手能力;
2.通过对实际工程问题的机构设计及搭接,加深学生对机构运动特性、运动干涉等问题的理解,培养学生观察问题、发现问题的能力;通过实验的多方案设计培养发散思维和创新设计能力;
3.培养学生协作能力及团队精神。此项实验的任务可根据学生理论知识掌握程度,自选或指定以下机构之一:内燃机机构;精压机机构;牛头刨床机构;齿轮―曲柄摇杆机构;齿轮―曲柄摆块机构;双滑块机构插床机构;筛料机构;凸轮―五杆机构;间歇运动组合机构等。
实验以学生为主,构思2~3个可行方案,比较各方案优缺点;对优选方案进行详细设计,绘制机构运动简图,进行实物搭接和试运转;在老师引导下学生发现所搭接机构的不足之处,并提出改进措施。
三、实验原理、方法与步骤
1.实验装置。实验选用湖南长庆机电科教有限公司生产制造的CQJP―D机构运动创新设计方案实验台为实验装置:
①实验台机架(如图1所示):
②实验台组件:该试验台组件涵盖了机械原理课程中讲到的各种机构的典型构件:连杆和滑块、齿轮和齿条、凸轮、槽轮和拨盘等,如图2所示。另外还提供了用于连接、固定和锁紧等辅助功能的组件:复合铰链、主/从动轴、铰链支座、压紧螺栓、层面限位套、高副锁紧弹簧、齿条护板等。
2.实验原理。机构具有确定运动的条件是其原动件的数目等于其所具有的自由度的数目。因此,如将机构的机架及与机架相连的原动件从机构中拆分开来,则由其余构件构成的构件组必然为一个自由度为零的构件组。而这个自由度为零的构件组,有时还可以拆分成更简单的自由度为零的构件组,将最后不能再拆的最简单的自由度为零的构件组称为基本杆组(或阿苏尔杆组),简称为杆组[3]。由杆组定义,组成平面机构的基本杆组应满足条件:F=3n-2P1-Ph=0 式中:n为杆组中的构件数;P1为杆组中的低副数;Ph为杆组中的高副数。由于构件数和运动副数目均应为整数,故当n、P1、Ph取不同数值时,可得各类基本杆组。当Ph=0时,杆组中的运动副全部为低副,称为低副杆组。其F=3n-2P1=0,故n=2P1/3,故n应当是2的倍数,而P1应当是3的倍数,即n=2、4、6……,P1=3、6、9……。当n=2,P1=3时,基本杆组称为Ⅱ级组。Ⅱ级组是应用最多的基本杆组,绝大多数的机构均由Ⅱ级杆组组成。n=4,P1=6时的基本杆组称为Ⅲ级杆组。由上述分析可知,机构的组成原理为:任何平面机构都是由若干个基本杆组(阿苏尔杆组)依次联接到原动件和机架上而构成。此原理即为机构组合设计与搭接实验的基本原理。
3.实验的方法与步骤。①掌握平面机构组成原理;②熟悉实验中的实验设备,各零、部件功用和安装、拆卸工具;③确定设计机构的类型,构思2至3个可行方案,比较各方案优缺点;④对优选方案进行详细设计,绘制机构运动简图;⑤将优选方案正确拆分成基本杆组;⑥正确拼接各基本杆组,将基本杆组按运动传递规律顺序联接到原动件和机架上,进行实物搭接和试运转;⑦按要求完成实验报告。
此项实验从培养学生机构运动方案的构思和动手实践能力出发,能够使学生受到三个层次的训练:①掌握实验的基本技能,验证所学的理论,加深对所学知识的理解;②课程学习与工程实际结合,初步具有进行新型机构创新设计的能力;③鼓励学生自己结合有生产背景的实际课题提出设计目标,进行原理方案设计,在锻炼动手实践能力的同时,加强学生发现问题、分析问题和解决问题能力的培养。
参考文献:
[1]王汝贵,蔡敢为.两自由度可控机构动态性能实验装置研制[J].实验室研究与探索,2012,31(12):3-5,11.
[2]蔡书平,桂亮.机械运动学与动力学实验教学应用研究[J].高校实验室工作研究,2012,(4):47-49.
篇3
摘要:根据目前国内外设计学者进行机械产品设计时的主要思维特点,将产品方案的设计方法概括为系统化、结构模块化、基于产品特征知识和智能四种类型。指出四种方法的特点及其相互间的有机联系,提出产品方案设计计算机实现的努力方向。
科学技术的飞速发展,产品功能要求的日益增多,复杂性增加,寿命期缩短,更新换代速度加快。然而,产品的设计,尤其是机械产品方案的设计手段,则显得力不从心,跟不上时展的需要。目前,计算机辅助产品的设计绘图、设计计算、加工制造、生产规划已得到了比较广泛和深入的研究,并初见成效,而产品开发初期方案的计算机辅助设计却远远不能满足设计的需要。为此,作者在阅读了大量文献的基础上,概括总结了国内外设计学者进行方案设计时采用的方法,并讨论了各种方法之间的有机联系和机械产品方案设计计算机实现的发展趋势。
根据目前国内外设计学者进行机械产品方案设计所用方法的主要特征,可以将方案的现代设计方法概括为下述四大类型。
一、系统化设计方法
系统化设计方法的主要特点是:将设计看成由若干个设计要素组成的一个系统,每个设计要素具有独立性,各个要素间存在着有机的联系,并具有层次性,所有的设计要素结合后,即可实现设计系统所需完成的任务。
系统化设计思想于70年代由德国学者Pahl和Beitz教授提出,他们以系统理论为基础,制订了设计的一般模式,倡导设计工作应具备条理性。德国工程师协会在这一设计思想的基础上,制订出标准VDI2221“技术系统和产品的开发设计方法。
制定的机械产品方案设计进程模式,基本上沿用了德国标准VDI2221的设计方式。除此之外,我国许多设计学者在进行产品方案设计时还借鉴和引用了其他发达国家的系统化设计思想,其中具有代表性的是:
(1)将用户需求作为产品功能特征构思、结构设计和零件设计、工艺规划、作业控制等的基础,从产品开发的宏观过程出发,利用质量功能布置方法,系统地将用户需求信息合理而有效地转换为产品开发各阶段的技术目标和作业控制规程的方法。
(2)将产品看作有机体层次上的生命系统,并借助于生命系统理论,把产品的设计过程划分成功能需求层次、实现功能要求的概念层次和产品的具体设计层次。同时采用了生命系统图符抽象地表达产品的功能要求,形成产品功能系统结构。
(3)将机械设计中系统科学的应用归纳为两个基本问题:一是把要设计的产品作为一个系统处理,最佳地确定其组成部分(单元)及其相互关系;二是将产品设计过程看成一个系统,根据设计目标,正确、合理地确定设计中各个方面的工作和各个不同的设计阶段。
由于每个设计者研究问题的角度以及考虑问题的侧重点不同,进行方案设计时采用的具体研究方法亦存在差异。下面介绍一些具有代表性的系统化设计方法。
1.1设计元素法
用五个设计元素(功能、效应、效应载体、形状元素和表面参数)描述“产品解”,认为一个产品的五个设计元素值确定之后,产品的所有特征和特征值即已确定。我国亦有设计学者采用了类似方法描述产品的原理解。
1.2图形建模法
研制的“设计分析和引导系统”KALEIT,用层次清楚的图形描述出产品的功能结构及其相关的抽象信息,实现了系统结构、功能关系的图形化建模,以及功能层之间的联接。将设计划分成辅助方法和信息交换两个方面,利用Nijssen信息分析方法可以采用图形符号、具有内容丰富的语义模型结构、可以描述集成条件、可以划分约束类型、可以实现关系间的任意结合等特点,将设计方法解与信息技术进行集成,实现了设计过程中不同抽象层间信息关系的图形化建模。
将语义设计网作为设计工具,在其开发的活性语义设计网ASK中,采用结点和线条组成的网络描述设计,结点表示元件化的单元(如设计任务、功能、构件或加工设备等),线条用以调整和定义结点间不同的语义关系,由此为设计过程中的所有活动和结果预先建立模型,使早期设计要求的定义到每一个结构的具体描述均可由关系间的定义表达,实现了计算机辅助设计过程由抽象到具体的飞跃。
1.3“构思”—“设计”法
将产品的方案设计分成“构思”和“设计”两个阶段。“构思”阶段的任务是寻求、选择和组合满足设计任务要求的原理解。“设计”阶段的工作则是具体实现构思阶段的原理解。
将方案的“构思”具体描述为:根据合适的功能结构,寻求满足设计任务要求的原理解。即功能结构中的分功能由“结构元素”实现,并将“结构元素”间的物理联接定义为“功能载体”,“功能载体”和“结构元素”间的相互作用又形成了功能示意图(机械运动简图)。方案的“设计”是根据功能示意图,先定性地描述所有的“功能载体”和“结构元素”,再定量地描述所有“结构元素”和联接件(“功能载体”)的形状及位置,得到结构示意图。Roper,H.利用图论理论,借助于由他定义的“总设计单元(GE)”、“结构元素(KE)”、“功能结构元素(FKE)”、“联接结构元素(VKE)”、“结构零件(KT)”、“结构元素零件(KET)”等概念,以及描述结构元素尺寸、位置和传动参数间相互关系的若干种简图,把设计专家凭直觉设计的方法做了形式化的描述,形成了有效地应用现有知识的方法,并将其应用于“构思”和“设计”阶段。
从设计方法学的观点出发,将明确了设计任务后的设计工作分为三步:1)获取功能和功能结构(简称为“功能”);2)寻找效应(简称为“效应”);3)寻找结构(简称为“构形规则”)。并用下述四种策略描述机械产品构思阶段的工作流程:策略1:分别考虑“功能”、“效应”和“构形规则”。因此,可以在各个工作步骤中分别创建变型方案,由此产生广泛的原理解谱。策略2:“效应”与“构形规则”(包括设计者创建的规则)关联,单独考虑功能(通常与设计任务相关)。此时,辨别典型的构形规则及其所属效应需要有丰富的经验,产生的方案谱远远少于策略1的方案谱。策略3:“功能”、“效应”、“构形规则”三者密切相关。适用于功能、效应和构形规则间没有选择余地、具有特殊要求的领域,如超小型机械、特大型机械、价值高的功能零件,以及有特殊功能要求的零部件等等。策略4:针对设计要求进行结构化求解。该策略从已有的零件出发,通过零件间不同的排序和连接,获得预期功能。
1.4矩阵设计法
在方案设计过程中采用“要求—功能”逻辑树(“与或”树)描述要求、功能之间的相互关系,得到满足要求的功能设计解集,形成不同的设计方案。再根据“要求—功能”逻辑树建立“要求—功能”关联矩阵,以描述满足要求所需功能之间的复杂关系,表示出要求与功能间一一对应的关系。
Kotaetal将矩阵作为机械系统方案设计的基础,把机械系统的设计空间分解为功能子空间,每个子空间只表示方案设计的一个模块,在抽象阶段的高层,每个设计模块用运动转换矩阵和一个可进行操作的约束矢量表示;在抽象阶段的低层,每个设计模块被表示为参数矩阵和一个运动方程。
1.5键合图法
将组成系统元件的功能分成产生能量、消耗能量、转变能量形式、传递能量等各种类型,并借用键合图表达元件的功能解,希望将基于功能的模型与键合图结合,实现功能结构的自动生成和功能结构与键合图之间的自动转换,寻求由键合图产生多个设计方案的方法。
二、结构模块化设计方法
从规划产品的角度提出:定义设计任务时以功能化的产品结构为基础,引用已有的产品解(如通用零件部件等)描述设计任务,即分解任务时就考虑每个分任务是否存在对应的产品解,这样,能够在产品规划阶段就消除设计任务中可能存在的矛盾,早期预测生产能力、费用,以及开发设计过程中计划的可调整性,由此提高设计效率和设计的可靠性,同时也降低新产品的成本。Feldmann将描述设计任务的功能化产品结构分为四层,(1)产品(2)功能组成(3)主要功能组件(4)功能元件。并采用面向应用的结构化特征目录,对功能元件进行更为具体的定性和定量描述。同时研制出适合于产品开发早期和设计初期使用的工具软件STRAT。
认为专用机械中多数功能可以采用已有的产品解,而具有新型解的专用功能只是少数,因此,在专用机械设计中采用功能化的产品结构,对于评价专用机械的设计、制造风险十分有利。
提倡在产品功能分析的基础上,将产品分解成具有某种功能的一个或几个模块化的基本结构,通过选择和组合这些模块化基本结构组建成不同的产品。这些基本结构可以是零件、部件,甚至是一个系统。理想的模块化基本结构应该具有标准化的接口(联接和配合部),并且是系列化、通用化、集成化、层次化、灵便化、经济化,具有互换性、相容性和相关性。我国结合软件构件技术和CAD技术,将变形设计与组合设计相结合,根据分级模块化原理,将加工中心机床由大到小分为产品级、部件级、组件级和元件级,并利用专家知识和CAD技术将它们组合成不同品种、不同规格的功能模块,再由这些功能模块组合成不同的加工中心总体方案。
以设计为目录作为选择变异机械结构的工具,提出将设计的解元素进行完整的、结构化的编排,形成解集设计目录。并在解集设计目录中列出评论每一个解的附加信息,非常有利于设计工程师选择解元素。
根据机械零部件的联接特征,将其归纳成四种类型:1)元件间直接定位,并具有自调整性的部件;2)结构上具有共性的组合件;3)具有嵌套式结构及嵌套式元件的联接;4)具有模块化结构和模块化元件的联接。并采用准符号表示典型元件和元件间的连接规则,由此实现元件间联接的算法化和概念的可视化。
在进行机械系统的方案设计中,用“功能建立”模块对功能进行分解,并规定功能分解的最佳“粒化”程度是功能与机构型式的一一对应。“结构建立”模块则作为功能解的选择对象以便于实现映射算法。
三、基于产品特征知识的设计方法
基于产品特征知识设计方法的主要特点是:用计算机能够识别的语言描述产品的特征及其设计领域专家的知识和经验,建立相应的知识库及推理机,再利用已存储的领域知识和建立的推理机制实现计算机辅助产品的方案设计。
机械系统的方案设计主要是依据产品所具有的特征,以及设计领域专家的知识和经验进行推量和决策,完成机构的型、数综合。欲实现这一阶段的计算机辅助设计,必须研究知识的自动获取、表达、集成、协调、管理和使用。为此,国内外设计学者针对机械系统方案设计知识的自动化处理做了大量的研究工作,采用的方法可归纳为下述几种。
3.1编码法
根据“运动转换”功能(简称功能元)将机构进行分类,并利用代码描述功能元和机构类别,由此建立起“机构系统方案设计专家系统”知识库。在此基础上,将二元逻辑推理与模糊综合评判原理相结合,建立了该“专家系统”的推理机制,并用于四工位专用机床的方案设计中。
利用生物进化理论,通过自然选择和有性繁殖使生物体得以演化的原理,在机构方案设计中,运用网络图论方法将机构的结构表达为拓扑图,再通过编码技术,把机构的结构和性能转化为个体染色体的二进制数串,并根据设计要求编制适应值,运用生物进化理论控制繁殖机制,通过选择、交叉、突然变异等手段,淘汰适应值低的不适应个体,以极快的进化过程得到适应性最优的个体,即最符合设计要求的机构方案。
3.2知识的混合型表达法
针对复杂机械系统的方案设计,采用混合型的知识表达方式描述设计中的各类知识尤为适合,这一点已得到我国许多设计学者的共识。
在研制复杂产品方案设计智能决策支持系统DMDSS中,将规则、框架、过程和神经网络等知识表示方法有机地结合在一起,以适应设计中不同类型知识的描述。将多种单一的知识表达方法(规则、框架和过程),按面向对象的编程原则,用框架的槽表示对象的属性,用规则表示对象的动态特征,用过程表示知识的处理,组成一种混合型的知识表达型式,并成功地研制出“面向对象的数控龙门铣床变速箱方案设计智能系统GBCDIS”和“变速箱结构设计专家系统GBSDES”。
3.3利用基于知识的开发工具
在联轴器的CAD系统中,利用基于知识的开发工具NEXPERT-OBJECT,借助于面向对象的方法,创建了面向对象的设计方法数据库,为设计者进行联轴器的方案设计和结构设计提供了广泛且可靠的设计方法谱。则利用NEXPERT描述直线导轨设计中需要基于知识进行设计的内容,由此寻求出基于知识的解,并开发出直线导轨设计专家系统。
3.4设计目录法
构造了“功能模块”、“功能元解”和“机构组”三级递进式设计目录,并将这三级递进式设计目录作为机械传动原理方案智能设计系统的知识库和开发设计的辅助工具。
3.5基于实例的方法
在研制设计型专家系统的知识库中,采用基本谓词描述设计要求、设计条件和选取的方案,用框架结构描述“工程实例”和各种“概念实体”,通过基于实例的推理技术产生候选解来配匹产品的设计要求。
四、智能化设计方法
智能化设计方法的主要特点是:根据设计方法学理论,借助于三维图形软件、智能化设计软件和虚拟现实技术,以及多媒体、超媒体工具进行产品的开发设计、表达产品的构思、描述产品的结构。
在利用数学系统理论的同时,考虑了系统工程理论、产品设计技术和系统开发方法学VDI2221,研制出适合于产品设计初期使用的多媒体开发系统软件MUSE。
在进行自动取款机设计时,把产品的整个开发过程概括为“产品规划”、“开发”和“生产规划”三个阶段,并且充分利用了现有的CAD尖端技术——虚拟现实技术。1)产品规划—构思产品。其任务是确定产品的外部特性,如色彩、形状、表面质量、人机工程等等,并将最初的设想用CAD立体模型表示出,建立能够体现整个产品外形的简单模型,该模型可以在虚拟环境中建立,借助于数据帽和三维鼠标,用户还可在一定程度上参与到这一环境中,并且能够迅速地生成不同的造型和色彩。立体模型是检测外部形状效果的依据,也是几何图形显示设计变量的依据,同时还是开发过程中各类分析的基础。2)开发—设计产品。该阶段主要根据“系统合成”原理,在立体模型上配置和集成解元素,解元素根据设计目标的不同有不同的含义:可以是基本元素,如螺栓、轴或轮毂联接等;也可以是复合元素,如机、电、电子部件、控制技术或软件组成的传动系统;还可以是要求、特性、形状等等。将实现功能的关键性解元素配置到立体模型上之后,即可对产品的配置(设计模型中解元素间的关系)进行分析,产品配置分析是综合“产品规划”和“开发”结果的重要手段。3)生产规划—加工和装配产品。在这一阶段中,主要论述了装配过程中CAD技术的应用,提出用计算机图像显示解元素在相应位置的装配过程,即通过虚拟装配模型揭示造形和装配间的关系,由此发现难点和问题,并找出解决问题的方法,并认为将CAD技术综合应用于产品开发的三个阶段,可以使设计过程的综合与分析在“产品规划”、“开发”和“生产规划”中连续地交替进行。因此,可以较早地发现各个阶段中存在的问题,使产品在开发进程中不断地细化和完善。
我国利用虚拟现实技术进行设计还处于刚刚起步阶段。利用面向对象的技术,重点研究了按时序合成的机构组合方案设计专家系统,并借助于具有高性能图形和交换处理能力的OpenGL技术,在三维环境中从各个角度对专家系统设计出的方案进行观察,如运动中机构间的衔接状况是否产生冲突等等。
将构造标准模块、产品整体构造及其制造工艺和使用说明的拟订(见图1)称之为快速成型技术。建议在产品开发过程中将快速成型技术、多媒体技术以及虚拟表达与神经网络(应用于各个阶段求解过程需要的场合)结合应用。指出随着计算机软、硬件的不断完善,应尽可能地将多媒体图形处理技术应用于产品开发中,例如三维图形(立体模型)代替装配、拆卸和设计联接件时所需的立体结构想象力等等。
利用智能型CAD系统SIGRAPH-DESIGN作为开发平台,将产品的开发过程分为概念设计、装配设计和零件设计,并以变量设计技术为基础,建立了胶印机凸轮连杆机构的概念模型。从文献介绍的研究工作看,其概念模型是在确定了机构型、数综合的基础上,借助于软件SIGRAPH-DESIGN提供的变量设计功能,使原理图随着机构的结构参数变化而变化,并将概念模型的参数传递给下一级的装配模型、零件设计。
五、各类设计方法评述及发展趋势
综上所述,系统化设计方法将设计任务由抽象到具体(由设计的任务要求到实现该任务的方案或结构)进行层次划分,拟定出每一层欲实现的目标和方法,由浅入深、由抽象至具体地将各层有机地联系在一起,使整个设计过程系统化,使设计有规律可循,有方法可依,易于设计过程的计算机辅助实现。
结构模块化设计方法视具有某种功能的实现为一个结构模块,通过结构模块的组合,实现产品的方案设计。对于特定种类的机械产品,由于其组成部分的功能较为明确且相对稳定,结构模块的划分比较容易,因此,采用结构模块化方法进行方案设计较为合适。由于实体与功能之间并非是一一对应的关系,一个实体通常可以实现若干种功能,一个功能往往又可通过若干种实体予以实现。因此,若将结构模块化设计方法用于一般意义的产品方案设计,结构模块的划分和选用都比较困难,而且要求设计人员具有相当丰富的设计经验和广博的多学科领域知识。
机械产品的方案设计通常无法采用纯数学演算的方法进行,也难以用数学模型进行完整的描述,而需根据产品特征进行形式化的描述,借助于设计专家的知识和经验进行推理和决策。因此,欲实现计算机辅助产品的方案设计,必须解决计算机存储和运用产品设计知识和专家设计决策等有关方面的问题,由此形成基于产品特征知识的设计方法。
目前,智能化设计方法主要是利用三维图形软件和虚拟现实技术进行设计,直观性较好,开发初期用户可以在一定程度上直接参与到设计中,但系统性较差,且零部件的结构、形状、尺寸、位置的合理确定,要求软件具有较高的智能化程度,或者有丰富经验的设计者参与。
值得一提的是:上述各种方法并不是完全孤立的,各类方法之间都存在一定程度上的联系,如结构模块化设计方法中,划分结构模块时就蕴含有系统化思想,建立产品特征及设计方法知识库和推理机时,通常也需运用系统化和结构模块化方法,此外,基于产品特征知识的设计同时又是方案智能化设计的基础之一。在机械产品方案设计中,视能够实现特定功能的通用零件、部件或常用机构为结构模块,并将其应用到系统化设计有关层次的具体设计中,即将结构模块化方法融于系统化设计方法中,不仅可以保证设计的规范化,而且可以简化设计过程,提高设计效率和质量,降低设计成本。
篇4
论文关键词:约束 约束力 铰链 应用
论文摘 要:对经典力学范围内现行的约束与约束力提出的观点,考虑约束与约束力在生活中的应用;约束力的分类;更深入了解约束力与约束力的概念及相关内容;物理规律的特性与审美性等。
近年来约束力在生活中的应用越来越广泛了,那么,你是否知道生活中那些东西应用了约束力吗?约束力在物理中的定义是什么?在此我将具体举一些有关生活中的约束力。约束力在生活中的应用的重要性等等。让我们对生活有更深入的了解,对约束力也有更深入的认识。
一、约束力
约束力对于我们来说并不陌生,例如我们常说法律对我们有约束力。道德对我们有约束力等。那么,在物理学中约束力的概念是什么呢?
(一)定义
指物体受到一定场力限制的现象。限制物体的位置和运动条件称作物体所受的约束,实现这些约束条件的物体称为约束体.受到约束条件限制的物体叫做被约束体.把约束对物体的作用力称为约束力。按着习惯,把约束体简称为约束,将被约束体简称为物体.约束—阻碍非自由体运动的限制物。约束反力—约束对被约束物体运动的阻碍作用,是一种力的作用,这种力叫约束束反力。柔体约束—绳索、链条、皮带等用于阻碍物体的运动时,叫柔体约束。柔体约束的反力是通过接触点,沿柔体中线作用的拉力。
有些物体,例如:飞行的飞机、炮弹和火箭等,它们在空间的位移不受任何限制。位移不受限制的物体称为自由体。相反有些物体在空间的位移却要受到一定的限制。如机车受铁轨的限制,只能沿轨道运动 ; 电机转子受轴承的限制,只能绕轴线转动; 重物由钢索吊住,不能下落等。位移受到限制的物体称为非自由体。对非自由体的某些位移起限制作用的周围物体称为约束。
(二)特点
约束力的特点:约束力的方向与物体被限制的运动方向相反.约束反力—约束对被约束物体运动的阻碍作用,是一种力的作用,这种力叫做约束反力。注意其和约束力的不同点。支承面的约束力:支持力与滑动摩擦力或最大静摩擦力的合力。
(三)分类
1.柔索约束
(1)只能承受拉力,不能承受压力。
(2)限制物体沿柔索伸长方向的运动。属于这类约束的有绳索,链条和带等。约束力常用符号F表示。
2.光华接触面约束
(1)向心轴承(径向轴承)(2)中间铰约束 (3)固定铰链支座(4)活动铰链支座 (5)二力杆约束。
3.固定端约束
4.其他约束
(1)滚动支座 (2)球铰链 (3)止推轴承
二、约束力在生活中的应用
(1)压水井的压水手柄:利用杠杆原理制成,支点距水井较近,而手柄较通常由圆柱形的木材、金属或其他材料做的零件,尤指用以将几个单独的物件固定在一起或作为一个物件悬在另一物件上的支撑物。 样力臂较长,可以省力。但是由杠杆原理可知,杠杆都是省力但不省功的。
(2)自行车:自行车上有很多小的机械装置,是生活中最典型的机械装置比如车闸,是利用杠杆原理制成的。车蹬实际是一个曲柄机构。前链轮和后链轮之间由铰链连接,从机械原理学上讲,是一个简单的链传动机构
(3)钳子,剪刀:也都是利用杠杆原理制成。实际上就是两个小杠杆结合到一起,就是一个钳子或剪刀了。
(4)扳手:仍然是杠杆原理。
(5)液压小千斤顶:内部结构是一个简单的液压装置。从原理上说也有应用杠杆原理。别看一个液压千斤顶个头很小,但支起一台小轿车很容易的。
(6)电动筛:这东西在农村用的比较多,粮食放在上面,打开电源,电动筛就自动摇摆,把不用的东西筛下来。其原理就是一个双摇杆机构,在大的分类上属于四连杆。大地相当于一个杆,两个摇摆支架是第二、第三个杆,筛子是第四个杆。四连杆机构根据四个杆之间的长短关系,可以形成曲柄摇杆机构,双摇杆机构,双曲柄机构。电动筛就是人为制作形成的一个双摇杆机构。
(7)小轿车的车门:具体结构那当然是很复杂了,但从原理上讲,轿车车门其实就是一个简单的四连杆机构。
(8)柱塞泵:是和自行车的打气筒差不多的,靠里面的柱塞一进一出来抽水或抽油的,其原理实际上是一个曲柄滑块机构,柱塞相当于滑块。曲柄滑块机构实际上是属于曲柄摇杆机构的变种,而前面也说了,曲柄摇杆机构在大的分类上又属于四连杆机构。
(9)电梯:电梯的内部具体结构其实很复杂的,不是像一般人想象的那样,就是一根钢索吊着一个电梯厢。现在的电梯内部集合了各种自动置各种传感器,当然最重要的还有安全保护装置。但是从机械原理上说,电梯其实就是一个蜗轮蜗杆机构。在大的分类上讲,蜗轮蜗杆机构属于齿轮机构的一种。
(10) 齿轮泵:一种简单的泵,抽水或者抽油用的,生活中很常见的,是典型的齿轮机构,把齿轮泵拆开,里面其实就是两个齿轮而已。齿轮泵的优点是造价便宜,体积小,缺点是工作噪音大,排量较小!其实生活中简单的机械装置很多很多的,比如汽车的变速箱,你要拆开看看,里面全都是齿轮,这属于轮系,而轮系在大的分类上也属于齿轮机构。建筑工地上的吊车,上面有杠杆,四连杆,齿轮,液压,滑轮组等等。
三、结论
约束力与约束是生活中必不可少的,通过以上的举例,我们可知道约束力与我们的生活息息相关。铰链是其应用于生活的典型例子。约束力将更加有发展与应用生活中的潜力,有更多的秘密需要我们去探索,去专研,通过这些我们可以知道物理是一门有趣而且有切合实际的学科。因此我们应将物理发扬光大。
参考文献:
篇5
关键词 机械原理 机械设计 课程优化
机械原理与机械设计课程开设历史悠久,两门课程始终作为全国各工科院校机械类专业主干技术基础课程。近年来,随着机械学科的飞速发展、我国高等学校机械类专业人才培养实施宽口径化、21 世纪人才综合能力培养的需求,再次审视两门课程的教学体系、课程内容和教学方法,认为依旧存在问题需要探究与改革。
一、存在的问题
(一)内容有交叉与重复现象。机械原理和机械设计两门课程的教学内容基本变化不大,课程内容自成体系,相互之间缺少衔接,存在内容交叉和重复的问题。
(二)缺少系统性。两门课程缺少对机械系统的介绍,学生学完了两门课程,仍对机械没有整体的认识,对机械的设计过程缺少了解,两门课程的总体效能未能充分显现。
(三)实践环节不足。两门课程的实践环节难以适应对学生工程意识和实践能力培养的需求,缺少主动性实践的环境。
二、理论教学体系的整合与优化
机械产品的设计一般要经过产品的规划、方案设计、技术设计等环节,通过机械原理和机械设计课程的学习,学生不仅应掌握一般机械产品设计所需的基本理论知识,还应对机械系统有一个整体的认识,并应了解机械产品设计的基本过程。为此笔者尝试突破“机械原理”和“机械设计”两课程的界线,将教学内容和教学环节进行了重组、融合及整体优化,合并为“机械设计课程。
(一)课程目标。通过本课程理论教学、实验及课程设计等环节,实现总体教学目标:培养学生的工程意识和创新精神;使学生对机械产品具有整体的概念和正确的设计思想;掌握机械系统设计的基础知识,初步具备一般机械方案设计和分析的能力;掌握常用机构及其传动的运动学设计和工作能力设计的基本知识,掌握通用零部件设计计算和选用的基本知识,初步具备一般通用机械的设计能力;培养学生查阅和运用机械设计相关标准、手册及网络息等技术资料的能力。
(二)理论教学体系。在有限的学时内,合理取舍课堂教学内容,是关系到能否真正实现课程目标的关键。经过多年的仔细斟酌、反复探究,提出精、宽、新的授课原则:精——精选重点和难点的内容进行详解与指点,避免烦琐公式的推导和易于自学的内容占用过多的学时;宽——拓宽学生的知识面,注重工程应用,启发学生举一反三;新——注重机械学科发展、将机械学科的科研成果融入教学,让学生了解机械学科的新技术、新方法。
三、实践教学体系的构建
实践教学体系由实验教学、机械实例分析与设计(大作业)、典型机械设计(课程设计)三部分组成。三个模块均以加强自学能力、研究能力、动手能力及工程意识与创新精神为培养目标。
(一)实验教学。在实验教学中将计算机技术和网络技术与现代实技术相结合,加强实验内容的综合性与设计性,如增开了典型机器与机构分析、机构系统创意组合、机械系统创意组合等综合性实验,对启迪学生的创新意识和培养学生的设计能力起到非常积极的作用。
(二)机械实例分析与设计。本课程传统的课外作业内容虽然对一些基本概念、定义的理解起到一定的作用,但是由于各章相对独立、就题论题、解题方法千人一面等问题,让学生感到枯燥无味,抄袭现象严重。为了解决此问题,将“书本习题”大大减少,增加数个综合性、实践性很强的机械实例分析大作业。
(三)课程设计。课程设计是很重要的一个教学环节,课程设计的性质决定了它在对学生进行素质教育,培养学生工程意识和设计能力等方面具有独特的优势。原来的机械原理和机械设计的课程设计是分开的,相互之间没有联系,机械原理的课程设计是以机构的分析为主,机械设计是以零件的强度分析和绘制图纸为主,教师不仅限定了设计题目和方案,还给学生提供了非常齐全的参考资料,学生的创新意识得不到发挥。将两门课程的课程设计进行了优化整合,从题目的选择到实施过程,更加符合现代机械的设计思路,即把过去仅进行机构和零部件的尺度综合、运动分析和动力分析,改变为进行机械系统的综合设计。使学生的创新潜能得到了发挥,提高了设计的能力、计算机运用能力、形象思维的能力。
四、教学方法与手段的改革
近年来,随着两门课程体系的改革和深化,课程内容不断更新和增加,但教学学时相对减少,学时与内容成了突出矛盾。如何激发学生兴趣、启迪学生的潜能, 提高学习的自主性和能动性,使学生在较短的时间内掌握机械设计的基本理论与方法;如何培养学生的工程意识、创新精神和设计能力,是教学方法和教学手段研究的重要课题。
(一)从培养兴趣入手。兴趣是成才的起点,是成就事业的沃土。学习兴趣能激励学生充分发挥学习潜能,提高学习效率和质量。
(二)开放式教学。开放式的教学方法,一是要打破传统的“一本书”,大力提倡课外阅读,让学生了解教科书之外相关领域的知识,更要让学生了解新理论、新方法和新技术。二是打破“一言堂”,给学生适当的“自由”,鼓励学生向老师提出问题,帮助学生树立“不唯书、不唯师、只唯实”的实事求是精神;三是教师不要把所有的知识点得“完美无缺”,要给学生的自学留有余地和空间。
(三)倡导主动实践。被动实践是指实践的对象、方法、程序等关键要素都是由老师制定的, 学生在老师规定的框架中, 沿着老师制定的路线去完成实践任务。
参考文献:
[1]濮良贵,纪明刚.机械设计(第八版)[M].高等教育出版社TH122.2006.5.
篇6
关键词:平面连杆机构;三维建模;SolidWorks二次开发
1 引言
网络教学随着计算机与网络技术的发展越来越重要,在《机械原理》的教学张,平面连杆机构是难点,也是重点,同时它在工程机械设备中的应用也是十分的广泛。传统教学模式下线条状的机构简图虽然可以进行机构仿真,但所实现的机构仿真不但缺乏三维真实感,而且分析结果的精度也不高。SolidWorks是一款CAD/CAM/CAE高度集成化的三维软件,它具有强大的三维建模和分析仿真功能。因此,开发基于SolidWorks的平面连杆机构网络教学系统具有很强的应用价值和现实意义。
2 系统开发环境
SolidWorks是世界上第一个基于Windows开发的三维CAD系统,它具有强大的三维建模功能,是现今主流的三维造型软件之一,特别是在国内产品设计领域占据重要位置。Visual C++是微软公司推出的面向对象的可视化集成编程系统,把它作为SolidWorks的二次开发环境,具有界面简洁、占用资源少、操作方便等优点。因此,利用C++对SolidWorks进行专业化的二次开发必要与可行的。
本系统以网络环境为运行平台。网络环境主要用于实现系统模型的整体构架,为系统的通用性及扩展性提供理论依据。基于上述要求,本系统的网络体系结构采用B/S(浏览器/服务器)模式,利用SolidWorks的API中COM类型接口以及基于对象的编程语言VC++进行学生界面设计,实现平面连杆机构的三维参数化建模,并将仿真结果以组件的形式进行打包嵌入到客户机浏览器端;采用ASP语言编写仿真系统界面,服务器端数据库采用微软Office中的Access数据库存储学生注册、登陆等相关信息。
3 系统开发模型
本研究的系统原理如图1所示。基于SolidWorks的平面连杆机构教学系统贮存在远程服务器中,学生通过客户端(Web浏览器)访问网络教学系统服务界面,选择演示的机构类型并输入设计参数,通过ASP进行参数传递,并调用参数化设计组件。参数化设计组件启动服务器端的SolidWorks系统,根据学生输入的机构类型,从机构模型库中调出对应各构件的三维模板图形文件,并调用SolidWorks提供的API函数,以学生提交的设计参数替换模板图形文件中的驱动尺寸,模型再生后即可得到学生需要的构件模型;然后检查各构件间的尺寸关系,是否发生干涉;再根据预先定义的装配关系进行自动装配,最后调用机构分析模块进行机构的运动仿真分析,并将最终的机构模型和分析结果保存在服务器供学生下载。
图1 系统原理
该系统主要由参数化设计、干涉检查、自动装配、运动仿真、运动分析等模块组成。系统的结构模型如图2所示,这种三层网络体系能很好地解决学生和系统的交互、学生和浏览器的通话、浏览器和系统的数据交换等问题。学生应用该系统时不需要在客户机安装SolidWorks软件,只需要通过浏览器端登录网络教学系统,得到使用权限后就可以向学生演示平面连杆机构的参数化设计、干涉检查、自动装配、运动仿真等过程,并绘制重要点的位移、速度、加速度等曲线。学生在客户机端通过浏览器可以观察到真实的机构三维模型,交互式运动仿真与装配过程以及图形化的运动学分析结果。学生还可以根据需要登录网络教学系统进行平面连杆机构设计,以巩固所学知识。
图2 系统结构模型
结束语
以往的平面连杆机构的计算机辅助系统都是基于本地的研究,也没有建立机构的三维实体模型。而本文基于SolidWorks的平面连杆机构网络教学系统实现了机构三维建模和运动仿真分析的一体化,解决了图形抽象、资源共享性差等问题。该系统可以丰富和加强《机械原理》课程的教学手段,激发学生的学习热情,提高教学质量和效率。■
参考文献
[1]程荣俊,黎瑞平,等.基于Pro/E的平面机构设计与运动学分析[J].机械工程师,2010(6):58-59.
[2]叶水安.网络环境下的机械基础教学模式构建[J].科技信息,2008(9):548-549.
[3]王新珉.平面连杆机构运动分析的计算机辅助教学系统研究[D].成都:西华大学,2009.
篇7
关键词:机械原理教学;现状;问题;考核制度
我国在1952年正式实行高考政策,满足了中国学生迈入更
高学府学习知识的梦想,当时正值我国建设的新时期,对有着专业知识的文化人需求很大。我国作为生产大国,大学很早就开设了机械方面的专业,以满足社会的需求。现如今,我们已经迈入了21世纪,在这个依靠科技创新的社会,应用型人才越来越缺乏。就我国的教育来说,大学的门槛越来越低,我国大部分学生都能够上大学,大学的生源素质参差不齐,严重缺乏自主创新能力。针对此现状,我国也在不断实行教育改革,大力发展职业教育,把职业教育摆到更加突出、更加重要的位置。这样做有利于缓解当前技能型、应用型人才紧缺的矛盾,也有利于农村劳动力转移和扩大社会就业,但这些做法也只停留在表面,不能从根本上解决问题。
一、机械原理课程包含的内容
在职业学校机电类专业中,机械原理课程贯穿整个机电专业的学习,是专业学习的基础。针对机械原理的定义来说,机械原理是研究机器的机构组成、运动方式、质量的一门基础性学科,在整个机械行业中,由于人类已从手工时期迈入了工业时代,对机械的要求越来越多,机械的种类也随之多样化,每种机械都有自己独特的用途,但组成的结构大体相同。在机械原理教学中主要包括对机械动力学和机构学的教学。从理论知识面上来说,机械是由机器和机构两个大方面组成,而机构是用来
改变或传递运动形式的装置。在机械原理理论课中详细地介绍了机构的分类以及具体的分析。
二、机械原理与创新设计相结合在教学中出现的问题
根据对部分五年制高职教育院校的课程进行调查可以发现,许多学校的机电工程系相关的机械专业,机械原理教学中对于课本知识普遍只注重“教”,老师在课堂上对于机械理论知识讲解得非常仔细,但学生缺乏自主学习能力,又因为课本知识比较抽象,往往不能够及时掌握,导致课堂效率出现问题。在机械原理教学中主要有以下几个问题:
1.理论知识与实践严重脱节
现阶段,职业学校的课程模式造成了理论与实践的分离,针
对性与应用性较差,学习内容交叉重复,职业技能培养缺乏,不能彰显职教特色,在教学中普遍理论性偏强,导致学生难以理解。在机电专业中,机械原理课程也不例外,学生在课堂上对老师传授的知识理解得不透彻,久而久之就很难将这门课程学好。理论课上完之后集中进行实验,学生都已经忘记前面的知识,实验课的效果很不理想,而且知识不能得到巩固,导致学生考试挂科,最主要的是不能学到专业知识。同时实验课的实验器材配备也往往不能满足学生的要求,实验设备比较老套,不适合现行的机械教育。
2.在课堂教学中不能很好地与创新设计相结合,缺少对学生创新能力的培养
教师在课堂上依然喜欢用自己的一套方式教学生,在学校,
大部分担任机械类专业课程的老师年龄普遍较高,不能将课程与创新设计完美地结合在一起,课堂授课无法提起学生的兴趣,导
致学生在课堂上昏昏欲睡,同时不注重学生创新能力的培养。学生的自主创新能力是机械原理教学的重点培育部分,而老师在教学中往往会忽视对学生创新能力的培训,总是认为学生会在休息时间组成科研小分队,对机械进行科研,从而来培养创新能力。然而,根据调查得出,如今的职业学校的学生更多的是在课外打打游戏,对知识的求知欲望不高,且自主创新能力方面的技能相对缺乏。
3.考核制度不完善
机械原理课程的考核制度不够完善,在机械原理课程的考核中对理论知识的考核比重非常大。从客观上来看,更使学生只注重理论知识。学生在课堂教学中对于理论知识的学习兴趣不大,因此,往往在考试时喜欢临时抱佛脚,更有甚者,在考试中抄袭别人的试卷。这样的因果循环就会导致在课堂上认真听课的人因为某些原因挂科,而经常不学习的,在考试中抄袭却过了,造成不良影响。同时也会导致学生认为自己课程过了就代表自己学会了,但事实并非如此。
三、机械原理教学与创新设计相结合的实践和策略
上述在机械原理教学与创新设计中出现的种种问题表明,我们在这门课程中确实存在着许许多多的不足,需要努力去改正,经过仔细推敲,可以得出以下几点策略:
1.理论知识与实验紧密结合
有理论而无相对应的实验是不能使理论知识得到巩固的,在现阶段的职业学校五年制高职教学中,应该将理论知识与实验课紧密地连接在一起。机械设计原理是一门理论性较强的课程,在课程中往往会对连杆机构进行详细的介绍,因此,必须在此理论课结束后通过实验课对课堂上所学的知识进行巩固加深,这样既能够提高学生对理论知识的认识度,也能够提高学生的动手能力,从而奠定培养学生自主创新能力的基础。
2.提高学生的创新能力,将创新设计与教学结合在一起
学生是否有很强的创新能力决定着以后工作的成功与否。在当代五年制高职学生中,特别是机械专业的学生,更应该注重创新能力的培养。任课老师应该将创新设计的思维能力融入教学中,对教学中的难点问题列举实例给学生进行讲解,例如:曲柄连杆机构,生活中的门和窗很多都是利用了连杆机构的原理,这样学生一目了然,也能激发学生的学习兴趣。尽可能地开发学生的自主学习能力,在实验课上,要求学生对机械的零部件进行深入了解,弄清机械由哪几部分组成,在课余时间开展机械原理方面的创新知识竞赛,对学生的创新设计进行详细的辅导,对学生设计的作品的优点给予鼓励,对不足点加以更正,使学生的创新意识能够得到极大地提高。
3.完善考核制度
完善考核制度,不能只注重理论知识,还要对机械原理的实验课及创新设计加强考核,使学生注重对自己动手能力和创新意识的培养,为以后的工作打下坚实的基础。
总而言之,将创新设计的理念与机械原理相结合进行教学有利于提高学生的创新能力,不断地完善机械原理教学中的不合理因素,也让学生能够真正学到知识,为国家培养技术型人才。
参考文献:
[1]段巍.机械原理课程改革实践与创新能力的培养.中国电力教育,2008.
篇8
关键词:Matlab 转向机构 优化设计
中图分类号:U463.42 文献标识码:A 文章编号:1007-3973(2013)012-241-02
车辆的转向机构对车辆操纵的稳定性、行驶的安全性、以及轮胎的寿命有着直接的影响。而四连杆转向梯形机构因其结构简单,加工制造方便而被广泛用于车辆转向机构中。本文从车辆行驶要求入手,通过对转向梯形机构进行运动特性分析,以Matlab软件为优化工具,对车辆转向梯形机构进行优化设计,尽可能保证车辆在转向过程中各车轮的轴线终交于瞬时转向中心。
1 转向梯形机构的基本特性
为了避免在车辆转向时产生路面对车辆行驶的附加阻力和轮胎过快磨损,要求转向机构能保证在车辆转向时所有车轮均作纯滚动。由机械原理可知,只有所有车轮的轴线都交于一点时才能实现。此交点称为转向中心。由此可得内外轮转向角的理论关系为:
式中:M为两侧主销轴线与地面相交点之间的距离;L为车辆轴距。
为了得到实际的内外轮转角关系,建立了图1所示坐标系,当内轮转过角 时,外轮实际转过 角。则此时、两点的的坐标为。转向梯形机构由原始位置转到图示位置时由于杆AB的长度不变所以有:
2 转向梯形机构的优化设计
3 Matlab优化工具箱简介及实例分析
Matlab的优化工具箱提供了对各种优化问题的一个完整的解决方案。涵盖了线性规划、非线性规划、二次规划、最小二乘问题、非线性方程求解、多目标决策、最小最大问题等优化设计计算方法。具有函数表达简洁、多种优化算法可任意选择、对算法参数可自由设置等一系列的优点,可使用户方便灵活地使用优化函数进行优化设计。其中的fmincon函数专门是求解多维约束优化问题的优化函数,它的语法如下:
输入参数:fun是调用目标函数的函数文件名;x0是初始点;设计变量X的下界向量Lb和上界向量Ub;‘Nlc’是定义非线性约束条件的函数名;options是设置优化选项参数;P1,P2等是传递给的fun附加参数。
运用Matlab优化工具箱可解决大量的机械优化问题,对于非标准形问题,可经过合适的变换后,转化为标准形式,也能用此工具箱进行求解。
以某型车辆为例,其参数为:M=1520mm,R=270,L= 4200mm, =78x=40atlab 优化工具箱进行优化后可得R=270, =74.5缤?所示,由图2可知优化后的转向梯形机构明显优于优化前的机构:在以内转向梯形机构的性能接近理论值,而在至最大转向角范围内误差的累计和与优化前大致相当。
4 结语
运用 Matlable 优化工具箱进行优化设计,具有初始参数输入简单,编程工作量小等优点,可极大提高优化问题的求解速度,减小求解工作量。本文通过分析转向梯形机构的基本运动特性建立了其数学模型,确定了优化函数并以某型车辆为例,利用Matlable 优化工具箱对其转向梯形机构进行了优化分析。对比优化结果表明,优化后的转向梯形机构在小转角范围内接近理论值,保证车辆在常用的转向角度范围转向的精确度,并减少了汽车在高速行驶时因车轮转向误差而导致的轮胎磨损,提高了车辆行驶的操纵稳定性。
参考文献:
[1] 叶民镇,刘亚文.工程机械梯形转向机构最优设计[J].建筑机械,1996(11):22-24.
篇9
[关键词]ADAMS 机械原理 教学改革
[中图分类号] G642 [文献标识码] A [文章编号] 2095-3437(2014)07-0123-02
应用型本科教育是以培养知识、能力和素质全面协调发展,面向生产、建设、管理、服务一线的高级应用型人才为目标定位的教育。笔者结合自身的教学实践和应用型本科的教学目标,根据课程的特点,在《机械原理》课程教学及实践环节中有针对性地应用虚拟样机技术软件,取得了良好的教学效果。
一、传统教学模式的不足
《机械原理》课程是机械类专业重要的专业基础课程,起着从基础课过渡到专业课,从理论课程过渡到结合工程实践的承前启后关键性作用,与工程实践的联系极为紧密。
目前该课程的教学模式依然沿用传统的以教师为中心的知识传授型,主要是在课堂上进行陈述性的知识讲解,多采用板书讲授、出示挂图和模型的方法进行教学。虽然近年来逐步采用多媒体教学,但也仅是普通ppt,无法动态演示机构的运动,不利于学生形成直观印象,不能够理解机械产品结构和功能之间的关系。总体而言,传统教学模式存在着“重理论轻实践、重理论传授轻学生能力培养”的缺陷。由于该课程涉及知识面广、知识点多,而且学生普遍缺乏工程实践经验,因此学习难度大,学生的感受大多是“机械原理不好学,实践应用更无从下手”,无法达到应用型本科教学的目标,对此进行改革势在必行。
二、教学中引入虚拟样机技术的目的
虚拟样机技术是设计制造领域的一项新技术,它利用计算机软件建立机械系统的三维实体模型,进行运动学和动力学分析,可以快速、准确、直观地分析和评估机械系统的性能。目前已出现多种虚拟样机技术软件,市场占有率较高、应用较为广泛的是由美国MSC公司研发的机械系统动力学自动分析软件(Auto Dynamic Analysisof Mechanical System,以下简称ADAMS)。
ADAMS具有易教、易学、易用的特点,使用者只要掌握了基本的机械原理知识和计算机操作就可以完成常用机构的建模、仿真和分析。
(一)改变教学模式,提高教学质量
指导学生利用ADAMS完成机械原理中常见机构,如连杆机构、凸轮机构和齿轮机构等的建模,等于将实验室、生产现场搬入教室,让学生从多个角度观察各种常见机构。学生建模的过程也是自主参与学习的过程,从而变枯燥的传授性讲授为教师主导的学生自主学习,增强了学生的感性认识,激发学习兴趣,实现理论和实践相结合,有效地提高教学质量。
(二)提高学习积极性,培养学生能力
利用ADAMS进行运动学分析,速度快、精度高,可以帮助学生克服因传统方法使用不便而形成的畏难情绪,让他们了解、掌握现代计算机辅助机械设计的方法,提高学习积极性,为自身综合素质的全面提高奠定良好的基础。
三、教学中虚拟样机技术的应用
(一)在理论教学中的应用
机械原理课程所涉及的知识面广,具有“模型多、关系多、门类多、公式多、图形多、表格多”的特点,相对枯燥且难以理解,因此要求教师在教学中需时刻注意,深入思考,不断探索如何激发学生的学习积极性。笔者在教学过程中,根据教学内容需要利用ADAMS制作各种常用机构的三维模型并多角度动态演示机构的运动,使教学内容直观、生动,吻合了学生涉新猎奇的心理愿望,有效地激发了学生的兴趣。图一为利用ADAMS建立的行星轮系模型。
此外,笔者针对教学难点,指导学生利用ADAMS创建机构模型,可以有效帮助学生掌握机构组成及运动特点,降低学习难度,取得很好效果。
传统的凸轮设计无论是用图解法还是解析法,其原理都是“反转法”,即在选定推杆的运动规律和确定凸轮机构的基本尺寸(基圆半径和偏距等)的前提下,假设凸轮静止不动,使推杆相对于凸轮沿-ω方向做反转运动,同时又在其导轨内按选定的运动规律作预期的运动,推杆在这种复合运动中其尖顶的运动轨迹即为凸轮轮廓曲线。
利用ADAMS设计凸轮采用的是相对轨迹曲线生成实体方法,只需要定义凸轮的转速、偏距和基圆半径以及推杆的运动规律,仿真凸轮和推杆在各自运动规律驱动下所做的运动,利用ADAMS提供的捕捉运动点轨迹功能,可得到推杆尖顶相对凸轮的运动轨迹,也就是凸轮的轮廓曲线,然后就可以快速生成凸轮的几何实体。这种方法可以有效降低学习难度,使教学难点更加清晰、生动,学生可以直观地、全面地了解凸轮设计过程,在短时间内理解并掌握尖顶推杆盘型凸轮机构的设计方法,达到教学大纲要求。对学有余力的学生,则要求他们利用课余时间完成综合应用三维建模软件(UG、Pro/E)和ADAMS进行滚子推杆盘型凸轮机构的设计,从而化教学难点为学习兴趣点,进一步提高学生的学习积极性。图二为利用ADAMS设计的凸轮机构示意图。
(二)在课程设计中的应用
机械原理课程的课程设计是培养学生机械设计综合能力、创新能力的重要环节,一般分为两个阶段:第一阶段是方案设计,第二阶段是尺寸综合、运动分析和受力分析。第二阶段进行运动分析和受力分析的方法通常是图解法和解析法,运用图解法时,一张图纸只能完成一个位置的分析,且准确性差;运用解析法时,无论数学模型的建立还是计算程序的编制相当繁琐。实践证明无论是采用哪种方法,学生都需要大量的时间才能完成,不能提出多种设计方案进行对比分析,从而影响了综合能力和创新能力的培养。
利用ADAMS完成运动分析和受力分析,可便捷地建立全参数化的机械系统模型,快速地完成运动学和动力学仿真,以曲线图和动画形式输出分析结果,能够让学生直观地看到自己的设计成果,增强学生的成就感和自信心;学生也可以采用不同方法验证图解法或解析法分析结果精度,保证学生能按时、高质量地完成课程设计。图三为指导学生利用ADAMS完成的牛头刨床运动分析示意图。
利用ADAMS的参数化建模,还可以自动改变设计变量完成优化设计,找出设计的最优方案,可以弥补学生由于缺乏设计经验,在尺寸综合过程中犯下的错误。
此外,利用ADAMS完成课程设计,还可以进行多种方案的对比分析,锻炼学生的综合应用能力,让想象力和创造力得到充分发挥。
四、结语
将虚拟样机技术引入机械原理课程教学,将传统的教学方法和现代的计算机辅助设计有机地结合为一体,可以改变原有较为陈旧的分析方法,有利于实现教学模式的转变,实现理论和工程实践相结合;能有效地激发学生的学习积极性,使教学质量大为提高。无论是在课堂教学还是在课程设计中,以ADAMS为代表的虚拟样机技术都能得到充分的应用,有利于学生掌握现代机械设计的手段和方法,培养他们应用和创新的能力。
[ 参 考 文 献 ]
[1] 李大胜,石怀荣,吕明.应用型本科院校机械原理课程教学改革与实践[J].淮海工学院学报,2012(2):90-92
[2] 孙恒,陈作模,葛文杰.机械原理[M].北京:高等教育出版社,2003.
篇10
自由度简介:
1、如果一个构件组合体的自由度大于零,构件组合体就可以成为一个机构,即表明各构件间可有相对运动,如果构件组合体的自由度等于零,则构件组合体将是一个结构,即已退化为一个构件;
2、机构自由度包含有平面机构自由度和空间机构自由度,一个原动件只能提供一个独立参数;
3、平面机构自由度,一个杆件在平面可以由其上任一点A的坐标x和y,以及通过A点的垂线AB与横坐标轴的夹角等3个参数来决定,因此杆件具有三个自由度;
- 上一篇:导数在高中数学的地位
- 下一篇:计算机网络技术和应用技术
相关期刊
精品范文
10机械制图实训总结